Test vectors for trilinear forms: the case of two principal series

Mladen Dimitrov, Louise Nyssen

To cite this version:

Mladen Dimitrov, Louise Nyssen. Test vectors for trilinear forms: the case of two principal series. 2008. hal-00328183

HAL Id: hal-00328183

https://hal.science/hal-00328183

Preprint submitted on 9 Oct 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Test vectors for trilinear forms : the case of two principal series

Mladen Dimitrov and Louise Nyssen
dimitrov@math.jussieu.fr, lnyssen@math.univ-montp2.fr

October 9, 2008

1 Introduction

Let F be a finite extension of \mathbb{Q}_{p} with ring of integers \mathcal{O} and uniformizing parameter π. Let V_{1}, V_{2} and V_{3} be three irreducible, admissible, infinite dimensional representations of $G=\mathrm{GL}_{2}(F)$ of central characters ω_{1}, ω_{2} and ω_{3} and conductors n_{1}, n_{2} and n_{3}. Using the theory of Gelfand pairs, Diprenda Prasad proves in \mathbb{P} that the space of G-invariant linear forms on $V_{1} \otimes V_{2} \otimes V_{3}$ has dimension at most one and gives a precise criterion for this dimension to be one, that we will now explain.

Let D^{*} be the group of invertible elements of the unique quaternion division algebra D over F. When V_{i} is a discrete series representation of G, denote by V_{i}^{\prime} the irreducible representation of D^{*} associated to V_{i} by the Jacquet-Langlands correspondence. Again, by the theory of Gelfand pairs, the space of D^{*}-invariant linear forms on $V_{1}^{\prime} \otimes V_{2}^{\prime} \otimes V_{3}^{\prime}$ has dimension at most one.

A necessary condition for the existence on a non-zero G-invariant linear form on $V_{1} \otimes V_{2} \otimes V_{3}$ (resp. non-zero D^{*}-invariant linear form on $V_{1}^{\prime} \otimes V_{2}^{\prime} \otimes V_{3}^{\prime}$), that we will always assume, is that

$$
\omega_{1} \omega_{2} \omega_{3}=1
$$

Let σ_{i} be the two dimensional representations of the Weil-Deligne group of F associated to V_{i}. The triple tensor product $\sigma_{1} \otimes \sigma_{2} \otimes \sigma_{3}$ is an eight dimensional symplectic representation of the Weil-Deligne group having a local root number $\varepsilon\left(\sigma_{1} \otimes \sigma_{2} \otimes \sigma_{3}\right)$ equal to 1 or -1 . When $\varepsilon\left(\sigma_{1} \otimes \sigma_{2} \otimes \sigma_{3}\right)=-1$, one can prove that the V_{i} 's are all discrete series representations of G.

Theorem 1. (Prasad \sqrt{B}, Theorem 1.4]) If all the V_{i} 's are supercuspidal, assume that the residue characteristic of F is not 2. Then

- $\varepsilon\left(\sigma_{1} \otimes \sigma_{2} \otimes \sigma_{3}\right)=1$ if, and only if, there exists a non-zero G-invariant linear form on $V_{1} \otimes V_{2} \otimes V_{3}$, and
- $\varepsilon\left(\sigma_{1} \otimes \sigma_{2} \otimes \sigma_{3}\right)=-1$ if, and only if, there exists a non-zero D^{*} invariant linear form on $V_{1}^{\prime} \otimes V_{2}^{\prime} \otimes V_{3}^{\prime}$.

Given a non zero G-invariant linear form ℓ on $V_{1} \otimes V_{2} \otimes V_{3}$, or a non-zero D^{*}-invariant linear form ℓ^{\prime} on $V_{1}^{\prime} \otimes V_{2}^{\prime} \otimes V_{3}^{\prime}$, the goal is to find a vector in $V_{1} \otimes V_{2} \otimes V_{3}$ which is not in the kernel of ℓ, or a vector in $V_{1}^{\prime} \otimes V_{2}^{\prime} \otimes V_{3}^{\prime}$ which is not in the kernel of ℓ^{\prime}. Such a vector is called a test vector. The following results of Prasad and Gross-Prasad show that new vectors can sometimes be used as test vectors. In what follows v_{i} denotes a new vector in V_{i} (see $\S(2.2)$.

Theorem 2. (Prasad $\left[\nexists\right.$, Theorem 1.3]) If all the V_{i} 's are unramified principal series, then $v_{1} \otimes v_{2} \otimes v_{3}$ is a test vector.

Theorem 3. (Gross and Prasad $\boxed{G-P}$, Proposition 6.3]) Suppose all the V_{i} 's are unramified twists of the Steinberg representation.

- If $\varepsilon\left(\sigma_{1} \otimes \sigma_{2} \otimes \sigma_{3}\right)=1$, then $v_{1} \otimes v_{2} \otimes v_{3}$ is a test vector.
- If $\varepsilon\left(\sigma_{1} \otimes \sigma_{2} \otimes \sigma_{3}\right)=-1$ and if R is the the unique maximal order in D, then any vector belonging to the unique line in $V_{1}^{\prime} \otimes V_{2}^{\prime} \otimes V_{3}^{\prime}$ fixed by $R^{*} \times R^{*} \times R^{*}$ is a test vector.

Actually, the proof by Gross and Prasad of the first statement of the above theorem contains another result :

Theorem 4. If two of the V_{i} 's are unramified twists of the Steinberg representation and the third one is an unramified principal series, then $v_{1} \otimes v_{2} \otimes v_{3}$ is a test vector.

However, as mentioned in G-P , new vectors are not always test vectors. Let $K=\mathrm{GL}(\mathcal{O})$ be the maximal compact subgroup of G and suppose that V_{1} and V_{2} are unramified, but V_{3} is ramified. Since v_{1} and v_{2} are K-invariant and ℓ is G-equivariant, $v \mapsto \ell\left(v_{1} \otimes v_{2} \otimes v\right)$ defines a K-invariant linear form on V_{3}. Since V_{3} is ramified, so is its contragredient, and therefore the above linear form has to vanish. In particular $\ell\left(v_{1} \otimes v_{2} \otimes v_{3}\right)=0$.

To go around this obstruction for new vectors to be test vectors, Gross and Prasad made the following suggestion : suppose that V_{3} has conductor $n=n_{3} \geq 1$; since V_{3} has unramified central character, its contragredient representation has non-zero invariant vectors by the n-th standard Iwahori subgroup $I_{n}=\left(\begin{array}{cc}\mathcal{O}^{\times} & \mathcal{O} \\ \varpi^{n} \mathcal{O} & \mathcal{O}^{\times}\end{array}\right)$of G; put $\gamma=\left(\begin{array}{cc}\pi^{-1} & 0 \\ 0 & 1\end{array}\right)$ and let $v_{1}^{*} \in V_{1}$ be a non-zero vector on the line fixed by the maximal compact subgroup $\gamma^{n} K \gamma^{-n}$ of G; since $K \cap \gamma^{n} K \gamma^{-n}=I_{n}$, the linear form on V_{3} given by $v \mapsto \ell\left(v_{1}^{*} \otimes v_{2} \otimes v\right)$ is not necessarily zero and there is still hope for $v_{1}^{*} \otimes v_{2} \otimes v_{3}$ to be a test vector. This is the object of the following theorem

Theorem 5. If V_{1} and V_{2} are unramified and V_{3} has conductor n_{3}, then $v_{1}^{*} \otimes v_{2} \otimes v_{3}$ is a test vector, where $v_{1}^{*}=\gamma^{n_{3}} \cdot v_{1}$.

Theorem 5 for $n_{3}=1$, together with Theorems 2, 3 and 4, completes the study of test vectors when the V_{i} 's have conductors 0 or 1 and unramified central characters.

Assume from now on that V_{1} and V_{2} are (ramified or unramified) principal series. Then for $i=1,2$ there exist quasi-characters μ_{i} and μ_{i}^{\prime} of F^{\times}such that $\mu_{i}^{\prime} \mu_{i}^{-1} \neq|\cdot|^{ \pm 1}$, and

$$
V_{i}=\operatorname{Ind}_{B}^{G} \chi_{i}, \text { with } \chi_{i}\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)=\mu_{i}(a) \mu_{i}^{\prime}(d)
$$

According to Theorem 1 there exists a non-zero G-invariant linear form ℓ on $V_{1} \otimes V_{2} \otimes V_{3}$, so we are looking for a test vector in $V_{1} \otimes V_{2} \otimes V_{3}$. The following theorem is our main result.

Theorem 6. Suppose that V_{1} and V_{2} are principal series such that μ_{1} and μ_{2}^{\prime} are unramified. Put

$$
x=\max \left(n_{2}-n_{1}, n_{3}-n_{1}\right) \quad \text { and } \quad v_{1}^{*}=\gamma^{x} \cdot v_{1}
$$

Then $x \geq 0$ and, if $v_{1}^{*} \otimes v_{2} \otimes v_{3}$ is not a test vector, then

- either $n_{1}=0, n_{2}=n_{3}>0$ and $\gamma^{n_{2}-1} \cdot v_{1} \otimes v_{2} \otimes v_{3}$ is a test vector,
- or $n_{2}=0, n_{1}=n_{3}>0$ and $v_{1} \otimes \gamma \cdot v_{2} \otimes v_{3}$ is a test vector,
- or $\widetilde{V_{3}}$ is a quotient of $\operatorname{Ind}_{B}^{G}\left(\chi_{1} \chi_{2} \delta^{\frac{1}{2}}\right), n_{1}+n_{2}=n_{3}$ and $v_{1} \otimes \gamma^{n_{1}} \cdot v_{2} \otimes v_{3}$ is a test vector.

The assumptions of the theorem imply in particular that V_{1} and V_{2} have minimal conductor among their twists. If V_{1} and V_{2} are two arbitrary principal series, then one can always find characters η_{1}, η_{2} and η_{3} of F^{\times}with $\eta_{1} \eta_{2} \eta_{3}=1$, such that the above theorem applies to $\left(V_{1} \otimes \eta_{1}\right) \otimes\left(V_{2} \otimes \eta_{2}\right) \otimes\left(V_{3} \otimes \eta_{3}\right)$. Nevertheless, we found also interesting to study the case when μ_{1} or μ_{2}^{\prime} is ramified. Then we are able to show that certain new vectors are not test vectors, while a priori this cannot be seen by a direct argument (the obstruction of Gross and Prasad described above does not apply to this case). Put $m_{1}=\operatorname{cond}\left(\mu_{1}^{\prime}\right)$ and $m_{2}=\operatorname{cond}\left(\mu_{2}^{\prime}\right)$

Theorem 7. Suppose that μ_{1} or μ_{2}^{\prime} is ramified. Let x, y and z be integers such that

- $x \geq m_{1}$,
- $y \geq m_{2}$,
- $x-n_{3} \geq z \geq y$, and
- $x-y \geq \max \left(n_{1}-m_{1}, n_{2}-m_{2}, 1\right)$.

Put

$$
\begin{gather*}
v_{1}^{*}= \begin{cases}\gamma^{x-m_{1}} \cdot v_{1} & , \text { if } \mu_{1}^{\prime} \text { is ramified, } \\
\gamma^{x} \cdot v_{1}-\beta_{1} \gamma^{x-1} \cdot v_{1} & , \text { if } \mu_{1}^{\prime} \text { is unramified. }\end{cases} \\
v_{2}^{*}= \begin{cases}\gamma^{y-m_{2}} \cdot v_{2} & \text { if } \mu_{2} \text { is ramified. } \\
\gamma^{y-n_{2}} \cdot v_{2}-\alpha_{2}^{-1} \gamma^{y-n_{2}+1} \cdot v_{2} & , \text { if } \mu_{2} \text { is unramified. }\end{cases} \tag{1}
\end{gather*}
$$

Then

$$
\ell\left(v_{1}^{*} \otimes v_{2}^{*} \otimes \gamma^{z} \cdot v_{3}\right)=0 .
$$

We will prove theorems 6 and 7 by following the pattern of the proof of Theorem 2 in \mathbb{P}, with the necessary changes.

We believe that suitable generalization of the method of Gross and Prasad would give test vectors in the case where at least two of the V_{i} 's are special representations, as well as in the case where one is a special representation and one is a principal series. On the other hand in order to find test vectors in the case where at least two of the V_{i} 's are supercuspidal, one should use different techniques, involving probably computations in Kirillov models.

The search for test vectors in our setting is motivated by subconvexity problems for L functions of triple products of automorphic forms on GL(2). Roughly speaking, one wants to bound the value of the L-function along the critical line $\Re(z)=\frac{1}{2}$. In B-R 1] and B-R 2] Joseph Bernstein and Andre Reznikov establish a subconvexity bound when the eigenvalue attached to one of the representations varies. Philippe Michel and Akshay Venkatesh considered the case when the level of one representation varies. More details about subconvexity and those related techniques can be found in [V] or M-V]. Test vectors are key ingredients.

Bernstein and Reznikov use an explicit test vector. Venkatesh uses a theoretical one, but explains that the bounds would be better with an explicit one (see $\mathbb{V}, \S 5]$).

There is an extension of Prasad's result in H-SD, where Harris and Scholl prove that the dimension of the space of G-invariant linear forms on $V_{1} \otimes V_{2} \otimes V_{3}$ is one when V_{1}, V_{2} and V_{3} are principal series representations (either irreducible or reducible, but with infinite dimensional irreducible subspace). They apply their result to the global setting to construct elements in the motivic cohomology of the product of two modular curves predicted by Beilinson.

Acknowledgments.

We would like to thank Philippe Michel for suggesting the study of this problem, and of course Benedict Gross and Diprenda Prasad for their articles full of inspiration. The second named author would like to thank also Paul Broussous and Nicolas Templier for many interesting discussions, and Wen-Ching Winnie Li for the opportunity to spend one semester at PennState University where the first draft of this paper was written.

2 Background on induced admissible representations of GL(2).

2.1 About induced and contragredient representations.

Let (ρ, W) be a smooth representation of a closed subgroup H of G. Let Δ_{H} be the modular function on H. The induction of ρ from H to G, denoted $\operatorname{Ind}_{H}^{G} \rho$, is the space of functions f from G to W satisfying the two following conditions :
(1) $\forall h \in H, \quad \forall g \in G, \quad f(h g)=\Delta_{H}(h)^{-\frac{1}{2}} \rho(h) f(g)$,
(2) there exists an open compact subgroup K_{f} of G such that

$$
\forall k \in K_{f}, \quad \forall g \in G, \quad f(g k)=f(g)
$$

where G acts by right translation as follows :

$$
\forall g, g^{\prime} \in G,(g \cdot f)\left(g^{\prime}\right)=f\left(g^{\prime} g\right) .
$$

With the additional condition that f must be compactly supported modulo H, one gets the compact induction denoted by $\operatorname{ind}_{H}^{G}$. When G / H is compact, there is no difference between $\operatorname{Ind}_{H}^{G}$ and $\operatorname{ind}_{H}^{G}$.

Let B the Borel subgroup of upper triangular matrices in G, and let T be the diagonal torus. The character Δ_{T} is trivial and we will use $\Delta_{B}=\delta^{-1}$ with $\delta\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)=\left|\frac{a}{d}\right|$ where $|\mid$ is the normalised valuation of F. The quotient $B \backslash G$ is compact and can be identified with $\mathbb{P}^{1}(F)$.

For a smooth representation V of G, the contragredient representation \widetilde{V} is the space of smooth linear forms l on V, where G acts as follows :

$$
\forall g \in G, \quad \forall v \in V, \quad(g \cdot l)(v)=l\left(g^{-1} \cdot v\right) .
$$

We refer the reader to [B-Z] for more details about induced and contragredient representations.

2.2 New vectors and ramification.

Let V be an irreducible, admissible, infinite dimensional representation of G with central character ω. Then $\widetilde{V} \cong V \otimes \omega^{-1}$. To the descending chain of compact subgroups of G

$$
K=I_{0} \supset I_{1} \supset \cdots \supset I_{n} \supset I_{n+1} \cdots
$$

one can associate an ascending chain of vector spaces $V^{I_{0}, \omega}=V^{K}$, and for all $n \geq 1, \quad V^{I_{n}, \omega}=\left\{v \in V \left\lvert\,\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \cdot v=\omega(d) v\right.\right.$, for all $\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in I_{n}\right\}$.
There exists a minimal n such that the vector space $V^{I_{n}, \omega}$ is non-zero. It is necessarily one dimensional and any non-zero vector in it is called a new vector of V. The integer n is the conductor of V. The representation V is said to be unramified if $n=0$.

More information about new vectors can be found in (G].

2.3 New vectors as functions on G.

Let V be a principal series of G, with central character ω, and conductor n. There exist quasi-characters μ and μ^{\prime} of F^{\times}such that $\mu^{\prime} \mu^{-1} \neq|\cdot|^{ \pm 1}$, and

$$
V=\operatorname{Ind}_{B}^{G}(\chi) \quad \text { with } \quad \chi\left(\begin{array}{cc}
a & * \\
0 & d
\end{array}\right)=\mu(a) \mu^{\prime}(d)
$$

Then $\omega=\mu \mu^{\prime}$ and $n=\operatorname{cond}(\mu)+\operatorname{cond}\left(\mu^{\prime}\right)$. A new vector v in V is a non-zero function from G to \mathbb{C} such that for all $b \in B, g \in G$ and $k=\left(\begin{array}{ll}* & * \\ * & d\end{array}\right) \in I_{n}$

$$
v(b g k)=\chi(b) \delta(b)^{\frac{1}{2}} \omega(d) v(g) .
$$

Put

$$
\alpha^{-1}=\mu(\pi)|\pi|^{\frac{1}{2}} \quad \text { and } \quad \beta^{-1}=\mu^{\prime}(\pi)|\pi|^{-\frac{1}{2}} .
$$

First, we assume that V is unramified, and we normalise v so that $v(1)=1$.
Lemma 2.1. If V is unramified then for all $r \in \mathbb{N}$,

$$
\left(\gamma^{r} \cdot v\right)(k)= \begin{cases}\beta^{r} & , \text { if } k \in K \backslash I \\ \alpha^{s} \beta^{r-s} & , \text { if } k \in I_{s} \backslash I_{s+1} \text { for } 1 \leq s \leq r-1, \\ \alpha^{r} & , \text { if } k \in I_{r}\end{cases}
$$

Similarly,

$$
\left(\gamma^{r} \cdot v-\alpha^{-1} \gamma^{r+1} \cdot v\right)(k)= \begin{cases}\alpha^{s} \beta^{r-s}-\alpha^{s-1} \beta^{r+1-s} & , \text { if } k \in I_{s} \backslash I_{s+1} \text { for } 0 \leq s \leq r \\ 0 & , \text { if } k \in I_{r+1}\end{cases}
$$

Finally, for $r \geq 1$,

$$
\left(\gamma^{r} \cdot v-\beta \gamma^{r-1} \cdot v\right)(k)= \begin{cases}\alpha^{r}\left(1-\frac{\beta}{\alpha}\right) & , \text { if } k \in I_{r}, \\ 0 & , \text { if } k \in K \backslash I_{r} .\end{cases}
$$

Proof : If $k \in I_{r}$, then $\gamma^{-r} k \gamma^{r} \in K$, so

$$
\left(\gamma^{r} \cdot v\right)(k)=\alpha^{r} v\left(\gamma^{-r} k \gamma^{r}\right)=\alpha^{r}
$$

Suppose that $k=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in I_{s} \backslash I_{s+1}$ for some $0 \leq s \leq r-1$ (recall that $\left.I_{0}=K\right)$. Then $\pi^{-s} c \in \mathcal{O}^{\times}$and

$$
\left(\gamma^{r} \cdot v\right)(k)=\alpha^{r} v\left(\begin{array}{cc}
a & \pi^{r} b \\
\pi^{-r} c & d
\end{array}\right)=\alpha^{r} v\left(\begin{array}{cc}
(a d-b c) \pi^{r-s} & a \\
0 & \pi^{-r} c
\end{array}\right)=\alpha^{s} \beta^{r-s}
$$

The second part of the lemma follows by a direct computation.
For the rest of this section we assume that V is ramified, that is $n \geq 1$. We put

$$
m=\operatorname{cond}\left(\mu^{\prime}\right) \quad \text { so } \quad \text { that } \quad n-m=\operatorname{cond}(\mu)
$$

By Casselman [G, pp.305-306] the restriction to K of a new vector v is supported by the double coset of $\left(\begin{array}{cc}1 & 0 \\ \pi^{m} & 1\end{array}\right)$ modulo I_{n}. In particular if μ^{\prime} is unramified $(m=0)$, then v is supported by

$$
I_{n}\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) I_{n}=I_{n}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) I_{n}=K \backslash I
$$

If $1 \leq m \leq n-1$, then v is supported by

$$
I_{n}\left(\begin{array}{cc}
1 & 0 \\
\pi^{m} & 1
\end{array}\right) I_{n}=I_{m} \backslash I_{m+1}
$$

If μ is unramified $(m=n)$, then v is supported by I_{n}. We normalise v so that

$$
v\left(\begin{array}{cc}
1 & 0 \\
\pi^{m} & 1
\end{array}\right)=1
$$

Lemma 2.2. If μ and μ^{\prime} are both ramified $(0<m<n)$, then for all $r \in \mathbb{N}$ and $k \in K$,

$$
\left(\gamma^{r} \cdot v\right)(k)= \begin{cases}\alpha^{r} \mu\left(\frac{\operatorname{det} k}{\pi^{-(m+r) c}}\right) \mu^{\prime}(d) & , \text { if } k=\left(\begin{array}{ll}
* & * \\
c & d
\end{array}\right) \in I_{m+r} \backslash I_{m+r+1} \\
0 & , \text { otherwise }\end{cases}
$$

Proof : For $k=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in K$ we have

$$
\alpha^{-r}\left(\gamma^{r} \cdot v\right)(k)=v\left(\gamma^{-r} k \gamma^{r}\right)=v\left(\begin{array}{cc}
a & \pi^{r} b \\
\pi^{-r} c & d
\end{array}\right) .
$$

It is easy to check that for every $s \geq 1$,

$$
K \cap B \gamma^{r} I_{s} \gamma^{-r}=I_{s+r}
$$

It follows that $\gamma^{r} \cdot v$ has its support in $I_{m+r} \backslash I_{m+r+1}$. If $k \in I_{m+r} \backslash I_{m+r+1}$ then $c \in \pi^{m+r} \mathcal{O}^{\times}$, $d \in \mathcal{O}^{\times}$and we have the following decomposition :

$$
\left(\begin{array}{cc}
a & \pi^{r} b \tag{2}\\
\pi^{-r} c & d
\end{array}\right)=\left(\begin{array}{cc}
\operatorname{det} k & \pi^{-m} c b \\
0 & \pi^{-m-r} c d
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
\pi^{m} & 1
\end{array}\right)\left(\begin{array}{cc}
d^{-1} & 0 \\
0 & \pi^{m+r} c^{-1}
\end{array}\right) .
$$

Hence

$$
\alpha^{-r}\left(\gamma^{r} \cdot v\right)(k)=\mu(\operatorname{det}(k)) \mu^{\prime}\left(\pi^{-m-r} c d\right)\left(\mu \mu^{\prime}\right)\left(\pi^{m+r} c^{-1}\right)=\mu\left(\frac{\operatorname{det}(k)}{\pi^{-(m+r)} c}\right) \mu^{\prime}(d) .
$$

Similarly we obtain :
Lemma 2.3. Suppose that μ is unramified and μ^{\prime} is ramified. Then, for all $r \in \mathbb{N}$ and $k \in K$,

$$
\begin{gathered}
\left(\gamma^{r} \cdot v\right)(k)= \begin{cases}\alpha^{r} \mu^{\prime}(d) & , \text { if } k=\left(\begin{array}{ll}
* & * \\
* & d
\end{array}\right) \in I_{n+r}, \\
0 & , \text { otherwise. }\end{cases} \\
\left(\gamma^{r} \cdot v-\alpha^{-1} \gamma^{r+1} \cdot v\right)(k)= \begin{cases}\alpha^{r} \mu^{\prime}(d) & , \text { if } k=\left(\begin{array}{ll}
* & * \\
* & d
\end{array}\right) \in I_{n+r} \backslash I_{n+r+1}, \\
0 & , \text {,therwise. }\end{cases}
\end{gathered}
$$

Lemma 2.4. Suppose that μ^{\prime} is unramified and μ is ramified. Then for all $r \in \mathbb{N}$,

$$
\left(\gamma^{r} \cdot v\right)(k)= \begin{cases}\alpha^{s} \beta^{r-s} \mu\left(\frac{\operatorname{det}(k)}{\pi^{-s} c}\right) & , \text { if } k=\left(\begin{array}{ll}
* & * \\
c & *
\end{array}\right) \in I_{s} \backslash I_{s+1}, \text { with } 0 \leq s \leq r, \\
0 & , \text { if } k \in I_{r+1} .\end{cases}
$$

Moreover, if $r \geq 1$, then

$$
\left(\gamma^{r} \cdot v-\beta \gamma^{r-1} \cdot v\right)(k)= \begin{cases}\alpha^{r} \mu\left(\frac{\operatorname{det}(k)}{\left.\pi^{-r_{c}}\right)}\right. & , \text { if } k=\left(\begin{array}{ll}
* & * \\
c & *
\end{array}\right) \in I_{r} \backslash I_{r+1}, \\
0 & , \text { otherwise. }\end{cases}
$$

Proof: We follow the pattern of proof of lemma 2.2. The restriction of $\gamma^{r} \cdot v$ to K is zero outside

$$
K \cap B \gamma^{r}(K \backslash I) \gamma^{-r}=K \backslash I_{r+1} .
$$

For $0 \leq s \leq r$ and $k=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in I_{s} \backslash I_{s+1}$ we use the following decomposition :

$$
\left(\begin{array}{cc}
a & \pi^{r} b \tag{3}\\
\pi^{-r} c & d
\end{array}\right)=\left(\begin{array}{cc}
-\frac{\operatorname{det} k}{\pi^{-r_{c}}} & a+\frac{\operatorname{det} k}{\pi^{-c_{c}}} \\
0 & \pi^{-r} c
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 1+\frac{d}{\pi^{-r_{c}}} \\
0 & -1
\end{array}\right) .
$$

Since $d \in \mathcal{O}$ and $\pi^{r} c^{-1} \in \mathcal{O}$ we deduce that :

$$
\alpha^{-r}\left(\gamma^{r} \cdot v\right)(k)=\mu\left(\frac{\operatorname{det} k}{\pi^{-r} c}\right) \mu^{\prime}\left(-\pi^{-r} c\right)\left|\pi^{r} c^{-1}\right|=\mu\left(\frac{\operatorname{det} k}{\pi^{-s} c}\right) \alpha^{s-r} \beta^{r-s} .
$$

As direct consequence of these lemmas we obtain

Lemma 2.5. Let v_{1}^{*} and v_{2}^{*} be as in Theorem $\boldsymbol{\pi}$. Then the support of v_{1}^{*} is

$$
\begin{cases}I_{x} \backslash I_{x+1} & , \text { if } \mu_{1} \text { is ramified, } \\ I_{x} & , \text { if } \mu_{1} \text { is unramified, }\end{cases}
$$

and the support of v_{2}^{*} is

$$
\begin{cases}I_{y} \backslash I_{y+1} & \text {, if } \mu_{2}^{\prime} \text { is ramified, } \\ K \backslash I_{y+1} & \text {, if } \mu_{2}^{\prime} \text { is unramified }\end{cases}
$$

3 Going down Prasad's exact sequence.

In this section we will explain how Prasad finds a non-zero $\ell \in \operatorname{Hom}_{G}\left(V_{1} \otimes V_{2} \otimes V_{3}, \mathbb{C}\right)$ in the case where V_{1} and V_{2} are principal series representations.

3.1 Prasad's exact sequence.

The space $\operatorname{Hom}_{G}\left(V_{1} \otimes V_{2} \otimes V_{3}, \mathbb{C}\right)$ is canonically isomorphic to $\operatorname{Hom}_{G}\left(V_{1} \otimes V_{2}, \widetilde{V_{3}}\right)$, hence finding ℓ it is the same as finding a non-zero element Ψ in it. We have

$$
V_{1} \otimes V_{2}=\operatorname{Res}_{G} \operatorname{Ind}_{B \times B}^{G \times G}\left(\chi_{1} \times \chi_{2}\right)
$$

where the restriction is taken with respect to the diagonal embedding of G in $G \times G$. The action of G on $(B \times B) \backslash(G \times G) \cong \mathbb{P}^{1}(F) \times \mathbb{P}^{1}(F)$ has precisely two orbits.

The first is the diagonal $\Delta_{B \backslash G}$, which is closed and can be identified with $B \backslash G$. The second is its complement which is open and can be identified with $T \backslash G$ via the bijection :

$$
\begin{aligned}
T \backslash G & \longrightarrow(B \backslash G \times B \backslash G) \backslash \Delta_{B \backslash G} \\
T g & \longmapsto\left(B g, B\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) g\right)
\end{aligned}
$$

Hence, there is a short exact sequence of G-modules :

$$
\begin{equation*}
0 \rightarrow \operatorname{ind}_{T}^{G}\left(\chi_{1} \chi_{2}^{\prime}\right) \xrightarrow{\text { ext }} V_{1} \otimes V_{2} \xrightarrow{\text { res }} \operatorname{Ind}_{B}^{G}\left(\chi_{1} \chi_{2} \delta^{\frac{1}{2}}\right) \rightarrow 0, \tag{4}
\end{equation*}
$$

where $\chi_{2}^{\prime}\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)=\mu_{2}^{\prime}(a) \mu_{2}(d)$. The surjection res is given by the restriction to the diagonal. The injection ext takes a function $f \in \operatorname{ind}_{T}^{G}\left(\chi_{1} \chi_{2}^{\prime}\right)$ to a function $F \in \operatorname{Ind}_{B \times B}^{G \times G}\left(\chi_{1} \times \chi_{2}\right)$ vanishing on $\Delta_{B \backslash G}$, such that for all $g \in G$

$$
F\left(g,\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) g\right)=f(g)
$$

Applying the functor $\operatorname{Hom}_{G}\left(\bullet, \widetilde{V_{3}}\right)$ yields a long exact sequence :

$$
\begin{align*}
& 0 \rightarrow \operatorname{Hom}_{G}\left(\operatorname{Ind}_{B}^{G}\left(\chi_{1} \chi_{2} \delta^{\frac{1}{2}}\right), \widetilde{V_{3}}\right) \rightarrow \operatorname{Hom}_{G}\left(V_{1} \otimes V_{2}, \widetilde{V_{3}}\right) \rightarrow \operatorname{Hom}_{G}\left(\operatorname{ind}_{T}^{G}\left(\chi_{1} \chi_{2}^{\prime}\right), \widetilde{V_{3}}\right) \\
& \downarrow \tag{5}\\
& \cdots \cdots \operatorname{Ext}_{G}^{1}\left(\operatorname{Ind}_{B}^{G}\left(\chi_{1} \chi_{2} \delta^{\frac{1}{2}}\right), \widetilde{V_{3}}\right)
\end{align*}
$$

3.2 The simple case.

The situation is easier if V_{3} occurs in $\operatorname{Ind}_{B}^{G}\left(\chi_{1}^{-1} \chi_{2}^{-1} \delta^{-\frac{1}{2}}\right)$. Then $\chi_{1} \chi_{2}$ does not factor through the determinant and there is a natural surjection

$$
\operatorname{Ind}_{B}^{G}\left(\chi_{1} \chi_{2} \delta^{\frac{1}{2}}\right) \rightarrow \widetilde{V_{3}} .
$$

This surjection is an isomorphism, unless there exists a quasi-character η of F^{\times}such that $\chi_{1} \chi_{2} \delta=\eta \circ$ det in which case the kernel is a line generated by the function $\eta \circ$ det. From (4) we obtain a surjective homomorphism Ψ completing the following commutative diagram :

$$
\begin{array}{rll}
V_{1} \otimes V_{2} & \xrightarrow{\text { res }} & \operatorname{Ind}_{B}^{G}\left(\chi_{1} \chi_{2} \delta^{\frac{1}{2}}\right) \tag{6}\\
\Psi \searrow & \widetilde{V_{3}} & \swarrow
\end{array}
$$

Finding a test vector is then reduced to finding an element of $V_{1} \otimes V_{2}$ whose image by res is not zero (resp. not a multiple of $\eta \circ$ det), if V_{3} is principal series (resp. special representation).

Following the notations of paragraph 2.3 put, for $i=1$ and $i=2$

$$
m_{i}=\operatorname{cond}\left(\mu_{i}^{\prime}\right) \quad \alpha_{i}^{-1}=\mu_{i}(\pi)|\pi|^{\frac{1}{2}} \quad \text { and } \quad \beta_{i}^{-1}=\mu_{i}^{\prime}(\pi)|\pi|^{-\frac{1}{2}} .
$$

3.2.1 Proof of theorem 7 in the simple case.

To prove theorem 7, suppose that μ_{1} or μ_{2}^{\prime} is ramified. By our assumptions $x>y$, hence $I_{x} \cap\left(K \backslash I_{y+1}\right)=\varnothing$. Therefore the supports of v_{1}^{*} and v_{2}^{*} are disjoint and

$$
\operatorname{res}\left(v_{1}^{*} \otimes v_{2}^{*}\right)=0 .
$$

Using the diagram (6) we see that for any $v \in V_{3}$:

$$
\ell\left(v_{1}^{*} \otimes v_{2}^{*} \otimes v\right)=\Psi\left(v_{1}^{*} \otimes v_{2}^{*}\right)(v)=0 .
$$

In particular $\ell\left(v_{1}^{*} \otimes v_{2}^{*} \otimes \gamma^{z} \cdot v_{3}\right)=0$ which proves Theorem $\boldsymbol{T}^{\text {in }}$ in the simple case.
The rest of section 3.2 will be devoted to the proof of Theorems 5 and 6 in the simple case. Consequently, we will suppose that μ_{1} and μ_{2}^{\prime} are unramified, that is $m_{1}-n_{1}=m_{2}=0$.

3.2.2 Proof of Theorem 5 in the simple case.

Since V_{1} and V_{2} are unramified, by theorem 2 we may assume that V_{3} is ramified. Then necessarily

$$
\widetilde{V_{3}}=\eta \otimes \mathrm{St},
$$

where St is the Steinberg representation and η is an unramified character. Hence $n_{3}=1$ and we will prove that $\gamma \cdot v_{1} \otimes v_{2} \otimes v_{3}$ is a test vector.

The function

$$
\left\{\begin{array}{lll}
G & \longrightarrow & \mathbb{C} \\
g & \mapsto & \eta(\operatorname{det}(g))^{-1} \operatorname{res}\left(\gamma \cdot v_{1} \otimes v_{2}\right)(g)
\end{array}\right.
$$

is not constant, since according to lemma 2.1

$$
\eta(\operatorname{det}(1))^{-1}\left(\gamma \cdot v_{1} \otimes v_{2}\right)(1)=v_{1}(\gamma) v_{2}(1)=\alpha_{1}
$$

and

$$
\eta\left(\operatorname{det}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right)^{-1}\left(\gamma \cdot v_{1} \otimes v_{2}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\eta(-1) v_{1}\left(\begin{array}{cc}
1 & 0 \\
0 & \pi^{-1}
\end{array}\right)=\beta_{1}
$$

and $\alpha_{1} \neq \beta_{1}$ because V_{1} is a principal series.
Hence $\Psi\left(\gamma \cdot v_{1} \otimes v_{2}\right) \neq 0$. Moreover, since

$$
\gamma K \gamma^{-1} \cap K=I
$$

we deduce that

$$
\Psi\left(\gamma \cdot v_{1} \otimes v_{2}\right) \in{\widetilde{V_{3}}}^{I, \omega_{3}-1}
$$

Hence $\Psi\left(\gamma \cdot v_{1} \otimes v_{2}\right)$ cannot vanish on the line $V_{3}^{I, \omega_{3}}$, which is generated by v_{3}, and therefore $\gamma \cdot v_{1} \otimes v_{2} \otimes v_{3}$ is a test vector.

This completes the proof of Theorem 5 in the simple case.

3.2.3 Proof of Theorem 6 in the simple case, when $\widetilde{V_{3}}$ is a special representation.

Assume now that

$$
\widetilde{V_{3}}=\eta \otimes \mathrm{St}
$$

where St is the Steinberg representation and η is a character. Since

$$
\eta=\mu_{1} \mu_{2}|\cdot|=\mu_{1}^{\prime} \mu_{2}^{\prime}|\cdot|^{-1}
$$

and μ_{1} and μ_{2}^{\prime} are unramified, it follows that η is unramified if, and only if, both V_{1} and V_{2} are unramified. Since this case was taken care of in the previous paragraph, we can assume for the rest of this paragraph that η is ramified. Then

$$
n_{1}=n_{2}=\operatorname{cond}(\eta) \geq 1 \quad \text { and } \quad n_{3}=2 n_{1}=n_{1}+n_{2}
$$

We will prove that $v_{1} \otimes \gamma^{n_{1}} \cdot v_{2} \otimes v_{3}$ is a test vector.
The function

$$
\left\{\begin{array}{rll}
G & \longrightarrow \mathbb{C} \\
g & \mapsto & \eta(\operatorname{det}(g))^{-1} \operatorname{res}\left(v_{1} \otimes \gamma^{n_{1}} \cdot v_{2}\right)(g)
\end{array}\right.
$$

is not constant, since according to lemmas 2.3 and 2.4

$$
\eta(\operatorname{det}(1))^{-1}\left(v_{1} \otimes \gamma^{n_{1}} \cdot v_{2}\right)(1)=0
$$

whereas

$$
\eta\left(\operatorname{det}\left(\begin{array}{cc}
1 & 0 \\
\pi^{n_{1}} & 1
\end{array}\right)\right)^{-1}\left(v_{1} \otimes \gamma^{n_{1}} \cdot v_{2}\right)\left(\begin{array}{cc}
1 & 0 \\
\pi^{n_{1}} & 1
\end{array}\right)=\alpha_{2}^{n_{1}} \neq 0
$$

Hence $\Psi\left(v_{1} \otimes \gamma^{n_{1}} \cdot v_{2}\right) \neq 0$. Moreover, since

$$
I_{n_{1}} \cap \gamma^{n_{1}} I_{n_{2}} \gamma^{-n_{1}}=I_{n_{1}+n_{2}}=I_{n_{3}}
$$

we deduce that

$$
\Psi\left(v_{1} \otimes \gamma^{n_{1}} \cdot v_{2}\right) \in{\widetilde{V_{3}}}^{I_{n_{3}}, \omega_{3}^{-1}}
$$

Hence $\Psi\left(v_{1} \otimes \gamma^{n_{1}} \cdot v_{2}\right)$ cannot vanish on the line $V_{3}{ }^{I_{n}, \omega_{3}}$, which is generated by v_{3}, and therefore $v_{1} \otimes \gamma^{n_{1}} \cdot v_{2} \otimes v_{3}$ is a test vector.

3.2.4 Proof of Theorem 6 in the simple case, when $\widetilde{V_{3}}$ is a principal series.

Finally, we consider the case where $\widetilde{V_{3}}$ is a principal series representation. Then

$$
\widetilde{V_{3}}=\operatorname{Ind}_{B}^{G}\left(\chi_{1} \chi_{2} \delta^{\frac{1}{2}}\right)
$$

and

$$
n_{3}=\operatorname{cond}\left(\mu_{1} \mu_{2}\right)+\operatorname{cond}\left(\mu_{1}^{\prime} \mu_{2}^{\prime}\right)=n_{2}+n_{1} .
$$

We will prove that $v_{1} \otimes \gamma^{n_{1}} \cdot v_{2} \otimes v_{3}$ is a test vector.
According to lemmas 2.1, 2.3 and 2.4 we have

$$
\left(v_{1} \otimes \gamma^{n_{1}} \cdot v_{2}\right)\left(\begin{array}{cc}
1 & 0 \\
\pi^{n_{1}} & 1
\end{array}\right)=\alpha_{2}^{n_{1}} \neq 0
$$

hence $\operatorname{res}\left(v_{1} \otimes \gamma^{n_{1}} \cdot v_{2}\right) \neq 0$.
Therefore $\Psi\left(v_{1} \otimes \gamma^{n_{1}} v_{2}\right) \neq 0$. Moreover, since

$$
I_{n_{1}} \cap \gamma^{n_{1}} I_{n_{2}} \gamma^{-n_{1}}=I_{n_{1}+n_{2}}=I_{n_{3}}
$$

we deduce that

$$
\Psi\left(v_{1} \otimes \gamma^{n_{1}} v_{2}\right) \in\left(\widetilde{V_{3}}\right)^{I_{n 3}, \omega_{3}-1}
$$

Hence $\Psi\left(v_{1} \otimes \gamma^{n_{1}} v_{2}\right)$ cannot vanish on the line $V_{3}{ }^{I_{n}, \omega_{3}}$, which is generated by v_{3}. Thus $v_{1} \otimes \gamma^{n_{1}} \cdot v_{2} \otimes v_{3}$ is a test vector.

This completes the proof of Theorem 国 in the simple case.

3.3 The other case.

The situation is more complicated if $\operatorname{Hom}_{G}\left(\operatorname{Ind}_{B}^{G}\left(\chi_{1} \chi_{2} \delta^{\frac{1}{2}}\right), \widetilde{V_{3}}\right)=0$. By \mathbb{P}, Corollary 5.9] we have $\operatorname{Ext}_{G}^{1}\left(\operatorname{Ind}_{B}^{G}\left(\chi_{1} \chi_{2} \delta^{\frac{1}{2}}\right), \widetilde{V_{3}}\right)=0$, hence the long exact sequence (5) yields the following isomorphism :

$$
\operatorname{Hom}_{G}\left(V_{1} \otimes V_{2}, \widetilde{V_{3}}\right) \simeq \operatorname{Hom}_{G}\left(\operatorname{ind}_{T}^{G}\left(\chi_{1} \chi_{2}^{\prime}\right), \widetilde{V_{3}}\right)
$$

Finally, by Frobenius reciprocity

$$
\operatorname{Hom}_{G}\left(\operatorname{ind}_{T}^{G}\left(\chi_{1} \chi_{2}^{\prime}\right), \widetilde{V_{3}}\right) \simeq \operatorname{Hom}_{T}\left(\chi_{1} \chi_{2}^{\prime}, \widetilde{V_{3 \mid T}}\right) .
$$

By [Ш, Lemmes 8-9] the latter space is one dimensional, since the restriction of $\chi_{1} \chi_{2}^{\prime}$ to the center equals ω_{3}^{-1} (recall that $\omega_{1} \omega_{2} \omega_{3}=1$). Thus, we have four canonically isomorphic lines with corresponding bases :

$$
\left.\begin{array}{ccc}
0 \neq \ell & \in \operatorname{Hom}_{G}\left(V_{1} \otimes V_{2} \otimes V_{3}, \mathbb{C}\right) \\
\downarrow 2
\end{array}\right]
$$

Observe that φ can be seen as a linear form on V_{3} satisfying :

$$
\begin{equation*}
\forall t \in T, \quad \forall v \in V_{3}, \quad \varphi(t \cdot v)=\left(\chi_{1} \chi_{2}^{\prime}\right)(t)^{-1} \varphi(v) \tag{8}
\end{equation*}
$$

Lemma 3.1. $\varphi\left(v_{3}\right) \neq 0$ if, and only if, $\mu_{1} \mu_{2}^{\prime}$ is unramified.
Proof: Suppose $\varphi\left(v_{3}\right) \neq 0$. Since $v_{3} \in V_{3}$ is a new vector, for all $a, d \in \mathcal{O}^{\times}$we have

$$
\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right) \cdot v_{3}=\omega_{3}(d) v_{3}=\left(\mu_{1} \mu_{1}^{\prime} \mu_{2} \mu_{2}^{\prime}\right)(d)^{-1} v_{3}
$$

Comparing it with (8) forces $\mu_{1} \mu_{2}^{\prime}$ to be unramified.
Conversely, assume that $\mu_{1} \mu_{2}^{\prime}$ is unramified. Take any $v \in V_{3}$ such that $\varphi(v) \neq 0$. By smoothness v is fixed by the principal congruence subgroup $\operatorname{ker}\left(K \rightarrow \mathrm{GL}_{2}\left(\mathcal{O} / \pi^{s}\right)\right.$), for some $s \geq 0$. Then $\varphi\left(\gamma^{s} \cdot v\right)=\left(\mu_{1} \mu_{2}^{\prime}\right)\left(\pi^{s}\right) \varphi(v) \neq 0$ and $\gamma^{s} \cdot v$ is fixed by the congruence subgroup

$$
I_{2 s}^{1}:=\left\{k \in K \left\lvert\, k \equiv\left(\begin{array}{cc}
1 & * \\
0 & 1
\end{array}\right) \quad\left(\bmod \pi^{2 s}\right)\right.\right\}
$$

By replacing $\gamma^{s} \cdot v$ by v and $2 s$ by s, we may assume that $v \in V_{3}^{I_{s}^{1}}$ for some $s \geq 0$. Since I_{s} / I_{s}^{1} is a finite abelian group, $V_{3}^{I_{s}^{1}}$ decomposes as a direct sum of spaces indexed by the characters of I_{s} / I_{s}^{1}. Then φ has to be non-zero on $V_{3}^{I_{s}, \omega_{3}}$ (defined in paragraph 2.2) since by (8), φ vanishes on all other summands of $V_{3}^{I_{s}^{1}}$.

By Casselman (G, Theorem 1] the space $V_{3}^{I_{s}, \omega_{3}}$ has dimension $n_{3}-s+1$ and has a basis

$$
\left(\begin{array}{cccc}
v_{3} & , & \gamma \cdot v_{3} & , \ldots,
\end{array} \gamma^{n_{3}-s} \cdot v_{3}\right)
$$

(recall that n_{3} denotes the conductor of $\left.V_{3}\right)$. Again by (8), $\varphi\left(\gamma^{i} v_{3}\right) \neq 0$ for some i is equivalent to $\varphi\left(v_{3}\right) \neq 0$.

Notice that, when $\mu_{1} \mu_{2}^{\prime}$ and $\mu_{1}^{\prime} \mu_{2}$ are both unramified, the claim follows from the first case in $[$ G-P, Proposition 2.6] applied to the split torus T of G.

4 Going up Prasad's exact sequence.

In this section we take as a starting point lemma 3.1 and follow the isomorphisms (7).

4.1 From φ to Φ.

Let x, y and z be integers such that

$$
x-n_{3} \geq z \geq y \geq 0 \quad \text { and } \quad x-y \geq 1
$$

For the proof of Theorem 6 we will take

$$
x=\max \left(n_{1}, n_{3}\right) \geq 1 \quad \text { and } \quad y=z=0
$$

Given a quasi-character μ of F^{\times}define :

$$
\mathcal{O}^{\mu}= \begin{cases}\mathcal{O} & , \text { if } \mu \text { is unramified } \\ \mathcal{O}^{\times} & , \text {if } \mu \text { is ramified }\end{cases}
$$

Put

$$
I_{f}=\left(\begin{array}{cc}
1 & \pi^{-y} \mathcal{O}^{\mu_{2}^{\prime}} \\
\pi^{x} \mathcal{O}^{\mu_{1}} & 1
\end{array}\right),
$$

and consider the unique function $f \in \operatorname{ind}_{T}^{G}\left(\chi_{1} \chi_{2}^{\prime}\right)$ which is zero outside the open compact subset $T I_{f}$ of $T \backslash G$ and such that for all $b_{0} \in \pi^{-y} \mathcal{O}^{\mu_{2}^{\prime}}$ and $c_{0} \in \pi^{x} \mathcal{O}^{\mu_{1}}$ we have :

$$
f\left(\begin{array}{cc}
1 & b_{0} \tag{9}\\
c_{0} & 1
\end{array}\right)= \begin{cases}\mu_{1}\left(\frac{\pi^{x}}{c_{0}}\right) \mu_{2}^{\prime}\left(b_{0} \pi^{y}\right) & , \text { if } \mu_{1} \text { and } \mu_{2}^{\prime} \text { are ramified ; } \\
\mu_{2}^{\prime}\left(b_{0} \pi^{y}\right) & , \text { if } \mu_{1} \text { is unramified and } \mu_{2}^{\prime} \text { is ramified ; } \\
\mu_{1}\left(\frac{\pi^{x}}{c_{0}}\right) & , \text { if } \mu_{1} \text { is ramified and } \mu_{2}^{\prime} \text { is unramified } ; \\
1 & , \text { if } \mu_{1} \text { and } \mu_{2}^{\prime} \text { are unramified }\end{cases}
$$

Since $x-n_{3} \geq z \geq y \geq 0$ and $x-y \geq 1$ we have

$$
I_{f} \subset \gamma^{z} I_{n_{3}}^{1} \gamma^{-z}
$$

and so every $k_{0} \in I_{f}$ fixes $\gamma^{z} \cdot v_{3}$.
By definition, the function $g \mapsto f(g) \varphi\left(g \gamma^{z} \cdot v_{3}\right)$ on G factors through $T \backslash G$ and

$$
(\Phi(f))\left(\gamma^{z} \cdot v_{3}\right)=\int_{T \backslash G} f(g) \varphi\left(g \gamma^{z} \cdot v_{3}\right) d g=\varphi\left(\gamma^{z} \cdot v_{3}\right) \int_{I_{f}} f\left(k_{0}\right) d k_{0} .
$$

If we write $k_{0}=\left(\begin{array}{cc}1 & b_{0} \\ c_{0} & 1\end{array}\right) \in I_{f}$, then by separating the variables b_{0} and c_{0} we obtain

$$
\int_{I_{f}} f\left(k_{0}\right) d k_{0}= \begin{cases}|\pi|^{x-y} & , \text { if } \mu_{1} \text { and } \mu_{2}^{\prime} \text { are unramified } \\ 0 & , \text { otherwise }\end{cases}
$$

From this and from lemma 3.1 we deduce :
Lemma 4.1. $\Phi(f)\left(\gamma^{z} \cdot v_{3}\right) \neq 0$ if, and only if, μ_{1} and μ_{2}^{\prime} are both unramified.

4.2 From Φ to Ψ.

Now, we are going to compute $F=\operatorname{ext}(f)$ as a function on $G \times G$. Recall that $F: G \times G \rightarrow \mathbb{C}$ is a function such that:

- for all $b_{1}, b_{2} \in B, g_{1}, g_{2} \in G, F\left(b_{1} g_{1}, b_{2} g_{2}\right)=\chi_{1}\left(b_{1}\right) \chi_{2}\left(b_{2}\right) \delta^{\frac{1}{2}}\left(b_{1} b_{2}\right) F\left(g_{1}, g_{2}\right)$,
- for all $g \in G, F(g, g)=0$ and $F\left(g,\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) g\right)=f(g)$.

Since $G=B K, F$ is uniquely determined by its restriction to $K \times K$. Following the notations of paragraph 2.3 put

$$
\alpha_{i}^{-1}=\mu_{i}(\pi)|\pi|^{\frac{1}{2}} \quad \text { and } \quad \beta_{i}^{-1}=\mu_{i}^{\prime}(\pi)|\pi|^{-\frac{1}{2}} .
$$

Lemma 4.2. Suppose that $x-n_{3} \geq z \geq y \geq 0$ and $x-y \geq \max \left(n_{1}-m_{1}, n_{2}-m_{2}, 1\right)$. Then for all $k_{1}=\left(\begin{array}{cc}* & * \\ c_{1} & d_{2}\end{array}\right)$ and $k_{2}=\left(\begin{array}{cc}* & * \\ c_{2} & d_{2}\end{array}\right)$ in K we have $F\left(k_{1}, k_{2}\right)=0$ unless

$$
d_{1} c_{2} \neq 0, \quad \frac{c_{1}}{d_{1}} \in \pi^{x} \mathcal{O}^{\mu_{1}} \quad \text { and } \quad \frac{d_{2}}{c_{2}} \in \pi^{-y} \mathcal{O}^{\mu_{2}^{\prime}},
$$

in which case, if we denote by sthe valuation of c_{2}, we have

Proof: By definition $F\left(k_{1}, k_{2}\right)=0$ unless there exist $k_{0}=\left(\begin{array}{cc}1 & b_{0} \\ c_{0} & 1\end{array}\right) \in I_{f}$ such that

$$
k_{1} k_{0}^{-1} \in B \quad \text { and } \quad k_{2} k_{0}^{-1}\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \in B
$$

in which case

$$
F\left(k_{1}, k_{2}\right)=\chi_{1}\left(k_{1} k_{0}^{-1}\right) \chi_{2}\left(k_{2} k_{0}^{-1}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right) \delta^{\frac{1}{2}}\left(k_{1} k_{0}^{-1} k_{2} k_{0}^{-1}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right) f\left(k_{0}\right)
$$

From $k_{1} k_{0}^{-1} \in B$, we deduce that $c_{1}=c_{0} d_{1}$. From $k_{2} k_{0}^{-1}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \in B$ we deduce that $d_{2}=b_{0} c_{2}$. Hence

$$
d_{1} \in \mathcal{O}^{\times}, \quad \frac{c_{1}}{d_{1}} \in \pi^{x} \mathcal{O}^{\mu_{1}}, \quad c_{2} \neq 0 \quad \text { and } \quad \frac{d_{2}}{c_{2}} \in \pi^{-y} \mathcal{O}^{\mu_{2}^{\prime}}
$$

Moreover

$$
k_{1} k_{0}^{-1}=\left(\begin{array}{cc}
\frac{\operatorname{det} k_{1}}{d_{1} \operatorname{det} k_{0}} & * \\
0 & d_{1}
\end{array}\right) \text { and } k_{2} k_{0}^{-1}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
\frac{-\operatorname{det} k_{2}}{c_{2} \operatorname{det} k_{0}} & * \\
0 & c_{2}
\end{array}\right) .
$$

Since $x-y \geq n_{1}-m_{1}, x-y \geq n_{2}-m_{2}$ and $x-y \geq 1$ we have

$$
\mu_{1}\left(\operatorname{det} k_{0}\right)=\mu_{2}\left(\operatorname{det} k_{0}\right)=1 .
$$

Hence

$$
F\left(k_{1}, k_{2}\right)=\mu_{1}\left(\frac{\operatorname{det} k_{1}}{d_{1}}\right) \mu_{1}^{\prime}\left(d_{1}\right) \mu_{2}\left(\frac{-\operatorname{det} k_{2}}{c_{2}}\right) \mu_{2}^{\prime}\left(c_{2}\right)\left|\frac{1}{c_{2}}\right| f\left(\begin{array}{cc}
1 & \frac{d_{2}}{c_{2}} \\
\frac{c_{1}}{d_{1}} & 1
\end{array}\right) .
$$

From here and (9) follows the desired formula for F.
Conversely, if k_{1} and k_{2} are such that $\frac{c_{1}}{d_{1}} \in \pi^{x} \mathcal{O}^{\mu_{1}}$ and $\frac{d_{2}}{c_{2}} \in \pi^{-y} \mathcal{O}^{\mu_{2}^{\prime}}$ one can take

$$
k_{0}=\left(\begin{array}{cc}
1 & d_{2} c_{2}^{-1} \\
c_{1} d_{1}^{-1} & 1
\end{array}\right) .
$$

Remark 4.3. One can compute F without the assumption $x-y \geq \max \left(n_{1}-m_{1}, n_{2}-m_{2}, 1\right)$. However, F needs not decompose as a product of functions of one variable as in the above lemma.

For example, if $x=n_{3}=0$ and $n_{1}=n_{2}$, then for all $k_{1} \in K$ and $k_{2} \in K$

$$
F\left(k_{1}, k_{2}\right)= \begin{cases}\omega_{1}\left(\frac{c_{1} d_{2}-d_{1} c_{2}}{\operatorname{det} k_{2}}\right) & , \text { if } d_{1} \in \mathcal{O}^{\times}, c_{2} \in \mathcal{O}^{\times} \text {and } c_{1} d_{2} \neq d_{1} c_{2} \\ 0 & , \text { otherwise } .\end{cases}
$$

4.3 From Ψ to ℓ

Now, we want to express $F \in V_{1} \otimes V_{2}$ in terms of the new vectors v_{1} and v_{2}.
From now on we suppose that x, y and z are integers as in theorem 7 . We may also suppose that $x \geq 1$, because otherwise V_{1}, V_{2} and V_{3} are all unramified and this case is covered in Theorem 2. Observe also that if $y=0$, then μ_{2}^{\prime} is unramified and therefore $\mathcal{O}^{\mu_{2}^{\prime}}=\mathcal{O}$.

For $i=1,2$, since $k_{i} \in K$, both c_{i} and d_{i} are in \mathcal{O}, and one of them is in \mathcal{O}^{\times}. Hence

- $\frac{c_{1}}{d_{1}} \in \pi^{x} \mathcal{O}^{\times}$if, and only if $k_{1} \in I_{x} \backslash I_{x+1}$,
- $\frac{c_{1}}{d_{1}} \in \pi^{x} \mathcal{O}$ if, and only if $k_{1} \in I_{x}$,
- $\frac{d_{2}}{c_{2}} \in \pi^{-y} \mathcal{O}^{\times}$with $y \geq 1$ if, and only if $k_{2} \in I_{y} \backslash I_{y+1}$,
- $\frac{d_{2}}{c_{2}} \in \pi^{-y} \mathcal{O}$ with $y \geq 0$ if, and only if $k_{2} \in K \backslash I_{y+1}$.

Lemma 4.4. With the notations of (1), F is a non-zero multiple of $v_{1}^{*} \otimes v_{2}^{*}$.
Proof : Both F and $v_{1}^{*} \otimes v_{2}^{*}$ are elements in $\operatorname{Ind}_{B \times B}^{G \times G}\left(\chi_{1} \times \chi_{2}\right)$, hence it is enough to compare their restrictions to $K \times K$. By the above discussion together with lemmas 4.2 and 2.5 the two restrictions are supported by

$$
\begin{cases}\left(I_{x} \backslash I_{x+1}\right) \times\left(I_{y} \backslash I_{y+1}\right) & , \text { if } \mu_{1} \text { and } \mu_{2}^{\prime} \text { are ramified ; } \\ I_{x} \times\left(I_{y} \backslash I_{y+1}\right) & , \text { if } \mu_{1} \text { is unramified and } \mu_{2}^{\prime} \text { is ramified ; } \\ \left(I_{x} \backslash I_{x+1}\right) \times\left(K \backslash I_{y+1}\right) & , \text { if } \mu_{1} \text { is ramified and } \mu_{2}^{\prime} \text { is unramified ; } \\ I_{x} \times\left(K \backslash I_{y+1}\right) & , \text { if } \mu_{1} \text { and } \mu_{2}^{\prime} \text { are unramified } .\end{cases}
$$

There are 16 different cases depending on whether each one among $\mu_{1}, \mu_{1}^{\prime}, \mu_{2}$ and μ_{2}^{\prime} is ramified or unramified. Since it is a straightforward verification from lemmas 2.1, 2.2, 2.3 and 2.4, in order to avoid repetitions or cumbersome notations, we will only give the final result :

$$
\begin{align*}
& F=\lambda_{1} \lambda_{2} \mu_{2}(-1) \alpha_{1}^{m_{1}-x} \alpha_{2}^{m_{2}} \beta_{2}^{-y}\left(v_{1}^{*} \otimes v_{2}^{*}\right), \text { where } \\
& \lambda_{i}= \begin{cases}\left(1-\frac{\beta_{i}}{\alpha_{i}}\right)^{-1} & , \text { if } V_{i} \text { is unramified, } \\
1 & , \text { if } V_{i} \text { is ramified. } .\end{cases} \tag{10}
\end{align*}
$$

In all cases F is a non-zero multiple of $v_{1}^{*} \otimes v_{2}^{*}$.
Since by definition $\ell(F \otimes \bullet)=\Psi(F)=\Phi(f)$, the above lemma together with lemma 4.1 imply theorem 7 .

4.4 Proof of Theorems 苂 and 6.

We assume henceforth that μ_{1} and μ_{2}^{\prime} are both unramified ($n_{1}-m_{1}=m_{2}=0$). We put $y=z=0$ and $x=\max \left(n_{1}, n_{3}\right) \geq 1$. Since $\omega_{1} \omega_{2} \omega_{3}=1, \max \left(n_{1}, n_{3}\right)=\max \left(n_{1}, n_{2}, n_{3}\right) \geq 1$.

Then lemma 4.1 yields :

$$
\begin{equation*}
\ell\left(F \otimes v_{3}\right)=\Psi(F)\left(v_{3}\right)=\Phi(f)\left(v_{3}\right) \neq 0 . \tag{11}
\end{equation*}
$$

From this and lemma 4.4 we deduce :

Lemma 4.5. We have $\ell\left(v_{1}^{*} \otimes v_{2}^{*} \otimes v_{3}\right) \neq 0$ where

$$
\begin{aligned}
& v_{1}^{*}= \begin{cases}\gamma^{x-n_{1}} \cdot v_{1} & , \text { if } \mu_{1}^{\prime} \text { is ramified }, \\
\gamma^{x} \cdot v_{1}-\beta_{1} \gamma^{x-1} \cdot v_{1} & \text {, if } \mu_{1}^{\prime} \text { is unramified. }\end{cases} \\
& v_{2}^{*}= \begin{cases}v_{2} & \text { if } \mu_{2} \text { is ramified. } \\
v_{2}-\alpha_{2}^{-1} \gamma \cdot v_{2} & \text {, if } \mu_{2} \text { is unramified. }\end{cases}
\end{aligned}
$$

4.4.1 The case of two unramified representations.

Suppose that $n_{1}=n_{2}=0$, so that $x=n_{3}$. Then lemma 4.5 yields :

$$
\ell\left(\left(\gamma^{n_{3}} \cdot v_{1}-\beta_{1} \gamma^{n_{3}-1} \cdot v_{1}\right) \otimes\left(\gamma \cdot v_{2}-\alpha_{2} v_{2}\right) \otimes v_{3}\right) \neq 0 .
$$

This expression can be simplified as follows. Consider for $m \geq 0$ the linear form :

$$
\psi_{m}(\bullet)=\ell\left(\gamma^{m} \cdot v_{1} \otimes v_{2} \otimes \bullet\right) \in \widetilde{V_{3}} .
$$

As observed in the introduction, ψ_{m} is invariant by $\gamma^{m} K \gamma^{-m} \cap K=I_{m}$, hence vanishes if $m<n_{3}=\operatorname{cond}\left(\widetilde{V_{3}}\right)$. Therefore, for $n_{3} \geq 2$:

$$
\begin{aligned}
& \ell\left(\left(\gamma^{n_{3}} \cdot v_{1}-\beta_{1} \gamma^{n_{3}-1} \cdot v_{1}\right) \otimes\left(\gamma \cdot v_{2}-\alpha_{2} v_{2}\right) \otimes v_{3}\right) \\
& \quad=-\alpha_{2} \psi_{n_{3}}\left(v_{3}\right)+\beta_{1} \alpha_{2} \psi_{n_{3}-1}\left(v_{3}\right)+\psi_{n_{3}-1}\left(\gamma^{-1} \cdot v_{3}\right)-\beta_{1} \psi_{n_{3}-2}\left(\gamma^{-1} \cdot v_{3}\right) \\
& \quad=-\alpha_{2} \psi_{n_{3}}\left(v_{3}\right) \\
& \quad=-\alpha_{2} \ell\left(\gamma^{n_{3}} \cdot v_{1} \otimes v_{2} \otimes v_{3}\right) \neq 0
\end{aligned}
$$

If $n_{3}=1$, only the two terms in the middle vanish and we obtain

$$
\alpha_{2} \ell\left(\gamma \cdot v_{1} \otimes v_{2} \otimes v_{3}\right)+\beta_{1} \ell\left(v_{1} \otimes \gamma \cdot v_{2} \otimes v_{3}\right) \neq 0
$$

Put $g=\left(\begin{array}{ll}0 & 1 \\ \pi & 0\end{array}\right)$. Then $g \gamma=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \in K$ and $\gamma^{-1} g=\left(\begin{array}{cc}0 & \pi \\ \pi & 0\end{array}\right) \in \pi K$. Hence :

$$
\begin{aligned}
\beta_{1} \ell\left(v_{1} \otimes \gamma \cdot v_{2} \otimes v_{3}\right) & =\beta_{1} \ell\left(\gamma \gamma^{-1} g \cdot v_{1} \otimes g \gamma \cdot v_{2} \otimes g \cdot v_{3}\right) \\
& =\beta_{1} \omega_{1}(\pi) \ell\left(\gamma \cdot v_{1} \otimes v_{2} \otimes g \cdot v_{3}\right) \\
& =\alpha_{1}^{-1} \ell\left(\gamma \cdot v_{1} \otimes v_{2} \otimes g \cdot v_{3}\right) .
\end{aligned}
$$

Therefore

$$
\ell\left(\gamma \cdot v_{1} \otimes v_{2} \otimes\left(g \cdot v_{3}+\alpha_{1} \alpha_{2} v_{3}\right)\right) \neq 0
$$

in particular

$$
\Psi\left(\gamma \cdot v_{1} \otimes v_{2}\right) \neq 0
$$

By the same argument as in paragraph 3.2.4 we conclude that

$$
\ell\left(\gamma \cdot v_{1} \otimes v_{2} \otimes v_{3}\right)=\Psi\left(\gamma \cdot v_{1} \otimes v_{2}\right)\left(v_{3}\right) \neq 0 .
$$

Hence, if $n_{3} \geq 1, \gamma^{n_{3}} \cdot v_{1} \otimes v_{2} \otimes v_{3}$ is a test vector. This completes the proof of Theorem 5 .

4.4.2 The case of two ramified principal series.

Suppose that V_{1} and V_{2} are both ramified $\left(m_{1}>0, n_{1}-m_{1}=0, m_{2}=0, n_{2}>0\right)$ and put $n=x-n_{1}=\max \left(n_{2}-n_{1}, n_{3}-n_{1}\right)$. Then lemma 4.5 yields :

$$
\ell\left(\gamma^{n} \cdot v_{1} \otimes v_{2} \otimes v_{3}\right) \neq 0
$$

hence $\gamma^{n} \cdot v_{1} \otimes v_{2} \otimes v_{3}$ is a test vector.

4.4.3 The case where V_{1} is unramified and V_{2} is ramified.

Suppose that $n_{1}=0$, but $n_{2}>0$. Then $x=n_{3} \geq n_{2}$ and lemma 4.5 yields :

$$
\ell\left(\left(\gamma^{n_{3}} \cdot v_{1}-\beta_{1} \gamma^{n_{3}-1} \cdot v_{1}\right) \otimes v_{2} \otimes v_{3}\right) \neq 0
$$

If $n_{2}<n_{3}$, then

$$
\gamma^{n_{3}-1} K \gamma^{1-n_{3}} \cap I_{n_{2}} \supset I_{n_{3}-1}
$$

and therefore

$$
\ell\left(\gamma^{n_{3}-1} \cdot v_{1} \otimes v_{2} \otimes \bullet\right) \in \widetilde{V}_{3}^{I_{n_{3}-1}, \omega_{3}^{-1}}=\{0\}
$$

Hence

$$
\ell\left(\gamma^{n_{3}} \cdot v_{1} \otimes v_{2} \otimes v_{3}\right) \neq 0
$$

that is $\gamma^{n_{3}} \cdot v_{1} \otimes v_{2} \otimes v_{3}$ is a test vector.
If $n_{2}=n_{3}$, the condition on the central character forces V_{3} and ω_{3} to have the same conductor. Hence V_{3} is also a principal series. In this case we do not see a priori a reason for either $\ell\left(\gamma^{n_{3}} \cdot v_{1} \otimes v_{2} \otimes v_{3}\right)$ or $\ell\left(\gamma^{n_{3}-1} \cdot v_{1} \otimes v_{2} \otimes v_{3}\right)$ to vanish. But we can notice that the two linear forms

$$
\ell\left(\gamma^{n_{3}} \cdot v_{1} \otimes v_{2} \otimes \bullet\right) \quad \text { and } \quad \ell\left(\gamma^{n_{3}-1} \cdot v_{1} \otimes v_{2} \otimes \bullet\right)
$$

belong both to the new line $\widetilde{V}_{3}^{I_{n}, \omega_{3}^{-1}}$ of $\widetilde{V_{3}}$, hence they are proportionals.

4.4.4 The case where V_{1} is ramified and V_{2} is unramified.

Suppose that $n_{1}>0$ and $n_{2}=0$. Then $x=n_{3} \geq n_{1}$ and lemma 4.5 yields :

$$
\ell\left(\gamma^{n_{3}-n_{1}} \cdot v_{1} \otimes\left(\gamma \cdot v_{2}-\alpha_{2} v_{2}\right) \otimes v_{3}\right) \neq 0
$$

If $n_{1}<n_{3}$, then

$$
\ell\left(\gamma^{n_{3}-n_{1}-1} \cdot v_{1} \otimes v_{2} \otimes \bullet\right) \in \widetilde{V}_{3}^{I_{n_{3}-1}, \omega_{3}^{-1}}=\{0\}
$$

Then

$$
\ell\left(\gamma^{n_{3}-n_{1}} \cdot v_{1} \otimes \gamma \cdot v_{2} \otimes v_{3}\right)=\ell\left(\gamma^{n_{3}-n_{1}-1} \cdot v_{1} \otimes v_{2} \otimes \gamma^{-1} \cdot v_{3}\right)=0
$$

Hence

$$
\ell\left(\gamma^{n_{3}-n_{1}} \cdot v_{1} \otimes v_{2} \otimes v_{3}\right) \neq 0
$$

that is $\gamma^{n_{3}-n_{1}} \cdot v_{1} \otimes v_{2} \otimes v_{3}$ is a test vector.

If $n_{1}=n_{3}$, the condition on the central character forces V_{3} to be also a principal series. In this case we do not see a priori a reason for either $\ell\left(v_{1} \otimes v_{2} \otimes v_{3}\right)$ or $\ell\left(v_{1} \otimes \gamma \cdot v_{2} \otimes v_{3}\right)$ to vanish. But we can once again notice that the two linear forms

$$
\ell\left(v_{1} \otimes v_{2} \otimes \bullet\right) \quad \text { and } \quad \ell\left(v_{1} \otimes \gamma \cdot v_{2} \otimes \bullet\right)
$$

belong to the line generated by a new vector in $\widetilde{V_{3}}$, hence are proportionals.
The proof of Theorem 6 is now complete.

References

[B-H] Colin J. Busnell and Guy Henniart, The local Langlands conjecture for GL(2). Springer Series: Grundlehren der mathematischen Wissenschaften, Vol. 335 (2007).
[B-Z] Joseph Bernstein and Andrei Zelevinsky, Representations of the group GL(n,F) where F is a non-archimedian local field. Russian Mathematical Surveys 31:3 (1976), 1-68.
[B-R 1] Joseph Bernstein and Andre Reznikov, Estimates of automorphic functions. Moscow Mathematic Journal 4, no. 1 (2004), 19-37.
[B-R 2] Joseph Bernstein and Andre Reznikov, Periods, subconvexity and representation theory. Journal of differential geometry 70 (2005), 129-142.
[C], William Casselman On some Results of Atkin and Lehner. Mathematische Annalen 201 (1973), 301-314.
[G-P] Benedict H.Gross and Diprenda Prasad, Test Vectors for Linear forms. Mathematische Annalen 291 (1991), 343-355.
[H-S] Michael Harris and Anthony Scholl, A note on trilinear forms for reducible representations and Beilinson conjectures. Journal of the European Mathematical Society 2001, 1 (2001), 93-104.
[M-V] Philippe Michel and Akshay Venkatesh, Equidistribution, L-functions and Ergodic theory : on some problem of Yu. V. Linnik. In International Congress of Mathematicians 2006, Madrid, Volume II, 421-458. European Mathematical Society, Zurich.
[P] Diprenda Prasad, Trilinear forms for representations of GL(2) and local ε-factors. Composotio Mathematica 75 (1990), 1-46.
[T] J. Tunnell, Local ε-factors and characters of GL(2). American Journal of Mathematics 105 (1983), 1277-1308.
[V] Akshay Venkatesh, Sparse equidistribution problems, period bounds, and subconvexity. Preprint (2005).
[W] Jean-Loup Waldspurger, Sur les valeurs de certaines fonctions L automorphes en leur centre de symétrie. Compositio Mathematica 54 (1985), 173-242.

