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Test vectors for trilinear forms : the case of two principal series

Introduction

Let F be a finite extension of Q p with ring of integers O and uniformizing parameter π. Let V 1 , V 2 and V 3 be three irreducible, admissible, infinite dimensional representations of G = GL 2 (F ) of central characters ω 1 , ω 2 and ω 3 and conductors n 1 , n 2 and n 3 . Using the theory of Gelfand pairs, Diprenda Prasad proves in [P] that the space of G-invariant linear forms on V 1 ⊗V 2 ⊗V 3 has dimension at most one and gives a precise criterion for this dimension to be one, that we will now explain.

Let D * be the group of invertible elements of the unique quaternion division algebra D over F . When V i is a discrete series representation of G, denote by V ′ i the irreducible representation of D * associated to V i by the Jacquet-Langlands correspondence. Again, by the theory of Gelfand pairs, the space of D * -invariant linear forms on V ′ 1 ⊗ V ′ 2 ⊗ V ′ 3 has dimension at most one.

A necessary condition for the existence on a non-zero G-invariant linear form on V 1 ⊗V 2 ⊗V 3 (resp. non-zero D * -invariant linear form on

V ′ 1 ⊗ V ′ 2 ⊗ V ′
3 ), that we will always assume, is that

ω 1 ω 2 ω 3 = 1.
Let σ i be the two dimensional representations of the Weil-Deligne group of F associated to V i . The triple tensor product σ 1 ⊗ σ 2 ⊗ σ 3 is an eight dimensional symplectic representation of the Weil-Deligne group having a local root number ε(σ 1 ⊗ σ 2 ⊗ σ 3 ) equal to 1 or -1. When ε(σ 1 ⊗ σ 2 ⊗ σ 3 ) = -1, one can prove that the V i 's are all discrete series representations of G.

Theorem 1. (Prasad [START_REF] Prasad | Trilinear forms for representations of GL(2) and local ε-factors[END_REF]Theorem 1.4]) If all the V i 's are supercuspidal, assume that the residue characteristic of F is not 2. Then ε(σ 1 ⊗ σ 2 ⊗ σ 3 ) = 1 if, and only if, there exists a non-zero G-invariant linear form on V 1 ⊗ V 2 ⊗ V 3 , and ε(σ 1 ⊗ σ 2 ⊗ σ 3 ) = -1 if, and only if, there exists a non-zero D * invariant linear form on

V ′ 1 ⊗ V ′ 2 ⊗ V ′ 3 .
Given a non zero G-invariant linear form

ℓ on V 1 ⊗ V 2 ⊗ V 3 , or a non-zero D * -invariant linear form ℓ ′ on V ′ 1 ⊗ V ′ 2 ⊗ V ′
3 , the goal is to find a vector in V 1 ⊗ V 2 ⊗ V 3 which is not in the kernel of ℓ, or a vector in V ′ 1 ⊗ V ′ 2 ⊗ V ′ 3 which is not in the kernel of ℓ ′ . Such a vector is called a test vector. The following results of Prasad and Gross-Prasad show that new vectors can sometimes be used as test vectors. In what follows v i denotes a new vector in V i (see §2.2).

Theorem 2. (Prasad [START_REF] Prasad | Trilinear forms for representations of GL(2) and local ε-factors[END_REF]Theorem 1.3]) If all the V i 's are unramified principal series, then v 1 ⊗ v 2 ⊗ v 3 is a test vector.

Theorem 3. (Gross and Prasad [G-P, Proposition 6.3]) Suppose all the V i 's are unramified twists of the Steinberg representation.

• If ε(σ 1 ⊗ σ 2 ⊗ σ 3 ) = 1, then v 1 ⊗ v 2 ⊗ v 3 is a test vector. • If ε(σ 1 ⊗ σ 2 ⊗ σ 3 ) = -1
and if R is the the unique maximal order in D, then any vector belonging to the unique line in

V ′ 1 ⊗ V ′ 2 ⊗ V ′ 3 fixed by R * × R * × R * is a test vector.
Actually, the proof by Gross and Prasad of the first statement of the above theorem contains another result : Theorem 4. If two of the V i 's are unramified twists of the Steinberg representation and the third one is an unramified principal series, then v 1 ⊗ v 2 ⊗ v 3 is a test vector.

However, as mentioned in [G-P], new vectors are not always test vectors. Let K = GL(O) be the maximal compact subgroup of G and suppose that V 1 and

V 2 are unramified, but V 3 is ramified. Since v 1 and v 2 are K-invariant and ℓ is G-equivariant, v → ℓ(v 1 ⊗ v 2 ⊗ v) defines a K-invariant linear form on V 3 . Since V 3
is ramified, so is its contragredient, and therefore the above linear form has to vanish. In particular

ℓ(v 1 ⊗ v 2 ⊗ v 3 ) = 0.
To go around this obstruction for new vectors to be test vectors, Gross and Prasad made the following suggestion : suppose that V 3 has conductor n = n 3 ≥ 1; since V 3 has unramified central character, its contragredient representation has non-zero invariant vectors by the n-th

standard Iwahori subgroup I n = O × O ̟ n O O × of G; put γ = π -1 0 0 1 and let v * 1 ∈ V 1
be a non-zero vector on the line fixed by the maximal compact subgroup γ n Kγ -n of G; since K ∩ γ n Kγ -n = I n , the linear form on V 3 given by v → ℓ(v * 1 ⊗ v 2 ⊗ v) is not necessarily zero and there is still hope for v * 1 ⊗ v 2 ⊗ v 3 to be a test vector. This is the object of the following theorem

Theorem 5. If V 1 and V 2 are unramified and V 3 has conductor n 3 , then v * 1 ⊗ v 2 ⊗ v 3 is a test vector, where v * 1 = γ n 3 •v 1 .
Theorem 5 for n 3 = 1, together with Theorems 2, 3 and 4, completes the study of test vectors when the V i 's have conductors 0 or 1 and unramified central characters.

Assume from now on that V 1 and V 2 are (ramified or unramified) principal series. Then for i = 1, 2 there exist quasi-characters µ i and µ

′ i of F × such that µ ′ i µ -1 i = | • | ±1
, and

V i = Ind G B χ i , with χ i a b 0 d = µ i (a)µ ′ i (d).
According to Theorem 1 there exists a non-zero G-invariant linear form ℓ on V 1 ⊗ V 2 ⊗ V 3 , so we are looking for a test vector in V 1 ⊗ V 2 ⊗ V 3 . The following theorem is our main result. Theorem 6. Suppose that V 1 and V 2 are principal series such that µ 1 and µ ′ 2 are unramified.

Put x = max(n 2 -n 1 , n 3 -n 1 ) and v * 1 = γ x •v 1 . Then x ≥ 0 and, if v * 1 ⊗ v 2 ⊗ v 3 is not a test vector, then • either n 1 = 0, n 2 = n 3 > 0 and γ n 2 -1 •v 1 ⊗ v 2 ⊗ v 3 is a test vector, • or n 2 = 0, n 1 = n 3 > 0 and v 1 ⊗ γ •v 2 ⊗ v 3 is a test vector, • or V 3 is a quotient of Ind G B (χ 1 χ 2 δ 1 2 ), n 1 + n 2 = n 3 and v 1 ⊗ γ n 1 •v 2 ⊗ v 3 is a test vector.
The assumptions of the theorem imply in particular that V 1 and V 2 have minimal conductor among their twists. If V 1 and V 2 are two arbitrary principal series, then one can always find characters η 1 , η 2 and η 3 of F × with η 1 η 2 η 3 = 1, such that the above theorem applies to

(V 1 ⊗ η 1 ) ⊗ (V 2 ⊗ η 2 ) ⊗ (V 3 ⊗ η 3
). Nevertheless, we found also interesting to study the case when µ 1 or µ ′ 2 is ramified. Then we are able to show that certain new vectors are not test vectors, while a priori this cannot be seen by a direct argument (the obstruction of Gross and Prasad described above does not apply to this case). Put m 1 = cond(µ ′ 1 ) and m 2 = cond(µ ′ 2 )

Theorem 7. Suppose that µ 1 or µ ′ 2 is ramified. Let x, y and z be integers such that

• x ≥ m 1 , • y ≥ m 2 ,
• x -n 3 ≥ z ≥ y, and

• x -y ≥ max(n 1 -m 1 , n 2 -m 2 , 1). Put v * 1 = γ x-m 1 •v 1 , if µ ′ 1 is ramified, γ x •v 1 -β 1 γ x-1 •v 1 , if µ ′ 1 is unramified. v * 2 = γ y-m 2 •v 2 , if µ 2 is ramified. γ y-n 2 •v 2 -α -1 2 γ y-n 2 +1 •v 2 , if µ 2 is unramified.
(1)

Then ℓ(v * 1 ⊗ v * 2 ⊗ γ z •v 3 ) = 0.
We will prove theorems 6 and 7 by following the pattern of the proof of Theorem 2 in [P], with the necessary changes.

We believe that suitable generalization of the method of Gross and Prasad would give test vectors in the case where at least two of the V i 's are special representations, as well as in the case where one is a special representation and one is a principal series. On the other hand in order to find test vectors in the case where at least two of the V i 's are supercuspidal, one should use different techniques, involving probably computations in Kirillov models.

The search for test vectors in our setting is motivated by subconvexity problems for Lfunctions of triple products of automorphic forms on GL(2). Roughly speaking, one wants to bound the value of the L-function along the critical line ℜ(z) = 1 2 . In [B-R 1] and [B-R 2] Joseph Bernstein and Andre Reznikov establish a subconvexity bound when the eigenvalue attached to one of the representations varies. Philippe Michel and Akshay Venkatesh considered the case when the level of one representation varies. More details about subconvexity and those related techniques can be found in [V] or [M-V]. Test vectors are key ingredients.

Bernstein and Reznikov use an explicit test vector. Venkatesh uses a theoretical one, but explains that the bounds would be better with an explicit one (see [V, §5]).

There is an extension of Prasad's result in [H-S], where Harris and Scholl prove that the dimension of the space of G-invariant linear forms on V 1 ⊗V 2 ⊗V 3 is one when V 1 , V 2 and V 3 are principal series representations (either irreducible or reducible, but with infinite dimensional irreducible subspace). They apply their result to the global setting to construct elements in the motivic cohomology of the product of two modular curves predicted by Beilinson.
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2 Background on induced admissible representations of GL(2).

About induced and contragredient representations.

Let (ρ, W ) be a smooth representation of a closed subgroup H of G. Let ∆ H be the modular function on H. The induction of ρ from H to G, denoted Ind G H ρ, is the space of functions f from G to W satisfying the two following conditions :

(1

) ∀h ∈ H, ∀g ∈ G, f (hg) = ∆ H (h) -1 2 ρ(h)f (g), (2) there exists an open compact subgroup K f of G such that ∀k ∈ K f , ∀g ∈ G, f (gk) = f (g)
where G acts by right translation as follows :

∀g, g ′ ∈ G, (g • f )(g ′ ) = f (g ′ g).
With the additional condition that f must be compactly supported modulo H, one gets the compact induction denoted by ind G H . When G/H is compact, there is no difference between Ind G H and ind G H . Let B the Borel subgroup of upper triangular matrices in G, and let T be the diagonal torus. The character ∆ T is trivial and we will use

∆ B = δ -1 with δ a b 0 d = | a d |
where | | is the normalised valuation of F . The quotient B\G is compact and can be identified with P 1 (F ).

For a smooth representation V of G, the contragredient representation V is the space of smooth linear forms l on V , where G acts as follows :

∀g ∈ G, ∀v ∈ V, (g • l)(v) = l(g -1 • v).
We refer the reader to [B-Z] for more details about induced and contragredient representations.

New vectors and ramification.

Let V be an irreducible, admissible, infinite dimensional representation of G with central character ω.

Then V ∼ = V ⊗ ω -1 . To the descending chain of compact subgroups of G K = I 0 ⊃ I 1 ⊃ • • • ⊃ I n ⊃ I n+1 • • •
one can associate an ascending chain of vector spaces

V I 0 ,ω = V K , and for all n ≥ 1, V In,ω = v ∈ V a b c d •v = ω(d)v , for all a b c d ∈ I n .
There exists a minimal n such that the vector space V In,ω is non-zero. It is necessarily one dimensional and any non-zero vector in it is called a new vector of V . The integer n is the conductor of V . The representation V is said to be unramified if n = 0. More information about new vectors can be found in [C].

New vectors as functions on G.

Let V be a principal series of G, with central character ω, and conductor n. There exist quasi-characters µ and µ ′ of

F × such that µ ′ µ -1 = | • | ±1
, and

V = Ind G B (χ) with χ a * 0 d = µ(a)µ ′ (d).
Then ω = µµ ′ and n = cond(µ

) + cond(µ ′ ). A new vector v in V is a non-zero function from G to C such that for all b ∈ B, g ∈ G and k = * * * d ∈ I n v(bgk) = χ(b)δ(b) 1 2 ω(d)v(g). Put α -1 = µ(π)|π| 1 2 and β -1 = µ ′ (π)|π| -1 2 .
First, we assume that V is unramified, and we normalise v so that v(1) = 1.

Lemma 2.1. If V is unramified then for all r ∈ N,

(γ r •v)(k) =      β r , if k ∈ K\I, α s β r-s , if k ∈ I s \I s+1 for 1 ≤ s ≤ r -1, α r , if k ∈ I r .
Similarly,

(γ r •v -α -1 γ r+1 •v)(k) = α s β r-s -α s-1 β r+1-s , if k ∈ I s \I s+1 for 0 ≤ s ≤ r, 0 , if k ∈ I r+1 .
Finally, for r ≥ 1,

(γ r •v -βγ r-1 •v)(k) = α r (1 -β α ) , if k ∈ I r , 0 , if k ∈ K\I r . Proof : If k ∈ I r , then γ -r kγ r ∈ K, so (γ r •v)(k) = α r v(γ -r kγ r ) = α r . Suppose that k = a b c d ∈ I s \I s+1 for some 0 ≤ s ≤ r -1 (recall that I 0 = K). Then π -s c ∈ O × and (γ r •v)(k) = α r v a π r b π -r c d = α r v (ad -bc)π r-s a 0 π -r c = α s β r-s .
The second part of the lemma follows by a direct computation.

For the rest of this section we assume that V is ramified, that is n ≥ 1. We put

m = cond(µ ′ ) so that n -m = cond(µ).
By Casselman [C, pp.305-306] the restriction to K of a new vector v is supported by the double coset of 1 0 π m 1 modulo I n . In particular if µ ′ is unramified (m = 0), then v is supported by

I n 1 0 1 1 I n = I n 0 1 1 0 I n = K\I. If 1 ≤ m ≤ n -1, then v is supported by I n 1 0 π m 1 I n = I m \I m+1 .
If µ is unramified (m = n), then v is supported by I n . We normalise v so that

v 1 0 π m 1 = 1.
Lemma 2.2. If µ and µ ′ are both ramified (0 < m < n), then for all r ∈ N and k ∈ K,

(γ r •v)(k) =      α r µ det k π -(m+r) c µ ′ (d) , if k = * * c d ∈ I m+r \I m+r+1 , 0 , otherwise. Proof : For k = a b c d ∈ K we have α -r (γ r •v)(k) = v(γ -r kγ r ) = v a π r b π -r c d .
It is easy to check that for every s ≥ 1,

K ∩ Bγ r I s γ -r = I s+r .
It follows that γ r •v has its support in I m+r \I m+r+1 . If k ∈ I m+r \I m+r+1 then c ∈ π m+r O × , d ∈ O × and we have the following decomposition :

a π r b π -r c d = det k π -m cb 0 π -m-r cd 1 0 π m 1 d -1 0 0 π m+r c -1 .
(2)

Hence

α -r (γ r •v)(k) = µ det(k) µ ′ (π -m-r cd)(µµ ′ )(π m+r c -1 ) = µ det(k) π -(m+r) c µ ′ (d).
Similarly we obtain :

Lemma 2.3. Suppose that µ is unramified and µ ′ is ramified. Then, for all r ∈ N and k ∈ K,

(γ r •v)(k) =      α r µ ′ (d) , if k = * * * d ∈ I n+r , 0 , otherwise. γ r •v -α -1 γ r+1 •v (k) =      α r µ ′ (d) , if k = * * * d ∈ I n+r \I n+r+1 , 0 , otherwise. 
Lemma 2.4. Suppose that µ ′ is unramified and µ is ramified. Then for all r ∈ N,

(γ r •v)(k) =      α s β r-s µ det(k) π -s c , if k = * * c * ∈ I s \I s+1 , with 0 ≤ s ≤ r, 0 , if k ∈ I r+1 . Moreover, if r ≥ 1, then γ r •v -βγ r-1 •v (k) =      α r µ det(k) π -r c , if k = * * c * ∈ I r \I r+1 , 0 , otherwise. 
Proof : We follow the pattern of proof of lemma 2.2. The restriction of

γ r •v to K is zero outside K ∩ Bγ r (K\I)γ -r = K\I r+1 .
For 0 ≤ s ≤ r and k = a b c d ∈ I s \I s+1 we use the following decomposition :

a π r b π -r c d = -det k π -r c a + det k π -r c 0 π -r c 1 0 1 1 1 1 + d π -r c 0 -1 . (3) 
Since d ∈ O and π r c -1 ∈ O we deduce that :

α -r (γ r •v)(k) = µ det k π -r c µ ′ (-π -r c) π r c -1 = µ det k π -s c α s-r β r-s .
As direct consequence of these lemmas we obtain Lemma 2.5. Let v * 1 and v * 2 be as in Theorem 7. Then the support of v * 1 is

I x \I x+1 , if µ 1 is ramified, I x , if µ 1 is unramified, and the support of v * 2 is I y \I y+1 , if µ ′ 2 is ramified, K\I y+1 , if µ ′ 2 is unramified.
3 Going down Prasad's exact sequence.

In this section we will explain how Prasad finds a non-zero C) in the case where V 1 and V 2 are principal series representations.

ℓ ∈ Hom G (V 1 ⊗ V 2 ⊗ V 3 ,
3.1 Prasad's exact sequence.

The space Hom

G (V 1 ⊗ V 2 ⊗ V 3 , C) is canonically isomorphic to Hom G (V 1 ⊗ V 2 , V 3
), hence finding ℓ it is the same as finding a non-zero element Ψ in it. We have

V 1 ⊗ V = Res G Ind G×G B×B χ 1 × χ 2 where the restriction is taken with respect to the diagonal embedding of G in G × G. The action of G on (B × B)\(G × G) ∼ = P 1 (F ) × P 1 (F ) has precisely two orbits.
The first is the diagonal ∆ B\G , which is closed and can be identified with B\G. The second is its complement which is open and can be identified with T \G via the bijection :

T \G -→ B\G × B\G \ ∆ B\G T g -→ Bg, B 0 1 1 0 g
Hence, there is a short exact sequence of G-modules :

0 → ind G T χ 1 χ ′ 2 ext --→ V 1 ⊗ V 2 res --→ Ind G B χ 1 χ 2 δ 1 2 → 0, (4) 
where

χ ′ 2 a b 0 d = µ ′ 2 (a)µ 2 (d).
The surjection res is given by the restriction to the diagonal.

The injection ext takes a function

f ∈ ind G T χ 1 χ ′ 2 to a function F ∈ Ind G×G B×B χ 1 × χ 2 vanishing on ∆ B\G , such that for all g ∈ G F g, 0 1 1 0 g = f (g).
Applying the functor Hom G •, V 3 yields a long exact sequence :

0 → Hom G Ind G B χ 1 χ 2 δ 1 2 , V 3 → Hom G V 1 ⊗ V 2 , V 3 → Hom G ind G T χ 1 χ ′ 2 , V 3 ↓ • • • ← Ext 1 G Ind G B χ 1 χ 2 δ 1 2 , V 3 (5)

The simple case.

The situation is easier if

V 3 occurs in Ind G B (χ -1 1 χ -1 2 δ -1 2 ).
Then χ 1 χ 2 does not factor through the determinant and there is a natural surjection

Ind G B χ 1 χ 2 δ 1 2 ։ V 3 .
This surjection is an isomorphism, unless there exists a quasi-character η of F × such that χ 1 χ 2 δ = η • det in which case the kernel is a line generated by the function η • det. From ( 4) we obtain a surjective homomorphism Ψ completing the following commutative diagram :

V 1 ⊗ V 2 res --→ Ind G B χ 1 χ 2 δ 1 2 Ψ ց ւ V 3 (6)
Finding a test vector is then reduced to finding an element of V 1 ⊗V 2 whose image by res is not zero (resp. not a multiple of η •det), if V 3 is principal series (resp. special representation).

Following the notations of paragraph 2.3 put, for i = 1 and i = 2

m i = cond(µ ′ i ) α -1 i = µ i (π)|π| 1 2 and β -1 i = µ ′ i (π)|π| -1 2 .
3.2.1 Proof of theorem 7 in the simple case.

To prove theorem 7, suppose that µ 1 or µ ′ 2 is ramified. By our assumptions x > y, hence I x ∩ (K\I y+1 ) = ∅. Therefore the supports of v * 1 and v * 2 are disjoint and

res(v * 1 ⊗ v * 2 ) = 0.
Using the diagram (6) we see that for any v ∈ V 3 :

ℓ(v * 1 ⊗ v * 2 ⊗ v) = Ψ(v * 1 ⊗ v * 2 )(v) = 0.
In particular ℓ(v * 1 ⊗ v * 2 ⊗ γ z •v 3 ) = 0 which proves Theorem 7 in the simple case.

The rest of section 3.2 will be devoted to the proof of Theorems 5 and 6 in the simple case. Consequently, we will suppose that µ 1 and µ ′ 2 are unramified, that is m 1 -n 1 = m 2 = 0.

Proof of Theorem 5 in the simple case.

Since V 1 and V 2 are unramified, by theorem 2 we may assume that V 3 is ramified. Then necessarily

V 3 = η ⊗ St,
where St is the Steinberg representation and η is an unramified character. Hence n 3 = 1 and we will prove that γ

• v 1 ⊗ v 2 ⊗ v 3 is a test vector. The function G -→ C g → η det(g) -1 res(γ • v 1 ⊗ v 2 )(g)
is not constant, since according to lemma 2.1

η det(1) -1 (γ • v 1 ⊗ v 2 )(1) = v 1 (γ)v 2 (1) = α 1 and η det 0 1 1 0 -1 (γ • v 1 ⊗ v 2 ) 0 1 1 0 = η(-1)v 1 1 0 0 π -1 = β 1 , and α 1 = β 1 because V 1 is a principal series. Hence Ψ(γ • v 1 ⊗ v 2 ) = 0. Moreover, since γKγ -1 ∩ K = I we deduce that Ψ(γ • v 1 ⊗ v 2 ) ∈ V 3 I,ω 3 -1 . Hence Ψ(γ • v 1 ⊗ v 2
) cannot vanish on the line V 3 I,ω 3 , which is generated by v 3 , and therefore

γ • v 1 ⊗ v 2 ⊗ v 3 is a test vector.
This completes the proof of Theorem 5 in the simple case.

3.2.3

Proof of Theorem 6 in the simple case, when V 3 is a special representation.

Assume now that

V 3 = η ⊗ St,
where St is the Steinberg representation and η is a character. Since

η = µ 1 µ 2 | • | = µ ′ 1 µ ′ 2 | • | -1 and µ 1 and µ ′
2 are unramified, it follows that η is unramified if, and only if, both V 1 and V 2 are unramified. Since this case was taken care of in the previous paragraph, we can assume for the rest of this paragraph that η is ramified. Then

n 1 = n 2 = cond(η) ≥ 1 and n 3 = 2n 1 = n 1 + n 2 .
We will prove that

v 1 ⊗ γ n 1 • v 2 ⊗ v 3 is a test vector. The function G -→ C g → η det(g) -1 res(v 1 ⊗ γ n 1 • v 2 )(g)
is not constant, since according to lemmas 2.3 and 2.4

η det(1) -1 (v 1 ⊗ γ n 1 • v 2 )(1) = 0 whereas η det 1 0 π n 1 1 -1 (v 1 ⊗ γ n 1 • v 2 ) 1 0 π n 1 1 = α n 1 2 = 0. Hence Ψ(v 1 ⊗ γ n 1 • v 2 ) = 0. Moreover, since I n 1 ∩ γ n 1 I n 2 γ -n 1 = I n 1 +n 2 = I n 3 we deduce that Ψ(v 1 ⊗ γ n 1 • v 2 ) ∈ V 3 In 3 ,ω 3 -1 . Hence Ψ(v 1 ⊗ γ n 1 • v 2 ) cannot vanish on the line V 3
In 3 ,ω 3 , which is generated by v 3 , and therefore

v 1 ⊗ γ n 1 • v 2 ⊗ v 3 is a test vector.
3.2.4 Proof of Theorem 6 in the simple case, when V 3 is a principal series.

Finally, we consider the case where V 3 is a principal series representation. Then

V 3 = Ind G B χ 1 χ 2 δ 1 2 and n 3 = cond(µ 1 µ 2 ) + cond(µ ′ 1 µ ′ 2 ) = n 2 + n 1 . We will prove that v 1 ⊗ γ n 1 • v 2 ⊗ v 3 is a test vector.
According to lemmas 2.1, 2.3 and 2.4 we have

(v 1 ⊗ γ n 1 • v 2 ) 1 0 π n 1 1 = α n 1 2 = 0, hence res(v 1 ⊗ γ n 1 • v 2 ) = 0. Therefore Ψ(v 1 ⊗ γ n 1 v 2 ) = 0. Moreover, since I n 1 ∩ γ n 1 I n 2 γ -n 1 = I n 1 +n 2 = I n 3 we deduce that Ψ(v 1 ⊗ γ n 1 v 2 ) ∈ ( V 3 ) In 3 ,ω 3 -1 . Hence Ψ(v 1 ⊗ γ n 1 v 2 ) cannot vanish on the line V 3 In 3 ,ω 3 , which is generated by v 3 . Thus v 1 ⊗ γ n 1 • v 2 ⊗ v 3 is a test vector.
This completes the proof of Theorem 6 in the simple case.

The other case.

The situation is more complicated if Hom G (Ind G B (χ 1 χ 2 δ 1 2 ), V 3 ) = 0. By [START_REF] Prasad | Trilinear forms for representations of GL(2) and local ε-factors[END_REF]Corollary 5.9] we have Ext 1 G (Ind G B (χ 1 χ 2 δ 1 2 ), V 3 ) = 0, hence the long exact sequence (5) yields the following isomorphism :

Hom G V 1 ⊗ V 2 , V 3 ≃ Hom G ind G T (χ 1 χ ′ 2 ), V 3 .
Finally, by Frobenius reciprocity

Hom G ind G T (χ 1 χ ′ 2 ), V 3 ≃ Hom T χ 1 χ ′ 2 , V 3|T .
By [START_REF] Waldspurger | Sur les valeurs de certaines fonctions L automorphes en leur centre de symétrie[END_REF] the latter space is one dimensional, since the restriction of χ 1 χ ′ 2 to the center equals ω -1 3 (recall that ω 1 ω 2 ω 3 = 1). Thus, we have four canonically isomorphic lines with corresponding bases :

0 = ℓ ∈ Hom G V 1 ⊗ V 2 ⊗ V 3 , C ↓ ≀ 0 = Ψ ∈ Hom G V 1 ⊗ V 2 , V 3 ↓ ≀ 0 = Φ ∈ Hom G ind G T (χ 1 χ ′ 2 ), V 3 ↓ ≀ 0 = ϕ ∈ Hom T χ 1 χ ′ 2 , V 3|T (7) 
Observe that ϕ can be seen as a linear form on V 3 satisfying :

∀t ∈ T, ∀v ∈ V 3 , ϕ(t•v) = (χ 1 χ ′ 2 )(t) -1 ϕ(v). (8) 
Lemma 3.1. ϕ(v 3 ) = 0 if, and only if, µ 1 µ ′ 2 is unramified. Proof : Suppose ϕ(v 3 ) = 0. Since v 3 ∈ V 3 is a new vector, for all a, d ∈ O × we have

a 0 0 d •v 3 = ω 3 (d)v 3 = (µ 1 µ ′ 1 µ 2 µ ′ 2 )(d) -1 v 3 .
Comparing it with (8) forces µ 1 µ ′ 2 to be unramified. Conversely, assume that µ 1 µ ′ 2 is unramified. Take any v ∈ V 3 such that ϕ(v) = 0. By smoothness v is fixed by the principal congruence subgroup ker(K → GL 2 (O/π s )), for some

s ≥ 0. Then ϕ(γ s •v) = (µ 1 µ ′
2 )(π s )ϕ(v) = 0 and γ s •v is fixed by the congruence subgroup

I 1 2s := k ∈ K k ≡ 1 * 0 1 (mod π 2s ) .
By replacing γ s •v by v and 2s by s, we may assume that v ∈ V (recall that n 3 denotes the conductor of V 3 ). Again by (8), ϕ(γ i •v 3 ) = 0 for some i is equivalent to ϕ(v 3 ) = 0.

Notice that, when µ 1 µ ′ 2 and µ ′ 1 µ 2 are both unramified, the claim follows from the first case in [G-P, Proposition 2.6] applied to the split torus T of G.

4 Going up Prasad's exact sequence.

In this section we take as a starting point lemma 3.1 and follow the isomorphisms (7).

4.1 From ϕ to Φ.

Let x, y and z be integers such that

x -n 3 ≥ z ≥ y ≥ 0 and x -y ≥ 1.
For the proof of Theorem 6 we will take

x = max(n 1 , n 3 ) ≥ 1 and y = z = 0.
Given a quasi-character µ of F × define :

O µ = O , if µ is unramified, O × , if µ is ramified.
in which case, if we denote by s the valuation of c 2 , we have

F (k 1 , k 2 ) =                µ 1 det(k 1 ) π -x c 1 µ ′ 1 (d 1 )µ 2 -det(k 2 ) π -s c 2 µ ′ 2 (d 2 ) α 2 β 2 s , if µ 1 and µ ′ 2 are ramified ; µ ′ 1 (d 1 )µ 2 -det(k 2 ) π -s c 2 µ ′ 2 (d 2 ) α 2 β 2 s , if µ 1 is unramified and µ ′ 2 is ramified ; µ 1 det(k 1 ) π -x c 1 µ ′ 1 (d 1 )µ 2 -det(k 2 ) π -s c 2 α 2 β 2 s , if µ 1 is ramified and µ ′ 2 is unramified ; µ ′ 1 (d 1 )µ 2 -det(k 2 ) π -s c 2 α 2 β 2 s , if µ 1 and µ ′ 2 are unramified. Proof : By definition F (k 1 , k 2 ) = 0 unless there exist k 0 = 1 b 0 c 0 1 ∈ I f such that k 1 k -1 0 ∈ B and k 2 k -1 0 0 1 1 0 ∈ B, in which case F (k 1 , k 2 ) = χ 1 (k 1 k -1 0 )χ 2 k 2 k -1 0 0 1 1 0 δ 1 2 k 1 k -1 0 k 2 k -1 0 0 1 1 0 f (k 0 ). From k 1 k -1 0 ∈ B, we deduce that c 1 = c 0 d 1 . From k 2 k -1 0 0 1 1 0 ∈ B we deduce that d 2 = b 0 c 2 . Hence d 1 ∈ O × , c 1 d 1 ∈ π x O µ 1 , c 2 = 0 and d 2 c 2 ∈ π -y O µ ′ 2 .
Moreover

k 1 k -1 0 = det k 1 d 1 det k 0 * 0 d 1 and k 2 k -1 0 0 1 1 0 = -det k 2 c 2 det k 0 * 0 c 2 . Since x -y ≥ n 1 -m 1 , x -y ≥ n 2 -m 2 and x -y ≥ 1 we have µ 1 (det k 0 ) = µ 2 (det k 0 ) = 1. Hence F (k 1 , k 2 ) = µ 1 ( det k 1 d 1 )µ ′ 1 (d 1 )µ 2 ( -det k 2 c 2 )µ ′ 2 (c 2 ) 1 c 2 f 1 d 2 c 2 c 1 d 1 1 .
From here and (9) follows the desired formula for F .

Conversely, if k 1 and k 2 are such that c 1 d 1 ∈ π x O µ 1 and d 2 c 2 ∈ π -y O µ ′ 2 one can take k 0 = 1 d 2 c -1 2 c 1 d -1 1 1 .
Remark 4.3. One can compute F without the assumption x -y ≥ max(n 1 -m 1 , n 2 -m 2 , 1). However, F needs not decompose as a product of functions of one variable as in the above lemma. For example, if x = n 3 = 0 and n 1 = n 2 , then for all k 1 ∈ K and

k 2 ∈ K F (k 1 , k 2 ) = ω 1 ( c 1 d 2 -d 1 c 2 det k 2 ) , if d 1 ∈ O × , c 2 ∈ O × and c 1 d 2 = d 1 c 2 0
, otherwise.

Lemma 4.5. We have ℓ(v * 1 ⊗ v * 2 ⊗ v 3 ) = 0 where

v * 1 = γ x-n 1 •v 1 , if µ ′ 1 is ramified, γ x •v 1 -β 1 γ x-1 •v 1 , if µ ′ 1 is unramified. v * 2 = v 2 , if µ 2 is ramified. v 2 -α -1 2 γ •v 2 , if µ 2 is unramified.
4.4.1 The case of two unramified representations.

Suppose that n 1 = n 2 = 0, so that x = n 3 . Then lemma 4.5 yields :

ℓ (γ n 3 •v 1 -β 1 γ n 3 -1 •v 1 ) ⊗ (γ •v 2 -α 2 v 2 ) ⊗ v 3 = 0.
This expression can be simplified as follows. Consider for m ≥ 0 the linear form :

ψ m (•) = ℓ(γ m •v 1 ⊗ v 2 ⊗ •) ∈ V 3 .
As observed in the introduction, ψ m is invariant by γ m Kγ -m ∩ K = I m , hence vanishes if m < n 3 = cond( V 3 ). Therefore, for n 3 ≥ 2 :

ℓ (γ n 3 •v 1 -β 1 γ n 3 -1 •v 1 ) ⊗ (γ •v 2 -α 2 v 2 ) ⊗ v 3 = -α 2 ψ n 3 (v 3 ) + β 1 α 2 ψ n 3 -1 (v 3 ) + ψ n 3 -1 (γ -1 •v 3 ) -β 1 ψ n 3 -2 (γ -1 •v 3 ) = -α 2 ψ n 3 (v 3 ) = -α 2 ℓ(γ n 3 •v 1 ⊗ v 2 ⊗ v 3 ) = 0.
If n 3 = 1, only the two terms in the middle vanish and we obtain

α 2 ℓ(γ •v 1 ⊗ v 2 ⊗ v 3 ) + β 1 ℓ(v 1 ⊗ γ •v 2 ⊗ v 3 ) = 0.
Put g = 0 1 π 0 . Then gγ = 0 1 1 0 ∈ K and γ -1 g = 0 π π 0 ∈ πK. Hence :

β 1 ℓ(v 1 ⊗ γ •v 2 ⊗ v 3 ) = β 1 ℓ(γγ -1 g•v 1 ⊗ gγ •v 2 ⊗ g•v 3 ) = β 1 ω 1 (π)ℓ γ •v 1 ⊗ v 2 ⊗ g•v 3 = α -1 1 ℓ(γ •v 1 ⊗ v 2 ⊗ g•v 3 ). Therefore ℓ γ •v 1 ⊗ v 2 ⊗ (g•v 3 + α 1 α 2 v 3 ) = 0, in particular Ψ(γ •v 1 ⊗ v 2 ) = 0.
By the same argument as in paragraph 3.2.4 we conclude that

ℓ(γ •v 1 ⊗ v 2 ⊗ v 3 ) = Ψ(γ •v 1 ⊗ v 2 )(v 3 ) = 0.
Hence, if n 3 ≥ 1, γ n 3 •v 1 ⊗ v 2 ⊗ v 3 is a test vector. This completes the proof of Theorem 5.

If n 1 = n 3 , the condition on the central character forces V 3 to be also a principal series. In this case we do not see a priori a reason for either ℓ(v 1 ⊗ v 2 ⊗ v 3 ) or ℓ(v 1 ⊗ γ •v 2 ⊗ v 3 ) to vanish. But we can once again notice that the two linear forms

ℓ(v 1 ⊗ v 2 ⊗ •) and ℓ(v 1 ⊗ γ •v 2 ⊗ •)
belong to the line generated by a new vector in V 3 , hence are proportionals.

The proof of Theorem 6 is now complete.

3 1 s3

 1 for some s ≥ 0. Since I s /I 1 s is a finite abelian group, V I decomposes as a direct sum of spaces indexed by the characters of I s /I 1 s . Then ϕ has to be non-zero on V Is,ω 3 3 (defined in paragraph 2.2) since by (8), ϕ vanishes on all other summands of V 1] the space V Is,ω 3 3 has dimension n 3 -s + 1 and has a basis v 3 , γ •v 3 , . . . , γ n 3 -s •v 3

Put

and consider the unique function f ∈ ind G T (χ 1 χ ′ 2 ) which is zero outside the open compact subset T I f of T \G and such that for all b 0 ∈ π -y O µ ′ 2 and c 0 ∈ π x O µ 1 we have :

Since x -n 3 ≥ z ≥ y ≥ 0 and x -y ≥ 1 we have

and so every

If we write k 0 = 1 b 0 c 0 1 ∈ I f , then by separating the variables b 0 and c 0 we obtain

From this and from lemma 3.1 we deduce :

Lemma 4.1. Φ(f )(γ z •v 3 ) = 0 if, and only if, µ 1 and µ ′ 2 are both unramified.

4.2 From Φ to Ψ.

Now, we are going to compute F = ext(f ) as a function on G×G. Recall that F :

-for all g ∈ G, F (g, g) = 0 and F (g, 0 1 1 0 g) = f (g).

Since G = BK, F is uniquely determined by its restriction to K × K. Following the notations of paragraph 2.3 put

From now on we suppose that x, y and z are integers as in theorem 7. We may also suppose that x ≥ 1, because otherwise V 1 , V 2 and V 3 are all unramified and this case is covered in Theorem 2. Observe also that if y = 0, then µ ′ 2 is unramified and therefore O µ ′ 2 = O. For i = 1, 2, since k i ∈ K, both c i and d i are in O, and one of them is in O × . Hence

Proof : Both F and v * 1 ⊗ v * 2 are elements in Ind G×G B×B χ 1 × χ 2 , hence it is enough to compare their restrictions to K × K. By the above discussion together with lemmas 4.2 and 2.5 the two restrictions are supported by

, if µ 1 and µ ′ 2 are unramified.

There are 16 different cases depending on whether each one among µ 1 , µ ′ 1 , µ 2 and µ ′ 2 is ramified or unramified. Since it is a straightforward verification from lemmas 2.1, 2.2, 2.3 and 2.4, in order to avoid repetitions or cumbersome notations, we will only give the final result :

, where

Since by definition ℓ(F ⊗ •) = Ψ(F ) = Φ(f ), the above lemma together with lemma 4.1 imply theorem 7.

Proof of Theorems 5 and 6.

We assume henceforth that µ 1 and µ ′ 2 are both unramified (n 1 -m 1 = m 2 = 0). We put

Then lemma 4.1 yields :

From this and lemma 4.4 we deduce :

4.4.2 The case of two ramified principal series.

Suppose that V 1 and V 2 are both ramified (m 1 > 0, n 1 -m 1 = 0, m 2 = 0, n 2 > 0) and put n = x -n 1 = max(n 2 -n 1 , n 3 -n 1 ). Then lemma 4.5 yields :

4.4.3 The case where V 1 is unramified and V 2 is ramified.

Suppose that n 1 = 0, but n 2 > 0. Then x = n 3 ≥ n 2 and lemma 4.5 yields :

and therefore ℓ(

If n 2 = n 3 , the condition on the central character forces V 3 and ω 3 to have the same conductor. Hence V 3 is also a principal series. In this case we do not see a priori a reason for either ℓ(γ

belong both to the new line V 3

In,ω -1 3 of V 3 , hence they are proportionals.

4.4.4

The case where V 1 is ramified and V 2 is unramified.

Suppose that n 1 > 0 and n 2 = 0. Then x = n 3 ≥ n 1 and lemma 4.5 yields :

If n 1 < n 3 , then