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RATES OF CONVERGENCE FOR THE POSTERIOR

DISTRIBUTIONS OF MIXTURES OF BETAS AND

ADAPTIVE NONPARAMATRIC ESTIMATION OF THE

DENSITY

By Judith Rousseau∗,

Université Paris Dauphine and CREST

In this paper we investigate the asymptotic properties of non-
parametric bayesian mixtures of Betas for estimating a smooth den-
sity on [0, 1]. We consider a parameterisation of Betas distributions
in terms of mean and scale parameters and construct a mixture of
these Betas in the mean parameter, while either fixing the scaling
parameter (as a function on the number of observations) or putting a
proper prior on this scaling parameter. We prove that such Bayesian
nonparametric models have good frequentist asymptotic properties.
We determine the posterior rate of concentration around the true
density and prove that it is the minimax rate of concentration when
the true density belongs to a Hölder class with regularity β, for all
positive β, by choosing correctly the scaling parameter of the Betas
densities, in terms of the number of observations and β. We improve
on these results by considering a prior on the scaling parameter and
thus obtain an adaptive estimating procedure of the density. We also
believe that the approximating results obtained on these mixtures of
Betas densities can be of interest in a frequentist framework.

1. Introduction. In this paper we study the asymptotic behaviour of
posterior components. There is a vast literature on mixture models because
of their rich structure which allows for different uses, for instance they are
well known to be adapted to the modelling of heterogeneous populations as
is used for instance in cluster analysis; for a good review on mixture models
see [11] or [12] for various aspects of Bayesian mixture models. They are also
useful in nonparametric density estimation, in particular they can be consid-
ered to capture small variations around a specific parametric model, as typ-
ically occurs in robust estimation or in a goodness of fit test of a Parametric
family or of a specific distribution, see for instance [13, 14]. The approach
considered here is to density estimation, but it has applications in many
other aspects of mixture models such has clustering, classification, goodness
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2 J. ROUSSEAU.

of fit testing, etc... since in all these cases understanding the behaviour of
the posterior distribution is crucial. Nonparametric prior distributions based
on mixture models are often considered in practice and Dirichlet mixture
priors are particularly popular. Dirichlet mixtures have been introduced by
[2, 10] and have been widely used ever since but their asymptotic proper-
ties are not well known apart from a few cases such as Gaussian mixtures,
triangular mixtures and Bernstein polynomials. [4, 5] and [16] study the
concentration rate of the posterior distribution under Dirichlet mixtures of
Gaussian priors and [3] has considered the Bernstein polynomial’s case, i.e.
the mixture of Beta distribution with fixed parameters. [14] have considered
mixtures of triangular distributions, with a prior on the mixing distribution
which is not necessarily a Dirichlet process. In all those cases the authors
have mainly considered the concentration rate of the posterior around the
true density when the latter have some known regularity conditions or when
it is a continuous mixture.

Posterior distributions associated with Bernstein polynomials are known
to be suboptimal in terms of minimax rates of convergence when the true
density is Holder. [9] have proposed a modification of Bernstein polynomials
leading to the minimax rate of convergence in the classes of Hölder densities
with regularity β, when β ≤ 1. In this paper we consider another class of
mixtures of Betas models, which is richer and therefore allows for better
asymptotic results.

Betas densities are often represented as

(1.1) g(x|a, b) =
xa−1(1 − x)b−1

B(a, b)
, B(a, b) =

Γ(a)Γ(b)

Γ(a+ b)
.

Here we consider a different parameterisation of the Beta distribution writ-
ing a = α/(1 − ǫ) and b = α/ǫ so that ǫ ∈ (0, 1) is the mean of the Beta
distribution and α > 0 is a scale parameter. To approximate smooth densi-
ties on [0, 1] we consider a location mixture of Betas densities in the form:

gα,P (x) =
k
∑

j=1

pjgα,ǫj (x), gα,ǫj (x) = g(x|α/(1 − ǫj), α/ǫj),(1.2)

where the mixing density is given by

P (ǫ) =
k
∑

j=1

pjδǫj (ǫ).(1.3)

The parameters of this mixture model are then k ∈ N∗ and for each k,
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POSTERIOR CONVERGENCE OF MIXTURES OF BETAS DENSITIES 3

(α, p1, ...pk, ǫ1, ..., ǫk). The prior probability on the set of densities can there-
fore be expressed as

dπ(f) = p(k)πk(ǫ1, ...., ǫk, p1, ..., pk|α)dπk,α(α), if f = gα,P

or dπ(f) = dπ(P |α)dπ2(α) in the case of a Dirichlet mixture.
Determining the concentration rate of the posterior distribution around

the true density corresponds to determining a sequence τn converging to 0
such that if

Bτn = {f ∈ F , d(f, f0) < τn},(1.4)

for some distance or pseudo-distance d(., .) on the set of densities and ifXn =
(X1, ..., Xn), where theXi’s are independent and identically distributed from
a distribution having a density f0 with respect to Lebesgue measure, then

P π [Bτn |Xn] → 1, in probability.(1.5)

The difficulty with mixture models comes from the fact that it is of-
ten quite hard to obtain precise approximating properties for these models.
[7, 15] give general descriptions of the Kullback-Leibler support of priors
based on mixture models. These results are key results to obtain the con-
sistency of the posterior distribution, but cannot be applied to obtain rates
of concentration. In these papers they use the Kernel structure of mixture
models and specific attention is given to location-scale kernels. Mixtures of
Betas are not location-scale kernels. However, when α gets large gα,ǫ con-
centrates around ǫ so that locally these Betas densities behave like Gaussian
densities. This behaviour is described in Section 3. Using these ideas we
study the approximation of a density f by a continuous mixture in the form

gα,f (x) =

∫ 1

0
f(ǫ)gα,ǫ(x)dǫ,(1.6)

where f is a probability density on (0, 1). When α becomes large gα,ǫ(x)
behaves locally like a location scale kernel so that gα,f becomes close to f .
Similarly to the Gaussian case this approximation is good only if f has a
regularity less than 2. However by shifting slightly the mixing density it is
possible to improve the approximation so that continuous mixtures of Betas
are good approximations of any smooth density, see Section 3.1. As in the
case of Gaussian mixtures, see [4], we approximate the continuous mixture by
a discrete mixture. [4, 5, 16] study the approximation of continuous mixtures
of Gaussian random variables by discrete mixtures and the approximation of
smooth densities by a continuous mixture respectively. The latter derive from
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4 J. ROUSSEAU.

these a posterior rate of concentration of the posterior distribution around
the true density when the true density is twice continuously differentiable.
In particular they obtain the minimax rate n−2/5, up to a logn term under
the L1 risk.

In this paper we show that the minimax rate can be otained (up to a
log n term) for any β > 0 by choosing carefully the rate at which α increases
with n, i.e. choosing for α a dirac mass on some sequence αn. Rather than
such a deterministic choice of α it is usual to consider a diffuse prior on
α; so that the data would choose the correct α. Hence in Section 2.2 we
consider a prior on α and we prove that the resulting procedure is adaptive
to the smoothness of the true density. This result has much theoretical and
practical interest and the latter type of prior is much more satisfactory than
the previous one. Both results show the good behaviour of Betas mixtures.

1.1. Notations. Throughout the paper X1, ..., Xn are independent and
identically distributed as P0 having density f0 with respect to Lebesgue
measure. We assume that Xi ∈ [0, 1]. We consider the following three dis-
tances (or pseudo-distances) on the set of densities on [0, 1]: the L1 distance:
||f − g||1 =

∫ 1
0 |f(x) − g(x)|dx, the Kullback-Leibler divergence: KL(f, g) =

∫ 1
0 f(x) log (f(x)/g(x))dx, for any densities f, g on [0, 1] and for any k > 1

Vk(f, g) =
∫ 1
0 f(x) |log (f(x)/g(x))|k dx. We also denote by ||g||∞ the supre-

mum norm of the function g.
H(L, β) denotes the class of Hölder functions with regularity parameter

β: let r be the largest integer smaller than β and denote by f (r) its r-th
derivative.

H(L, β) = {f : [0, 1] → IR; |f (r)(x) − f (r)(y)| ≤ L|x− y|β−r}.

We denote by Sk the simplex: Sk = {y ∈ [0, 1]k;
∑k

i=1 yi = 1}.
We denote by P π[.|Xn] the posterior distribution given the observations

Xn = (X1, ..., Xn) and Eπ[.|Xn] the expectation with respect to this pos-
terior distribution. Similarly En

0 and Pn
0 represent the expectation and the

probability with respect to the true density f⊗n
0 and En

f and Pn
f the expec-

tation and probability with respect to the distribution f⊗n.

1.2. Assumptions. Throughout the paper we assume that the true den-
sty f0 is positive on the open interval (0, 1) and satisfies:
Assumption A0 If f0 ∈ H(β, L) there exist integers 0 ≤ k0, k1 < β such
that

f (k0)(0) > 0, f (k1)(1) < 0;
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POSTERIOR CONVERGENCE OF MIXTURES OF BETAS DENSITIES 5

k0 and k1 denote the first integers such that the corresponding derivatives
calculated at 0 and 1 respectively are non zero.

This assumption is quite mild and ensures that f0(x) does not go too
quickly to 0 when x goes to 0 or 1 so that we can control the Kullback-
Leibler divergence between f0 and mixtures of Betas.

1.3. Organization of the paper. The paper is organized as follows. In
Section 2, we give the two main theorems on the concentration rates of
the posterior distributions under specific types of priors corresponding to
different mixtures of Betas. In Section 2.1 we determine a posterior rate of
concentration when the scale parameter of the Betas is fixed (depending on
n) this leads to a non adaptive procedure since α depends on the smoothness
of the density. In Section 2.2 we present the adaptive approach obtained by
considering some prior on α. In Section 3 we present some results describing
the approximating properties of mixtures of Betas. We believe that these
results are interesting outside the Bayesian framework since they could also
be applied to obtain convergence rates for maximum likelihood estimators.
This section is divided into two parts. First we describe how continuous
mixtures can approach smooth densities (Section 3.1) then we approach
continuous mixtures by discrete mixtures (Section 3.2). Finally Section 4 is
dedicated to the proofs of Theorems 2.1 and 2.2 given in Section 2.

2. Posterior concentration rates. In this section we give the two
main results on the concentration rates of the posterior distribution around
the true density. We first consider the case of a deterministic sequence αn

of scales, increasing to infinity at a given rate. Using this result we then
consider a more realistic setup where a prior is put on the scale α leading
to an adaptive estimating procedure.

We consider a concentration rate in terms of the L1 distance, however the
results can be applied to the hellinger distance as well.

2.1. Deterministic α. In this section α = αn is deterministic. We con-
sider the following types of prior on the mixing distribution P :
Type I prior

dπ(f) = p(k)dπk,1(ǫ1, ...., ǫk)dπk,2(p1, ..., pk), if f = gαn,P .

For all k > 0 πk,1 and πk,2 are positive on Sk and [0, 1]k respectively. We
assume that the πk,1’s are bounded from below by a term in the form ck1 and
that the ǫj ’s j = 1, ..., k are independent and identically distributed with
a distribution whose density with respect to Lebesgue measure is bounded
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6 J. ROUSSEAU.

from below by a function in the form : c2[ǫ(1 − ǫ)]T for some T ≥ 0. The
distribution on k has the following bounds on its tail behaviour: there exist
a1, a2 > 0 such that for all K large enough

e−a1K log(K) ≤ p [k = K] ≤ e−a2K

Remark: Even when the conditional distribution of the weights (p1, ..., pk)
given k is a Dirichlet distribution the overall distribution on f is not in
general a Dirichlet process, hence we introduce another class of prior solely
based on the Dirichlet process.
Dirichlet I prior. The mixing distribution P follows a Dirichlet pro-
cess D(ν) associated with a finite measure whose density with respect to
Lebesgue measure is denoted ν and is positive on the open interval (0, 1).
Assume also that ν is bounded and satisfies

ν(ξ) ≥ ν0ξ
T1(1 − ξ)T1

We then have the following theorem.

Theorem 2.1. Let f0 ∈ H(L, β) satisfying Assumption A0, with β > 0.
Let αn = α0n

2/(2β+1)(log n)−3/(2β+1), for some positive α0. Assume that the
prior on P is either a Dirichlet I prior or a Type I prior. Then if τn =
n−β/(2β+1)(log n)5β/(4β+2),

P π[Bc
τn
|Xn] → 0

in probability.

The proof of Theorem 2.1 is given in Section 4.
This result implies that for any β > 0 the optimal rate, in the minimax

sense, is obtained. Hence the above mixtures of Betas form a richer class of
models than the bernstein polynomials or the mixtures of triangular distri-
butions who lead at best to the minimax rates for β ≤ 2. It is to be noted
however that Bernstein polynomials and mixture of triangular densities have
other interesting properties and are in particular easy to simulate.

Theorem 2.1 shades light on the impact of αn as a scale parameter. It
can thus be compared to the scale parameter σn which appear in Dirichlet
mixtures of Gaussian distributions. In Section 3 we see that the key factor
leading to such a rate is the possibility of approximating any f0 ∈ H(L, β)
by a continuous mixture in the form gαn,f with an error of order α−β

n , for
some density f close to f0 but not necessarily equalt to f0. An interesting
feature leading to this approximating property is that gαn,ǫ acts locally as a
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POSTERIOR CONVERGENCE OF MIXTURES OF BETAS DENSITIES 7

Gaussian Kernel around ǫ. However the interest in the Bayesian procedure
compared to a classical frequentist kernel nonparametric method comes from
the fact that we do not necessarily need to approach f0 by gαn,f0 , which
would have constrained us to β ≤ 2. Indeed if necessary we can consider a
slight modification f of f0 such that gαn,f approximates f0 with an error of
order α−β

n for all β.
The choice of the scale parameter is however a problem in practice, as

is the choice of the bandwith in kernel nonparametric estimation. From a
Bayesian perspective considering a deterministic α depending on n is quite
awkward. In the following section we put a prior probability on α.

2.2. Fully Bayesian procedure. In this section we consider a joint prior
probability on the mixing distribution P defined by (1.3) and on α. since
this increases the complexity of the support of the prior probability we need
to be slightly more restrictive on the prior on P than in Section 2.1.
Type II prior

dπ(f) = p(k)dπk,1(ǫ1, ...., ǫk)dπk,2(p1, ..., pk)πα(α), if f = gα,P .

For all k > 0, πk,1 and πk,2 are positive on Sk and (0, 1)k respectively. We
consider the same conditions on the priors πk,1 and πk,2, i.e. we assume that
the πk,1’s are bounded from below by a term in the form ck1 and that the ǫj ’s
j = 1, ..., k are independent and identically distributed with a distribution
whose density with respect to Lebesgue measure isdenoted πe(ǫ). However
we add the extra condition that there exist a1, a2 > 0 and T ≥ 1 such that

a1ǫ
T (1 − ǫ)T ≥ πe(ǫ) ≥ a2ǫ

T (1 − ǫ)T , ∀ǫ ∈ (0, 1).

We also consider the following conditions on the prior πα. For all b1 > 0,
there exists c1, c2, c3, A, d > 0 such that for all u large enough,

πa(c1u < α < c2u) ≥ Ce−b1u1/2

πa(c3u < α) ≤ Ce−b1u1/2

πa(α < e−uA) ≤ Ce−b1u

We also assume that πa is bounded.
Note that if

√
α follows a Gamma distribution with parameters (a, b) with

a ≥ 1 then the above condition is satisfied.
The distribution on k has the same tail behaviour as a Poisson distribu-

tion: there exist a1, a2 > 0 such that for all K large enough

e−a1K log(K) ≤ p [k = K] ≤ e−a2K log(K).

We then have the following theorem:
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8 J. ROUSSEAU.

Theorem 2.2. Consider a type II prior, then the posterior distribution
satisfies: for all f0 ∈ H(β, L) satisfying assumption A0,

P π [Bc
τn
|Xn] = oP (1), with τn = τ0n

−β/(2β+1)(log n)5β/(4β+2)

The prior does not depend on β so that the procedure is adaptive. An
interesting feature of the mixture of Betas is that it is not more difficult to
obtain an adaptive rate than a non adaptive rate. Moreover the conditions on
the prior leading to the adaptive procedure are more natural from a Bayesian
perspective than those expressed in the Type I priors since we do not have
to consider a depterministic sequence αn depending on n. Note that we do
not obtain an adaptive procedure for Dirichlet mixtures of Betas, which does
not mean that such a procedure cannot be obtained. The difficulty for the
adaptive results is to control the entropy of the support of the prior. In the
case of Dirichlet mixtures (non adaptive) we used the approximation of a
general mixture by a finite mixture when α is large, which is not possible
when we put a prior on α (since α needs not be large).

In both cases the posterior probability of Bc
τn

is of order smaller than

n−β/(2β+1) so that Theorems 2.1 and 2.2 imply that a Bayesian estimator
such as the posterior mean has a convergence rate of order n−β/(2β+1) (L1

risk) up to a logn term.
In the following section we give the key result that enables us to obtain

the minimax rate, which is the approximation error of a smooth density f0

by a continuous mixture gα,f as α goes to infinity.

3. Approximation of a smooth density by continuous and dis-

crete mixtures. A beta mixture, as defined by (1.6) behaves locally like
a Gaussian mixture, however its behaviour seems to be richer since the vari-
ance adapts to the value of x, see Lemma 3.1. In this section we obtain a
way to approximate any Hölder density f by a sequence of continuous and
discrete mixtures. We begin with approximating the density by a sequence
of continuous mixtures and then we approximate the continuous mixtures
by discrete mixtures.

3.1. Continuous mixtures. We consider a continuous mixture gα,f as de-
fined in (1.6). This mixture is based on the parameterisation of a beta density
in terms of mean ǫ and scale α. The idea in this section is that when α be-
comes large the above mixture converges to f(x) if f is continuous. We first
give a result where the approximation is controlled in terms of the supre-
mum norm, which has an intrinsic interest. We also give a bound on the
approximation error for Kullback-Leibler types of divergence, which is the
required result to control the posterior concentration rate.
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POSTERIOR CONVERGENCE OF MIXTURES OF BETAS DENSITIES 9

Theorem 3.1. Assume that f0 ∈ H(β, L) and satisfies assumption A0,
with β > 0. Then there exists a probability density f1 such that

f1(x) = f0(x)



1 +

⌈β⌉−1
∑

j=2

wj(x)

αj/2



 if β > 2; f1(x) = f0(x) if β ≤ 2

where the w′
js are combinations of polynomial functions of x and of terms

in the form f
(l)
0 (x)xl(1 − x)l/f0(x), l ≤ j, and

||gα,f1 − f0||∞ ≤ Cα−β/2(3.1)

and for all p > 0

KL(f0, gα,f1) ≤ Cα−β,

∫

f0

∣

∣

∣

∣

∣

log

(

f0

gα,f1

)∣

∣

∣

∣

∣

p

≤ Cα−β(3.2)

It is to be noted that the upper bound on the supremum norm (3.1) does
not require assumption A0 to hold. This assumption is only required to
obtain an upper bound on the Kullback-Leibler types of divergence.

Note also that if we do not allow f1 to be different from f0 we do not
achieve the rate α−β to be true for values of β greater than 2. We believe
that the trick of allowing f1 to be different from f0 could be used in a
more general context of Bayesian mixture distributions (or Bayesian Kernel
approaches as defined in [7]) inducing a greater flexibility of Bayesian kernel
methods with respect to frequentist kernel methods.

A Beta density with parameters (α/ǫ, α/(1 − ǫ) can be expressed as

gα,ǫ(x) = xα/(1−ǫ)−1(1 − x)α/ǫ−1 Γ(α/(ǫ(1 − ǫ)))

Γ(α/ǫ)Γ(α/(1 − ǫ))
.

From this we have the following three approximations that will be used
throughout the proofs of Theorems 2.1, 2.2, 3.1 and 3.2. Let

K(ǫ, x) = ǫ log (ǫ/x) + (1 − ǫ) log ((1 − ǫ)/(1 − x)),(3.3)

this is the Kullback-Leibler divergence between the Bernoulli ǫ and the
Bernoulli x distributions. Then

Lemma 3.1.

gα,ǫ(x) =

√
α√

2πx(1 − x)
e
−αK(ǫ,x)

ǫ(1−ǫ)



1 +
k
∑

j=1

bj(ǫ)

αj
+ 0(α−(k+1))



 ,(3.4)
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10 J. ROUSSEAU.

for any k > 0 and α large enough, where the bj(ǫ) are polynomial functions.
For all k > 0, k1 ≥ 3, we also have,

gα,ǫ(x) =

√
α√

2πx(1 − x)
×

exp

{

− α(x− ǫ)2

2x2(1 − x)2

[

1+
(x− ǫ)

x(1 − x)

(

C(x)+Qk1

(

x− ǫ

x(1 − x)

))]

+R1

}

×


1 +
k
∑

j=1

bj(ǫ)

αj
+O(α−(k+1))



 ,(3.5)

where R1 ≤ αC|x− ǫ|k1−2(xǫ(1 − xǫ))
−k1+2,

Qk1

(

x− ǫ

x(1 − x)

)

=
k1−3
∑

l=0

Cl(x)(x− ǫ)l

(x(1 − x))l
,

and the functions C(x), Cl(x) l ≤ k1 are polynomial, where xǫ ∈ (x, ǫ) and
C is a positive constant. Moreover, when α|x − ǫ|3 ≤ C0x

3(1 − x)3 for any
positive constant C0, if k2 ≥ 0 and if k1 ≥ 3 ∨ 3k2 there exists C1 > 0 such
that

gα,ǫ(x) =

√
αe

− α(x−ǫ)2

2x2(1−x)2

√
2πx(1 − x)

×




k2
∑

j=0

αj(x− ǫ)3j

j!(x(1 − x))3j

[

C(x) +Qk1

(

x− ǫ

x(1 − x)

)]j

+R



×


1 +
k
∑

j=1

bj(ǫ)

αj
+O(α−(k+1))



 ,(3.6)

where |R| ≤ C1α
k2+1|x− ǫ|3(k2+1)(xǫ(1 − xǫ))

−3(k2+1).

Note that the term 0(α−(k+1)) appearing in (3.4), (3.5) and (3.6) is uni-
form in x and ǫ.

Proof. (Proof of Lemma 3.1) The proof of (3.4) follows from the expres-
sion of the Betas density in the form:

gα,ǫ(x) =
Γ(α/(ǫ(1 − ǫ)))ǫα/(1−ǫ)(1 − ǫ)α/ǫ

Γ(α/ǫ)Γ(α/(1 − ǫ))

e
−α

K(ǫ,x)
ǫ(1−ǫ)

x(1 − x)
,
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POSTERIOR CONVERGENCE OF MIXTURES OF BETAS DENSITIES 11

and from a Taylor expansion of Γ(y) for y close to infinity where we obtain
that

Γ(α/(ǫ(1 − ǫ)))

Γ(α/ǫ)Γ(α/(1 − ǫ))
=

√
α√
2π

exp

(

−α
[

log(ǫ)

1 − ǫ
+

log(1 − ǫ)

ǫ

])



1 +
∞
∑

j=1

bj
ǫj(1 − ǫ)j

αj







1 +
∞
∑

j=1

bj
ǫj

αj





−1

1 +
∞
∑

j=1

bj
(1 − ǫ)j

αj





−1

,

where the bj ’s are the coefficient appearing in the expansion of the Gamma
function near infinity, see for instance [1]. Putting the three remaining terms
together results in: for all k > 0



1 +
∞
∑

j=1

bj
ǫj(1 − ǫ)j

αj







1 +
∞
∑

j=1

bj
ǫj

αj





−1

1 +
∞
∑

j=1

bj
(1 − ǫ)j

αj





−1

= 1 +
k
∑

j=1

bj(ǫ)

αj
+O(α−(k+1))

where the bj(ǫ)’s are polynomial functions with degree less than 2j. This
implies (3.4). To obtain (3.5) we make a Taylor expansion of (3.4) as a
function of ǫ around x.

K(ǫ, x)

ǫ(1 − ǫ)
=

(ǫ− x)2

2x2(1 − x)2
+

k1
∑

j=3

Cj(x)
(x− ǫ)j

xj(1 − x)j
+R1

where R1 ≤ R|x − ǫ|k1+1/(xǫ(1 − xǫ))
k1+1 for some xǫ ∈ (x, ǫ), leading to

(3.5). A Taylor expansion of ey around 0 combined with the above approxi-
mation of y leads to (3.6).

To prove (3.1) we control the difference between the uniform density on
[0, 1] and the corresponding beta mixture gα =

∫ 1
0 gα,ǫdǫ. This is given in

the following Lemma.

Lemma 3.2. For all α > 0 large enough, for all k2 ≥ 1 and k1 ≥ 3(k2−1)
define

I(x) =
k2
∑

j=1

C(x)jµ3j

αj/2
+

k2k1
∑

l=2

Bl(x)

αl/2
µj = E[N (0, 1)j ],

then

||gα(x) − 1 − I(x)

α
||∞ ≤ Cα−(k2+1)/2(logα)3(k2+1)/2

where the Bl(x)’s are polynomial functions of x.
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12 J. ROUSSEAU.

The proof of Lemma 3.2 is given in Appendix A. We now prove Theorem
3.1.

Proof. (Proof of Theorem 3.1). Throughout the proof C denotes a generic
positive constant. Let f ∈ H(β, L) and denote r = ⌊β⌋. Then ∀ǫ ∈ (0, 1),

∣

∣

∣

∣

∣

∣

f(ǫ) −
r
∑

j=0

f (j)(x)

j!
(ǫ− x)j

∣

∣

∣

∣

∣

∣

≤ L|x− ǫ|β.(3.7)

The construction of f1 is iterative. Let δx = δ0x(1−x)
√

logα/α. We bound

∫ 1

0
|x− ǫ|βgα,ǫ(x)dǫ ≤

∣

∣

∣

∣

∣

∫ x−δx

0
gα,ǫ(x)dǫ+

∫ 1

x+δx

gα,ǫ(x)dǫ

∣

∣

∣

∣

∣

+

∫ x+δx

x−δx

|x− ǫ|βgα,ǫ(x)dǫ

Equation (A.6) implies that for all H > 0, if δ0 is large enough, the first
term of the right hand side of the above inequality is 0(α−H). We treat the
second term using the same calculations as in the case of I3 in Appendix A
so that, for all k > 0

∫ x+δx

x−δx

|x− ǫ|βgα,ǫ(x)dǫ ≤ Cα−β/2xβ(1 − x)βE[|N (0, 1)|β] + 0(α−k/2).

Therefore

∫ 1

0
|x− ǫ|βgα,ǫ(x)dǫ = 0(α−β/2xβ(1 − x)β) + 0(α−H)

uniformly in x. Then for all H > 0,

[gα,f − f ](x) =
r
∑

j=1

f (j)(x)

j!

∫ 1

0
(ǫ− x)jgα,ǫ(x)dǫ+ f(x)(gα(x) − 1)

+0(α−β/2xβ(1 − x)β) + 0(α−H)

=
r
∑

j=1

f (j)(x)

j!

∫ 1

0
(ǫ− x)jgα,ǫ(x)dǫ+ f(x)

I(x)

α

+0(α−β/2xβ(1 − xβ) + α−H),

Uniformly in x, for all H > 0. Using the same calculations as in the com-
putation of I3 in the proof Lemma 3.2 we obtain for all j ≥ 1, to the order

imsart-aos ver. 2007/12/10 file: betannalsrev1.tex date: October 7, 2008



POSTERIOR CONVERGENCE OF MIXTURES OF BETAS DENSITIES 13

0(α−(k+j+1)/2xj(1 − x)j + α−H)
∫ 1

0
(ǫ− x)jgα,ǫ(x)dǫ

=

√
α√

2πx(1 − x)

∫ x+δx

x−δx

e
− α(x−ǫ)2

2x2(1−x)2 ×
(

(x− ǫ)j +
k
∑

l=1

αl(x− ǫ)3l+j

j!(x(1 − x))3l

[

C(x) +Qk1

(

x− ǫ

x(1 − x)

)]l
)

dǫ

= µjα
−j/2xj(1 − x)j +

k
∑

l=1

Dl(x)x
j(1 − x)j

α(j+l)/2
,

so that we can write
∫ 1

0
(ǫ− x)jgα,ǫ(x)dǫ

=
xj(1 − x)j

αj/2
µj,α(x) + 0(α−(k+j+1)/2xj(1 − x)j + α−H)

where µj,α(x) is a polynomial function of x with the leading term being
equal to µj . We can thus write, to the order 0(α−β/2xβ(1 − xβ) + α−H)

[gα,f − f ](x) =
r
∑

j=1

f (j)(x)xj(1 − x)jµj,α(x)

j!αj/2
+ f(x)

I(x)

α
.(3.8)

Hence if β ≤ 2, since µ1 = 0,

|gα,f − f |(x) ≤ ||I||∞f(x)

α
+ 0(α−β/2xβ(1 − xβ)) + 0(α−H)

= 0(α−β/2),(3.9)

as soon as H > β/2, leading to (3.1) with f1 = f . If β > 2, We construct a
probability density f1 satisfying

(gα,f1 − f)(x) = 0(α−β/2xβ(1 − x)β) + 0(α−H).

Equation (3.8) implies that f1 needs satisfy

r
∑

j=1

f
(j)
1 (x)xj(1 − x)jµj,α(x)

j!αj/2
+f1(x)

(

1 +
I(x)

α

)

= f(x)+0(α−β/2xβ(1−xβ))+0(α−H).

To prove that such a probability density exists we construct it iteraticely.
Let 2 < β ≤ 3, then set

h1(x) = f(x)(1 − I(x)

α
) − x(1 − x)f ′(x)C(x)µ4

α
− x2(1 − x)2f”(x)µ2

2α
.

imsart-aos ver. 2007/12/10 file: betannalsrev1.tex date: October 7, 2008



14 J. ROUSSEAU.

Note that if f ∈ H(L, β), then inf f > 0 implies h1 > 0 for α large enough
and if f(0) = 0 (f(1) = 0), when x is close to 0 (resp. 1), if

lim inf
x

f(x)

xj(1 − x)j |f (j)(x)| > 0, j = 1, 2

h1 ≥ 0 for α large enough on [0, 1]. Assumption A0 implies the above relation
between f and f (j) since

h1(x) =
xk0f (k0)(x̄1)

k0!

(

1 − I(x)

α

)

− xk0(1 − x)f (k0)(x̄2)C(x)µ4

α(k0 − 1)!

− xk0(1 − x)2f (k0)(x̄3)µ2

2α(k0 − 2)!
(3.10)

with x̄1, x̄2, x̄3 ∈ (0, x). Since f (k0)(0) > 0, h1(x) is equivalent to f(x) for
α large enough and x close to zero and h1(x) > 0 for all x ∈ (0, 1). Let
c1 =

∫ 1
0 h1(x)dx. Since

∫ 1
0 [gα,f − f ](x)dx = 0,

c1 = 1 + 0(α−(3/2∧β/2))

and we can divide h1 by its normalizing constant and obtain the same result
as before, so that h1 can be chosen to be a probability density on [0, 1].

From this we obtain when β > 2

(gα,h1 − f)(x) =

∫ 1

0





r−2
∑

j=1

h
(j)
1 (x)

j!
(ǫ− x)j



 gα,ǫ(x)dǫ

+h1(x)
I(x)

α
+

r
∑

j=r−1

(f − I(x)/α)(j)(x)

j!

∫ 1

0
(ǫ− x)jgα,ǫ(x)dǫ

+0(α−β/2xβ(1 − x)β)

=
w(x)f(x)

α2
+ 0(α−2∧β/2xβ(1 − x)β) +O(α−H), ∀H > 0

where w(x) is a combination of polynomial functions of x and of functions
in the form xj(1)xjf (j)(x) with j < 3 if β ≤ 4. If β ≤ 4 then we set f1 = h1

(renormalized) else we reiterate. We thus obtain that if rβ is the largest
integer (strictly) smaller than β/2

f1(x) = f(x)



1 +

⌊rβ⌋
∑

j=1

wj(x)

αj
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POSTERIOR CONVERGENCE OF MIXTURES OF BETAS DENSITIES 15

where wj(x) is a combination of polynomial functions and of terms in the
form f (l)(x)xl(1 − x)l/f(x), l ≤ 2j. Assumption A0 implies that f1 can be
chosen to be a density when α is large enough and satisfies

||gα,f1 − f ||∞ ≤ Cα−β/2.

which implies (3.1).
If f is strictly positive on [0, 1] then (3.2) follows directly from (3.1). We

now consider the case where f(0) = 0 (the case f(1) = 0 is treated similarly).
Under the assumption A0, the previous calculations lead to

(gα,f1 − f)(x) = 0(f(x)α−β/2) + 0(α−H), ∀H > 0.

Note also that for α large enough, f1 is increasing between 0 and δ for some
positive constant α > 0 so that if x is small enough,

gα,f1 ≥ f1(x)
√
α

2
√

2πx(1 − x)

∫ x+δx

x
e
− α(x−ǫ)2

2(x2(1−x)2)dǫ

≥ f1(x)

4
(3.11)

so that gα,f1 ≥ f/8 on [0, 1]. Therefore, since f(x) = f (k0)(0)xk0/k0!+o(x
k0)

when x is close to 0, let H > β and c = c0α
−H/k0 ; for some constant c0 large

enough, we have

KL(f, gα,f1) ≤ log 2

∫ c

0
f(x)dx+ α−β

∫ 1

c
f(x)dx+

∫ 1

c
f(x)

∣

∣

∣

∣

∣

log

(

1 − α−H

f(x)

)∣

∣

∣

∣

∣

dx

≤ C
(

α−H(k0+1)/k0 + α−β + α−H
)

= O(α−β).

Similarly for all p > 0, if cp = c0α
−H/(pk0),

∫

f(x) |log(f(x)/gα,f1(x))|p dx ≤ (log 2)p
∫ cp

0
f(x)dx+ α−pβ

∫ 1

cp

f(x)dx

+

∫ 1

cp

f(x)

∣

∣

∣

∣

∣

log

(

1 − α−H

f(x)

)∣

∣

∣

∣

∣

p

dx

≤ C
(

α−2H(k0+1)/(pk0) + α−pβ + α−H
)

= 0(α−β),

if H ≥ pβ. This achieves the proof of Theorem 3.1.

In the following section we consider the approximation of continuous mix-
tures by discrete mixtures in a way similar to [4].
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16 J. ROUSSEAU.

3.2. Discrete mixtures. Let P be a probability on [0, 1] with cumulative
distribution function denoted by P (x) for all x ∈ [0, 1]. We consider a mix-
ture of Betas similarly to before but with general probability distribution P
on [0, 1]

gα,P (x) =

∫ 1

0
gα,ǫ(x)dP (ǫ).

Let f be a probability density with respect to Lebesgue measure on [0, 1], in
this section we study the approximation of gα,f by gα,P where P is a discrete
measure with finite support.

The approximation of discrete mixtures by continuous ones is studied in
different contexts of location scale mixtures, see for instance [4] or [8] (Ch 3)
for a general result. Betas mixtures are not location scale mixtures however,
as discussed in the previous section when α is large they behave locally like
location scale mixtures. In this section we use this property to approximate
continuous mixtures with finite mixtures having a reasonably small number
of points in their support.

Theorem 3.2. Let f be a probability density on [0, 1], f(x) > 0 for all
0 < x < 1 and such that there exists k1, k0 ∈ IN satisfying f(x) ∼ xk0c0, if
x = o(1) and f(1 − x) ∼ (1 − x)k1c1, if 1 − x = o(1). Then there exists a
discrete probability distribution P having at most N = N0

√
α
√

log (α) points
in its support such that, for all p ≥ 1, for all H > 0 (depending on M0), for
α large enough,

∫ 1

0
gα,f

∣

∣

∣

∣

∣

log

(

gα,f

gα,P

)∣

∣

∣

∣

∣

p

(x)dx ≤ Cα−H .(3.12)

We can choose the distribution P such that there exists A > 0 with pj > α−A

for all j ≤ N .

We use this inequality to obtain the following result on the true density
f0.

Corollary 3.1. Let f0 ∈ H(L, β), β > 0 be a probability density on
[0, 1] satisfying: f0(x) > 0 for all 0 < x < 1 and such that there exist
k1, k0 ∈ IN satisfying |f (k0)(0)| > 0 and |f (k1)(1)| > 0, k0, k1 < β. Then,
for all p > 1 there exists a discrete probability distribution P having at most
N = N0

√
α
√

log (α) in its support, with N0 large enough such that

KL(f0, gα,P ) ≤ Cα−β, Vp(f0, gα,P ) ≤ Cα−β(3.13)
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Proof. (Proof of Corollary 3.1)
From Theorem 3.1 there exists f1 positive with f1 = f0(1 + 0(α−1)) and

KL(f0, gα,f1) ≤ Cα−β , gα,f1 ≥ f0/8.

This implies that

KL(f0, gα,P ) ≤ KL(f0, gα,f1) +

∣

∣

∣

∣

∫

f0(x) log (gα,f1/gα,P )(x)dx

∣

∣

∣

∣

≤ Cα−β + 8

∫

gα,f1(x)

∣

∣

∣

∣

∣

log

(

gα,f1

gα,P

)∣

∣

∣

∣

∣

(x)dx = O(α−β).

The same calculations apply to
∫ 1
0 f0(x) |log(f0(x)/gα,P (x))|p dx ≤ Cα−β,

which achieves the proof of Corollary 3.1.

Proof. of Theorem 3.2
Throughout this proof C denotes a generic positive constant. We first

bound the difference between both mixtures at all x. By symmetry we can
consider x ∈ [0, 1/2]. Consider the following approximation of the exponen-
tial: for all s ≥ 0 and all z > 0,

∣

∣

∣

∣

∣

∣

e−z −
s
∑

j=0

(−1)jzj

j!

∣

∣

∣

∣

∣

∣

≤ zs+1

(s+ 1)!
.(3.14)

Equation (3.5) implies that for all k > 1, k1 ≥ 3, there exist polynomial
functions of x, Dl(x), l ≤ k1 and polynomial functions of ǫ, bj(ǫ), j ≤ k such
that

gα,ǫ(x) =

√
αeRk1√

2πx(1 − x)
e

−(x−ǫ)2α

2x2(1−x)2

(

1+
∑k1−2

l=1

Dl(x)(x−ǫ)l

xl(1−x)l

)



1+
k
∑

j=1

bj(ǫ)

αj
+ 0(α−(k+1))



 ,

where |Rk1 | ≤ αC|x − ǫ|k1+1(xǫ(1 − xǫ))
−(k1+1), with xǫ ∈ (x, ǫ) (or (ǫ, x)).

If |x− ǫ| ≤Mδ0
√

logαx(1− x)/
√
α, |Rk1 | ≤ Cα−k1/2+1/2(logα)k1/2 and set

z =
(x− ǫ)2α

2x2(1 − x)2



1 +
k1
∑

l=1

Dl(x)(x− ǫ)l

xl(1 − x)l



 ,

then

0 ≤ z ≤ C
(x− ǫ)2α

x2(1 − x)2
≤ CM2 log(α),
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18 J. ROUSSEAU.

so that we obtain using (3.14)

gα,ǫ(x) =

√
α√

2πx(1 − x)

s
∑

j=0

(−1)j(x− ǫ)2jαj

2jx2j(1 − x)2jj!
×



1+
k1
∑

l=1

Dl(x)(x− ǫ)l

xl(1 − x)l





j

1+
k
∑

j=1

bj(ǫ)

αj



+∆s,(3.15)

where

∆s ≤ C
1

x(1 − x)

[√
αM2(s+1)Cs+1

(s+ 1)!
+ α−(k1−1)/2(logα)(k1+1)/2 + α−(k+1)/2

]

.

Consider ǫ0 = α−t0 , for some positive constant t0 and ǫj = ǫ0(1+M
√

logα/
√
α)j ,

j = 1, ..., J with

J = ⌊ t0 log (α) + 2 log(log(α))

log (1 +M
√

logα/
√
α)

⌋ + 1 = 0
(√

α
√

logα
)

.

Define dFj and dPj the renormalized probabilities dF and dP restricted to
[ǫj , ǫj+1) set H > 0. Then if k1 − 1 > 2H and k ≥ H − 1/2 we obtain for all
x ∈ [ǫj−1, ǫj+2], j ≥ 2
∣

∣

∣

∣

∣

∫ ǫj+1

ǫj

gα,ǫ(x)[dFj − dPj ](ǫ)

∣

∣

∣

∣

∣

≤

√
α√

2πx(1 − x)

∣

∣

∣

∣

∣

∣

∣

∫ ǫj+1

ǫj

s
∑

i=0

(−1)i(x− ǫ)2iαi

2ix2i(1 − x)2ii!



1 +
k1
∑

a=1

Ca(x− ǫ)a

xa(1 − x)a





i

×

(

1 +
k
∑

i=1

bi(ǫ)

αi

)

[dFj − dPj ](ǫ)

∣

∣

∣

∣

∣

+
C

x(1 − x)

[√
αCs+1M2(s+1) logαs+1

(s+ 1)!
+ α−H

]

(3.16)

So that if s = s0 logα with s0 ≥ C2M4 + 1, we obtain

Cs+1M2(s+1) logαs+1

(s+ 1)!
≤ e−

s0 log s0 log α

2 = 0(α−H)

as soon as s0 log(s0) ≥ 2H. Using Lemma A.1 of [4], we can construct a
discrete probability with at most N = 2kk1s + 1 supporting points such
that for all l ≤ 2sk1, l

′ ≤ k,
∫

ǫlbl′(ǫ)d(Fj − Pj)(ǫ) = 0
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POSTERIOR CONVERGENCE OF MIXTURES OF BETAS DENSITIES 19

so that the first term of the right hand side of inequality (3.16) is made
equal to 0. Therefore, for all H > 0 there exists a discrete distribution Pj

whose support (in [ǫj , ǫj+1]) has at most N = k′0 logα points (k′0 depending
on H) and such that for all x ∈ [ǫj−1, ǫj+2]

∣

∣

∣

∣

∣

∫ ǫj+1

ǫj

gα,ǫ(x)d[Fj − dPj ](ǫ)

∣

∣

∣

∣

∣

= 0(
α−H

x(1 − x)
).

Moreover for all x ≤ ǫj−1, using equation (3.4) and the fact that

αK(ǫ, x) ≥ αK(ǫ, ǫj−1) ≥
M2(logα)ǫ(1 − ǫ)

3
,

when ǫj+1 > ǫ > ǫj , we obtain

gα,ǫ(x) ≤
C

x(1 − x)
e−cM2 log α,

for some positive constant c > 0. Now, if x > ǫj+2 using inequality (3.4)
together with the fact that

αK(ǫ, x) ≥ αK(ǫ, ǫj+2) ≥
M2(logα)ǫj+2(1 − ǫj+2)

3
,

if ǫj+1 > ǫ > ǫj , we obtain that

gα,ǫ(x) ≤
C

x(1 − x)
e−cM2 log α,

for some positive constant c > 0. Hence, by constructing P in the form: if
ǫJ+2 = 1 − ǫ0

dP (ǫ) =
J
∑

j=0

(F (ǫj+1) − F (ǫj))dPj(ǫ) + F (ǫ0)δ(ǫ0) + (1 − F (ǫJ+2))δ(ǫJ+2),

we finally obtain for all x

∣

∣

∣

∣

∫ 1

0
gα,ǫ(x)[dF − dP ](ǫ)

∣

∣

∣

∣

≤ Cα−H

x(1 − x)
,(3.17)

where P has at most Nα = N0(logα)3/2√α, for some N0 > 0 related to H,
and where M is large enough. We now consider x ≤ ǫ0(1 −M

√

logα/α).
We use the approximation (3.4).

gα,ǫ0(x) =
C
√
α

x(1 − x)
e−αK(ǫ0,x)/(ǫ0(1−ǫ0))(1 + 0(α−1)).
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20 J. ROUSSEAU.

Since, when x ≤ ǫ0,

K(ǫ0, x)

ǫ0(1 − ǫ0)
≤ (1 − ǫ0)

−1 (log (ǫ0/x))

we obtain

gα,P (x) ≥ e−α log (ǫ0/x)C
√
αF (ǫ0)

x(1 − x)

and, using the above inequalities on gα,ǫ(x) for x < ǫj−1 we have

gα,P (x) ≤ Cα−H/x(1 − x),

where H depends on M , so that

|log (gα,P (x))| ≤ Cα| log (x)|.

Since gα,f is bounded (as a consequence of the fact that gα,f −f is uniformly
bounded whenever f is continuous), and since u| log(u)|p goes to zero when
u goes to zero,

∫ ǫ0

0
gα,f (x)

∣

∣

∣

∣

∣

log

(

gα,f (x)

gα,P (x)

)∣

∣

∣

∣

∣

p

dx ≤ Cα−t0 + Cα−t0(logα)p

= 0(α−t0(logα)p).(3.18)

Note also that if α is large enough,

gα,f (x) ≥ f(x)/4

so that gα,f (x) ≥ cxk0(1 − x)k1 for x close to 0 and for all x ∈ (ǫ0, 1 − ǫ0),
for all H > 0

|gα,f (x) − gα,P (x)|
gα,f (x)

≤ C
α−H

xk0+1(1 − x)k1+1
≤ Cα−H+t0(1+k0∨k1).

So that if H > t0(1 + k0 ∨ k1) +B/p, with B > 0,

∫ 1

0
gα,f (x)

∣

∣

∣

∣

∣

log

(

gα,f (x)

gα,P (x)

)∣

∣

∣

∣

∣

p

dx ≤ Cα−t0(logα)p + Cα−B = 0(α−B).

as soon as t0 > B. Moreover, we can assume that there exists a fixed A such
that for all j, pj > α−A = v. Indeed let Iv = {j; pj ≤ v}, then consider for
j /∈ Iv, p̃j = cpj and for j ∈ Iv, p̃j = cv where c is defined by

∑J
j=1 p̃j = 1.

This implies in particular that

|c− 1| ≤ vJ ≤ J0α
−A+1/2(logα)3/2.
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Let P̃ =
∑J

j=0 p̃jδǫj (ǫ) then gα,P̃ ≥ cgα,P and if A− 1/2 > B,

KL(gα,f , gα,P̃ ) ≤ Cα−B + | log c| ≤ C ′α−B.

Also
∫

|gα,P̃ − gα,P | ≤ α−A+1/2(logα)3/2,

hence if A is large enough inequality (3.17) is satisfied with P̃ instead of P .
Since p0 = F1(ǫ0) ≥ F0(ǫ0)/4 and F0(ǫ0) ≥ α−t0k0C, by choosing A > t0k0

we obtain that 0 /∈ Iv and

gα,P̃ (x) ≥ gα,ǫ0(x)F (ǫ0), ∀x < ǫ0

so that (3.18) is satisfied with P̃ instead of P , which leads to: For all B > 0
there exists a distribution P̃ having less than N0

√
α(logα)3/2 points in its

support, satisfying: p̃j ≥ α−A for some A > 0 and all j and such that

∫

gα,f

∣

∣

∣

∣

∣

log

(

gα,f

gα,P̃

)∣

∣

∣

∣

∣

p

(x)dx = 0(α−B),

which achieves th proof of Theorem 3.2.

Note however that A depends on B and so does N0. Note also that this
result could be used to obtain a rate of concentration of the posterior dis-
tribution around the true density when the latter is a continuous mixture.

In the following section we give the proofs of Theorems 2.1 and 2.2.

4. Proofs of Theorem 2.1 and Theorem 2.2 . To prove these the-
orems we use Theorem 4 of [6]. In particular let p ≥ 2 and following their
notations define

B∗(f0, τ, p) = {f ; KL(f0, f) ≤ τ2;Vp(f0, f) ≤ τp}.

We also denote Jn(τ) = N(τ,Fn, ||.||1) the L1 metric entropy on the set Fn,
i.e. the logarithm of the minimal number of balls with radii τ needed to
cover Fn, where Fn is a set of densities that will be defined in each of the
proofs. The proofs consist in obtaining a lower bound on π(B∗(f0, τn, p))
and an upper bound on Jn(τn) when f0 belongs to H(β, L).
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4.1. Proof of Theorem 2.1 . Assume that f0 ∈ H(β, L) and let τn =
n−β/(2β+1)(log n)5β/(4β+2). We first bound π(B∗(f0, τn, p)). Using corollary
3.1 there exists a probability distribution with Nn = N0

√
αn(logαn)3/2 sup-

porting points such that

KL(f0, gαn,P ) ≤ Cα−β
n , Vp(f0, gαn,P ) ≤ Cα−β

n

with P of the form:

P (ǫ) =
kn
∑

j=1

pjδǫj (ǫ),

ǫj ∈ (α−β
n (logαn)−β−1, 1 − α−β

n (logαn)−β−1 and pj > α−A
n for all j =

1, ..., Nn and some fixed positive constantA. We denote ǫ0 = α−β
n (logαn)−β−1,

then ǫ1 > ǫ0. Consider dP ′(ǫ) =
∑kn

j=1 p
′
jδǫ′j (ǫ) with |ǫ′j−ǫj | ≤ aα−γ1

n ǫj(1−ǫj)
and |pj − p′j | ≤ aα−γ2

n pj , for some positive constants γ1, γ2 > 1/2. Note that
this implies that |p′j − pj | ≤ 2aα−γ2

n p′j . Then

KL(f0, gαn,P ′) ≤ Cα−β
n +

∫ 1

0
f0(x)

[

log gαn,P (x)/gαn,P ′(x)
]

dx.(4.1)

For symmetry reasons we work on x ≤ 1/2. Let Mn = M
√

logαn/
√
αn,

when |x− ǫj | ≤Mnǫj(1 − ǫj), then Lemma B.1 implies that
∣

∣

∣

∣

∣

gαn,ǫj

gαn,ǫ′j

(x) − 1

∣

∣

∣

∣

∣

= 0(α−(γ1−1/2)
n

√

logαn),

by choosing k2 > 2γ1−1 and k3 > γ1−1/2. Set β0 > 0 then for all x > e−β0αn

and all j′ such that |x− ǫ′j | > Mnǫj(1 − ǫj); since ǫj(1 − ǫj) ≥ α−t0
n /2 with

t0 ≥ β, Lemma B.1 implies that if γ1 > t0 + β + 3/2
∣

∣

∣

∣

∣

gαn,ǫj

gαn,ǫ′j

(x) − 1

∣

∣

∣

∣

∣

≤ Cβ0α
3/2
n ρnǫ

−1
0 + 0(α−β

n ) = 0(α−β
n ).

This implies that if x ∈ (e−β0αn , 1 − e−β0αn) and if γ2 ≥ β

gαn,P (x)

gαn,P ′(x)
= 1 +

∑kn
j=1(pj − p′j)gαn,ǫj
∑kn

j=1 p
′
jgαn,ǫ′j

+

∑kn
j=1 p

′
j(gαn,ǫj − gαn,ǫ′j

)
∑kn

j=1 p
′
jgαn,ǫ′j

= 1 + 0(α−β
n ).(4.2)

Now let x < e−β0αn , then |x − ǫj | ≥ ǫj(1 − ǫj)/2 for all j = 0, ..., Nn and
there exists c > 0 independent of β0 such that

gαn,P (x) ≤ e−cαn

√
αn

x(1 − x)
, gαn,P ′(x) ≤ e−cαn

√
αn

x(1 − x)
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Note also that

gαn,ǫ(x) ≥ C

√
αn

x(1 − x)
e
−αnK(ǫ,x)

ǫ(1−ǫ)

where

αnK(ǫ, x)

ǫ(1 − ǫ)
= αn

(

1

1 − ǫ
log(ǫ/x) +

1

ǫ
log((1 − ǫ)/(1 − x))

)

= αn

(

1

1 − ǫ
log(ǫ/x) +

1

ǫ
log(1 − ǫ) +

x

ǫ
+ o(x/ǫ)

)

≤ αn

(

1

1 − ǫ
log(ǫ/x) +

1

ǫ
log(1 − ǫ) +

x

ǫ

)

+ o(1)

Consider the function

h(ǫ) =
1

1 − ǫ
log(ǫ/x) +

1

ǫ
log(1 − ǫ) +

x

ǫ
,

since x < | log(1−ǫ)| for all ǫ ∈ (ǫ0, 1−ǫ0) h is increasing and for all ǫ < 1/2,
h(ǫ) ≤ 2| log(x)| + 0(1). This leads to

gαn,P (x) ≥ CP ([0, 1/2])

√
αn

x(1 − x)
e2αn log(x).(4.3)

The same inequality holds for gαn,P ′ , which implies that

∫ e−β0αn

0
f0(x)

∣

∣

∣

∣

∣

log

(

gαn,P (x)

gαn,P ′(x)

)∣

∣

∣

∣

∣

dx ≤ Cα2
ne

−β0αn

and

∫ e−β0αn

0
f0(x)

∣

∣

∣

∣

∣

log

(

gαn,P (x)

gαn,P ′(x)

)∣

∣

∣

∣

∣

p

dx ≤ Cαp+1
n e−β0αn .

The same kind of inequalities are obtained for x > 1 − e−β0αn . Finally we
obtain

∫ 1

0
f0(x)

∣

∣

∣

∣

∣

log

(

gαn,P (x)

gαn,P ′(x)

)∣

∣

∣

∣

∣

dx ≤ Cα2
ne

−β0αn + 0(α−β
n ) = 0(α−β

n ).

and

∫ 1

0
f0(x)

∣

∣

∣

∣

∣

log

(

gαn,P (x)

gαn,P ′(x)

)∣

∣

∣

∣

∣

p

dx = 0(α−β
n ).(4.4)
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Note that if |p′j − pj | ≤ α−β−A
n then |p′j − pj | ≤ α−β

n pj so we need only
determine a lower bound on the prior probability of the following set under
the Type I prior: set β0 < 1/2

Sn = {p′ ∈ SNn ; |p′j−pj | ≤ α−β−A
n , j ≤ Nn}×{|ǫj−ǫ′j | ≤ α−2β−1

n ǫj(1−ǫj), j ≤ Nn}

The prior probability of Sn,1 = {p′ ∈ SNn ; |p′j − pj | ≤ α−β−A
n , j ≤ Nn} is

bounded from below by a term in the form

α−Ckn
n

The prior probability of Sn,2 = {|ǫj − ǫ′j | ≤ α−2β−1
n ǫj(1 − ǫj), j ≤ Nn} is

bounded from below by a term in the form

Nn
∏

j=1

[ǫj(1 − ǫj)]
Tα2Nn(β+1)

n ≥ α−Nn[2(β+1)+T ]
n .

Since Nn = N0
√
αn(logαn)3/2 and setting αn = α0n

2/(2β+1)(log n)−5/(2β+1),
there exits C1 > 0 independent of Nn such that we finally obtain

π(B∗(f0, τn, p)) ≥ e−NnC1 log nc ≥ e−C1N0nτ2
n .

The proof for the control of the prior mass of Kullback-Leibler neigh-
bourhoods of the true density under the Dirichlet I prior follows the same
line. To find a lower bound on π(B∗(f0, τn, p)) we construct a subset of
π(B∗(f0, τn, p)) whose probability under a Dirichlet process is easy to com-
pute. Consider the discrete distribution P (ǫ) =

∑Nn
j=0 pjδǫj (ǫ) with Nn =

N0
√
αn(logαn)3/2 and α−t0

n = ǫ0 < ǫ1 < ... < ǫNn = 1 − α−t0
n and such that

KL(f0, gαn,P) ≤ Cα−β
n , Vp(f0, gαn,P) ≤ Cα−β

n .

The above computations (leading to equation (4.4)) imply that there exists
D1 such that if |ǫ−ǫ′| < α−D1

n we can replace gαn,ǫ by gαn,ǫ′ in the expression
of gαn,P without changing the order of approximation of f0 by gαn,P . Hence
we can assume that the point masses ǫj of the support of P satisfy |ǫj −
ǫj+1| ≥ α−D1

n , j = 0, ..., Nn . We can thus construct a partition of [ǫ0/2, 1−
ǫ0/2], namely U0, ..., UNn with ǫj ∈ Uj and Leb(Uj) ≥ 2−1α−D1

n for all
j = 1, ..., Nn, where Leb denotes the Lebesgue measure. Let ρ > 0 and P1

be any probability on [0, 1] satisfying

|P1(Uj) − pj | ≤ pjα
−ρ
n , ∀j = 0, ..., Nn(4.5)
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Then P1[ǫ0/2, (1 − ǫ0/2)] ≥ 1 − α−ρ
n . Since

gαn,P1(x) ≥ g̃n,P1 =

∫ 1−ǫ0/2

ǫ0/2
gαn,ǫ(x)dP1(ǫ),

and using (4.1) we obtain

KL(f0, gαn,P1) ≤ Cα−β
n +

∫

f0(x) log(gαn,P (x)/g̃n,P1(x))dx.

Set ρ ≥ β, then similarly to before we obtain inequality (4.2) with g̃n,P1 in-
stead of gαn,P ′ . When x ≤ e−β0αn we use the calculations leading to equation
(4.4) replacing gαn,P ′ with since g̃n,P1 since the ǫ’ s that are contained in the
mixing distribution of g̃n,P1 belong to (ǫ0/2, 1 − ǫ0/2), wich finally leads to

(4.4) between gαn,P and g̃n,P1 . To bound
∫ 1
0 f0(x)

∣

∣

∣log
(

f0(x)
gαn,P1

(x)

)∣

∣

∣

p
dx, note

first that

gαn,P1(x) − g̃n,P1(x) ≤ P1[0, ǫ0]C
√
αn(x(1 − x))−1 ≤ Cα−ρ+1/2

n (x(1 − x))−1.

For symetry reasons we work on [0, 1/2] and we split [0, 1/2] into [0, e−β0αn ]
[e−β0αn , ǫ0] [ǫ0, 1/2]. Since

gαn,P (x) ≥ gαn,f1 − |gαn,f1 − gαn,P | ≥
f0(x)

4
− Cα−H

n

x(1 − x)
, ∀H > 0

when x ∈ (ǫ0, 1/2) we have gαn,P (x) ≥ cf0(x) since f0(x) ≥ C0x
k0 near the

origin, for some positive constant c. Hence combining the above inequality
with (4.2) based on gαn,P and g̃n,P1 , we obtain that

Cα
−ρ+1/2
n

g̃n,P1(x)x(1 − x)
≤ C

α
−ρ+1/2
n

f0(x)x(1 − x)

≤ Cα−ρ+1/2+(k0+1)t0
n

= 0(α−β/p
n ) if x ∈ (ǫ0, 1/2) ρ ≥ β/p+ 1/2 + (k0 + 1)t0

Moreover (4.2) implies also that for all x ∈ (e−β0αn , α−t0
n )

g̃n,P1 ≥ gαn,P (x)/2 ≥ (x/ǫ0)
αn
C
√
αnF0(ǫ0)

x(1 − x)
,

leading to

log

(

1 +
gαn,P1(x) − g̃n,P1(x)

g̃n,P1(x)

)

≤ log

(

1 +
Cα

−ρ+1/2
n ǫαn−k0−1

0

xαn
√
αn

)

≤ Cαn| log(x)|, ∀x ∈ (e−β0αn , α−t0
n ).
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Also, if x < e−β0αn , using similar calculations to those used in deriving (4.3)
we obtain

g̃n,P1 ≥ CP1([ǫ0, 1/2])

√
αn

x(1 − x)
e2αn log(x)

and

log

(

1 +
gαn,P1(x) − g̃n,P1(x)

g̃n,P1(x)

)

≤ Cαn| log(x)|, ∀x < e−β0αn .

Finally we obtain

∫ 1

0
f0(x)

∣

∣

∣

∣

∣

log

(

f0(x)

gαn,P1(x)

)∣

∣

∣

∣

∣

p

dx ≤ 0(α−β
n ) +

∫ 1

0
f0(x)

∣

∣

∣

∣

∣

log

(

g̃n,P1(x)

gαn,P1(x)

)∣

∣

∣

∣

∣

p

dx

≤ α−t0+p
n (logαn)p + 0(α−β

n ) = 0(α−β
n )

whenever t0 > β + p, which implies ρ > β/p+ 1/2 + (β + p)(k0 + 1).
Under the Dirichlet I prior, (P1(U0), P1(U1), ..., P1(UNn)) follows a Dirich-

let (ν(U0), ν(U1), ..., ν(UNn)) with U0 being the complementary set of (U1 ∪
... ∪ UNn). Using the fact that ν(Uj) ≥ Cα−T1D1

n for all j we obtain that
there exist D2, C2 > 0 such that

π(Sn) ≥ exp{−D2Nn log(αn)} ≥ e−C2N0
√

αn(log αn)5/2
.

The above inequality can be derived for instance from Lemma A.2 of [4].
We now determine an upper bound on the entropy on some sieve of

the support of the prior. We first consider the Type I prior. Let ǫ0 =
exp{−a√αn(logαn)5/2}, and define

Fn = {P =
k
∑

j=1

pjgαn,ǫj ; k ≤ k1α
1/2
n (logαn)5/2; ǫj ∈ (ǫ0, 1 − ǫ0)∀j}.

Then if b > 0

π(Fc
n) ≤ π(k > k1α

1/2
n (logαn)3/2) + k1α

1/2
n (logαn)3/2ǫ

(T+1)
0

≤ e−b
√

αn(log αn)5/2
,

as soon as k1 and a are large enough.

Let k ≤ k̃n = k1α
1/2
n (logαn)3/2 be fixed and gαn,P be a Beta mixture

with k components. When |ǫ′j − ǫj | ≤ δα−2β−2
n ǫj(1 − ǫj) for all j ≤ k and

|pj − p′j | ≤ α−β−1
n , if |x− ǫj | ≤ ǫj(1 − ǫj)Mn then Lemma B.1 implies

|gαn,ǫ′j
− gαn,ǫj | ≤ gαn,ǫjCα

−2β−2
n

√

logαn
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and if |x− ǫj | > ǫj(1− ǫj)Mn then |x− ǫ′j | > ǫj(1− ǫj)Mn
2 and the convexity

of x→ K(ǫ, x) for all ǫ, together with equation (3.4) implies

|gαn,ǫ′j
+ gαn,ǫj | ≤ C

αn

x(1 − x)
e−M2 log αn/12.

Let xn = ǫ0
∫ 1−xn/2

xn/2
|gαn,ǫ′j

− gαn,ǫj |(x)dx ≤ Cα−β
n + Cαne

−cM2 log αn(logαn)3/2,

and if M is large enough the above term is 0(α−β
n ). Now if x < xn/2 ≤ ǫ0/2

then since ǫ > ǫ0 ≥ 2xn we use (A.5) together with ǫ− x > ǫ/2 and obtain

gαn,ǫ(x) ≤
C
√
αn

x(1 − x)

(

2x

x+ ǫ

)
αnǫ

2ǫ(1−ǫ) ≤ C
√
αnǫ

−αn(ǫ/2
2 (2x)

αn
2(1−ǫ)

−1
,

which implies that

∫ xn/2

0
gαn,ǫ(x)dx ≤ Cα−1/2

n (1 − ǫ)ǫ
− αn

2(1−ǫ) (xn)
αn

2(1−ǫ)

≤ Cα−1/2
n (1 − ǫ)2

− αn
2(1−ǫ) = 0(α−H

n ), ∀H > 0.(4.6)

By symmetry the same bound is obtained for the integral over (1− xn/2, 1)
and we finally obtain for all j ≤ k,

∫ 1

0
|gαn,ǫj − gαn,ǫ′j

|(x)dx = 0(α−β
n ).(4.7)

Hence

∫ 1

0
|gαn,P − gαn,P ′ |(x)dx ≤

k
∑

j=1

|pj − p′j | + pj

∫ 1

0
|gαn,ǫj − gαn,ǫ′j

|(x)dx

= 0(α−β
n ).

The number of balls with radii δ1α
−β
n needed to cover the set Sk is bounded

by
Ckα−kβ

n

The number of balls with radii ǫj(1 − ǫj)α
−β
n δ0 needed to cover (ǫ0, 1 − ǫ0)

(aαβ+1/2
n (logαn)5/2)k

Finally the metric entropy is bounded by

Jn(τn) ≤ 3knβ logαn ≤ 3k1β
√
αn(logαn)5/2 ≤ Cnτ2

n.
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To bound the entropy in the case of the Dirichlet I prior we use the ap-
proximation of a general mixture by a discrete finite mixture. First consider

F ′
n = {F ;F [ǫ0, 1 − ǫ0] > 1 − α−β

n }.

When F follows a Dirichlet ν process, F [0, ǫ0] and F [1 − ǫ0, 1] are Beta
random variables with parameters (ν[0, ǫ0], ν[ǫ0, 1]) and (ν[1− ǫ0, 1], ν[0, 1−
ǫ0]) respectively. Therefore

π((F ′
n)c) ≤ αβ

n

[

ν[0, ǫ0]

ν[0, 1]
+
ν[1 − ǫ0, 1]

ν([0, 1])

]

≤ Cαβ
n exp{−a√αn(logαn)5/2}.

For all F ∈ F ′
n define Fn the renormalized restriction of F on [ǫ0, 1 − ǫ0].

Then

||gαn,Fn − gαn,F ||1 ≤ 2α−β
n .

We can therefore assume that F [ǫ0, 1 − ǫ0] = 1 for all F ∈ F ′
n. Then there

exists a discrete probability

P (ǫ) =
Nn
∑

j=1

pjδǫj (ǫ), ǫj ∈ (ǫ0, 1 − ǫ0) ∀j(4.8)

with Nn ≤ N0
√
αn(logαn)3/2 such that (3.17) is satisfied for F and we

have for all H (depending on N0)
∣

∣

∣

∣

∫ 1

0
gα,ǫ(x)[dF − dP ](ǫ)

∣

∣

∣

∣

≤ Cα−H
n

x(1 − x)
.(4.9)

Moreover (4.6) implies that

∫ ǫ0/2

0
|gαn,F − gαn,P | (x)dx ≤

∫ 1−ǫ0

ǫ0
[dF (ǫ)+dP (ǫ)]

(

∫ ǫ0/2

0
gαn,ǫ(x)dx

)

≤ α−H
n ,

for all H > 0. Finally for all H > 0 there exists N0 > 0 and a probability
measure P defined by (4.8) with Nn = N0

√
αn(logαn)3/2 such that

||gαn,F − gαn,P ||1 ≤ α−H
n .

The above calculations to obtain the metric entropy associated to the type
I prior imply that the set of discrete probabilities satisfying (4.8) can be
covered using balls in the form :

B(P ) = {P ′(ǫ) =
Nn
∑

j=1

p′jδǫ′j (ǫ); |ǫ
′
j−ǫj | ≤ δα−2β−2

n ǫj(1−ǫj); |pj−p′j | ≤ α−β−1
n }
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The number of such balls is bounded by (Cα−2β−2
n | log ǫ0|)2Nn . Since for all

F, F ′ ∈ F ′
n there exist P, P ′ defined by (4.8) such that

||gαn,F − gαn,F ′ ||1 ≤ α−H
n + ||gαn,P − gαn,P ′ ||1

The L1 entropy is bounded by:

Jn(F ′
n, α

−β
n ) ≤ C

√
αn(logαn)5/2,

which achieves the proof of Theorem 2.1.

4.2. Proof of Theorem 2.2. We use Theorem 5 of [5] to prove this The-
orem. Since

πa[a1n
2/(2β+1)(log n)−5/(2β+1), a2n

2/(2β+1)(log n)−5/(2β+1)] ≥ exp{−b1n1/(2β+1) log n5β/(2β+1)},

we can consider α ∈ [a1n
2/(2β+1)(log n)−5/(2β+1), a2n

2/(2β+1)(log n)−5/(2β+1)]
in the determination of a lower bound for π(B∗(f0, τn, p)) so that the first
part of the proof of Theorem 2.1 applies here, leading to

π(B∗(f0, τn, p)) ≥ e−c0n1/(2β+1)(log n)5β/(2β+1)
, for some c0 > 0.

We now bound the L1 metric entropy on Fn,a defined by

Fn,a =
{

(P, α); k ≤ k′n, e
−n1/(2β+1)(log n)5β/(2β+1) ≤ α ≤ α0n

2/(2β+1)(log n)10β/(2β+1); ǫj > ǫ0,∀j
}

with α0, c > 0, k′n = k′1n
1/(2β+1)(log n)β−1)/(2β+1) and ǫ0 is defined by

ǫ0 = exp{−an1/(2β+1)(log n)5β/(2β+1)}

Since πa is bounded, for all c > 0,

π(Fc
n,a) ≤ e−cnτ2

n .

To bound the entropy on Fn,a we use Lemma C.1 with the following param-
eterisation: Write a = α/(1− ǫ), a′ = α′/(1− ǫ′), b = α/ǫ and b′ = α′/ǫ′ and
consider ρ > 0 small enough, then if |a′ − a| ≤ τ1 < a and |b′ − b| ≤ τ2 < b,

gα′,ǫ′(x) ≤
xa−τ1−1(1 − x)b−τ2−1

B(a− τ1, b− τ2)

B(a− τ1, b− τ2)

B(a′, b′)
,

so that
B(a− τ1, b− τ2)

B(a′, b′)
≤ 1 + τn ⇒ |gα′,ǫ′ − gα,ǫ| ≤ τn.
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Consider first α < 2ǫ ∧ (1 − ǫ). If

|ǫ− ǫ′| ≤ ρτnǫ(1 − ǫ), |α− α′| ≤ ρτnα(4.10)

then using case (i) of Lemma C.1 and simple algebra we obtain

|gα′,ǫ′ − gα,ǫ| ≤ 4ρτn.

We now consider the α, ǫ’s such that 2(1 − ǫ) < α < 2ǫ. If

|ǫ− ǫ′| ≤ ρ
τnǫ(1 − ǫ)

log (α/(1 − ǫ))
, |α− α′| ≤ αρτn

log (α/(1 − ǫ))
(4.11)

then using case (ii) of Lemma C.1 and simple algebra we obtain

|gα′,ǫ′ − gα,ǫ| ≤ 2ρ′τn,

for some ρ′ > 0. Last we consider the case where α > 2ǫ ∨ (1 − ǫ). If

|ǫ− ǫ′| ≤ ρτnǫ
2(1 − ǫ)2

log (α/ǫ(1 − ǫ))
, |α− α′| ≤ ρǫ(1 − ǫ)τn

α log (α/ǫ(1 − ǫ))
(4.12)

then case (iv) of Lemma C.1 implies

|gα′,ǫ′ − gα,ǫ| ≤ 2ρ′τn,

for some ρ′ > 0. Therefore the number of intervals in α needed to cover
(e−n1/(2β+1)(log n)5β/(2β+1) ≤ α ≤ α0n

2/(2β+1)(log n)10β/(2β+1)) is bounded by

J1 ≤ CnDǫ−1
1 ≤ CnDe(a+1)n1/(2β+1)(log n)5β/(2β+1)

,

where C,D are positive constants. We now consider the entropy associated
with the supporting points of P . The most restrictive relation is (4.12).

Let ǫn,j = ǫ
1/j
0 , j = 1, ..., J with

J =
an1/(2β+1)(log n)5β/(2β+1)

t log n
=
ak′n
k′1t

,

so that ǫn,J = n−t. Let P =
∑k

i=1 pigα,ǫi and Nn,j(P ) be the number of
points in the support of P belonging to (ǫn,j , ǫn,j+1).

The number of intervals following relation (4.12) needed to cover (ǫn,j , ǫn,j+1)
is bounded by

Jn,j =
[log(ǫn,j+1) − log(ǫn,j)]n

D1

ǫn,j
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for some positived constant D1 independent of t. Then number of intervals
following relation (4.12) needed to cover (n−t, 1/2) is bounded by Jn,J+1 =
nt+1(log n)q for some positive contant q. For simplicity’s sake we consider
D1 = D2. We index the interval (n−t, 1/2) by J+1. Consider a configuration
σ in the form Nn,j(P ) = kj , for j = 1, ..., J + 1 where

∑

j kj = k ≤ k′n
and define Fn,a(σ) = {P ∈ Fn,a;Nn,j(P ) = kj , j = 1, ..., J + 1}. For each
configuration the number of balls needed to cover Fn,a(σ) is bounded by

Jn(σ) =
∏J+1

j=1 J
kj

n,j . Moreover the prior probability of Fn,a(σ) is bounded by

π(Fn,a(σ)) ≤ Γ(k + 1)
J+1
∏

j=1

p
kj

n,j

Γ(kj + 1)
, pn,j ≤ c[ǫT+1

n,j+1 − ǫT+1
n,j ], j ≤ J

for some positive consitant c > 0 and pn,J+1 ≤ 1. We therefore obtain when
T ≥ 1 and t > 2

∆n =
∑

σ

√

π(Fn,a(σ))
√

Jn(σ)

≤ Γ(k + 1)1/2
∑

σ

n(t+1)kJ+1/2

Γ(kJ+1 + 1)1/2

J
∏

j=1

(CnD1)kj/2
ǫ
(T+1)kj/2
n,j+1

ǫ
kj/2
n,j Γ(kj + 1)1/2

×[log(ǫn,j+1) − log(ǫn,j)]
kj/2

[

1 −
ǫT+1
n,j

ǫT+1
n,j+1

]kj/2

Since
J
∏

j=1

Γ(kj + 1)1/2 ≤ exp (k log(k + 1)) ≤ ek log(n)

if tT > 6 we have

∆n ≤ CknkD1Γ(k + 1)1/2
∑

σ

J
∏

j=1

exp
{

−akjk′
n log n[Tj−2]

2k′
1j(j+1)

}

Γ(kj + 1)1/2

≤ CknkD1Γ(k + 1)1/2
∑

σ

J
∏

j=1

exp
{

− tTkj log n
3

}

Γ(kj + 1)1/2

≤ Cknk(D1+t/2+1/2)Γ(k + 1)1/2 exp

{

− tTk log n

6

}

∑

σ

J
∏

j=1

1

Γ(kj + 1)

≤ Cknk(D1+t/2+1/2)Γ(k + 1)−1/2 exp

{

− tTk log n

6

}

ek log(J) ≤ ek(D1−Tt/6+t/2+1/2) log n

Hence by choosing τn = τ0n
β/(2β+1)(log n)5β/(4β+2) with τ0 large enough the

above term multiplied by e−nτ2
n goes to 0 with n, which achieves the proof.
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APPENDIX A: PROOF OF LEMMA 3.2

Throughout the proof C denotes a generic constant. Let

I0(x) = gα(x) − 1 =

∫ 1

0
gα,ǫ(x)dǫ− 1

The aim is to approximate I0 with an expansion of terms in the form
Qj(x)α

−j/2 where Qj is a polynomial function. The idea is to split the
integral into three part, I1, I2, I3 corresponding to ǫ < x−δx, ǫ > x+δx and
|x− ǫ| < δx where δx = δ0x(1 − x)

√

log(α)/α, for some well chosen δ0 > 0.
Note that this choice of δx comes from the approximation of the Beta density
with a Gaussian with mean x and variance x2(1−x)2/α. We first prove that
the first two parts are very small and the expansion is obtained from the
third term. By convexity of K(ǫ, x) as a function of ǫ, K(ǫ, x) ≥ K(x−δx, x)
for all ǫ < x− δx and K(ǫ, x) ≥ K(x+ δx, x) for all ǫ > x+ δx . Moreover

K(x− δx, x) = x

(

1 − δ0(1 − x)
√

log(α)√
α

)

log

(

1 − δ0(1 − x)
√

log(α)√
α

)

+(1 − x)

(

1 + x
δ0
√

log(α)√
α

)

log

(

1 + x
δ0
√

log(α)√
α

)

=
δ20 log(α)x(1 − x)

2α
+ 0

(

x(1 − x)

(

log(α)

α

)3/2
)

uniformly in x. Using a similar argument on K(x+ δx, x) we finally obtain
when α is large enough

K(x− δx, x) ≥
δ2x

3x(1 − x)
, K(x+ δx, x) ≥

δ2x
3x(1 − x)

.(A.1)

Set

I1(x) =

∫ x−δx

0
gα,ǫ(x)dǫ.

First we consider x ≤ 1/2, then using (3.4) and the fact that if α is large
enough, the term in the square brackets in (3.4) with k = 1 is bounded by
2, uniformly in ǫ, we obtain that

I1(x) ≤ 2
√
α√

2πx(1 − x)

∫ x−δx

0
e
− δ20x(1−x) log α

3ǫ(1−ǫ) dǫ.

Let ρ = (δ20x(1 − x) logα)/6 then

I1(x) ≤ 2
√
α√

2π
e−ρ/(x−δx) ≤ C

√
αe−δ2

0 log α/6.(A.2)
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Now we consider x > 1/2, for which we use another type of upper bound: we
split the interval (0, x− δx) into (0, x(1− δ)) and (x(1− δ), x− δx) for some
well chosen positive constant δ. For all ǫ < x(1−δ), K(ǫ, x) ≥ K(x(1−δ), x).
Since u log(u) goes to zero when u goes to zero, there exists δ1 > 0 such that
for all x > 1/2, and all δ1 < δ < 1,

K(x(1 − δ), x) = x(1 − δ) log(1 − δ) + (1 − x+ δx) log

(

1 +
δx

1 − x

)

≥ δ2x log

(

1 +
δx

1 − x

)

.

Therefore using (3.4) and the same bound on the square brackets term in
(3.4) as in the case x ≤ 1/2 we obtain that if x > 1/2,

∫ x(1−δ)

0
gα,ǫ(x)dǫ ≤

√
α√

2πx(1 − x)

∫ x(1−δ)

0

(

1 +
δ

2(1 − x)

)− αδ2

2ǫ(1−ǫ)

dǫ

≤ C
√
α

(1 − x)

(

1 +
δ

2(1 − x)

)−αδ2/2

≤ Cα−H , ∀H > 0(A.3)

We now study the integral over (x(1−δ), x−δx). We use the following lower
bound on K(ǫ, x): a Taylor expansion of K(ǫ, x) as a function of ǫ around x
leads to

K(ǫ, x) = ǫ log

(

ǫ

x

)

+ (1 − ǫ) log

(

1 − ǫ

1 − x

)

= (ǫ− x)2
∫ 1

0

(1 − u)

(x+ u(ǫ− x))(1 − x− u(ǫ− x))
du

≥ (ǫ− x)2

2

∫ 1/2

0

1

(1 − x+ u(x− ǫ))
du

=
(x− ǫ)

2
(log (1 − x/2 − ǫ/2) − log (1 − x)) .(A.4)

Let u = x − ǫ and note that the function u → u/(x − u)(1 − x + u) is
increasing so that then when α is large enough, uniformly in x,

gα,ǫ(x) ≤ 2
√
α√

2πx(1 − x)

(

1 − x+ u/2

1 − x

)− αu
2(x−u)(1−x+u)

≤ 2
√
α√

2πx(1 − x)

(

1 − x+ u/2

1 − x

)− αδ
2(1−δ)(1−x+δx)

imsart-aos ver. 2007/12/10 file: betannalsrev1.tex date: October 7, 2008



34 J. ROUSSEAU.

for all u ∈ (δx, δx). Thus if α large enough and x > 1/2

∫ x−δx

x(1−δ)
gα,ǫ(x)dǫ ≤ 2

√
α√

2πx(1 − x)

∫ δx

δx

(

1 +
u

2(1 − x)

)− αδ
2(1−δ)(1−x+δx)

≤ 8
√
α√

2π

1
αδ

2(1−δ)(1−x+δx) − 1

(

1 +
δx

2(1 − x)

)− αδ
2(1−δ)(1−x+δx)

≤ C√
α
e
− δδ0

√
α
√

log(α)

2(1−δ) = o(α−H),

for any H > 0. Finally, the above inequality, together with (A.3) for x > 1/2
and with (A.2) for x ≤ 1/2 imply that

I1(x) = 0(α−H),

for all H > 0 by choosing δ0 large enough. We now consider the integral
over (x+ δx, 1)

I2(x) =

∫ x(1+δ)

x+δx

gα,ǫ(x)dǫ+

∫ 1

x(1+δ)
gα,ǫ(x)dǫ

First let x ≤ 1/2 then when ǫ ∈ (x + δx, x(1 + δ)) with δ small enough we
can use (3.6) and

∫ x(1+δ)

x+δx

gα,ǫ(x)dǫ ≤ 2e−δ2
0 log α/2

When ǫ ∈ (x(1 + δ), 1), a Taylor expansion of K(ǫ, x) as a function of ǫ
around x leads to

K(ǫ, x) = (ǫ− x)2
∫ 1

0

(1 − u)

(x+ u(ǫ− x))(1 − x− u(ǫ− x))
du

≥ (ǫ− x)2

2

∫ 1/2

0

1

(x+ u(ǫ− x))
du

=
(ǫ− x)

2
(log ((x+ ǫ)/2) − log x) .(A.5)

Thus letting u = ǫ−x and noting that ǫ(1− ǫ) ≤ x+u and that u/(x+u) ≥
δ/(1 + δ) as soon as u > δx, we obtain

∫ 1

x(1+δ)
gα,ǫ(x)dǫ ≤ C

√
α

x

∫ 1−x

δx

(

2x

2x+ u

)αδ/(2(1+δ))

du

≤ 2Cα−1/2
(

1 +
δ

2

)−α δ
2(1+δ)

+1

.
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If x > 1/2 and ǫ > x + δx), by symmetry, we obtain the same result as in
the case x ≤ 1/2 and ǫ < x− δx changing x into 1 − x. Finally choosing δ0
large enough we prove that for all x ∈ [0, 1],

I1(x) + I2(x) = o(α−H)(A.6)

(H depending on δ0). We now study the latter term, I3(x). Using (3.6), and
the fact that

|R(x, ǫ)| ≤ Rαk2+1|x− ǫ|3(k2+1)(xǫ(1 − xǫ))
−3(k2+1)

≤ R′αk2+1|x− ǫ|3(k2+1)(x(1 − x))−3(k2+1)

≤ R′α−(k2+1)/2(logα)3(k2+1)/2

when ǫ ∈ (x− δx, x+ δx), we obtain, for all k2 ≥ 1, k1 ≥ 3(k2 − 1),

I3(x) =

∫ x+δx

x−δx

gα,ǫdǫ− 1

=

√
α√

2πx(1 − x)

∫ x+δx

x−δx

e
− α(x−ǫ)2

2x2(1−x)2



1 +
k2
∑

j=1

αj(x− ǫ)3j

j!(x(1 − x))3j

[

C(x) +Qk1+3

(

x− ǫ

x(1 − x)

)]j


 dǫ

−1 + 0(α−(k2+1)/2(logα)3(k2+1)/2)

=
k2
∑

j=1

µ3jC(x)j

αj/2
+

k2k1
∑

j=1

µjBj(x)

αj/2
+ 0(α−(k2+1)/2(logα)3(k2+1)/2)

=
I(x)

α
+ 0(α−(k2+1)/2(logα)3(k2+1)/2)

choosing δ0 large enough and since µ1 = 0, where the Bj ’s are polynomial
functions of x coming from Qk1 and C(x) and where the remaining term is
uniform in x. Lemma 3.2 is proved.

APPENDIX B: LEMMA B.1

Lemma B.1. Let (δn)n, (βn)n and (ρn)n be positive sequences decreasing
to 0 and assume that αn increases to infinity. Let 1 − δn > ǫ, ǫ′ > δn and
|ǫ − ǫ′| ≤ ρnǫ(1 − ǫ)/

√
αn then for all |x − ǫ| ≤ Mǫ(1 − ǫ)

√
logαn/

√
αn, if

ρn
√

logαn goes to 0 as n goes to infinity, for all k2, k3 > 1
∣

∣

∣

∣

∣

gαn,ǫ(x)

gαn,ǫ′(x)
− 1

∣

∣

∣

∣

∣

≤ C[ρn

√

logαn + α−k2/2
n (logαn)k2/2 + α−k3

n ],

for n large enough. Also, for all x ∈ (βn, 1 − βn), if α
1/2
n ρn| log(βn)|δ−1

n =
o(1), for n large enough,
∣

∣

∣

∣

∣

gαn,ǫ(x)

gαn,ǫ′(x)
− 1

∣

∣

∣

∣

∣

≤ C[α1/2
n ρn| log(βn)|δ−1

n + α−k2/2
n (logαn)−k2/2 + α−k3

n ].
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Proof. (Proof of Lemma B.1)
First let |x− ǫ| ≤Mǫ(1− ǫ)

√
logαn/

√
αn, since |ǫ− ǫ′| ≤ ρnǫ(1− ǫ)/

√
αn

we have that

|x− ǫ′| ≤ ǫ(1 − ǫ)α−1/2
n [M

√

logαn + ρn] ≤ 2Mǫ(1 − ǫ)α−1/2
n

√

logαn,

and

(x− ǫ′)l = (x− ǫ)l + (ǫ− ǫ′)
l
∑

i=1

Ci
l (ǫ− ǫ′)i−1(x− ǫ)l−i

= (x− ǫ)l + 0(α−l/2
n ρnǫ

l(1 − ǫ)l(logαn)(l−1)/2).

using approximation (3.5), we obtain for any k2, k3 > 0
∣

∣

∣

∣

∣

gαn,ǫ

gαn,ǫ′
(x) − 1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

exp

{

− αn(x− ǫ)2

2x2(1 − x)2

[

1+
(x− ǫ)

x(1 − x)

(

C(x)+Qk1

(

x− ǫ

x(1 − x)

))]

+R1(ǫ)

}

×

exp

{

+
αn(x− ǫ′)2

2x2(1 − x)2

[

1+
(x− ǫ′)
x(1 − x)

(

C(x)+Qk1

(

x− ǫ′

x(1 − x)

))]

+R1(ǫ
′)

}

×


1 +
k
∑

j=1

bj(ǫ)

αj
+O(α−(k+1))







1 +
k
∑

j=1

bj(ǫ)

αj
+O(α−(k+1))





−1

− 1

∣

∣

∣

∣

∣

∣

∣

.

Then noting that when n is large enough

∣

∣

∣

∣

1+
(x− ǫ)

x(1 − x)

(

C(x)+Qk1

(

x− ǫ

x(1 − x)

))∣

∣

∣

∣

≤ 2

and
αn|ǫ− ǫ′||x− ǫ| ≤ 2x2(1 − x)2ρnα

1/2
n (logαn)1/2

we obtain that

an =

∣

∣

∣

∣

∣

αn(x− ǫ)2

2x2(1 − x)2

[

1+
(x− ǫ)

x(1 − x)

(

C(x)+Qk1

(

x− ǫ

x(1 − x)

))]

− αn(x− ǫ′)2

2x2(1 − x)2

[

1+
(x− ǫ′)
x(1 − x)

(

C(x)+Qk1

(

x− ǫ′

x(1 − x)

))]

∣

∣

∣

∣

∣

≤ C
[

ρ2
n + (logαn)1/2ρn + (logαn)ρnα

−1/2
n

]

and finally
∣

∣

∣

∣

∣

gαn,ǫ

gαn,ǫ′
(x) − 1

∣

∣

∣

∣

∣

≤ Cρn

√

logαn + 0(α1−k2/2
n ǫk2(1 − ǫ)k2(logαn)k2/2 + α−k3

n ).
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Now let |x − ǫ| > Mǫ(1 − ǫ)
√

log(α)/
√
αn and x ∈ (βn, 1 − βn), we use

equation (3.4) together with the above calculations and the fact that the
function ǫ→ ǫ log(ǫ)/(1 − ǫ) is bounded on [0, 1],

gαn,ǫ

gαn,ǫ′
(x) = exp

{

−αn

[

1

1 − ǫ
log

(

ǫ

x

)

− 1

1 − ǫ′
log

(

ǫ′

x

)

+
1

ǫ
log

(

1 − ǫ

1 − x

)

− 1

ǫ′
log

(

1 − ǫ′

1 − x

)]}

(1 + 0(ρnα
−1
n + α−k3

n ))

= exp

{

−αn(ǫ− ǫ′)
[

ǫ̃

1 − ǫ̃
log(ǫ̃) − 1 − ǫ̃

ǫ̃
log(1 − ǫ̃)

− log(x)
ǫ̃

(1 − ǫ̃)
− log(1 − x)

(1 − ǫ̃)

ǫ̃

]}

(1 + 0(ρnα
−1
n + α−k3

n ))

where ǫ̃ ∈ (ǫ, ǫ′). Hence as soon as 1 − δn > ǫ, ǫ′ > δn and x ∈ (βn, 1 − βn)

∣

∣

∣

∣

log(1 − x)
(1 − ǫ̃)

ǫ̃

∣

∣

∣

∣

≤ | log(βn)|δ−1
n ,

∣

∣

∣

∣

log(x)
ǫ̃

(1 − ǫ̃)

∣

∣

∣

∣

≤ | log(βn)|δ−1
n

which implies that if α
1/2
n ρn| log(βn)|δ−1

n is small enough

∣

∣

∣

∣

∣

gαn,ǫ

gαn,ǫ′
(x) − 1

∣

∣

∣

∣

∣

≤ Cα1/2
n ρn| log(βn)|δ−1

n + 0(ρnα
−1
n + α−k3

n ),

which achieves the proof of Lemma B.1.

APPENDIX C: LEMMA C.1

The following Lemma allows us to control the ratio of constants of Beta
densities.

Lemma C.1. Let a, b > 0 and 0 < τ1 < a, 0 < τ2 < b, let C, ρ denote
generic positive constants. Let η̄ = a+ b and τ̄ = τ1 + τ2. We then have the
following results:

i. If a, b < 2,

log

(

Γ(a− τ1)Γ(b− τ2)

Γ(a+ τ1)Γ(b+ τ2)

)

+ log

(

Γ(η̄ + τ̄)

Γ(η̄ − τ̄)

)

≤ 2τ1
a− τ1

+
2τ2
b− τ2

− 2(τ̄)C.

ii. If a < 2, b > 2, then η̄ > 2 and

log

(

Γ(a− τ1)Γ(b− τ2)

Γ(a+ τ1)Γ(b+ τ2)

)

+ log

(

Γ(η̄ + τ̄)

Γ(η̄ − τ̄)

)

≤ 2τ1
a− τ1

+ τ̄ [log (η̄ + 1) − C].

imsart-aos ver. 2007/12/10 file: betannalsrev1.tex date: October 7, 2008



38 J. ROUSSEAU.

iii. If b < 2, a > 2, then things are symmetrical to the previous case.
iv. If a, b > 2, i = 1, 2, then

log

(

Γ(a− τ1)Γ(b− τ2)

Γ(a+ τ1)Γ(b+ τ2)

)

+ log

(

Γ(η̄ + τ̄)

Γ(η̄ − τ̄)

)

≤ 2τ̄ log (η̄ + 1).

Proof. of Lemma C.1. The proof of Lemma C.1 comes from Taylor ex-
panions of log(Γ(x)) and from the use of the relation:

ψ(x) = −1

x
+ ψ(x+ 1)

so that when x is small |ψ(x)| is bounded by 1/x plus a constant and if x is
large ψ(x) is bounded by log(x) plus a constant.
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