N
N

N

HAL

open science

Random sampling of long-memory stationary processe

Anne Philippe, Marie-Claude Viano

» To cite this version:

Anne Philippe, Marie-Claude Viano. Random sampling of long-memory stationary processe. 2008.

hal-00328168

HAL Id: hal-00328168
https://hal.science/hal-00328168v1

Preprint submitted on 9 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00328168v1
https://hal.archives-ouvertes.fr

Random sampling of long-memory stationary
processes

Anne Philippe! and Marie-Claude Viano?
' Université de N antes, Laboratoire de Mathématiques Jean Leray, UMR CNRS 6629
2 rue de la Houssinieére - BP 92208, 44322 Nantes Cedex 3, France
2 Laboratoire Paul Painlevé UMR CNRS 8524, UFR de Mathématiques — Bat M2
Université de Lille 1, Villeneuve d’Ascq, 59655 Cedex, France

Abstract

This paper investigates the second order properties of a stationary pro-
cess after random sampling. While a short memory process gives always
rise to a short memory one, we prove that long-memory can disappear
when the sampling law has heavy enough tails. We prove that under
rather general conditions the existence of the spectral density is preserved
by random sampling. We also investigate the effects of deterministic sam-
pling on seasonal long-memory.
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1 Introduction

The effects of random sampling on the second order characteristics and more
specially on the memory of a stationary second order discrete time process are
the subject of this paper.

We start from X = (X,,)n>0, a stationary discrete time second order process
with covariance sequence ox (h) and a random walk (7},),>0 independent of X.
The sampling intervals A; = T; — T;_; are independent identically distributed
integer random variables with common probability law S. We fix Ty = 0.

Throughout the paper we consider the sampled process Y defined by

Y, =X, n=01... (1.1)

The particular case where S = §, the Dirac measure at point k, shall be
mentioned as deterministic sampling (some authors prefer systematic or periodic
sampling).



Either because it corresponds to many practical situations, or because it is a
possible way to model data with missing values, there is an extensive literature
on the question of sampling random processes.

Around the sixties, an important amount of publications in signal processing
was devoted to the reconstruction of the spectral density of (X,,),>1 from a sam-
pled version (Xr,)n>1. In case of deterministic sampling, this reconstruction
is prevented by the aliasing phenomenon, (which is easily understandable from
formula ([.39) below). Several authors noticed that aliasing can be suppressed
by introducing some randomness in the sampling procedure. See, without ex-
haustivity, [E], and [@] where several random schemes are introduced. The
idea of sampling along a random walk was first proposed in @] where the au-
thors proved that under some convenient hypotheses, such a sampling scheme
is alias-free when the characteristic function of S, S(\) = D18 ()€, is
injective.

Later, in the domain of time series analysis, attention was particularly paid to
the effect of sampling on parametric families of processes. For example the effect
of deterministic sampling on ARMA or ARIMA processes is studied in [E], [E]
and [@] among others. The main result is that the ARMA structure is preserved,
the order of the autoregressive part being never increased after sampling. More
generally, the stability of the ARMA family by random sampling along a random
walk is proved in 13 and [L1§]. Precisely, if A(L)X,, = B(L)e, and A;(L)Y,, =
By (L)ny, are the minimal representations of X and of the sampled process Y, the
roots of the polynomial A;(z) belong to the set {35, S(j)r7.} where the ry’s
are the roots of A(z). As S(1) # 1 implies |3, S(j)rl| < |rx|, a consequence
is that the convergence to zero of oy (h) is strictly faster than that of ox (k). So,
random sampling an ARMA process along a random walk shortens its memory.
In [i§ it is even pointed out that some ARMA processes could give rise to a
white noise through a well chosen sampling law.

Only few papers deal with the question of the memory of the process ob-
tained by sampling a long-memory one. The reader can find in [ and [ a
detailed study of deterministic sampling and time aggregation of the FARIMA
(0,d,0) process with related statistic questions. These authors point out that
deterministic sampling does not affect the value of the memory parameter d of
the process. In the present paper we deal with random sampling of long memory
processes.

In all the sequel, a second order stationary process X is said to have long
memory if its covariance sequence is non-summable

> lox(h)] = oc. (1.2)

h>0

In section E we present some related topics such that LP-convergence of
oy (h) and absolute continuity of the spectrum. We show in particular that
short memory is always preserved as well as absolute continuity of the spectral
measure. The main results of the paper, concerning changes of memory by
sampling processes with regularly varying covariances, are gathered in Section .



We show that the intensity of memory of such processes is preserved if E(T7) =
> 75S(j) < oo, while this intensity decreases when E(T7) = co. For sufficiently
heavy tailed S, the sampled process has short memory, which is somehow not
surprising since with a heavy tailed sampling law, the sampling intervals can
be quite large. In section f| we consider processes presenting long-memory with
seasonal effects, and investigate the particular effects of deterministic sampling.
We show that in some cases the seasonal effects can totally disappear after
sampling.

2 Some features unchanged by random sampling

Taking p =1 in Propositionﬁl below confirms an intuitive claim: random sam-
pling cannot produce long-memory from short memory. Propositions E, E andE
state that, at least in all situations investigated in this paper, random sampling
preserves the existence of a spectral density.

2.1 Preservation of summability of the covariance

Proposition 1.
(i) Let p>1. If > |ox|P < oo, the same holds for oy,

(ii) In the particular case p € [1,2] both processes X and Y have spectral
densities linked by the relation

) = 5 io [ (50))” rx(0)an,

where S(0) = E(e?T) is the characteristic function of S.
Proof. The covariance sequence of the sampled process is given by
oy (0) = ox(0)
oy (h) =E(ox(Th)) = 3272, 0x(§)S*"(5) h=>1
where S*”| the h-times convoluted of S by itself, is the probability distribution
of Th.

As the sequence T}, is strictly increasing, ox (T},) is almost surely a subse-
quence of ox (h). Then, (]) follows from

S [E@x@m) [ <EY lox(Tr <3 lox ).
h h h

(2.3)

The proof of (f) is immediate, using (f)

1 i 1 i
Q) = 5D ¢ JAUY(J):%ZG PE(ox(T5))
JEZL JEL
1 4 . )
= 2 [ ePEE o),
™
jez-—w



where the series converges in L?([—7, 7]) when p # 1, the covariance being then
square-summable without being summable. O

2.2 Preservation of the existence of a spectral density

Concerning the existence of a spectral density some partial results are easily
obtained. Firstly, it is well known that the existence of a spectral density is pre-
served by deterministic sampling (see ([.35) below). Second, from Proposition
ﬂ above it follows that, for any sampling law, the spectral density of Y exists
when the covariance of X is square summable. It should also be noticed that,
when proving that the ARMA structure is preserved by random sampling, [E]
(see also ] for the multivariate case) gives an explicit form of the spectral
density of Y when X is an ARMA process.

The three propositions below show that preservation of the existence of a
spectral density by random sampling holds for all the models considered in the
present paper.

The proofs are based on the properties of Poisson kernel recalled in Appendix

Py(t) = = L= € [0,1] (2.4)

s = — _— S y . .
2 \ 1 — 2scost + s2

and the representation given in Lemmaﬂ of the covariance of sampled process.

Lemma 2. For all j > 0,

s

oy(j) = lim e%q(r,0)db (2.5)
r—1- J_ .
where
1 (" 1 1
rd) = — A — + — d\ (2.6
9(r,9) dr J_, fx() (1 —re”®S(A)  1-— re_“gS(—)\)> (26)
1 (7 1
= 7 fx(A) (; + Prp(T = 0) + P p(T + 9)) dA. (2.7)
Proof. The proof of the lemma is relegated in Appendix @ O

Proposition 3. If fx is bounded in a neighbourhood of zero, the sampled process
Y has a spectral density given by

17 1 1
fr¥) = ll—’ml 4z /—71' Fx) <1 — re~i0S(\) - 1- re—wS’(—)\)> A 28)

Proof. In the sequel we write

SO = p(N)e'™, (2.9)
often denoted pe’™ for the sake of shortness.
The proof of the proposition simply consists in exchanging the limit and

integration in (R.F).



Firstly, it is easily seen that, if 8 # 0, g(r,0) has a limit as » — 1~. Hence
the proof is complete provided that conditions of Lebesgue’s theorem hold.
As we can suppose that the sampling is not deterministic,

IS\ <1 VA€o, 7]
(see [B). Hence, thanks to the continuity of [S(\)],

sup |[S(\)| <1 Ve >0.
[X]>e

The integral @) is split in two parts: choosing e such that f is bounded on
I. = [—¢,¢] and using the fact that the integrand in (R.§) is positive (see (5.49)).

1 1
. fx(AN)Re <1 —re-93(\) + 1— re“’g(/\)> ?

1 1
< R ~ + = d\
- (szp fx) /IE ‘ (1 —re WS\ 1- re“’S(A))

which leads, thanks to Lemma [[3, to

1 1 "
8 fx(A\)Re <1 mp—yeY + Tewg(/\)> dx < 4#(81[1513 fx)g"(r,0)
= dm(sup fx). (2.10)
I
Now,

1 1
g fx(A)Re (1 ~re—3(N) + 1— reieg()\)> “

= 7| fx(\) (l + Prp(T —0) + Prp(m + 9)) d.
Ic 7T

Applying (543) with
s=rp\) <p(A), t=7(N)£0, and n=1— sup |SO)

[X]>e
yields,
1
| fx(N) <; +Prp(7'9)+Prp(T+9)> d\
I
2
< <1 + —) Fx(Ndx
n, Jie
2 ™
< <1 + —) Ix(N)dA. (2.11)
n;)J-=
Gathering (R.10) and (P-11)) leads to the result via Lebesgue’s theorem. O



In the next two propositions, the spectral density of X is allowed to be
unbounded at zero. Their proofs are in the Appendix.

We first suppose that the sampling law has a finite expectation. It shall
be proved in subsection Ell that in this case the intensity of memory of X is
preserved.

Proposition 4. If ET) < oo and if the spectral density of X has the form

Fx(N) = A"*(\) (2.12)

where ¢ is nonnegative, integrable and bounded in a neighbourhood of zero, and
where 0 < d < 1/2,
then the sampled process has a spectral density fy given by (@)

Proof. See Appendix E O

The case E(T1) = oo is treated in the next proposition, under the extra
assumption () meaning that S(j) is regularly varying at infinity. We shall
see in subsection @ (see Proposition ﬁ) how the parameter d is transformed
when the sampling law satisfies condition (R.1J). In particular we shall see that
if 1 < 7 < 3 — 4d the covariance of the sampled process is square summable,
implying the absolute continuity of the spectral measure of Y. The proposition
below shows that this property holds for every v €]1, 2|

Proposition 5. Assume that the spectral density of X has the form ) If
the distribution S satisfies the following condition

S(j) ~cj~7 when j — oo (2.13)

where 1 < v < 2 and with ¢ > 0, then the conclusion of Proposition 1s still
valid.

Proof. see Appendix @ O

3 Random sampling of processes with regularly
varying covariances

The propositions below are valid for the family of stationary processes whose
covariance ox (h) decays arithmetically, up to a slowly varying factor. In the
first paragraph we show that if 77 has a finite expectation, the rate of decay of
the covariance is unchanged by sampling. We then see that, when E(T}) = oo,
the memory of the sampled process is reduced according to the largest finite
moment of T7.



3.1 Preservation of the memory when E(77) < co
Proposition 6. Assume that the covariance of X is of the form
ox(h) =h~"L(h),

where 0 < a < 1 and where L is slowly varying at infinity and ultimately
monotone (see /E/) If E(Th) < oo, then, the covariance of the sampled process
satisfies

oy (h) ~h™*(E(T1))"“L(h)
as h — oo.

Proof. We prove that, as h — o

2= (%) Sl @) .14
and that, for h large enough,
%‘ <1 (3.15)

Since T}, is the sum of independent and identically distributed random vari-
ables T, = Z?:l A, with common distribution 773 € L', the law of large

numbers leads to
E a.s.

h —= E(Ty). (3.16)
Now L(T)
h) a.s.
7! (3.17)

indeed, Tj, > h because the intervals A; > 1 for all j and () implies that for
h large enough
Ty, < 2E(T1)h,

Therefore, using the fact that L is ultimately monotone, we have
L(h) < L(Ty) < L(2E(T1)h) (3.18)

if L is ultimately increasing (and the reversed inequalities if L is ultimately

decreasing). Finally ) directly leads to (@ since L is slowly varying
at infinity (see Theorem 1.2.1 in [[f]). Clearly, (8.14) and (B.17) imply the

convergence (B.14)).
In order to prove (), we write

B () (R) - (3)

Asa>0and Ty > h,

h

h

L(h)

AN
)<
()



Moreover, h=®/2L(h) is decreasing for h large enough (see []), so that

T, L) _
h=al2L(h) ~

These two last inequalities lead to (B.19)
Since oy (h) = E(0x(Th)) we conclude the proof by applying Lebesgue’s
theorem, and we get
oy (h)

m — (E(Tl))_a.

3.2 Decrease of memory when E(T}) = oo

If E(Ty) = oo it is known that Ty /h — oo, implying that the limit in (B.14))
is zero. In other words, in this case the convergence to zero of oy (h) could be
faster than h~™®. The aim of this section is to give a precise evaluation of this
rate of convergence.

Proposition 7. Assume that the covariance of X satisfies

lox (h)] < ch™@ (3.19)
where 0 < av < 1.
If
liminf 2° P(Ty > x) >0 (3.20)

for some B € (0,1) (implying E(T') = 0o ) then
loy (h)] < Ch=o/5, (3.21)
Proof. From hypothesis (B.19),
loy (h)] < E(|ox (Th)]) < cE(T), )
Then,

E(T, %) = Y PT<j)(i™—G+1)7°)
j=h

< a) P(T,<j)i " (3.22)

=0

From hypothesis (8.2(]) on the tail of the sampling law, it follows that, for large
enough h,

. . ~\h
< < < = <
P(Th<j) < P <1Igla<XhAz _]) P (T <))
_Ch
< (1-Cj ' <e (3.23)



Gathering (B.29) and (B.23) then gives

E(T) %) < aZj_O‘_le
j=h

_Ch
B

The last sum has the same asymptotic behaviour as
nt=#

oo
/ zfo‘fle*%das = hfo‘/ﬁ/ u”‘/ﬁflefcudu,
h 0

and the result follows since, as 8 < 1,
pi=p %)
/ uoB=1g=Cugy, h=roe, / 0/ B=1g=Cu gy,
0 0
O

Next proposition states that the bound in Propositionﬂ is sharp under some
additional hypotheses.

Proposition 8. Assume that
ox(h) =h™*L(h)

where 0 < a < 1 and where L is slowly varying at infinity and ultimately
monotone

If
B =:sup{y:E(T}) < oo} €]0,1] (3.24)
then, for every e > 0,
oy(h) > Cih™57¢, (3.25)
Proof. Let € > 0. We have
o B o Be
Jx(Th> Th_a Th 2 pe Ty, 2 Be
o = +—L(Ty) = ——=—T,> L(Th) = | — 1,2 L(T;
s = 5= (Th) =) (Th) 5o e L(Th)
where
a/f+¢

_o/B+e 1 (Lﬂf)
a+ % B\a+pe/2)
Using Proposition 1.3.6 in [{],

h—o00

Be
7,2 L(Th) —— +o0  a.s

Moreover § > % From (B.24), this implies E(Tll/ 5) < 00. Then, the law of
large numbers of Marcinkiewicz-Zygmund (see [P Theorem 3.2.3) yields

— ——0 as h— oo. (3.26)




3.3 The particular case of the FARIMA family

A FARIMA (p,d,q) process is defined from a white noise (g,,),, a parameter
d €]0,1/2[ and two polynomials A(z) = 2P + a;2P~! + ... + a, and B(z) =
294 b12971 + ... + b, non vanishing on the domain |z| > 1, by

X, = B(LYA™Y(L)(I — L)%, (3.27)
where L is the back-shift operator LU,, = U,_1. The FARIMA (0, d,0)
W, =1 - L)%,

introduced by Granger [[L]]] is specially popular.
It is well known (see [ff]) that the covariance of the FARIMA (p, d, q) process

satisfies
ox (k) ~ ck®1 ask — oo, (3.28)

allowing the above Propositions ﬂ, E and E to apply. The results can be sum-
marised as follows.

Proposition 9. Sampling a FARIMA process , with a sampling law S
such that, with some v > 1

SG)=P(T1=j)~cij™7 asj— oo, (3.29)

leads to a process (Yn)n whose auto covariance function satisfies the following
properties

(i) if v > 2,
oy (h) ~ Ch*1, (3.30)

(it) if v <2,
C1RZA=D/=D=¢ < 5y (h) < Cuh24=D/0=D e > 0, (3.31)

Consequently, the sampled process (Yy,)n has

e the same memory parameter if v > 2,
e a reduced long memory parameter if 2(1 — d) <~ < 2,
e short memory if 1 <~y < 2(1—d)

Proof.
For (ﬂ), T has a finite expectation. Hence Proposition E applies leading to

oy (h) ~ ch? 1,

For (i), the conditions of Propositions [] and [ in section B.3 are satisfied
with =7 —1 and a = 1 — 2d, leading to (B.31]) Since

1—2d
>1-2d, if 1<vy<2,
v—1

10



the intensity of memory is then reduced except to the case v = 2.

The loss of memory is such that if 1 < v < 2(1—d) it happens that {Y_—fld > 1,
implying the convergence of the series Y |oy (h)|. In this case random sampling
has created short-memory. O

We illustrate this last result by simulating and sampling FARIMA(0,d,0)
processes.

Simulations of the trajectories are based on the moving average representa-
tion of the FARIMA (see [[I]]).

The sampling distribution is

k+1
P(S = k) = / (v — 17 dt ~ Ok, (3.32)
k

which is simulated using the fact that when w is uniformly distributed on [0, 1],
the integer part of u'/(=7) is distributed according (B.39).

Unobserved process gamma= 2.8 gamma= 1.9

10
|
10
|
10
|

06
|
0

ACF
ACF
ACF

04
04

00
00

Figure 1: Auto covariance functions of X [left] and of two sub sampled processes
corresponding to v = 2.8 [middle] and v = 1.9 [right]. The number of observed
values of the sub sampled processes is equal to 5000

In Figure EI are depicted the empirical auto covariances of a trajectory of the
process X and of two sampled trajectories Y7 and Y5 . The memory parameter
of X is d = 0.35 and the parameters of the two sampling distributions are
respectively 71 = 2.8 and o = 1.9. According to Proposition E, the process Y,
has the same memory parameter as X, while the memory intensity is reduced
for the process Ys.

11



Then we estimate the memory parameters of the sampled processes by using
the FEXP procedure introduced by [E, E} The FEXP estimator is adapted
to processes having a spectral density. From Propositions E and E, this is the
case for our sampled processes. Figureﬁ shows the estimate and a confidence
interval. Two values, d = 0.1 (lower curves) and d = 0.35 (upper curves) of
the memory parameter of X are considered. In abscissa, the parameter ~ of the
sampling distribution is allowed to vary between 1.7 and 3.3. From Propositionﬁ
the value of the memory parameter is d if v > 2 and d—1+/2 otherwise. In the
case d = 0.1 short memory is obtained for v < 1.8. In the case d = 0.35, sample
distributions leading to short memory are too heavy tailed to allow tractable
simulations.

estimation of long memory parameter

Figure 2: Estimation of the long memory parameter for d = 0.1 and d = 0.35
as function of parameter y. The confidence regions are obtained using 500
independent replications. The circles represent the theoretical values of the
parameter obtained in Proposition E For each ~, the estimation of d is evaluated
on 5000 observations

4 Sampling generalised fractional processes

Consider now the family of generalised fractional processes whose spectral den-
sity has the form

M
fX()\) _ |(I)()\)|2‘ H(eM . eiej)*dj (ei/\ _ e*iej)*dj 2, (433)
j=1

12



with exponents d; in ]0,1/2[, and where |®())|? is the spectral density of an
ARMA process.

4.1 Decrease of memory by heavy-tailed sampling law

See [E], [@], [E] for results and references on this class of processes. Taking
M =1 and 6; = 0, it is clear that this family includes the FARIMA processes,
which belong to the framework of section E It is proved in that as h — oo
the covariance sequence is a sum of periodic sequences damped by a regularly
varying factor

ox(h) = h*~! (Z 1,5 cos(hb;) + ca,j sin(hb;) + 0(1)) (4.34)

where d = max{d;;j = 1,..., M} and where the sum extends over indexes
corresponding to d; = d. Hence, these models generally present seasonal long-
memory, and for them the regular form ox(h) = h2¢=1L(h) is lost. Precisely,
this regularity remains only when, in (4.33), d = max{d;;j = 1,..., M} corre-
sponds to the unique frequency # = 0. In all other cases, from (), it has to
be to be replaced by

ox(h) = O(h?*1).

From the previous comments it is clear that Propositions E and E are no
longer valid in the case of seasonal long-memory. That means that in this
situation, it is not sure that long memory is preserved by a sampling law having
a finite expectation. But it is true that long-memory can be lost. Indeed,
Proposition ﬂ applies with @ = 1 — 2d where d = max{d;;j = 1,..., M}, and
the following result holds:

Proposition 10. When sampling a process with spectral density along a
random walk such that the sampling law satisfies ), the obtained process has
short memory as soon as 1 < v < 2(1 —d) where d = max{d;;j =1,...,M}.

4.2 The effect of deterministic sampling

In a first step we just suppose that X has a spectral density fx, which is
unbounded in one or several frequencies (we call them singular frequencies). It
is clearly the case of the generalised fractional processes. The examples shall be
taken in this family. We investigate the effect of deterministic sampling on the
number and the values of the singularities. Let us suppose that S = Ji, the law
concentrated at k. It is well known that if X has a spectral density, the spectral
density of the sampled process Y = (Xyp )p is

l .
B 1 A — 27y —_—
fr) = —%Hj_zlfx ( T > ifk=20+1 (4.35)

20\ 20 20
j=—Ll+1

6—1 .
fr(N) . Z fx <A2m>+fx (Lﬁsgno\)) ifk=2¢

13



Proposition 11. Let the spectral density of (X,)n have Nx > 1 singular fre-
quencies. Then, denoting by Ny the number of singular frequencies of the spec-
tral density of the sampled process (Y, = Xkn)n

e 1 <Ny < Nyx.

e Ny < Nx if and only if fx has at least two singular frequencies \g # A1
such that, for some integer number j*,

2y

Mo =A==

Proof. We choose k = 2¢+1 to simplify. The proofs for k = 2¢ are quite similar.
Now remark that for fixed 7,

A —2mj —m—27) m—2mj
el;:= , , f A€ |—m,m|.
2041 20+ 1 ' 2041 o (=l
The intervals I; are non overlapping and Uﬁz_elj = [—m,w[. Now suppose that

fx is unbounded at some Ag. Then fy is unbounded at the unique frequency
A* satisfying A\g = /\*22_2;;;'0 for a suitable value jy of j. In other words, to every
singular frequency of fx corresponds a unique singular frequency of fy. As a
consequence, the number of singular frequencies of fy is at least 1, and cannot
exceed the number of singularities of fx.

It is clearly possible to reduce the number of singularities by deterministic
sampling. Indeed, two distinct singular frequencies of fx, Ag and A\; produce

the same singular frequency A* of fy if and only if

A*727Tj0 )\*727'(].1
—— = d ———=2A\
20+ 1 Y| b
which happens if and only if Ag — A1 is a multiple of the basic frequency %.

Proposition is illustrated by the three following examples showing the
various effects of the aliasing phenomenon when sampling generalised fractional
processes.

We take k = 3, so that the spectral density of Y is

=4 (552) o (3) (252

Example 1. Firstly consider fx(\) = |e** — 1|74, the spectral density of the
FARIMA (0,d,0) process. Then

1 S A—27 . . ™
fy()\) = 5 (|e“ = 1|—2d+ |ez§ o 1|—2d + |e”+32 B 1|_2d)

has, on [—, 7[, only one singularity at A = 0, associated with the same memory
parameter d as for fx(A). The memory of Y has the same characteristics as
the memory of X. This was already noticed in [ff and [[[].

14



Ezample 2. Consider now fx(\) = | — ¢8| ~2d|¢i* — ¢=57 | =24 the spectral
density of a long-memory seasonal process (see [@]) The sampled spectral

density is

1
fy()\) _ % Z |ei>\7327r B 62? 72d|ei>\—327r B eii” |72d’
j=—1

and is everywhere continuous on [—, 7], except at A = 0 where

Fr(A) ~ e[ A7
In other words the memory is preserved, but the seasonal effect disappears after
sampling.

Ezample 3. Consider now a case of two seasonalities (£7/4 and +37/4) asso-
ciated with two different memory parameters d; and ds:

fX(A) _ |ei)\ B e%"|72d1|ei/\ B e%”|72d1|eiA - 63};‘ 72d2|ei)\ o efii" —2dz

It is easily checked that fy has the same singular frequencies as fx, with an
exchange of the memory parameters:

—2d
fr(A) ~ c‘)\ig‘ ’ near F 7/4

3 |—2d1

FrQ) o~ et

near F 3w/4.

5 Appendix

5.1 Proof of Lemma

Let us consider the two z-transforms of the bounded sequence oy (j):

67(:) = Do) Il <1

Jj=0

and

6y(2) = Zz‘jay(j) |z| > 1.
§=0

On the first hand, from the representation

v () =Elox @) = [ Fx80)d,
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we have

; A J‘ O] ;
Zz /ﬂ S d/\f/ lizg(A)dA, 2| < 1(5.36)

—T

izﬂ' " FN) (SN dx = /ﬂ LAA)CD\, |z| > 1(5.37)
j=0 —T -7 1

_ 5

On the second hand, let C.. be the circle |z|=r. fO<r <1, forall j >0

5 CT&;(z)z_J_ldz = 5 (re®) =96y (re??)do

= rligy 1)

— 27/_: =004 = gy (5), (5.38)

and, similarly, if r > 1

1 . 1 [ .
Sim . 6y (2)2 e = o 77T(7’610)J &y (re'?)do
i lay (1)

= 2 T/,,, U004 = oy (5), (5.39)

Gathering (5.36) with (5.39) and (5.379) with (F.39)) leads to

T —ij —j (7 A .
B e (7 [T Ay o, it <1

e e <rﬂ' S L 1), d/\) a9, ifr>1

27 e—1035(\)
r

oy (j) = (5.40)

Changing the integrand in (p.4()) into its conjugate when r < 1, and r for
1/r when r > 1 leads to gives

y=r J/ eg(r,0)ds,,  Yrel0,1] (5.41)
where g(r, 0) is defined in (R.6). As the first member does not depend on r, (2.5)

is proved.
Let us now prove (R.7). Firstly,

Im 1, — + 1 —
1—re @S(\) 1—re9S(=\)

1 1 s 1 - 1 1
2\1—re=W3(\)  1—re®5(=X\) 1—re®S(=N) 1—re?S(\)

16



is an odd function of A\. Hence, the imaginary part of the integrand in (@)
disappears after integration.
Secondly,

Re 1_ — + 1 -
1—re=®WS(\) 1—re ?WS(=\)
B 1( 1—r28(\))2 . 1—r28(\))2

2

= - 2 +2]. (5.42
1 —re®@SN\)2 |1 —re @S(=N)|? ) (542)

and the proof is over.

5.2 A few technical results

Hereafter we recall some properties used in the paper.

Lemma 12. The Poisson kernel (@) satisfies

1—s2 1+s 2
< = < - — ) . .
2 Ps(t) < A= 1-s°7 Vs<1—mn, withs<1 (5.43)
0<d<t| < g — P,(t) < P.(5). (5.44)
21 sup Ps(t) = Vi €]l —n/2,7/2]. (5.45)

0<s<1 | sint|

Proof. The bound (p.43) is direct. Inequality (f.44) comes from the monotonic-
ity of the kernel with respect to s.

Let us prove (p.49):

0 s2cost — 2s + cost
2 (P,t) = :
85( ®)) (14 s2 —2scost)?

It is easily checked that the numerator has one single root sg = % in [0, 1],

and Py, (t) = |sint|~L. O
The following result comes from spectral considerations.

Lemma 13. With p = p(\) and 7 = 7(\) defined in (2.9), for all v € [0,1] and
0 €|l —m,n,

g (r,0) := %/W <% + Pop(T = 0) + Pop(m + 9)> dr=1 (5.46)

—T
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Proof. Notice first that if fx = 1, the process X is a white noise with Var(X;) =
2m. Hence, the sampled process is also a white noise with variance 27. Applying
(B-§) to a white noise, we get

2moo(j) = T_j/ e g* (r, 0)dh. (5.47)
for all r € [0,1]. Since r780(j) = d0(j), we can rewrite (p.47) as
27d0(4) :/ €9 g* (1, 0)d6.

This means that g*(r, ) is the Fourier transform of (2mdy(j));. Consequently
g*(r,0) = 1. O

5.3 Proof of Proposition {4

As for Proposition ], the proof consists in finding an integrable function g(f)
such that
lg(r,0)] < g(0) Vre€]0,1[,0 €] — 7, [ (5.48)

For that purpose, we need the following estimation of S (\) near zero.
. 1 — eidA _ o sin(iA/2
e ;Sml—el = | 3 s V)
J

— et = sin \/2
[1—e™DiS3)

11— S

<
= [2isin(\/2)e"/?| _sto') = 2|sin(\/2)] ZjS(j) <Al sto')
— . ) )  (5.49)

Now we use the fact that
lul <upg<l=|1—-ul>1—up and sin(arg(l —u)) < uo.

Since ug < 7/2, this implies arg(l — u) < wug/2.
From this and inequality (f.49) we obtain

1 wC|A|
< == <
A€ &= ey < 75

For a fixed 6 > 0 let Ag be such that ¢ is bounded on [—Ag, Ag]. Denoting
1 0
b(0) = min{ Ao, =, ——
©) mm{ O’C”WC’}’

we separate [—m, 71| into four intervals:

[_ﬂ-a —b(@)[, [_b(e)’ 0[’ ]0’ b(@)], ]b(@), ﬂ-]'

(5.50)
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In the sequel we only deal with the two last intervals, and concerning the inte-
grand in (2.7) we only treat the part P, (T — 0):

b(9)
BO+D0) = [ P00 0+

+ SV Prpny (T(A) — 0)dA.
b(0)

e Bounding I;:
From (p.50)), since b(0) < 8/(wC), we have |7(A\)| < 6/2 which implies

NGNS

<|[r(A) —0l.
Via (5.44) and (F.4), this leads to

Brp(m = 0) < Pp(0/2) <

1
20°
Consequently

Il (b(e))72d+1

20 260
S Cl 972d

SUPo (9)) (#(N)) / O gy _ SWPpb@) (9N)
0

since b(f) < 0/(xC) and —2d + 1 > 0.

e Bounding I5:
When A > b(f), we have A=2¢ < Comax{#~2? 1} for some constant Cs.
Hence

I, < Cymax{#~2% 1} ' d(N)Pyp(0 — T)dA. (5.51)

Since ¢ is bounded in a neighbourhood of zero, the arguments used to prove

Propositionﬂ show that the integral in () is bounded by a constant.
Finally I; 4 I» is bounded by an integrable function g(6) and the proposition

is proved.

5.4 Proof of Proposition

The following lemma gives the local behaviour of $()) under assumption (2.13).

Lemma 14. Since S(j) ~c¢j™" with1 <~y <2 and ¢ > 0,
A7 (1 = S(\) — Z, if A — 0. (5.52)

where Re(Z) > 0 and Im(Z) < 0.
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Proof. From the assumption on S(j),

ZS )(1 —cos(§A)  ~aso CZ] (1 —cos(jA))

j>1 j>1

and

ZS )sin(jA)  ~x_o ch*'Vsin(j)\).

i>1 j>1

Then, using well known results of Zygmund ([2J); pages 186 and 189)

=g\

S5 = cos(N) ~aco

7j>1

and

S 5 sin(A) ~ano D(1- )cos( )|A|7 L eyt

Jj=1

It is clear that ¢; > 0, and ¢o < 0 follows from the fact that T'(z) < 0 for
x €] —1,0[ and cos (7my/2) < 0. O

In the sequel we take A > 0. From this lemma, if A is small enough (say
0 S A S AO%

esATTE< T\ <At (5.53)
and
L—elA7™H < p(A) <1—\ ! (5.54)

where the constants are positive.
For a fixed 6 > 0, we deduce from (5.59)

p\ /(1)
A <min< Ag, (—,) implies 0 <6 -4\ <0—7(\) (5.55)

C3
After choosing A\; < Ag such that ¢ is bounded on [0, A1] define

g\ Y/O-1
¢(f) = min § Aq, <c_') .
3

Then we split [—, 7] into six intervals

[=m =il [=A1, —e(0)/2[; [=e(0)/2, 0, 10,¢(0)/2], 1e(0)/2, M, A1, .
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We only consider the integral on the three last domains and the part P, (7 —
0) of the integrand in (2.7).

e When A €]0, ¢(6)/2], inequality (5.59) and properties (.44) and (5.4) of
the Poisson kernel lead to

C
/ —1
PT (G—T)SPTP(G—CB)\’Y )SW,
whence
c(6)/2 , c(0)/2 \—2d
%(%)1/(7*1) \-2d
< C ———d\
- 1/0 0 —char-1
—3hT —2d41
_ o /2 i,
0 1 — U
Since % — 1 > —1, the last integral is finite, implying
Il S Céeifitl—l,

which is an integrable function of 6.
e Thanks to (5.43) and to the rhs. of (5:54), we have on the interval

Je(0)/2. 0] ,
P.,0—-71)< )\S’El.

Since ¢ is bounded on this domain,

A1
I, < Cb sup 6N / AT 2L )

0<A<A; 9)/2
Cé SUPg<a<a, ‘b(/\) —2d+2—~ 2d
= — —_— 2 - +2_’Y
T CY (e(0)/2)4+>77)
C3supger<n, @A) [\ _odra-
< <A1 +2—v 9 —2d+2—7
< ST (AT (027 )

p \VO-D)\ TR
—2d+2— .
= Ci Ay T4 (mm {)\1, (E) })

where the function between brackets is integrable because
—2d+2—v —2d+1

-1>-1
v—1 v—1

QZA%WRM—MMS¥Mﬂﬁmﬂw—MM
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which has already been treated since ¢ is bounded near zero.

Gathering the above results on I, Is and I3 completes the proof.
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