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Abstract
Background: The animal sialyltransferases, which catalyze the transfer of sialic acid to the glycan moiety of
glycoconjugates, are subdivided into four families: ST3Gal, ST6Gal, ST6GalNAc and ST8Sia, based on acceptor
sugar specificity and glycosidic linkage formed. Despite low overall sequence identity between each
sialyltransferase family, all sialyltransferases share four conserved peptide motifs (L, S, III and VS) that serve as
hallmarks for the identification of the sialyltransferases. Currently, twenty subfamilies have been described in
mammals and birds. Examples of the four sialyltransferase families have also been found in invertebrates. Focusing
on the ST8Sia family, we investigated the origin of the three groups of α2,8-sialyltransferases demonstrated in
vertebrates to carry out poly-, oligo- and mono-α2,8-sialylation.

Results: We identified in the genome of invertebrate deuterostomes, orthologs to the common ancestor for
each of the three vertebrate ST8Sia groups and a set of novel genes named ST8Sia EX, not found in vertebrates.
All these ST8Sia sequences share a new conserved family-motif, named "C-term" that is involved in protein
folding, via an intramolecular disulfide bridge. Interestingly, sequences from Branchiostoma floridae orthologous to
the common ancestor of polysialyltransferases possess a polysialyltransferase domain (PSTD) and those
orthologous to the common ancestor of oligosialyltransferases possess a new ST8Sia III-specific motif similar to
the PSTD. In osteichthyans, we have identified two new subfamilies. In addition, we describe the expression
profile of ST8Sia genes in Danio rerio.

Conclusion: Polysialylation appeared early in the deuterostome lineage. The recent release of several
deuterostome genome databases and paralogons combined with synteny analysis allowed us to obtain insight into
events at the gene level that led to the diversification of the ST8Sia genes, with their corresponding enzymatic
activities, in both invertebrates and vertebrates. The initial expansion and subsequent divergence of the ST8Sia
genes resulted as a consequence of a series of ancient duplications and translocations in the invertebrate genome
long before the emergence of vertebrates. A second subset of ST8sia genes in the vertebrate genome arose from
whole genome duplication (WGD) R1 and R2. Subsequent selective ST8Sia gene loss is responsible for the
characteristic ST8Sia gene expression pattern observed today in individual species.
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Background
Sialic acids (Neu5Ac, Neu5Gc, KDN) are negatively
charged monosaccharides usually found at the non-reduc-
ing end of carbohydrate groups of animal glycoconju-
gates. Sialic acids occur widely in the deuterostome
lineage (vertebrates, cephalochordates, ascidians, echino-
derms) and they occasionally are encountered in proto-
stomes (mollusks and arthropods) [1]. In vertebrates,
sialic acids are either α2,3- or α2,6-linked to β-D-galacto-
pyrannose (Gal), α2,6-linked to β-D-N-acetylglu-
cosamine (GlcNAc) or β-D-N-acetylgalactosamine
(GalNAc) or, α2,8-linked to another sialic acid forming
mono-, oligo- or poly-α2,8-sialylated (PSA) chains
(according to the degree of polymerization on glycocon-
jugates). The α2,8-linked polyNeu5Ac chain was first
described in the polysialoglycoproteins (PSGPs) found in
the cortical alveoli of unfertilized eggs of rainbow trout
[2]. In mammals, PSA chains are primarily linked to the
N-glycans of the neuronal cell adhesion molecule (N-
CAM) and control the early developmental stages of the
vertebrate embryo and neurogenesis (for a review see [3]).
More recently, Guérardel et al. [4] described a unique
oligo- and poly-sialylation pattern on glycoconjugates of
zebrafish embryos suggesting that fine tuning of the PSA
chain length is crucial for fertilization and development.
In addition, several structural studies of glycoconjugates
in a subset of sea urchin species demonstrated the pres-
ence of α2,8-polysialic acid chains. These observations
raised the question of how far back in evolution can the
α2,8-sialyltransferases be traced?

Despite low overall sequence identity, all the animal sia-
lyltransferases catalyzing the biosynthesis of sialoglyco-
conjugates belong to CAZy glycosyltransferase-family 29
[5,6] and share four conserved peptide motifs called sia-
lylmotifs L (large), S (small), III and VS (very small) [7-9].
These motifs are important for maintenance of the 3-D
structure, substrate binding and catalysis [7,10-12]. More-
over, recent studies have identified linkage-specific
sequence motifs (family motifs) in each of the four
known sialyltransferase families (ST3Gal, ST6Gal,
ST6GalNAc and ST8Sia), that are probably involved in
determining linkage specificity and acceptor monosaccha-
ride recognition [13]. Previously, we reported specific
conserved amino acid positions that defined each of the
twenty known vertebrate sialyltransferase subfamilies
[14]. The enzymes of the ST8Sia family, which mediate
the transfer of Neu5Ac to other Neu5Ac moieties found in
glycoproteins and glycolipids are well described in some
deuterostome lineages [15,16]. Partial redundancy of
enzymatic activities among animal sialyltransferases sug-
gests evolutionary flexibility allowing development of
new animal lineages with new sialylated glycoconjugates
with potentially new functions [17].

Since both uncharacterized sialyltransferases and new
sialoglycoconjugates have been described in recent years,
one of the major challenges facing glycobiologists is to
determine the donor and acceptor specificities of each
enzyme. Our phylogenetic analysis of the ST8Sia family
suggests the existence of a set of divergent genes found
only in the invertebrate deuterostomes Strongylocentrotus
purpuratus and Branchiostoma floridae that we have named
ST8Sia EX. We show that the majority of these ST8Sia EX
genes arose as a result of tandem duplications, from an
ancestral ST8Sia EX gene in the amphioxus lineage that
was apparently lost in vertebrates. Among the remaining
three groups of vertebrate ST8Sia genes, some subfamilies
have emerged as a result of the whole genome duplica-
tions (WGD R1 and WGD R2) [18-25] and some sub-
families might have disappeared after massive gene loss
[26,27]. Analysis of orthologous and paralogous relation-
ships of these genes suggests that polysialylation initially
appeared in the deuterostome lineage.

Results
Identification of ST8Sia sequences
In order to identify putative genes encoding proteins with
significant similarity to ST8Sia, we carried out BLAST
search using the known vertebrate ST8Sia sequences. The
search was based on the fact that the highly conserved sia-
lylmotif peptide consensus sequences (L, S, III and VS)
[14] are characteristic of all animal sialyltransferases and
consequently serve as hallmarks for their identification.
Thirty-five vertebrate ST8Sia sequences and twenty-seven
invertebrate ST8Sia sequences from Strongylocentrotus pur-
puratus and Branchiostoma floridae were identified for the
first time and are reported in additional file 1. However,
due to very low sequence identity within the N-terminal
region, the single transmembrane domain present in the
vertebrate ST8Sia protein could not be identified in many
of the invertebrate sequences. Nevertheless, we could
delineate a new ST8Sia specific family-motif that we
named "C-term" (Fig. 1). The cysteine residue of this
motif forms a conserved intramolecular disulfide bridge
with a second conserved cysteine residue located in sialyl-
motif L. This S-S bond is essential for correct folding and
enzymatic activity of ST8Sia [28]. We assessed the orthol-
ogy of vertebrate and invertebrate sequences by alignment
with ClustalW, G-BLOCKS selection of informative posi-
tions and constructed maximum likelihood phylogenetic
trees. We found that bony fishes such as zebrafish Danio
rerio, medaka Oryzias latipes, 3-spined stickleback Gasteros-
teus aculeatus, tetraodonte Tetraodon nigroviridis and fugu
Takifugu rubripes have orthologs of the other mammalian
ST8Sia subfamilies (additional file 2). Moreover, two new
subfamilies are present in a subset of bony fishes and are
named ST8Sia III-related (ST8Sia III-r) because of their
clear sequence relationship to the ST8Sia III subfamily
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A. Multiple sequence alignments of the vertebrate and invertebrate ST8Sia reveal a new family motif named C-termFigure 1
A. Multiple sequence alignments of the vertebrate and invertebrate ST8Sia reveal a new family motif named 
C-term. Black letters with a yellow background represent conserved positions at the 90% level for all the ST8Sia sequences 
whereas the orange background represents conserved positions at > 50%. B. Sequence logo of the ST8Sia family motifs. 
Relative positions in the ST8Sia sequences of the ST8Sia family-motif (a) described by Patel and Balaji [13] and the new C-term 
motif (b) found in all the ST8Sia sequences. In the logos, amino acids are colored according to their chemical properties: polar 
amino acids (G, C, S, T, Y) are green, basic (K, R, H) are blue, acidic (D, E) are red, hydrophobic (A, V, L, I, P, W, F, M) are 
black and neutral polar amino acids (N, Q) are pink. The overall height of the stack indicates the sequence conservation at a 
given position, while the height of symbols within the stack indicates the relative frequency of each amino at that position 
[69,70].

A.

Species  Acc Number Sialyltransferase Conserved C-term motif 
Hsa     D26360    ST8Sia I              GALRMQLERC 
Hsa     U33551    ST8Sia II             GALKLTVGQC 
Hsa     AF004668  ST8Sia III            GLTKLTLSHC 
Hsa     L41680    ST8Sia IV             GALKLTTGKC 
Hsa     U91641    ST8Sia V              GILRVHTGTC 
Hsa     AJ621583  ST8Sia VI             GILKLQFSKC 
Spu-1   EF126286  ST8Sia I/V/VI/VII     GILRIHTGKC 
Spu-2   EF126287  ST8Sia I/V/VI/VII     GTVNLHTGTC 
Spu-4   EF126289  ST8Sia I/V/VI/VII     GLLRMHLDQC 
Spu-5   EF126290  ST8Sia I/V/VI/VII     GVLKMHVGKC 
Spu-6   EF126291  ST8Sia I/V/VI/VII     GILRLHTNSC 
Spu-8   EF126293  ST8Sia I/V/VI/VII     GVLRMHLGNC 
Spu-9   EF134719  ST8Sia I/V/VI/VII     GIVNLNIGSC 
Spu-10  EF134720  ST8Sia I/V/VI/VII     GILNLNIGSC 
Bfl-4   EF156412  ST8Sia I/V/VI/VII     GVLKLQAVPC
Bfl-8   EF152419  ST8Sia I/V/VI/VII     GVIKMQLGKC 
Bfl-9   EF152420  ST8Sia I/V/VI/VII     GVLHITTNKC 
Bfl-11  EF158036  ST8Sia I/V/VI/VII     GVLRLHVEDC
Spu-11  EF134721  ST8Sia EX              GALRLVTERC
Bfl-0   AF391289  ST8Sia EX              GVLKLHIREC
Bfl-1   EF134722  ST8Sia EX              GVVKLQVDKC
Bfl-2   EF134723  ST8Sia EX              GVLKMQVGPC
Bfl-5   EF140744  ST8Sia EX              GIIRHVIGKC
Bfl-7   EF141188  ST8Sia EX              GVLKMQVGPC
Bfl-12  AM901542  ST8Sia III/III-r      GVLKLTVTPC 
Bfl-17  AM901543  ST8Sia III/III-r      GVLKLTTKKC 
Spu-7   EF126292  ST8Sia III/III-r      GIVKLHLGKC 
Bfl-6   EF140745  ST8Sia II/IV          GALRLQTDKC 
Bfl-14  AM901544  ST8Sia II/IV          GALRLQTDKC 
Bfl-15  AM901545  ST8Sia II/IV          GALRLQTDKC 
Bfl-16  AM901546  ST8Sia II/IV          GALRLLTDKC 
Bfl-20  AM901547  ST8Sia II/IV          GALRLQTDKC 

B. 
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and ST8Sia VII, respectively. Two ST8Sia VII genes are
found in a head to tail arrangement on the same chromo-
some in the zebrafish genome suggesting tandem duplica-
tion of these genes. Consequently, we named these genes
ST8Sia VIIA and ST8Sia VIIB.

Because the greatest number of ST8Sia genes was found in
zebrafish, we analyzed the expression patterns of the
ST8Sia genes in some tissues of this species by RT-PCR
(Fig. 2). All the ST8Sia genes were differentially tran-
scribed in various D. rerio adult tissues and in the 36 h
embryo. However, we did not detect a ST8Sia VIIB tran-
script, which is in agreement with the fact that ESTs corre-
sponding to this gene were not found in the databanks.

Phylogenetic analysis
Because of the high degree of similarity within each sub-
family of the mammalian ST8Sia sequences, we used only
the Bos taurus and Homo sapiens amino acid sequences for
our initial phylogenetic analysis. Moreover, in order to
conserve the greatest number of amino acid positions
selected by G-BLOCKS [29] some B. floridae and all the S.
purpuratus sequences were discarded due to their high
sequence divergence. The maximum likelihood tree com-
prises four main branches supported by bootstrap values
greater than 50% (Fig. 3).

The first branch, at the origin of the tree, grouped a series
of sequences from the cephalochordate B. floridae (Bfl-0,
Bfl-1, Bfl-2, Bfl-5) indicating that they might share a com-
mon ancestor. A second analysis including all the availa-
ble ST8Sia sequences was performed with 173 G-BLOCKS
selected positions. The resulting phylogenetic tree gave
the same topology (additional file 3). Each of the main
branches, except the group ST8Sia II/ST8Sia IV, possesses
at least one ortholog in S. purpuratus.

To determine the most probable root of the ST8Sia family,
we rooted the tree with the human sialyltransferase
sequences belonging to the ST6GalNAc, ST6Gal and
ST3Gal gene families (additional file 4). By multiple
alignments, G-BLOCKS selection of informative posi-
tions, and maximum likelihood tree construction, the
topology always confirmed the basal position of the
ST8Sia EX group within the ST8Sia family. Consequently,
it would appear that this ST8Sia EX group has evolved by
multiple duplication events in the cephalochordate B.
floridae and the echinoderm S. purpuratus, but has disap-
peared in vertebrates (Fig. 3 and additional file 3).

The second branch contained all the α2,8-sialyltrans-
ferases, also termed polysialyltransferases, which include
the ST8Sia II and ST8Sia IV subfamilies and an additional
branch containing the invertebrate sequences from B. flor-
idae (Bfl-16 and Bfl-20). These B. floridae sequences may
represent orthologs to the common ancestor of the two
ST8Sia II and ST8Sia IV vertebrate subfamilies. From a
comparison of the respective amino acid sequences, the
invertebrate gene products could not be assigned to either
the ST8Sia II or ST8Sia IV subfamilies because they were
approximately equally divergent (41 and 59% conserved
amino acid positions relative to ST8Sia II and ST8Sia IV
subfamilies, respectively; Fig. 4). Interestingly, ST8Sia IV is
not found in neognathi genomes, raising the possibility of
a gene loss particular to these fish species [30] (additional
file 2).

The third branch (Fig. 3) contained the vertebrate ST8Sia
III and ST8Sia III-r subfamilies, as well as a group of inver-
tebrate sequences from B. floridae (Bfl-12 and Bfl-17).
These invertebrate sequences appear to be orthologues to
the common ancestor of the subfamilies ST8Sia III and
ST8Sia III-r that has disappeared in tetrapods. Within fish
genomes, ST8Sia III-r is found only in the neognathi (T.
nigroviridis, T. rubripes, G. aculeatus, O. latipes), but not in
cyprinidae (D. rerio), nor in salmonidae (O. mykiss). It is
interesting to note that the species devoid of the ST8Sia IV
gene have the ST8Sia III-r gene (additional file 2).

The fourth branch grouped all the vertebrate α2,8-sialyl-
transferases subfamilies (ST8Sia I, ST8Sia V, ST8Sia VI),
which catalyze the transfer of a single sialic acid residue

Expression pattern of the zebrafish ST8Sia genes in various tissues, as determined by RT-PCRFigure 2
Expression pattern of the zebrafish ST8Sia genes in 
various tissues, as determined by RT-PCR. Lane 1, 36 h 
embryo; lane 2, ovary; lane 3, intestine; lane 4, brain. The 
zebrafish β-actin gene was used as a positive control of PCR 
amplification.
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Maximum Likelihood phylogenetic tree of 63 sialyltransferases of the ST8Sia familyFigure 3
Maximum Likelihood phylogenetic tree of 63 sialyltransferases of the ST8Sia family. A Maximum Likelihood phylo-
genetic tree was constructed with the Phyml, JTT model of amino acid substitution; 63 ST8Sia sequences, 201 out of 426 posi-
tions (47%) were selected with G-BLOCKS. Bootstrap values were calculated from 500 replicates and values > 50% are 
reported at the left of each divergence point. GenBank accession numbers are indicated after the abbreviated name of the ani-
mal species. The tree was rooted with the invertebrate B. floridae sequences Bfl-0, Bfl-1, Bfl-2 and Bfl-5 as the outgroup.
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ClustalRO alignment of all the ST8Sia IV and ST8Sia II sequences ordered by the percentage of conserved amino acid positions specific to ST8Sia IV (yellow background) and ST8Sia II (orange background) present in each sequenceFigure 4
ClustalRO alignment of all the ST8Sia IV and ST8Sia II sequences ordered by the percentage of conserved 
amino acid positions specific to ST8Sia IV (yellow background) and ST8Sia II (orange background) present in 
each sequence. Five B. floridae ST8Sia II/IV sequences cannot be assigned to either ST8Sia II or ST8Sia IV subfamilies, because 
they contain the same proportion of ST8Sia II and ST8Sia IV specific amino acid positions (50 ± 9%). This intermediate position, 
with a relative large number of total ST8Sia II plus ST8Sia IV positions (28–31 out of 39 colored positions) suggests that these 
sequences are orthologues to the common ancestor, expected to be present before the duplication event responsible of the 
ST8Sia II and ST8Sia IV genes. The total number of subfamily-specific conserved amino acid positions is followed by the relative 
proportion (%) of ST8Sia II and ST8Sia IV specific positions for each protein. The first amino acid position of each line corre-
sponds to the initial amino acid of sialylmotif L.
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and a new ST8Sia VII subfamily found in the fishes D. rerio
and O. mykiss and the green lizard Anolis carolinensis (Fig.
3 and additional file 3). It was noted that the amphioxus
gene product Bfl-9 branched out before the divergence of
these vertebrate subfamilies suggesting that it could repre-
sent an ortholog to the common ancestor of the ST8Sia I,
ST8Sia V, ST8Sia VI and ST8Sia VII subfamilies (Fig. 3).
The ST8Sia VII subfamily is absent in neognathi (Fig. 3
and additional file 2).

The ST8Sia subfamily motifs
As previously described [14], the marine invertebrate
ST8Sia amino acid sequences had intermediate values of
subfamily-specific conserved amino acid positions in all
the ClustalRO two by two alignments. In addition, they
appeared at the roots of the ST8Sia II/ST8Sia IV branch,
the ST8Sia III/ST8Sia III-r branch and the ST8Sia I/ST8Sia
V/ST8Sia VI/ST8Sia VII branch in the phylogenetic tree
(Fig. 3). We thus looked for peptide motifs that could
uniquely represent each of these ST8Sia groups. We iden-
tified a specific motif characteristic of the ST8Sia II/ST8Sia

IV group in the B. floridae sequences (Bfl-6, Bfl-14, Bfl-15,
Bfl-16 and Bfl-20) (Fig. 4). This (b) motif located
upstream of the sialylmotif S (Fig. 5) contains the polysi-
alyltransferase domain (PSTD), a 32 amino acid sequence
initially described by Nakata et al. [31] in the ST8Sia II and
ST8Sia IV sequences. The polybasic PSTD motif appeared
to be a functional motif involved in the elongation of lin-
ear chains of sialic acid. In addition, we identified a new
specific peptide motif III-1 (a) located upstream of sialyl-
motif L and, a new specific peptide motif III-2 (b) located
upstream of sialylmotif S in the amphioxus sequences Bfl-
12 and Bfl-17 (Fig. 3), the sea urchin sequence Spu-7
(additional files 3 and 4) and in all the other members of
the vertebrate ST8Sia III and ST8Sia III-r subfamilies. No
peptide sequence motif specific for the mono-α2,8-sialyl-
transferases could be identified in the vertebrate ST8Sia I,
ST8Sia V, ST8Sia VI and ST8Sia VII subfamilies, nor in the
corresponding B. floridae and S. purpuratus sequences.
Similarly, no distinguishing motif could be defined for
the marine invertebrate sequences belonging to the
ST8Sia EX group.

Polysialyltransferase domain (PSTD) found in vertebrate ST8Sia II and ST8Sia IV and in invertebrate sequences and the two new motifs specific to the ST8Sia III subfamiliesFigure 5
Polysialyltransferase domain (PSTD) found in vertebrate ST8Sia II and ST8Sia IV and in invertebrate 
sequences and the two new motifs specific to the ST8Sia III subfamilies. The catalytic domain of the sialyltransferases 
is indicated by the grey rectangles, the sialylmotifs L, S, III and VS by blue boxes and the a and b motifs by yellow boxes. The 
conserved peptide sequences used to generate the sequence logos of motif II/IV, motif III-1 and motif III-2 were extracted from 
multiple sequence alignments of vertebrate and invertebrate sequences. The overall height of the stack indicates the sequence 
conservation at a given position, while the height of symbols within the stack indicates the relative frequency of each amino 
acid at that position [69,70]. In the logos, amino acids are colored according to their chemical properties. The PSTD, which is 
included in the larger motif II/IV is shown with the orange background.
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Analysis of conserved gene synteny and orthology
In order to explain the appearance of the eight vertebrate
ST8Sia subfamilies, we further analyzed the evolutionary
history of ST8Sia in the context of the two rounds of
whole genome duplications (known as the 2R hypothe-
sis) [21], tandem duplication of genes, gene loss, synteny
and datation. The same chromosomal location of ST8Sia
III and ST8Sia V on human chromosome 18q is indicative
of a tandem duplication that dates back at least to the
osteichthyan emergence, since this tandem position is
also found in chicken (G. gallus) and in medaka (O. lat-
ipes). There is an overall conservation of syntenic organi-
zation around these two genes in these three organisms.
In D. rerio and in T. rubripes, the syntenic region is spread
over three different chromosomes or scaffolds (Fig. 6).
Moreover, two copies of ST8Sia III are included in two
paralogons on O. latipes chromosomes 9 and 12 (Fig. 7).

Furthermore, scaffold 66 of B. floridae contains genes
belonging to the ST8Sia EX group defined by phylogeny,
orthologous sequences for ST8Sia II/IV (Bfl-20), for
ST8Sia III/III-r (Bfl-12 and Bfl-17) and for their neighbor-
ing genes (Fig. 8). This denotes the common origin of
these ST8Sia genes from an old conserved synteny and
suggests a series of tandem duplications. However, scaf-
fold 66 lacks the region around ST8Sia V. Finally, we
found statistically significant human paralogons (sm>3)
containing the ST8Sia II and ST8Sia IV genes described by
McLysaght et al. [20,32] on chromosomes 15 (HSA15)
and 5 (HSA5). These two ST8Sia genes share a conserved
syntenic relationship from fish to mammals [33] and our
results suggest that they might have arisen from a com-
mon invertebrate ancestor (Fig. 8).

Time of gene duplication and evolutionary history of the 
ST8Sia family
In order to estimate the time of divergence of the verte-
brate ST8Sia subfamilies, we reconstructed linearized trees
for duplicate genes under the assumption of a molecular
clock. The results are given in Table 1 and additional file
5. It appears that the equations fall into 3 groups. The first
group contains the subfamilies ST8Sia II and ST8Sia IV,
the second contains the subfamilies ST8Sia III and ST8Sia
III-r, and the third contains the subfamilies ST8Sia I,
ST8Sia V, ST8Sia VI and ST8Sia VII. A comparison of the
regression slopes between pairs of groups reveals that the
ST8Sia I/ST8Sia V/ST8Sia VI/ST8Sia VII has a significantly
lower slope than that of the ST8Sia III/ST8Sia III-r group
(F = 6.74, p < 0.01) and slightly lower to that of ST8Sia II/
ST8Sia IV (F = 3.01, p = 0.08). However, branch-site test
does not show a positive selection in any ST8Sia sub-
family, even in the ST8Sia VI group, where the highest
evolution rate is recorded (Table 2). The earliest node
datations refer to the duplications between ST8Sia I and
ST8Sia V/ST8Sia VI/ST8Sia VII and between ST8Sia V and

ST8Sia VI/ST8Sia VII, around 596 and 563 MYA respec-
tively (Table 3). We estimate that the duplications
between ST8Sia II and ST8Sia IV and between ST8Sia VI
and ST8Sia VII took place about 552 MYA. The latest
duplication event was estimated to be around 474 MYA
and corresponds to the divergence between ST8Sia III and
ST8Sia III-r.

Discussion
Model of divergent evolution with punctual areas of gene 
loss and birth
Our investigations have established an orthologous rela-
tionship between the mammalian ST8Sia genes and their
invertebrate deuterostome counterparts. To date, ST8Sia
genes have been identified only in the deuterostome line-
age, and no ST8Sia sequences have been identified in the
roundworm C. elegans nor in insects such as honey bee,
mosquito or fruit fly [14]. The current paradigm of WGD
predicts a first round of duplication after the emergence of
vertebrates but before the separation between agnathans
and gnathostomes, followed by a second round of dupli-
cation after this divergence [34]. In figure 9, we propose a
scenario that illustrates how the ST8Sia gene family might
have evolved, that is consistent with their phylogenetic
relationships, with synteny, with the paralogon analysis,
and tandem duplication or WGD and gene loss [35]. Since
genes within the ST8Sia EX, ST8Sia II/IV and ST8Sia III/III-
r groups are located on the same scaffold 66 of amphioxus
(B. floridae) (Fig. 8), we hypothesize that they resulted
from tandem duplications, which occurred before the sep-
aration of cephalochordates and vertebrates. The ST8Sia
III and ST8Sia V genes are on the same chromosome from
fish to humans indicating that they originated from a sec-
ond ancient tandem duplication (Fig. 6). Phylogenetic
analyses revealed that the duplication order is ST8Sia EX >
ST8Sia II/ST8Sia IV > ST8Sia III/ST8Sia III-r > ST8Sia I/
ST8Sia V/ST8Sia VI/ST8Sia VII. Within this last group, suc-
cessive duplications took place early in the vertebrate lin-
eage leading to the emergence of ST8Sia I, ST8Sia V,
ST8Sia VI and ST8Sia VII. Based on the present vertebrate
genome data, the chromosomal segment bearing the
ancestor of ST8Sia II/ST8Sia IV, ST8Sia III/ST8Sia III-r,
ST8Sia VI/ST8Sia VII and ST8Sia I migrated to four differ-
ent chromosomes early in the differentiation of the verte-
brate phylum (Fig. 9). Unequivocal paralogons including
the ST8Sia II and ST8Sia IV genes were found between the
human chromosome 5 and 15 (HSA 5 and HSA 15) [20]
and we identified an ortholog to ST8Sia IV in the lamprey
(P. marinus) suggesting that these genes result from a
block duplication that occurred before the divergence
between gnathostomes and agnathans. The association of
this event with the first round of WGD is supported by the
datation of around 552 MYA, close to WGD R1 [36]. The
duplication event within the ST8Sia VI/ST8Sia VII group
dates back around 551 MYA, but unfortunately, no paral-
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ogon around these genes could be identified making it
difficult to draw conclusions regarding the mechanism
involved in the emergence of both genes. Paralogons
observed in medaka (Fig. 7) and topology of the phyloge-
netic tree shown in Fig. 3 indicates that ST8Sia III and
ST8Sia III-r genes result from a block duplication, proba-
bly related to WGD R2 (datation around 474 MYA, close
to R2) [36], and not to the more recent WGD R3 (genome
duplication specific to teleosts), around 320 MYA [37].

The two rounds of WGD should have generated twenty
genes, but only eight of them remained in the living ver-
tebrate species. Notably, species specific tandem duplica-
tions have resulted in duplicated genes: (i) ST8Sia VIIA
and ST8Sia VIIB in D. rerio and A. carolinensis, that are
organized head to tail on the same chromosome (ii)
ST8Sia VIA and ST8Sia VIB in T. rubripes and (iii) ST8Sia
IIA and ST8Sia IIB genes in O. mykiss [38]. Considering the
order of the successive duplications and the presence of

Syntenic relationships of the ST8Sia III, ST8Sia III-r and ST8Sia V gene loci in fish and tetrapods (chromosomal locations of ST8Sia III, ST8Sia III-r and ST8Sia V in various vertebrate species)Figure 6
Syntenic relationships of the ST8Sia III, ST8Sia III-r and ST8Sia V gene loci in fish and tetrapods (chromo-
somal locations of ST8Sia III, ST8Sia III-r and ST8Sia V in various vertebrate species). The physically-mapped 
genomes of human (Hsa), chicken (Gga), Oryzias latipes (Ola), Danio rerio (Dre) and Takifugu rubripes (Tru) were used to identify 
conserved gene neighbours of the ST8Sia III, ST8Sia III-r and ST8Sia V genes and to identify orthologs in fishes. Putative orthol-
ogies were determined with information available from the Ensembl server and by searching the various genomes using the 
ST8Sia protein sequences as TBLASTN queries. In each panel, each diagram represents the order of genes on the chromosome 
in the vicinity of the relevant ST8Sia gene. The names of the ST8Sia III neighbour genes are red and the ST8Sia III gene is a red 
box, whereas the names of the ST8Sia V neighbour genes are green and the ST8Sia V gene is a green box. The ST8Sia III-r gene 
is a pink box.
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genes orthologous to ST8Sia EX, ST8Sia III/ST8Sia III-r
and ST8Sia I/ST8Sia V/ST8Sia VI/ST8Sia VII in the sea
urchin (S. purpuratus), we deduced that these duplications
date back to the common ancestor of sea urchin and ver-
tebrates, early in the deuterostome lineage. In addition,
the absence of an ortholog to ST8Sia II/ST8Sia IV in S. pur-
puratus might result from a gene loss. Similarly, the
absence of the ST8Sia EX counterparts in vertebrates is cer-
tainly due to a gene loss in their common ancestor (Fig.
9). Moreover, the absence of any ST8Sia gene in the tuni-

cate genomes (C. intestinalis and C. savignyi) can be
explained in the context of their probable ancestral colin-
earity by a single deletion of the ST8Sia cluster. In sum-
mary, a series of ancient gene duplications and the two
WGDs account for much of the ST8Sia gene diversity in
vertebrates. In contrast, the expansion and subsequent
divergence of the vertebrate fucosyltransferase genes
appears to primarily be the consequence of WGD R1 and
R2 [39].

Diversification of functions
The vertebrate enzymes of the ST8Sia family catalyze the
transfer of sialic acid in an α2,8-linkage to other sialic acid
residues present in glycoproteins and glycolipids [15]. We
describe here for the first time the ST8Sia EX family, a new
group of genes restricted to the non-vertebrate marine
deuterostomians Bfl and Spu. These putative gene prod-
ucts possess all the characteristic peptide motifs of the
ST8Sia family [13], including the new C-term motif, sug-
gesting that they might have α2,8-sialyltransferase activ-
ity. The presence in sea urchin of novel polysialylated
structures such as α2,9-linked polysialic acid chains [40]
or (5-O-glycolyl-Neu5Gcα2-)n sequences, where n ranges
from 4 to more than 40 [41-43] raises the question of the
role played by ST8Sia EX gene products in their biosyn-
thetic pathway. The region in the ST8Sia EX amino acid
sequences corresponding to the PSTD motif found in the
polysialyltransferases ST8Sia II/ST8Sia IV is quite different
from the consensus PSTD motif, suggesting that these
enzymes might carry out a different form of sialylation
(i.e. α2,9-sialylation). In addition, α2,9-linked polysia-
lylated structures were also described in mouse neuroblas-
toma cells [44], but no ortholog to ST8Sia EX could be
identified in the mouse genome suggesting that the
ST8Sia EX genes might have evolved in invertebrate deu-
terostomes to achieve a novel sialylation.

The ST8Sia II/ST8Sia IV group characterized by a PSTD is
found from cephalochordates to mammals. In verte-
brates, ST8Sia II and ST8Sia IV can assemble long, linear
polysialic acid chains (50–200 residues) on the N-glycans
of the neural cell adhesion molecule N-CAM and also on
the polysialoglycoprotein (PSGP) in fish eggs [45,46]. In
spite of the lack of data on the presence of α2,8-sialylation
in the glycoconjugates of amphioxus, we predict that
these polysialylated structures exist because several genes
of B. floridae code for putative proteins possessing the
PSTD-like motif. Yet, no such polysialylated structure has
been found in sea urchin (S. purpuratus) glycoconjugates,
a fact correlated with the absence of ST8Sia II/ST8Sia IV
genes in this genome. However, an α2,8-polysialyltrans-
ferase activity has been demonstrated in another develop-
mentally regulated sea urchin species (Lytechinus pictus),
with a peak at the gastrula stage [47]. In this species, the
enzyme activity is probably associated with the migration

Fish-specific paralogons in the medaka genome in the vicinity of the ST8Sia III and ST8Sia III-r genesFigure 7
Fish-specific paralogons in the medaka genome in 
the vicinity of the ST8Sia III and ST8Sia III-r genes. 
The physically-mapped genome of medaka O. latipes (Ola) 
was used to identify conserved gene neighbours of the 
ST8Sia III and ST8Sia III-r genes and to identify orthologs by 
chromosomal walking and reciprocal TBLASTN searches of 
genes adjacent to ST8Sia loci. Putative orthologs were deter-
mined with information available from the Ensembl server. 
Paralogous ST8Sia III neighbour genes are linked with red 
lines and the ST8Sia III gene is indicated by a red box 
whereas ST8Sia V neighbour genes are linked with green 
lines and the ST8Sia V gene is shown as a green box. The 
ST8Sia III-r gene is denoted by a pink box.
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Conserved synteny between a Branchiostoma floridae genomic region of scaffold 66 hosting the ST8Sia II/IV ST8Sia III/III-r and ST8Sia EX genes and human paralogonsFigure 8
Conserved synteny between a Branchiostoma floridae genomic region of scaffold 66 hosting the ST8Sia II/IV 
ST8Sia III/III-r and ST8Sia EX genes and human paralogons. Synteny between the human ST8Sia gene loci and related 
genes on scaffold 66 of the marine invertebrate B. floridae (Bfl) were assessed by chromosomal walking and reciprocal 
TBLASTN searches of genes adjacent to ST8Sia loci in human (Hsa) and amphioxus (Bfl) genome databases. The names of the 
ST8Sia III neighbour genes are red and the ST8Sia III gene is represented by a red box. The names of the ST8Sia V neighbour 
genes are green and the ST8Sia V gene is indicated by a green box. The names of the ST8Sia II neighbour genes are blue and the 
ST8Sia II is shown as a blue box. The names of the ST8Sia IV neighbour genes are violet and the ST8Sia IV gene is denoted by a 
violet box. The ST8Sia III/III-r genes are white/red boxes and the ST8Sia II/IV gene is depicted by a violet/blue box.
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or movements of cells during gastrulation. This is compa-
rable with the role that polysialylation serves in increasing
neuronal plasticity and migration in embryonic verte-
brates [33], through the modification of N-CAM. Two
enzymes, ST8Sia II and ST8Sia IV that carry out the poly-
sialylation of the N-glycans of N-CAM are present in most
vertebrates. For example, the temporal pattern of expres-
sion of the ST8Sia II gene is restricted to the early develop-
ment stages. In contrast, ST8Sia IV is expressed at lower
levels from the later stages of development to adulthood
[33]. This can be related to a weaker selective pressure on
ST8Sia IV than on ST8Sia II, as illustrated by longer
branch lengths corresponding to higher mutation rates
(additional file 5).

Mammalian ST8Sia III was shown to add α2,8-linked
sialic acid to terminal α2,3-linked sialic acid of glycolipids
and glycoproteins, resulting in mono- to oligo-α2,8-sia-
lylation of N-glycans of glycoproteins (Fig. 10), with the
notable exception of those of N-CAM [48,49]. In addi-
tion, the human enzyme catalyzes the synthesis of short
sialyl-oligomers (<10 residues) suggesting that ST8Sia III
is an oligosialyltransferase [48,50]. The protein sequences
of the ST8Sia III/ST8Sia III-r group show the same evolu-
tionary rate as those of the ST8Sia II/ST8Sia IV group. In
zebrafish, the ST8Sia III gene is mainly expressed in the 36
h post fertilization embryo with a lower of expression in
the adult brain (Fig. 2). It also exhibits a restricted expres-
sion in mouse, notably in brain and testes [51]. Interest-
ingly, up to date, we described the ST8Sia III-r gene in the
neognathi bony fishes, animal species in which the ST8Sia
IV gene is missing, which suggests that ST8Sia III-r might

replace ST8Sia IV activity (additional file 2). It can be
excluded that both subfamilies are orthologous given the
nearly 100% bootstrap value associated to the branch
common to ST8Sia III and ST8Sia III-r.

Phylogenetic analysis indicates that the genes of the
ST8Sia I/ST8Sia V/ST8Sia VI/ST8Sia VII group evolved
faster than the other ST8Sia genes because they form
longer branches. Among them, ST8Sia VI has the highest
mutation rate, not associated with positive selection as
indicated by a dN/dS ratio < 1 (Table 2) and it shows a low
level of basal expression in zebrafish tissues (Fig. 2). The
mammalian ST8Sia VI transfers only one sialic acid resi-
due and synthesizes disialylated structures on O-glycans
[52,53]. Interestingly, the expression of the ST8Sia VII
gene is restricted to a subset of non-mammalian verte-
brates, which include the lamprey (P. marinus), teleoste-
ans (D. rerio and O. mykiss), and the green lizard (A.
carolinensis) and it exhibits remarkable tissue specific
expression pattern in zebrafish, primarily in the ovary and
intestine (Fig. 2). The enzymatic activity of this enzyme is
not known, but we hypothesize that it could be a mono-
α2,8-sialyltransferase responsible for the particular disia-
lylated structures (NeuAc/NeuGc) recently described in D.
rerio [4]. In this gene group, the two last members ST8Sia
I and ST8Sia V have the same expression profile in
zebrafish (Fig. 2). Both enzymes are involved in ganglio-
side biosynthesis. ST8Sia I transfers one sialic acid residue
to the α2,3-linked sialic acid residue of GM3 to make GD3
[54-56] whereas ST8Sia V synthesizes GD1c, GT1a, GQ1b
and GT3 [57].

Conclusion
The genomic analysis we have presented gives new
insights into the events leading to a birth and death model
for the evolution of the genes encoding α2,8-sialyltrans-
ferases. Much of the diversity is due to gene duplication
events occurring early in the deuterostome lineage, most
likely rapidly after the emergence of an ancestral ST8Sia
gene. Based on results from this study we propose that the
newly identified, novel ST8Sia EX gene group in the inver-
tebrate genomes is a candidate ancestral ST8Sia gene. The
assembly of polysialic acid glycans on glycoconjugates
took place very early in animal evolution (Fig. 10), with
the emergence of the ST8Sia II/ST8Sia IV group early in
the evolution of deuterostomes (~ 750 MYA) followed by
the emergence of the ST8Sia III/ST8Sia III-r group. The rel-

Table 1: Regression equations of linearized distances versus million years ago (MYA).

ST8Sia group Regression equations Determination coefficient Significance

ST8Sia II/ST8Sia IV y = 920x + 296 R2 = 0,90 p = 0.00085 (eq1)
ST8Sia III/ST8Sia III-r y = 752x + 326 R2 = 0,90 p = 0.025 (eq2)
ST8Sia I/ST8Sia V/ST8Sia VI/ST8Sia VII y = 430x + 313 R2 = 0.88 P < 0.001 (eq3)

Table 2: Estimation of the number of synonymous (dS) and 
nonsynonymous (dN) substitutions per site for ST8Sia genes by 
the branch-site model (PAML version 4.0).

Subfamily κ dN(i) dS(i) ω (i) ω (b) ω (i)/ω (b)

ST8Sia I 2.204 0.176 0.235 0.748 0.495 1.512
ST8Sia II 2.201 0.052 0.133 0.387 0.556 0.696
ST8Sia III 2.202 0.225 0.433 0.518 0.529 0.980
ST8Sia IV 2.205 0.044 0.170 0.258 0.593 0.435
ST8Sia V 2.202 0.163 0.337 0.485 0.535 0.907
ST8Sia VI 2.205 0.045 0.054 0.792 0.483 1.638

For the 31 genes belonging to the different subfamilies, 271 codons 
have been taken into account; κ corresponds to estimated transition 
over transversion ratio and ω to dN/dS; (i) branches of interest, (b) 
background branches.
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ative conservation of the PSTD-like motif in these latter
sequences (motif III-2, Fig. 5) and the fact that ST8Sia III
may drive oligosialylation of glycoconjugates, further sug-
gests that ST8Sia III-r might also be involved in oligosia-
lylation (Fig. 10). In contrast, the group of mono α2,8-
sialyltransferases (ST8Sia I/ST8Sia V/ST8Sia VI/ST8Sia
VII) underwent significant modifications in the PSTD-like
motif. The rapid mutation rate throughout these verte-
brate sequences led to novel α2,8-sialylation changes with
respect to the length of the α2,8-sialic acid chains assem-
bled and their association with specific acceptor sub-
strates, including O-glycans (Fig. 10).

Methods
Sequences
Only eukaryote sequences were considered for this study.
Orthologous ST8Sia proteins were identified from all
genomic and EST sequences available in the general data-
banks such as NCBI for the green lizard Anolis carolinensis,
[58], ENSEMBL [59] or DDBJ [60] or in specialized data-
bases [61], JGI for the amphioxus Branchiostoma floridae
[62], the Genome Sequencing Center at the Washington
University School of Medicine, St Louis MO for the sea
lamprey Petromyzon marinus [63], the Genome Sequenc-
ing Center at the Baylor College of Medicine for Homo
sapiens and the sea urchin Strongylocentrotus purpuratus
[64], the Institute of Molecular and Cell Biology for the
elephant shark Callorhinchus milii [65] using BLASTN,
TBLASTN and PSI-BLAST [66] with default parameters (an
e-value cut off at 0.01 was used in all BLAST searches).
Human and mouse sequences were used as first queries in
the first round of search. Contigs of the different ESTs of
each gene were made with CAP3 [67]. New complete
open reading frames identified in these EST-CAP searches
with more than two identical amino acids overlapping in
each position were annotated and submitted to EMBL/
GenBank as putative ST8Sia sequences. All genomic
sequences allowing generation of a complete catalytic
domain were considered. Splice site prediction analysis
was achieved at the Berkeley drosophila genome project.

RT-PCR
Danio rerio ST8Sia sequences identified in silico were
amplified by PCR with specific primers to determine
expression. Total RNA was extracted from various
zebrafish adult tissues using the Qiagen RNeasy kit, and

RNA was quantified by spectrophotometry using the Nan-
oDrop® ND-1000 spectrophotometer (NanoDrop Tech-
nologies, Wilmington, DE, U.S.A.). In addition, the
integrity and purity of the extracted RNA was analyzed by
gel electrophoresis on a bioanalyzer (Experion, Bio-Rad
Laboratories, Inc). For subsequent PCR amplifications,
first-strand cDNA was synthesized from total RNA using
the First Strand cDNA Synthesis kit according to the man-
ufacturer's protocol (Amersham Pharmacia Biotech, Little
Chalfont, U.K.) in the presence of oligodeoxythymidilic
acid12–18 in a final volume of 33 μl. A specific fragment of
about 370 bp was obtained from cDNA generated from
different adult tissues using 35 nM of specific sense and
antisense primers synthesized by Eurogentec, (Table 4),
100 μM of dNTP and 0.5 unit of Q-Biogen DNA Taq
polymerase using the following protocol: 96°C for 2 min,
38 cycles of 45 sec at 95°C, 1 min at 50°C and 1 min at
72°C, and 10 min at 72°C. The same RT-PCR conditions
using zebrafish β-actin were used as the control for cDNA
synthesis and purity. The RT-PCR products were subjected
to 2% agarose gel electrophoresis and amplification of
cDNA resulted in a 378 bp fragment. All vertebrate and
invertebrate sequences newly identified in this study and
their accession numbers are listed in additional file 1.

The transmembrane domain was determined using the
TMPRED program available from the ExPASy proteomics
server. Multiple sequence alignments were performed
with ClustalW [68] at PBIL and EBI. Sequence logos were
created using WebLogo (version 2.8.2; [69,70]).

ClustalRO and multiple sequence alignments
The subfamily of each hypothetical sialyltransferase was
further confirmed by determining the relative proportions
of subfamily-specific conserved positions in ClustalRO
two by two alignments as previously described [14]. This
simple method, based on the similarities between
sequences is complementary to the more sophisticated
phylogeny calculations that are based on the differences
between sequences.

Phylogenetic analysis
The informative positions within protein alignments were
selected by G-BLOCKS [29,71]. Maximum likelihood
(ML) analyses were done with PhyML, version 2.4.4 [72]
using the JTT model of amino-acid substitution. Bootstrap

Table 3: The inferred datation of each node

Nodes Time in MYA [Conf. interv. 95%] Equation used

ST8Sia I – ST8Sia V/ST8Sia VI/ST8Sia VII 596 [544–647] eq (3)
ST8Sia V – ST8Sia VI/ST8Sia VII 563 [512–614] eq (3)
ST8Sia II – ST8Sia IV 552 [598–506] eq (1)
ST8Sia VI – ST8Sia VII 551 [500–602] eq (3)
ST8Sia III – ST8Sia III-r 474 [541–407] eq (2)
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values for the nodes were determined by analyzing 500
replicates. The topology obtained from maximum likeli-
hood was taken in the user tree option. To draw the trees,
the generated nexus topology files were read by MEGA3.1
[73].

Synteny analysis and paralogon detection
Synteny between vertebrate ST8Sia and related genes in
invertebrates was assessed by chromosomal walking and

reciprocal BLAST searches of genes adjacent to ST8Sia loci
in the human (Hsa), mouse (Mmu), chicken (Gga)
medaka (Ola), zebrafish (Dre), T. rubripes (Tru) and
amphioxus (Bfl) genome databases (Ensembl). The iden-
tification of paralogous blocks [20] was done using the
latest Ensembl dataset (version 5.28). The website for
these paralogons [32] offers the possibility to carry out
block detection in humans with self-defined parameters.

Schematic drawing of the evolution of the ST8Sia gene familyFigure 9
Schematic drawing of the evolution of the ST8Sia gene family. Model for the evolution of the ST8Sia genes based on 
evidence from protein sequence phylogeny, conserved synteny of genomic loci between species and paralogous relationships 
between the genomic regions of human ST8Sia. The diagram takes into account that the four ancestral groups of ST8Sia (four 
bottom coloured boxes) predate the WGD R1 and WGD R2, which occurred early in the vertebrate lineage. Dotted lines are 
intermediate steps. Open red circles are gene losses on the phylogenetic tree. Open boxes represent gene loss following block 
duplications. The broken lines correspond to the two main WGDs R1 and R2.
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Time of gene duplication/evolution rate
We recorded the branch lengths in the maximum likeli-
hood tree linearized by Mega3.1for the following calibra-
tions: sea urchin/vertebrates: 750 MYA [74]; amphioxus/
vertebrates: 650 MYA [75]; lamprey/gnathostomes: 575
MYA; gnathostomes/osteichthyans: 460 MYA; osteichthy-
ans/other vertebrates: 450 MYA; tetrapodes/actinoptery-
gians: 360 MYA; amniotes/other vertebrates: 310 MYA;

Genome duplication in teleosteans: 320 MYA [37]. We cal-
culated the regression equations between linearized branch
lengths and calibration dates by considering separately the
3 groups of subfamilies identified from phylogenetic anal-
yses: ST8Sia II/ST8Sia IV, ST8Sia III/ST8Sia III-r and ST8Sia
I/ST8Sia V/ST8Sia VI/ST8Sia VII. Confidence intervals at
95% were calculated as 1.96 times the standard deviations
of regression equation residues. Comparison of regression

Schematic drawing of the evolution of sialylation with a general trend from poly- to oligo- and mono-α2,8-sialylation patternsFigure 10
Schematic drawing of the evolution of sialylation with a general trend from poly- to oligo- and mono-α2,8-sia-
lylation patterns. Acceptor substrates and mode of sialylation are given on the left side of the simplified phylogenetic tree. 
The boxed question mark indicates that the enzymatic activities of ST8Sia EX and ST8Sia VII are unknown.

Table 4: Primer nucleotide sequence and expected amplicon size. Accession numbers in GeneBank for the identified sialyltransferases 
and β-actin sequences.

Primer Sequence Accession number Product size (bp)

ST8Sia I Forward 5'-TTGCGGTTACTAAGGAGA
Reverse 5'-ACGAAAGATTTGCGGGAC

AJ715535 346

ST8Sia II Forward 5'-GACTCGCACGACTTTGTT
Reverse 5'-TGGTTGGTCAGCCAGTAA

AY055462 335

ST8Sia III Forward 5'-AACAACCTGCTGACCATCC
Reverse 5'-ATGATACGGCAGCTCCTT

AJ715543 354

ST8Sia IV Forward 5'-TCTTGACTTGGGAGTTGG
Reverse 5'-TCTGACCGCAATCCTACA

AJ715545 366

ST8Sia V Forward 5'-AAATAAGGAGGAGACGGATAA
Reverse 5'-AAAGTCAGAAGCGTCAAT

AJ715546 291

ST8Sia VI Forward 5'-TGTCTATGATGGCGAAAG
Reverse 5'-TGACCGTATGAATGAAGG

AJ715551 333

ST8Sia VIIA Forward 5'-TTTCCTGGTGGTCCTGAT
Reverse 5'-GGTGCGTCTACTGTTGGTT

AM287257 346

β-actin Forward 5'-GTTGGTATGGGACAGAAAGA
Reverse 5'-GGCGTAACCCTCGTAGAT

AF025305 378
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slopes was performed with PAST [76]. We tested for evi-
dence of positive selection using the branch-site method
implemented in PAML version 4 [77], as previously
described [78-80]. Briefly, we calculated the ratio of the
nonsynonymous substitution rate (dN) to the synonymous
substitution rate (dS) for each ST8Sia subfamily, in the
branch of interest (ω (i) for one ST8Sia subfamily) and in
the background branches (ω (b) for the remaining ST8Sia
subfamilies). Thirty-one vertebrate ST8Sia sequences from
D. rerio, X. tropicalis, G. gallus and H. sapiens were aligned in
multiple sequence alignments with the exception of the
ST8Sia VII sequences, which have not been identified in all
these vertebrate species and 813 informative sites were G-
BLOCKS selected. A user tree topology identical to the one
described in figure 3 was obtained by Minimum Evolution
option in MEGA 3.1 [73].
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