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Abstract 
 

Support Vector Machine (SVM) is a powerful tool for 
binary classification. Numerous methods are known to 
fuse several binary SVMs into multi-class (MC) 
classifiers. These methods are efficient, but an accurate 
study of the misclassified items leads to notice two 
sources of mistakes: (1) the response of each classifier 
does not use the entire information from the SVM, and (2) 
the decision method does not use the entire information 
from the classifier responses. In this paper, we present a 
method which partially prevents these two losses of 
information by applying Belief Theories (BTs) to SVM 
fusion, while keeping the efficient aspect of the classical 
methods. 
 
 
1. Introduction 
 

There are two kinds of MC classifiers: Those which 
directly handle all the classes, and those which fuse the 
decision of several binary classifiers in order to produce 
the final decision. Even if the first kind of classifiers 
seems straightforward, it is often more efficient to use 
classifiers of the second kind: Binary classifiers are 
simpler to implement and to train, and it is possible to 
combine them in order to fit the problem structure or prior 
knowledge. 

SVMs are a good example of such tools which are 
extremely successful at binary classification tasks [1][2]. 
However, the combinatorial process they rely on, limits 
extensions to MC problems. Several methods exist to 
solve MC problem through combinations of SVMs or by 
directly defining MC objective functions [3]. However, 
none of these methods outperform the others and finding 
the optimal multi-class SVM classifier is an open research 
area. These points are presented in Section 2.  

In section 3, we focus on BTs, from which our 
combination scheme is derived. In section 4, we present 
the application of BTs to the fusion of binary SVMs. 
Section 5 illustrates the method on various public 
datasets. 

2. Support vector machines 
 
2.1. Back to basic 
 

Let x be an item for which a set of numerical attributes 
(x1, x2, …, xn) is known. This item is supposed to belong 
to one of the two classes, C1 or C2. If for each class, the 
classifier "knows" that the attributes are correlated in a 
specific manner, it is possible to automatically find the 
class to which x belongs. In order to "teach" these 
correlations to the classifier, one relies on a statistically 
representative dataset of the type of items to classify. 
Unfortunately, as any representative statistical knowledge 
may be biased, it may not fit the real probabilistic 
distribution and may lead to misclassification. 

As it is impossible to have an absolute prior 
knowledge on the bias of a training dataset, the main idea 
behind SVM strategy is to make sure that the separating 
hyperplane is the furthest possible of all the items of the 
training dataset. Hence, as long as its bias is smaller than 
the distance between the classes and the hyperplane (the 
margin), no misclassification can occur. 

In practice, problems suffer from other difficulties, 
such as the intermingling of the classes (which is solved 
via the slack variables trick [2]), or the absence of linear 
separator (which is solved via the kernel trick [1]). This 
makes their implementation and use absolutely not trivial, 
but whatever the complexity, the main idea is that SVMs 
are able to provide the distance to the hyperplane with 
respect to the distance between the margins. 

 
2.2. MC problems with SVM 

 
Let C be a set of classes. To solve a MC problem on C 

with binary classifiers, most of the methods propose to 
project the training dataset on several binary sub-datasets. 
In such a case, sub-datasets are not necessarily of smaller 
size, but their two classes Ci and Cj are such that: 
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2C is called the powerset of C. For each sub-dataset, a 
classifier gives a partial result. All the partial results are 
then fused to provide the final classification.  

In case of SVM, the two most popular methods follow 
this principle:  

- 1vs1 scheme: Considering C contains N classes, 
N.(N-1)/2 classifiers are taken into account, any of each 
trained on a sub-dataset only containing two classes Ci 
and Cj. The fusion process is a voting procedure.  

-  1vsAll scheme: Considering C contains N classes, N 
classifiers are taken into account, any of each trained on a 
sub-dataset containing the entire original training dataset, 
relabeled in Ci and C\Ci. The fusion process uses the 
value of the decision function of each classifier and 
selects the one with the maximum.  

These methods do not have a clear superiority to one 
another in terms of accuracy [4]. However 1vs1 scheme is 
faster since the sub-problems are easier to solve and thus 
more suitable for practical use [4]. 

For the 1vs1 scheme, several improvements exist. 
They are supposed to give more accurate results in the 
case of ties, (such as extracting posterior probabilities of 
each class and apply a weighted voting), but it appears 
that such methods are more or less equivalent in practice 
[4].  

 
2.3. Two drawbacks of the voting procedures 
 

Here are presented two of the main drawbacks of this 
voting procedure as a fusion scheme. 

First, in this voting procedure, only the sign of the 
decision value is taken into account: if SVM positions an 
example nearby its hyperplane (likely to be wrong), and 
another SVM positions it far away from its margin (likely 
to be right) they should not have the same influence in the 
global decision process.  

Secondly, even if dedicated rules are programmed to 
deal with ties in the voting, such a procedure does not 
properly handle all the possible contradictions between 
binary classifiers (when two or more classifiers have 
responses which are incoherent between each other, such 
as when C1 is preferred than C2, C2 is preferred than C3, 
and C3 is preferred than C1, or when two different classes 
are preferred than all the others). Actually, such 
contradictions may lead to undetermined cases (a 
situation in which, with respect to the training, it is 
impossible to expect a good answer from the classifier). 

To deal with the undetermined cases depending on the 
risk of the misclassifications, the operator may choose a 
peculiar strategy, such as (1) the cautious one which 
rejects any undetermined item or (2) the betting one, 
which classifies it in the most likely class, or any other 
strategy in between.  

There are three kinds of different undetermined cases, 
which should be differentiated: 

- Incoherence: the relations between the attributes of 
the item to classify do not fit any of the classes. The most 
classical strategy is to reject such an item (Figure 1a). 

- Uncertainty: the relations between the attributes of 
the item to classify do not really fit any of the classes, but 
it may be due to the bias of the statistical representation of 
the classes used during the training. Such an item should 
either be (1) rejected or (2) classified in the most likely 
class, or (3) remain unclassified (Figure 1b). 

- Doubt: the item to classify equally fit several classes. 
This item is not supposed to be rejected nor randomly 
classified (Figure 1c). 

  
(a) incoherence (b) uncertainty 

  
(c) doubt (d) Incoherence, 

uncertainty, or doubt? 

Figure 1: The various cases for an undetermined 
item are in practical difficult to discriminate 

It is really difficult to reject items because of 
incoherence with SVM. One needs to have either (1) a 
training dataset made of such rejected items or (2) a 
background model which is formed only by positive 
examples. This is beyond our scope and we do not deal 
with incoherence in this paper. Nonetheless, uncertainty, 
incoherence and doubt are difficult to discriminate as the 
bias of the training is unknown (Figure 1d). 

In this paper, we propose a fusion method which:  
-  deals with the interest of each partial result in a more 

refined manner that a simple voting process, 
- allows the operator to choose a peculiar strategy for 

undetermined items and to classify them with respect to 
their nature (doubt or uncertainty) and the chosen 
strategy, in a manner directly rooted in the fusion process. 

Such a method heavily relies on the belief-function 
theory, which is presented in the next section. 
 
3. Introduction to Belief Theories 

 
Belief theories refer to numerous model based on belief 
functions. Originally introduced by Dempster in the study 
of the bounds of a family of probabilities, it has been 
theorized by Shafer [5]. It has also been adapted or 



compared since then to various purposes in information 
theory, such as data fusion [7], fuzzy measure, possibility 
theory [9], and Bayesian theory [6]. Our goal is not to 
discuss these interpretations, so we globally refer to them 
as Belief Theories (BTs). We present here the main 
concept we use. 
 
3.1. Belief functions 
 

Let Ω be the set of N exclusive hypothesizes h1…hN. 
We call Ω the frame of discernment. Let m(.) be a belief 
function on 2Ω (the powerset of Ω). m(A) represents our 
mass of belief in the proposition A (A corresponds to an 
element of 2Ω, or equivalently, to a subset of Ω) : 
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Note that,  
- contrarily to probabilistic models, the belief can be 

assigned to non-singleton propositions, which allows 
modeling the hesitation between elements (which can be 
due to both doubt and uncertainty). 

- Ø belongs to 2Ω. A belief in Ø corresponds to conflict 
in the model, throughout an assumption in an undefined 
hypothesis of the frame of discernment (incoherence), or 
throughout a contradiction between the information on 
which the decision is made (uncertainty).  

Providing such modeling through probability would be 
more difficult: the power of BTs is to allow hesitation and 
conflict to be modeled in a more refined manner than 
equi-probabilities (on which strong assumptions are made 
on missing information). The direct consequence is that 
no information is lost by such a modeling. 

 
3.2. Fusion process 
 

Let us explain how to combine several belief functions 
into a new belief function (under associativity and 
symmetry assumptions). In that purpose, we use the 
conjunctive combination. For N belief functions m1,…,mN 
from N sources, it is defined as:  
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Let us have a simple example with only two beliefs to 
fuse: each of them has partial information on the color of 
the item to classify (Red, Green or Blue). The combined 
belief function, (with N = 2), is formulated as: 
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The conjunctive combination is a sum (with a peculiar 
pattern) over a product of all the possible elements of the 
powerset of each original belief. One can represent this 
product, , on a 2-dimensional table, in 
which each entry corresponds to one of the two original 
belief to fuse. Each cell is filled by the value of the 
product of the entries (cf. Table 1). 

 
Table 1: Conjunctive combination of two sources 
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Then the sum, , simply corresponds 
to a special pattern on which the content of the cells of the 
table are summed in order to produce the new belief 
function. Hence, in Table 1, all the cells with the same 
background texture or color are summed and the value is 
attributed to the element corresponding of the powerset. 

In the general case of N belief functions, the principle 
is exactly the same (on a N-dimensional table). 
 
4. Belief Theories combined with SVM 
 

Our purpose is to associate a belief function on 2C to 
each SVM decision in order to fuse them in a single final 
belief function. This permit that, (1) the amount of belief 
is related to the distance to the hyperplane so that this 
distance is taken into account and (2) the partial decision 
are fused in a manner that prevents any loss of 
information. Then we balance the two drawbacks spot in 
§2.3. 

To perform such things, one needs, (1) to transform the 
SVM output, and (2) to implement the conjunctive 
combination. The first point is the subject of this section, 
whereas we consider the implementation aspects to be 
beyond the scope of this paper. 
 
4.1. SVM output transformation 
 

Intuitively, the SVM margins are self-designated 
borders to separate regions of certitude from regions of 
hesitation in the attribute space. An obvious way to create 
a belief function that models such a belief is to use fuzzy 
sets [10] (Figure 2). 
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Then, it is possible to associate a belief to each SVM 
output, so that they are fused together thanks to the 
conjunctive combination and a decision is made on the 
entire set of classes. 

  
(a)  (b) 

Figure 2: (a) We define fuzzy sets on the distance 
to the hyperplane, (b) which model belief 

functions on the attribute space  

4.2. Discussion on the hesitation pattern 
 

Hesitation can be tuned by modifying the 
corresponding fuzzy set distribution. The one we propose 
first (Figure 2 and Figure 3) is the most natural one, and 
no prerogative is made on its definition.  

- The purpose of the distribution of the hesitation is 
not an interesting point, as the only interest is to roughly 
model a lack of knowledge. That is the reason why we are 
not interested in patterns such as Figure 3b. It corresponds 
to a model with more parameters that need a prior 
knowledge to tune (a second order model, whereas we 
have assumptions only on first order model). 

- The purpose of the width of the hesitation model has 
two aspects: first of all, from SVM point of view, the 
margin size is related to the SVM tuning, and the doubt 
model can be tuned by simply being supported by the 
margin. Secondly, from BTs point of view, hesitation and 
conflict are dual concepts and the tuning of the hesitation 
distribution is to be related to the balance desired between 
this two contradictory notions. Let us imagine an item (to 
be classified between two classes) which is hesitation-
prone for a source of belief. The conjunctive combination 
of such a source with another source gives either (1) 
hesitation if the other source hesitates, (2) or on the 
contrary certitude, if the other source is certain. If we 
reduce the hesitation distribution to the minimum (such as 
in Figure 3c), the first source gives a result which is 
certain but might be wrong. The conjunctive combination 
gives either (1) a conflict if the beliefs are not the same, 
(2) or, on the contrary, certitude if they concur. By 
modifying the hesitation pattern, the result of the 
combination evolves from {hesitation, certitude} to 
{conflict, certitude}. 

Then, the suppression of the hesitation simply 
corresponds to a situation where the conflict is 
emphasized. It also corresponds to the situation of a 
binary decision procedure, where voting is replaced by a 
fusion method which points out undetermined items.  

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 3:  Four different tunings of the hesitation 

On the contrary, if we enlarge the hesitation support, 
the system is less likely to consider an item as conflictive. 
When no conflict occurs anymore, we reach the limit of 
the hesitation modeling efficiency, and it is useless to 
consider a larger hesitation support. The absence of 
conflict corresponds to a hesitation distribution which is 
equal or more tolerant than the limit of the hesitation 
efficiency for the corresponding problem. 

As a default doubt distribution, one uses in the sequel 
the one of Figure 3a, as it fits SVM philosophy. 
 
4.3. Extension to other classifiers 
 

The method can also fit any binary classifier in which 
the distance to the separating hyperplane is known. It is 
nevertheless harder to determine a border between the 
hesitation and the two classes without any margin. One 
can use statistical analysis to set a Gaussian definition 
(Figure 3d) of the hesitation. It is not straightforward to 
settle the parameters of such a Gaussian model, as the aim 
is to have an empty margin rather than filled with items. 
Moreover, as the distance between the classes is not 
supposed to follow the trivial case of a Mahalanobis 
distance, the Gaussian distribution is not a priori well-
suited for the hesitation modeling. 
 
5. Applications 
 

In this section, we illustrate the two advantages of our 
method on examples, in order to prove its efficiency. To 



have meaningful results, we lead various experiments on 
the same protocol: 

- We used LIBSVM [11], which is a complete and 
efficient C/C++ library for SVM. 

-  C-SVM with RBF kernel is used in all runs. 
- Accuracy has to be defined in a manner that is 

coherent with decisions from our method and the voting 
procedure (in order to allow comparisons). In that 
purpose, we use the Pignistic Transform [7], which 
transforms a belief function onto a probability function, 
on which an argmax decision is made. Then both methods 
provide decision on the set of classes C instead of its 
powerset, on which accuracy is to be computed. The 
Pignistic Transform is defined as: 
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This transform corresponds to sharing the hesitation 
between the implied hypotheses, and normalizing the 
whole by the conflictive mass. As BetP does not lead to 
any interpretation of the conflict (which has been 
suppressed), it can be compared to the limit of the 
efficiency of the hesitation modeling with respect to the 
problem (in which no conflict occurs).  

- In order to show our method allows the operator to 
deal with undetermined items, we illustrate the following 
strategy: Let us consider that doubtful items are dealt by 
choosing the most reliable class, but uncertain items are 
rejected in order to be reused in a next-coming retraining. 
Such a pattern corresponds to associate uncertainty (in 
terms of classification) to conflict (in terms of data 
fusion) and doubt to hesitation (in order to process it via 
BetP): Let mfinal be the belief function on which the 
classification is made. If mfinal(Ø) = max2Ω(mfinal(.)), then, 
the item is uncertain and discarded, else, the item is 
classified via the result of  argmax2Ω(BetP(mfinal)). Then, 
we define: 
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which means that AccSup does not consider the rejected 
item, whereas AccInf considers them as systematically 
false. As a consequence, one defines the rejection rate: 
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- To evaluate the improvement of our method, one 
considers the rate of avoided mistakes. AvMis, the 
percentage of avoided mistakes is defined as:  
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- When comparisons with state-of-the-art are needed, 
we use the classical 1vs1 combination scheme. It is 
implemented in LIBSVM [11] by a trivial voting 
procedure and no peculiar strategy for ties. In a belief-
based implementation, each classifier Ki, j, which 
separates class Ci from class Cj provides an answer on 
three hypotheses: The doubt between the two classes, and 
a preference for any of the two classes. This answer has to 
be converted onto a belief function on 2C. In that purpose, 
Ki, j is considered as a Ci-Cj discarder: the belief in the 
doubt is assigned to C, the belief in Ci is assigned to C\Cj 
and the belief in Cj is assigned to C\Ci. This trick simply 
allows a coherent combination of Ki, j and Kg, h. 

- When comparisons with state-of-the-art are needed, 
we do not try to optimize the SVM tuning, as our purpose 
is not really to have powerful discrimination, but to focus 
attention on the improvement of the fusion scheme, which 
is easier to notice on average classification rates than on 
accurate classifications.  

In the next paragraphs comparable results are shown 
on a dedicated dataset and various other datasets. 

 
5.1. Vowels dataset 
 

The experiment is performed on the vowels dataset 
from [12], with a training dataset of 528 items, a testing 
dataset of 462 items, 10 attributes and 11 classes. 

Using the classical 1vs1 voting procedure of binary 
SVMs and no posterior optimization, a classification rate 
of 55.8% is achieved on the test set. The distances to the 
hyperplane on these SVMs (which are normalized with 
respect to the margin size) are saved and reused in our 
fusion process based on BTs. Via BetP, the classification 
rate reaches 57.4%. It means that, 3.6% of the errors are 
simply avoided by using the same classifier but a smarter 
decision scheme. 

If we consider a reject class which gathers all the 
conflictive uncertain items and a default doubt model 
(Figure 3a), AccSup =58.1% and AccInf =56.5%. If the 
doubt is restricted to the minimum (only on the 
hyperplane and nowhere else, as in Figure 3c), we have 
AccSup =60.4% and AccInf =52.8%. Between the limit of 
the doubt handling (BetP) and the limit of the rejection we 
defined, it is possible to tune the decision process to have 
any rejection rate, R, from 0% to 12.6%. 



If we consider a 1vsAll scheme, the performances are 
equivalent. Actually, they are slightly worse but the 
difference is too small to be significant; it can 
theoretically be interpreted as the direct consequence of a 
smaller number of sources to combine. (N vs. N.(N-1)/2 ). 

 
5.2. Other datasets 
 

In Table 2, various other datasets are presented, on 
which the same protocol is applied. 5-letter is a part of the 
dataset Letters [12], which is a dataset of 20.000 items 
corresponding to the 26 letters of the English alphabet. 
We made a reduced dataset on 5 letters, STUVX. Texture 
is another dataset from [12]. HCS is a dataset we made on 
Cued Speech hand shapes. It is based on the Hu invariants 
of binary hand image [13],[14]. 

Table 2: Description of the datasets 

 Number 
of classes 

Number of 
attributes 

Training 
dataset size 

Testing 
dataset size 

Vowels 11 10 528 462 
5-letter 5 16 1950 1952 
Texture 7 19 210 2100 

HCS 8 7 732 196 
 
Results are shown in Table 3: voting gives the 

accuracy of the voting strategy, BetP gives the accuracy 
with the Pignistic Transform (i.e., with doubt shared), 
AvMis gives the rate of avoided mistakes thanks to BetP. 
Default Doubt and No Doubt correspond to the modeling 
of the doubt by using the models in Figure 3a and 3c 
respectively. Rmax is the rejection rate corresponding to 
the absence of doubt. For 5-letter, we do not deal with 
undetermined cases as the original accuracy is really high: 
The improvement is too small to be represented with 3 
meaningful digits, and thus, the comparison is worthless. 

Table 3: Results in % for various datasets 

Default doubt No doubt  
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vowels 55.8 57.4 3.6 58.1 56.5 60.4 52.8 12.6 
5-letter 99.2 99.8 73.3      
texture 91.6 95.9 51.2 96.0 95.4 96.4 94.6 1.9 

HCS 78.6 86.2 35.7 86.2 82.7 86.8 80.6 7.1 

The results show an important rate of avoided mistakes 
thanks to our fusion method. This improvement is 
strongly dependent on the coherence classes. They also 
illustrate the ability to have a different processing for the 
various kinds of conflictive items (such as dealing with 
doubt by sharing it and keeping uncertain items for re-
training). 
 
6. Conclusion 
 

We provide a simple method to combine the fusion 
methods of BTs with SVMs. The advantages are (1) 
optimizing the fusion of the sub-classifications, (2) 
dealing with undetermined cases due to uncertainty and 
doubt. Future works will focus on reject class for 
contradiction due to incoherence and on providing a 
complete decision scheme for undetermined items by 
extending the Pignistic Transform. 
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