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MAXIMAL SOLUTIONS FOR −∆u+ uq = 0 IN OPEN AND

FINELY OPEN SETS

MOSHE MARCUS AND LAURENT VERON

1. Introduction

In this paper we study solutions of the equation

(1.1) −∆u+ |u|q−1u = 0,

in Ω \ F , Ω a smooth domain in RN , N ≥ 3 and F ⊂ Ω, F compact
or, more generally, a bounded set, closed in the C2,q′ fine topology. Here
q > 1 and C2,q′ refers to the Bessel capacity with the specified indexes. If
1 < q < qc = N/(N−2) then the fine topology is equivalent to the Euclidean
topology. Therefore, throughout the paper we shall assume that q ≥ qc, in
which case the two topologies are different.

If D is an open set and µ is a Radon measure in D, a function u ∈ Lq
loc(D)

is a solution of

(1.2) −∆u+ |u|q−1u = µ in D

if the equation is satisfied in the distribution sense. It is known [6] that (1.2)
possesses a solution if and only if µ vanishes on sets of C2,q′ capacity zero.
When this is the case we say that µ satisfies the (B-P)q condition (i.e., the
Baras-Pierre condition). If D = RN and µ is a Radon measure satisfying
this condition then (1.2) possesses a unique solution.

Further, if D is open, it is known that C2,q′(R
N \ D) = 0 if and only

if the only solution of (1.1) in D is the trivial solution. In view of the
Keller – Osserman estimates, the set of solutions of (1.1) in D (denoted by
UD) is uniformly bounded in compact subsets of D and every sequence of
solutions possesses a subsequence which converges to a solution u. Finally
the compactness together with the maximum principle imply that max UD

is a solution in D. The maximal solution in D is denoted by UF , F = RN \D.
Now suppose that F = ∪∞

n=1Kn where {Kn} is an increasing sequence of
compact sets such that

C2,q′(F \Kj) → 0.

Then {UKn} is non-decreasing and we denote VF := limUKn . In this case
F may not be closed; in fact, it may be dense in D = F c, so that in general
we cannot apply the Keller – Osserman estimates. Therefore, on this basis,
it is not even clear whether VF is finite a.e. in D. It will be shown in the
course of this paper that this is actually the case.
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Naturally, further questions come up: Is VF , in some sense, a generalized
solution of (1.1) in D and, if so, is it the maximal solution? Is it possible to
characterize VF in terms of its behavior at the boundary?

The main objective of this paper is the study of properties of the maximal
solution of (1.1) in F c, first in the case that F is compact; secondly in the
case that F is merely C2,q′-finely closed. In the second case we introduce a
new notion of solution which we call a strong solution (see Definition 7.1)
and show that VF is indeed a solution in this sense and that it is the maximal
solution. We also show that many of the properties of the set of classical
solutions are shared by the class of strong solutions.

For F compact, the properties of UF have been intensively investigated,
especially in the last twenty years. A question that received special attention
was the existence, uniqueness and estimates of solutions of the boundary
value problem

(1.3)
−∆u+ |u|q−1u = 0 in D = F c,

lim
D∋x→y

u(x) = ∞ ∀y ∈ ∂D.

The question of existence reduces to the question whether UF blows up
everywhere on the boundary.

A solution of (1.3) is called a large solution of (1.1) in D. If D is a
smooth domain with compact boundary, it is known that a large solution
exists and is unique, (see [22], [2], [3], [32]). These results were extended
in various ways, weakening the assumptions on the domain, extending it to
more general classes of equations and obtaining more information on the
asymptotic behavior of solutions at the boundary, (see [4], [23], [21], [5] and
references therein).

In the present paper we also consider two related notions:

(a) A solution u is an almost large solution of (1.1) in D if

(1.4) lim
D∋x→y

u(x) = ∞ C2,q′ a.e. y ∈ ∂F .

This notion is, in a sense, more natural, because (as we shall show) UF is
invariable with respect to C2,q′ equivalence of sets. (Two Borel sets E , F
are C2,q′ equivalent if C2,q′(F△E) = 0.)

(b) A solution u of (1.1) is a ∂q-large solution in D if

(1.5) lim
D∋x→y

u(x) = ∞ C2,q′ a.e. y ∈ ∂qF ,

where ∂qF denotes the boundary of F in the C2,q′-fine topology.

Here is a quick review of results pertaining to the case F compact.
In the subcritical case, i.e. 1 < q < qc := N/(N − 2), the properties of UF

are well understood. In this case C2,q′(F ) > 0 for any non-empty set and
it is classical that positive solutions may have isolated point singularities of
two types: weak and strong. This easily implies that the maximal solution
UF is always a large solution in F c. Sharp estimates of the large solution
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where obtained in [28]. In addition it is proved in [33] that the large solution

is unique if ∂F c ⊂ ∂F cc
.

In the subcritical case, solutions with point singularities served as building
blocks for solutions with general singularities. In the supercritical case,
i.e. q ≥ qc, the situation is much more complicated, because there are no
solutions with point singularities.

Sharp estimates for UF were obtained by Dhersin and Le Gall [10] in the
case q = 2, N ≥ 4. These estimates were expressed in terms of the Bessel
capacity C2,2 and were used to provide a Wiener type criterion – to which
we refer as (WDL; 2) – for the pointwise blow up of UF , i.e., given y ∈ F ,

(1.6) lim
F c∋x→y

UF (x) = ∞ ⇐⇒ the (WDL; 2) criterion is satisfied at y.

These results were obtained by probabilistic tools; hence the restriction to
q = 2.

Labutin [18] extended the results of [10] in the case q > qc. Specifically, he
obtained sharp estimates for UF similar to those in [10], with C2,2 replaced
by C2,q′ . These estimates were used to obtain a Wiener criterion involving
C2,q′ (we refer to it as (WDL;q)) relative to which the following was proved:

(1.7) UF is a large solution ⇐⇒ (WDL;q) holds everywhere in F .

Of course this result is weaker then (1.6). However a careful examination
of Labutin’s proof reveals that, in the case q > qc, his argument actually
proves (1.6). In the case q = qc Labutin’s estimate was not sharp and it did
not yield (1.6) although it was sufficient in order to obtain (1.7).

Uniqueness was not discussed in the above papers. Necessary and suffi-
cient conditions are not yet known. Sufficient conditions for uniqueness of
large solutions, for arbitrary q > 1, can be found in [23], [27] and references
therein. Uniqueness will also be one of the main subjects of the present
work.

The first part of the present paper (Sections 2-4) is devoted to the study
of the maximal solution UF when F is compact and of the almost large
solution in bounded open sets. Here is the list of main results obtained in
this part of the paper:

I. Sharp capacitary estimates of UF in the full supercritical range q ≥ qc,
N ≥ 3. As a result, we show that a variant of (1.6) holds in the entire
supercritical range. Specifically, we show that, for y ∈ F ,

(1.8) lim
F c∋x→y

UF (x) = ∞ ⇐⇒ WF (y) = ∞,

where WF : RN → [0,∞] is the capacitary potential of F , (see (2.2) for its
definition).

For q > qc the condition WF (y) = ∞ is equivalent to the (WDL;q) crite-
rion mentioned before. However our proof does not require separate treat-
ment of the border case q = qc and is simpler than the proof in [18] even for
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q > qc.

II. For every compact set F , UF is an almost large solution in F c and UF

is σ-moderate.
The statement ’UF is σ-moderate ‘ means that there exists a monotone

increasing sequence of bounded, positive measures concentrated in F , {µn},
satisfying the (B-P)q condition, such that uµn ↑ UF .

Finally we establish an existence and uniqueness result; for its statement
we need some additional notation. For any set E ⊂ RN

Ẽ = closure of E in the C2,q′-fine topology, ∂qE := Ẽ ∩ Ẽc.

III. Let Ω = ∪Ωn, where {Ωn} is an increasing sequence of open sets, and
put Dn = RN \ Ωn. Assume that

(1.9) C2,q′(Ω \ Ωn) → 0 and C2,q′(∂Ωn \ D̃n) → 0.

Then the boundary value problem

(1.10) −∆u+ uq = 0 in Ω, lim
Ω∋x→y

u(x) = ∞ for C2,q′ a.e. y ∈ ∂qΩ

possesses exactly one solution.

In other words, an open set Ω as above, possesses exactly one ∂q-large so-
lution. If ∂Ω is compact then, this solution is an almost large solution.
Indeed, by II, the maximal solution U∂Ω is an almost large solution in Ω.
Since ∂qΩ ⊂ ∂Ω, this implies that U∂Ω is a ∂q-large solution. By III, U∂Ω is
the unique such solution in Ω.

In the second part of the paper (Sections 5-7) we extend our investigation
to the case where F is C2,q′ finely closed. We introduce the notion of strong

solution in D = RN \ F , which is now merely C2,q′-finely open, and prove
that VF is a strong solution. By definition a strong solution belongs to a cer-
tain type of local Lebesgue space described in Section 6 below. Further we
derive integral a-priori estimates which serve to replace the Keller-Osserman
estimate in this case. Using them we prove removability and compactness
results. In addition we show that the capacitary estimates I and the Wiener
criterion for pointwise blowup, namely (1.8), persist for VF . We also estab-
lish the following version of II:

II’. For every C2,q′-finely closed set F , VF is the maximal strong solution in
F c. VF is a ∂q-large solution and it is σ-moderate.

Finally, we have the following existence and uniqueness result:

III’. Let Ω be a C2,q′-finely open set. Let {Gn} be a sequence of open sets
such that

(1.11) C2,q′(Gn∆Ω) → 0, C2,q′(∂Gn \ ∂qG̃n) → 0.

Then (1.10) possesses exactly one solution.

Note that here we do not assume that Gn is contained in Ω or contains Ω.
If Ω ⊂ Gn for every n ∈ N then (1.11) implies (1.9).
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This seems to be the first study of the subject in the setting of the C2,q′

fine topology, introducing a notion of solution in sets where the classical
distribution derivative is not applicable. However the concept of ’finely
harmonic functions’ has been studied for a long time (see e.g. [16]).

The framework presented here is natural for the study or (1.1) and (1.2)
because problems in a C2,q′ finely open set appear as limits of problems in
open domains.

Partial list of notations

• [a < f < b] means {x : a < f(x) < b}.
• A∆B = (A ∪B) \ (A ∩B).
• If f, g are non-negative functions with domain D then f ∼ g means

that there exits a constant C such that C−1f ≤ g ≤ Cf .

• A
q
∼ B means C2,q′(A∆B) = 0, A

q
⊂ B means C2,q′(A \B) = 0.

• Ã means ’the closure of A in the C2,q′ fine topology’.
• ∂qA means ’the boundary of A in the C2,q′ fine topology’.
• intqA means ’the interior of A in the C2,q′ fine topology’.

• A ⋐ B means ’A bounded and A ⊂ B ’.
• Br(x0) = {x ∈ RN : |x− x0| < r}.
• χA denotes the characteristic function of the set A.
• (B-P)q condition: A measure µ satisfies this condition if |µ|(E) = 0

for every Borel set E such that C2,q′(E) = 0.

• uµ denotes the solution of (1.2) in RN when µ is a Radon
measure satisfying the (B-P)q condition.

2. Upper estimate of the maximal solution.

In this section F denotes a non-empty compact set in RN and the maximal
solution of (1.1) in RN \F is denoted by UF . Further, for x ∈ RN , we denote

(2.1)
Tm(x) = {y ∈ RN : 2−(m+1) ≤ |y − x| ≤ 2−m},

Fm(x) = F ∩ Tm(x), F ∗
m(x) = F ∩B2−m(x),

(2.2)

WF (x) =

∞∑

−∞

2
2m
q−1C2,q′ (2

mFm(x)) ,

W ∗
F (x) =

∞∑

−∞

2
2m
q−1C2,q′ (2

mF ∗
m(x)) .

We call WF the C2,q′-capacitary potential of F . It is known that the two
functions in (2.2) are equivalent, i.e., there exists a constant C depending
only on q,N such that

(2.3) WF (x) ≤W ∗
F (x) ≤ CWF (x)

see e.g. [29].
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If K is a compact subset of a domain Ω put,

(2.4) XK(Ω) := {η ∈ C2
c (Ω) : 0 ≤ η ≤ 1, η = 1 on NK

η },

where NK
η denotes an open neighborhood of K depending on η.

The following theorem is due to Labutin [18]:

Theorem 2.1. Let q ≥ qc. There exists a constant C depending only on
q,N such that, for every compact set F ,

(2.5) UF (x) ≤ CWF (x) ∀x ∈ D.

For the convenience of the reader we provide a concise proof; components
of this proof will also be used later on in the paper. The main ingredient in
the proof is contained in the lemma stated below.

Lemma 2.2. Let R > 1 and denote by ϕR the solution of

(2.6) −∆ϕ = χBR(0) in RN , lim
|x|→∞

ϕ(x) = 0.

Given η ∈W 2,q′(RN ), 0 ≤ η ≤ 1, put

ζη = ϕR(1 − η)2q′ .

There exists a constant c̄(N, q,R) such that, for every compact set K ⊂
B1(0),

∫

RN\K
U q

Kζη dx ≤ c̄ ‖η‖q′

W2,q′ (R
N )

∀η ∈ XK(RN ),(2.7)

∫

BR(0)\K
UK(1 − η)2q′dx ≤ c̄ ‖η‖q′

W2,q′ (R
N )

∀η ∈ XK(RN ).(2.8)

Proof. For |x| ≥ R+ 2,

(2.9) 0 <ϕR(x) + UK(x) ≤ c|x|2−N , |∇ϕR(x)| + |∇UK(x)| ≤ c|x|1−N

where c = c(N, q,R). For every R′ > R and η ∈W 2,q′(RN ),
(2.10)∫

BR′ (0)\K

(
− UK∆ζη + U q

Kζη
)
dx = −

1

R′

∫

∂BR′

(UK∇ζη − ζη∇UK) · xdS.

By (2.9), the right hand side of (2.10) tends to zero as R′ → ∞ and we
obtain,

(2.11)

∫

D

(
− UK∆ζη + U q

Kζη
)
dx = 0,

where D := RN \K. Further,

∆ζη = ϕR∆(1 − η)2q′ − (1 − η)2q′χB2
+ 2∇ϕR · ∇(1 − η)2q′
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so that,

(2.12)

∫

D
U q

Kζη dx+

∫

BR(0)\K
UK(1 − η)2q′dx =

∫

D
UK

(
ϕR∆((1 − η)2q′) + 2∇ϕR · ∇((1 − η)2q′)

)
dx.

Now,

∆((1 − η)2q′) = −2q′(1 − η)2q′−1∆η + 2q′(2q′ − 1)(1 − η)2q′−2|∇η|2,

so that

(2.13)

∫

D
UKϕR∆((1 − η)2q′)dx ≤ c(I1 + I2),

where

I1 :=

∫

D
UKϕR(1 − η)2q′−1|∆η|dx, I2 :=

∫

D
UKϕR(1 − η)2q′−2|∇η|2dx.

The estimate of I1 is standard.

(2.14)

I1 ≤
(∫

D
U q

Kζη dx
)1/q( ∫

D
ϕR(1 − η)|∆η|q

′
dx

)1/q′

≤ c
(∫

D
U q

Kζη dx
)1/q

‖η‖
W2,q′ (R

N )
.

To estimate I2 we consider η ∈ XK(BR(0)) and use the interpolation in-
equality

(2.15)
∥∥|∇η|2

∥∥
Lq′ (D)

≤ c(q,N,R) ‖η‖
L∞(D)

∥∥D2η
∥∥

Lq′ (D)
.

We obtain,

(2.16)

I2 ≤
(∫

D
U q

Kζη dx
)1/q( ∫

D
ϕR|∇η|

2q′dx
)1/q′

≤ c
( ∫

D
U q

Kζη dx
)1/q ∥∥|∇η|2

∥∥
Lq′ (D)

≤ c
( ∫

D
U q

Kζη dx
)1/q

‖η‖
W2,q′ (R

N )
.

for η ∈ XK(BR(0)). Next

(2.17)

∫

D
UK∇ϕR · ∇((1 − η)2q′)dx ≤ 2q′

∫

D
UK |∇ϕR||∇η|(1 − η)2q′−1dx

≤ c
( ∫

D
U q

Kζη dx
)1/q(∫

D
ϕ
− q′

q
R (|∇ϕR||∇η|)

q′dx
)1/q′

.

In view of the fact that, for |x| ≥ R+ 2, ϕR(x) ≥ c|x|2−N , (2.9) implies

ϕ
− q′

q
R |∇ϕR|

q′ ≤ c(N, q,R).
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Hence

(2.18)

∫

D
UK∇ϕR · ∇((1 − η)2q′)dx ≤ c

( ∫

D
U q

Kζη dx
)1/q

‖η‖
W1,q′ (R

N )

Combining (2.12)–(2.18) we obtain (2.7) and (2.8) for η ∈ XK(BR(0)).
Pick ω ∈ C∞

c (BR(0) such that 0 ≤ ω ≤ 1 and ω = 1 in B1(0). Given
η ∈ XK(RN ), (2.7) and (2.8) are valid if η is replaced by ωη. However
(1 − η) ≤ (1 − ωη) and

‖ωη‖
W2,q′ (R

N )
≤ c(N, q, ω) ‖η‖

W2,q′ (R
N )
.

Therefore (2.7) and (2.8) are valid for every η ∈ XK(RN ). �

Corollary 2.3. Assume that R > 3/2. There exists a constant c1 =
c1(N, q,R) such that, for every compact set K ⊂ B1(0)

(2.19)

∫

[3/2<|x|]
U q

KϕR dx+

∫

[3/2<|x|<R]
UKdx ≤ c1C2,q′(K)

and

(2.20) sup
[3/2<|x|<R]

UK ≤ c1C2,q′(K).

Proof. Recall that

(2.21) C2,q′(K) = inf{‖η‖q′

W2,q′ (R
N )

: η ∈ XK(RN )}.

Let ω ∈ C∞
c (B3/2(0)) be a function such that 0 ≤ ω ≤ 1 and ω = 1 on

B1(0). For every compact set K ⊂ B1(0) put

(2.22) Cω
2,q′(K) = inf{‖ωη‖q′

W2,q′ (R
N )

: η ∈ XK(RN )}.

Clearly C2,q′(K) ≤ Cω
2,q′(K) and since

‖ωη‖q′

W2,q′ (R
N )

≤ c(N, q, ω) ‖η‖q′

W2,q′ (R
N )

we have

(2.23) C2,q′(K) ≤ Cω
2,q′(K) ≤ c(N, q, ω)C2,q′(K).

Let {ηn} be a sequence in XK(RN ) such that

‖ωηn‖
q′

W2,q′ (R
N )

→ Cω
2,q′(K).

For K ⊂ B1(0) (2.7) implies that,

(2.24)

∫

RN\B3/2

U q
KϕR dx ≤ lim inf

n→∞

∫

RN\K
U q

KϕR(1 − ωηn)2q′ dx

≤ c(N, q, ω)C2,q′(K).

This proves (2.19). Inequality (2.20) (with the supremum over a slightly
smaller annulus, say, [3/2+ǫ < |x| < R−ǫ] with ǫ > 0 such that R > 3/2+2ǫ)
follows from (2.19) and Harnack’s inequality applied as in [28]. �
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Proof of Theorem 2.1. Inequality (2.20) implies,

(2.25) UF (x) ≤ c(N, q)ρF (x)−2/(q−1)C2,q′
(
F/ρF (x)

)

for every every compact set F ⊂ RN and every x ∈ RN \ F such that
ρF (x) ≥ (3/2)diamF . Recall that ρF (x) := dist (x, F ).

The implication relies on the similarity transformation associated with
(1.1). For any a > 0, we have

(2.26) UF (x) = a−2/(q−1)UF/a(x/a) ∀x ∈ RN \ F.

Assume, as we may, that F ⊂ BR(0), R = diamF . Fix a point x̄ ∈ RN \ F
such that a := ρF (x̄) ≥ R. Applying (2.20) to the set K = 3F/2a, we obtain

UF (x̄) = (2a/3)−2/(q−1)UK(3x̄/2a)

≤ c(N, q)a−2/(q−1)C2,q′(K) ≤ c′(N, q)a−2/(q−1)C2,q′(F/a).

Next we show that (2.25) is equivalent to (2.5). Let x ∈ D and put

(2.27) M(x) := min{m ∈ N : 2−m < ρF (x)}.

Then Fk(x) = ∅ for all k ≥M(x) and consequently

WF (x) =

M(x)∑

k=−∞

2
2k

q−1C2,q′

(
2kFk(x)

)
≤ C2

2M(x)
q−1 sup

k≤M(x)
C2,q′(2

kFk(x)).

However it is known that there exists a constant A depending only on q,N
such that

(2.28) C2,q′(aE) ≤ Aa
N− 2

q−1C2,q′(E) ∀a ∈ (0, 1),

(see e.g. [29]). In addition, for every ℓ > 1 there exists a constant A,
depending on q,N, ℓ, such that

(2.29) C2,q′(aE) ≤ Aa
N− 2

q−1C2,q′(E) ∀a ∈ (1, ℓ).

Inequality (2.28) implies that

WF (x) ≤ C12
2M(x)

q−1 C2,q′(2
M(x)F )

≤ C2ρF (x)
−2
q−1C2,q′(2F/ρF (x)) ≤ C3ρF (x)

−2
q−1C2,q′(F/ρF (x)),

where Ci are constants depending only on q,N . Thus (2.5) implies (2.25).
To prove the implication in the opposite direction we use the following

facts:

For every compact set F there exists a sequence of bounded domains {Dn}
such that

(2.30) (i) ∪Dn = D := F c, (ii) Dn ⊂ Dn+1, (iii) ∂Dn is Lipschitz.

Such a sequence is called a Lipschitz exhaustion of D.
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If un denotes the maximal solution of (1.1) in Dn then un is the unique
large solution of (1.1) in Dn (see [27]), un > un+1 in Dn and UF = limun.

Let Ei, i = 1, . . . , k be compact sets and E := ∪k
1Ei. One can choose

a Lipschitz exhaustion {Di,n}
∞
n=1 of Di := Ec

i , i = 1, . . . , k, such that the

sequence {Dn}, Dn = ∩k
i=1Di,n, is a Lipschitz exhaustion of D. Let ui,n be

the large solution in Di,n. Then vn = max(u1,n, . . . , uk,n) is a subsolution

while wn =
∑k

i=1 ui,n is a supersolution of (1.1) in Dn. Hence un, the unique
large solution of (1.1) in Dn, satisfies vn ≤ un ≤ wn. Consequently

(2.31) max(UE1 , . . . , UEk
) ≤ UE ≤

k∑

i=1

UEi .

Returning to the notation of Theorem 2.1, fix x̄ ∈ D and put

i(x̄) = max{i ∈ Z : F ⊂ B2−i(x̄)}.

Then F = ∪
M(x̄)
i(x̄)

Fm(x̄) and, by (2.31) and (2.5),

UF ≤

M(x̄)∑

m=i(x̄)

UFi(x̄) ≤ C

M(x̄)∑

m=i(x̄)

2
2m
q−1C2,q′ (2

mFm(x̄)) .

In particular, UF (x̄) ≤ CWF (x̄). Thus (2.25) implies (2.5).

3. Lower estimate of the maximal solution

We need the following well-known result:

Proposition 3.1. Let µ be a positive measure in W−2,q
loc

(RN ) and let Ω be a
smooth domain with compact boundary. Then there exists a unique solution
of each of the problems

(3.1) −∆u+ uq = µ in Ω, u = 0 on ∂Ω

and

(3.2) −∆u+ uq = µ in Ω, u = ∞ on ∂Ω.

If Ω is the whole space then there exists a unique solution uµ of the equation

(3.3) −∆u+ uq = µ in RN .

In each case the solution increases monotonically with µ. Finally

uµ = lim
R→∞

uR
µ,0 = lim

R→∞
uR

µ,∞

where uR
µ,0 and uR

µ,∞ are the solutions of (3.1) and (3.2) respectively, when

Ω = BR(0).
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When µ ∈ L1
loc(R

N ) the result is due to Brezis [8] and Brezis-Strauss [9].
In the case of a smooth bounded domain Ω, with µ ∈ W−2,q(Ω), the result
is due to Baras and Pierre [6]. The final observation is easily verified.

IfD is a smooth bounded domain and µ is a positive measure in W−2,q(D)
we denote by uµ,D the solution of (1.2) in D vanishing on the boundary ∂D.
If F is a compact subset of RN , we define the maximal σ-moderate solution
UF of (1.1) in F c := RN \ F by

VF := sup{uµ : µ ∈ M+(RN ) ∩W−2,q(RN ), µ(F c) = 0}.(3.4)

Obviously,

(3.5) UF ≤ UF .

We derive a lower estimate for UF , equivalent to the upper estimate for
UF obtained in the previous section. More precisely:

Theorem 3.2. Assume that F is a compact subset of Ba(0) and let D be
a bounded smooth domain such that B6a(0) ⊂ D. Then, for every x ∈
B2a(0) \ F , there exists a positive measure µx ∈ W−2,q(RN ), supported in
F , such that

(3.6) cWF (x) ≤ uµx,D(x) ≤ VF (x),

where c is a positive constant depending only on N, q. In particular,

(3.7) c(N, q)WF (x) ≤ VF (x) ∀x ∈ RN \ F.

Proof. Let λ be a bounded Borel measure supported in D. We denote by
GD[λ] the Green potential of the measure in D:

(3.8) GD[λ](·) :=

∫

D
gD(·, ξ) dλ(ξ),

where gD denotes Green’s function in D.
If µ is a positive measure in W−2,q(D) then,

uµ,D ≤ GD[µ]

and consequently

(3.9) uµ,D = GD[µ] − GD[uq
µ,D] ≥ GD[µ] − GD[(GD[µ])q].

Given x0 ∈ B2a \ F we construct a measure µx0 ∈ W−2,q(RN ), concen-
trated on F such that (3.6) holds. By shifting the origin to x0 we may
assume that x0 = 0. We observe that (3.6) is invariant with respect to di-
lation. Therefore we may assume that a = 1/2. Following the shift and the
dilation we have

(3.10) F ⊂ B1(0), B2(0) ⊂ D, 0 ∈ F c,

and we have to prove (3.6), with an appropriate measure µ0, at x = 0. The
right inequality in (3.6) is trivial. Therefore we have to prove only that, for
some non-negative measure µ0 ∈W−2,q(RN ) supported in F ,

(3.11) c(N, q)WF (0) ≤ uµ0,D(0).
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In view of (3.10),

uµ0,B2(0) ≤ uµ0,D.

Therefore it is enough to prove (3.11) for D = B2(0) which we assume in
the rest of the proof.

In what follows we shall freely use the notation introduced in the previous
section and write simply Fn, Tn instead of Fn(0), Tn(0) etc. . Observe that
in the present case Fn = ∅ for n ≤ −1 and F ∗

n = F for n ≤ 0. For every
non-negative integer n, let νn denote the capacitary measure of 2nFn. Thus,
νn is a positive measure in W−2,q(RN ) supported in 2nFn which satisfies

(3.12) νn(2nFn) = C2,q′(2
nFn) = ‖νn‖

q
W−2,q .

Let µn, µ be the Borel measures in RN given by

(3.13) µn(A) = 2−n(N−2q′)νn(2nA) n = 0, 1, 2, . . . µ =

∞∑

0

µn.

Thus

suppµn ⊂ Fn, suppµ ⊂ F,(3.14)

µn(Fn) = 2−n(N−2q′)C2,q′(2
nFn), µ ∈W−2,q(RN ).(3.15)

Observe also that, for x, ξ ∈ B1(0),

(3.16) gD(x, ξ) ≈ |x− ξ|2−N .

The notation f ≈ h means that there exists a positive constant c depending
only on N, q such that c−1h ≤ f ≤ ch.

The remaining part of the proof consists of a series of estimates of the
terms on the right hand side of (3.9) for µ as above.

Lower estimate of GD[µ] . Using (3.15) and (3.16) we obtain,

cN2−(n+1)(2−N) ≤ g(0, ξ) ∀ξ ∈ B1(0),

(3.17)

GD[µ](0) =
∑

n≥0

∫

Fn

g(0, ξ)dµn(ξ) ≥ c
∑

n≥0

∫

Fn

2n(N−2) dµn(ξ)

=
∑

n≥0

c2−2n/(q−1)C2,q′(2
nFn) = cWF (0).

Upper estimate of GD[(GD[µ])q](0). We prove that

(3.18)

GD[(GD[µ])q](0) =

∫

D
gD(0, ξ)GD[µ]q(ξ)dξ

=

∞∑

−1

∫

Tk

gD(0, ξ)
( ∑

n≥0

GD[µn](ξ)
)q
dξ ≤ c(N, q)WF (0).
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This estimate requires several steps. Denote

I1 =

∞∑

k=3

∫

Tk

gD(0, ξ)
( k−3∑

n=0

GD[µn](ξ)
)q
dξ(3.19)

I2 =

∞∑

−1

∫

Tk

gD(0, ξ)
( ∑

n>k+2

GD[µn](ξ)
)q
dξ(3.20)

I3 =
∞∑

−1

∫

Tk

gD(0, ξ)
( k+2∑

n=(k−2)+

GD[µn](ξ)
)q
dξ(3.21)

Then

(3.22) GD[(GD[µ])q](0) ≤ 3q(I1 + I2 + I3)

and we estimate each of the terms on the right hand side separately.

Estimate of I1. We start with the following facts:

gD(0, ξ) ≤ cN2k(N−2) ∀ξ ∈ Tk

and

gD(ξ, z) ≤ cN2−n(2−N) ∀(ξ, z) ∈ Tk × Fn.

These inequalities and (3.15) imply, for every ξ ∈ Tk,

GD[µn](ξ) =

∫

Fn

gD(ξ, z)dµn(z) ≤ cN2n(N−2)µn(Fn)

= cN2n(N−2)2−n(N−2q′)C2,q′(2
nFn) = cN22n/(q−1)C2,q′(2

nFn).

Hence

(3.23)

I1 ≤ c(N, q)

∞∑

k=3

2k(N−2)

∫

Tk

( k−3∑

n=0

22n/(q−1)C2,q′(2
nFn)

)q
dξ

≤
∞∑

k=3

2k(N−2))2−kN
( k−3∑

n=0

22n/(q−1)C2,q′(2
nFn)

)q

≤
M+1∑

k=3

2−2k
( k−3∑

n=0

22n/(q−1)C2,q′(2
nF ∗

n)
)q
.

where M = M(0) is defined as in (2.27). Further, we claim that,

(3.24)

I ′1 :=
M+1∑

k=3

2−2k
( k−3∑

n=0

22n/(q−1)C2,q′(2
nF ∗

n)
)q

≤

c(N, q)

M+1∑

n=0

22n/(q−1)C2,q′(2
nF ∗

n).

This inequality is a consequence of the following statement proved in [29,
App. B]:
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Lemma 3.3. Let K be a compact set in RN and let α > 0 and p > 1 be
such that αp ≤ N . Put

(3.25) φ(t) = Cα,p

(1

t
(K ∩Bt)

)
= Cα,p

(1

t
K ∩B1

)
, ∀t > 0.

Put rm = 2−m. Then, for every γ ∈ R and every k ∈ N,

(3.26)
1

c

k∑

m=i+1

rγ
mφ(rm) ≤

∫ ri

rk

tγφ(t)
dt

t
≤ c

k∑

m=i+1

rγ
m−1φ(rm−1).

where c is a constant depending only on γ, q, N .

Actually, in [29] this result was proved in the case α = 2/q, p = q′, in RN−1

assuming 2/(q − 1) ≤ N − 1. However the proof applies to any α, p such
that αp ≤ N . In particular it applies to the present case, namely, α = 2,
p = q′ with 2q′ ≤ N .

We proceed to derive (3.24) from the above lemma. Put rm = 2−m,
γ = − 2

q−1 and define φ and ϕ by

(3.27) φ(rm) := C2,q′(r
−1
m F ∗

m), ϕ(r, s) :=

∫ s

r
tγφ(t)

dt

t
0 < r < s.

By Lemma 3.3,
(3.28)

1

c

k∑

m=i+1

rγ
mC2,q′(r

−1
m F ∗

m) ≤ ϕ(rk, ri) ≤ c
k∑

m=i+1

rγ
m−1C2,q′(r

−1
m−1F

∗
m−1),

for every i, k ∈ N, i < k. The constant c depends only on q, N, Q. Hence
(taking into account that F ∗

m = ∅ for m > M + 1)

(3.29)

ϕ(0, ri) := lim
r↓0

ϕ(r, ri) ≤ c
∞∑

m=i+1

rγ
m−1C2,q′(r

−1
m−1F

∗
m−1)

≤ c

M+1∑

m=i

rγ
mC2,q′(r

−1
m F ∗

m).

Further, by (3.28),

I ′1 =
M+1∑

k=3

r2k

( k−3∑

n=0

rγ
nC2,q′(r

−1
n F ∗

n)
)q

≤
M+1∑

k=3

r2kϕ
q(rk−3, 1).(3.30)

Since ϕ(·, s) is non-increasing,

(3.31)
M+1∑

k=3

r2kϕ
q(rk−3, 1) ≤ c

∫ 1

rM−2

t2ϕq(t, 1)
dt

t
≤ c

∫ 1

0
tϕq(t, 1) dt.



OPEN AND FINELY OPEN SETS 15

By (3.29)
∫ 1

0
tϕq(t, 1) dt ≤ −c

∫ 1

0
t2ϕq−1(t, 1)ϕ̇(t, 1)dt(3.32)

≤ −c

∫ 1

0
ϕ̇(t, 1)dt ≤ cϕ(0, 1) ≤ c

( M+1∑

m=0

rγ
mC2,q′(r

−1
m F ∗

m)

Finally (3.30)–(3.32) imply (3.24). In turn, (3.23), (3.24) and (2.3) imply,

(3.33) I1 ≤ c(N, q)WF (0).

Estimate of I2. Let σ > 0 and {an} be a sequence of positive numbers.
Then,

∞∑

n=k

an ≤ 2−σk
( 1

1 − 2−σq′

) 1
q′

( ∞∑

n=k

2σnqaq
n

) 1
q
.

Applying this inequality with an = GD[µn](ξ) we obtain

(3.34)

I2 ≤ c(N, q, σ)

∞∑

k=−1

∫

Tk

gD(0, ξ)2−σqk
∞∑

n=k+2

2σnqGD[µn](ξ)q dξ

≤ c
∑

n≥1

2σnq
∑

1≤k<n−2

∫

Tk

2−σkqgD(0, ξ)GD [µn](ξ)qdξ

≤ c
∑

n≥1

2σnq
∑

1≤k<n−2

∫

Tk

2−σkq2k(N−2)GD[µn](ξ)qdξ,

where, in the last inequality, we used the fact that

gD(0, ξ) ≤ cN2k(N−2) ∀ξ ∈ Tk.

Choosing σ = (N − 1)/q we obtain,

(3.35) I2 ≤ c(N, q)
∑

n≥1

2n(N−1)
∑

1≤k<n−2

∫

Tk

2−kGD[µn](ξ)qdξ.

Next we estimate the term

(3.36) Jk,n :=

∫

Tk

GD[µn](ξ)qdξ,

in the case 1 ≤ k < n− 2. In view of (3.13) we have

GD[µn](ξ) =

∫

Fn

gD(ξ, z)dµn(z) = 2−n(N−2q′)

∫

2nFn

g̃(ξ′, z′)dνn(z′)

where

ξ′ = 2nξ, g̃(ξ′, z′) = gD(2−nξ′, 2−nz′).

Observe that, if ξ ∈ Tk then ξ′ ∈ Tk−n. Thus

Jk,n = 2−nN

∫

Tk−n

(
2−n(N−2q′)

∫

2nFn

g̃(ξ′, z′)dνn(z′)
)q
dξ′.
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Since

g̃(ξ′, z′) ≤ cN2−n(2−N)
∣∣ξ′ − z′

∣∣2−N

we obtain

(3.37) Jk,n ≤ c(N, q)2−n(N−2q′)

∫

Tk−n

( ∫

2nFn

∣∣ξ′ − z′
∣∣2−N

dνn(z′)
)q
dξ′.

Since z′ ∈ 2nFn ⊂ B1(0) while ξ′ ∈ Tk−n, k−n < −2 it follows that |ξ′| ≥ 2
and consequently

|ξ′ − z′| ≥
1

2
|ξ′|.

Therefore∫

Tk−n

(∫

2nFn

∣∣ξ′ − z′
∣∣2−N

dνn(z′)
)q
dξ′ ≤ cνn(2nFn)q

∫

Tk−n

|ξ′|(2−N)q dξ′

≤ c(N, q)C2,q′(2
nFn)q

∫ 2n−k

2n−k−1

r(2−N)q+N−1dr ≤ c(N, q)C2,q′(2
nFn)A(q,N)

where we used the fact that C2,q′(2
nFn) ≤ C2,q′(B1) and

A(q,N) =

{
2(2−N)q+N if q > qc

ln 2 if q = qc.

Thus, for k ≥ n− 2 ≥ −2,

(3.38)
Jk,n ≤ c(N, q)2−n(N−2q′) ‖νn‖

q
W−2,q (R

N )

= c(N, q)2−n(N−2q′)C2,q′(2
nFn).

By (3.35) and (3.38),

(3.39)

I2 ≤ c(N, q)
∑

n≥0

2n(N−1)
∑

k≥n−2

2−k2−n(N−2q′)C2,q′(2
nFn)

≤ c(N, q)
∑

n≥0

2n(−2+2q′)C2,q′(2
nFn)

= c(N, q)
∑

n≥0

2
2n

q−1C2,q′(2
nFn) = c(N, q)WF (0).

Estimate of I3 By (3.21) and the notation (3.36) we have

(3.40)

I3 ≤ 5q
∞∑

k=−1

∫

Tk

gD(0, ξ)

k+2∑

n=(k−2)+

GD[µn](ξ)q dξ

≤
∞∑

k=−1

2k(N−2)
k+2∑

n=(k−2)+

Jk,n.

By (3.37)

Jk,n ≤ c(N, q)2−n(N−2q′)

∫

Tk−n

(∫

2nFn

∣∣ξ′ − z′
∣∣2−N

dνn(z′)
)
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and, in the present case −2 ≤ n − k ≤ 2. Therefore Tk−n ⊂ B4(0) and
consequently, for (ξ′, z′) in the domain of integration of the integral above,

∣∣ξ′ − z′
∣∣2−N

≈ B2(ξ
′, z′)

where B2 denotes the Bessel kernel with index 2. Hence,
∫

Tk−n

(∫

2nFn

∣∣ξ′ − z′
∣∣2−N

dνn(z′)
)q
dξ′ ≤

c(N, q) ‖νn‖
q
W−2,q (R

N )
= c(N, q)C2,q′(2

nFn).

Therefore,

(3.41)

I3 ≤ c(N, q)

∞∑

k=−1

2k(N−2)
k+2∑

n=(k−2)+

2−n(N−2q′)C2,q′(2
nFn)

≤ c(N, q)

∞∑

k=−1

2k(N−2)2−k(N−2q′)C2,q′(2
kFk)

= c(N, q)

∞∑

k=−1

22k/(q−1)C2,q′(2
kFk) ≤ c(N, q)WF (0)

Combining (3.22) with the inequalities (3.33), (3.39) and (3.41) we obtain

(3.42) GD[(GD[µ])q](0) ≤ c(N, q)WF (0).

Finally, we combine (3.9) with (3.17) and (3.42) and replace µ by ǫµ, ǫ > 0,
to obtain

(3.43) uǫµ(0) ≥ (c1(N, q)ǫ− c2(N, q)ǫ
q)WF (0).

Choosing ǫ := (c1(N, q)/2c2(N, q))
1/(q−1 we obtain (3.11) with c(N, q) =

c1(N, q)ǫ/2. �

4. Properties of UF for F compact

As before we assume that F is a compact set. Combining the capacitary
estimates contained in Theorems 2.1, 3.2 and (2.3)we have

(4.1) UF ∼WF ∼W ∗
F in D = RN \ F

In the present section we use this result in order to establish several prop-
erties of the maximal solution.

4.1. The maximal solution is σ-moderate.

Theorem 4.1. UF = VF ; consequently UF is σ-moderate.

Proof. By (4.1) there exists a constant c = c(N, q) such that

(4.2) UF ≤ cVF .
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If the two solutions are not identical we have

(4.3) VF (x) < UF (x) ∀x ∈ D.

Let α = 1
2c and put v = (1 + α)VF (x) − αUF . Then αVF (x) < v < UF and

(as 0 < α < 1) αVF (x) is a subsolution of (1.1) in D. As in [24] we find
that v is a supersolution. It follows that there exists a solution w such that
αVF (x) ≤ w ≤ v < VF (x). But, by the definition of VF (see (3.4)), it is
easy to see that the smallest solution of (1.1) dominating αVF (x) is VF (x).
Therefore w = VF (x). This contradicts (4.3).

By a standard argument, the definition of VF (x) implies that it is σ-
moderate. �

4.2. A continuity property of
∫
UK relative to capacity.

Lemma 4.2. There exists a positive constant c depending only on N, q such
that, for every compact set K ⊂ B1(0), there exists an open neighborhood
NK of K such that

(4.4) C2,q′(NK) ≤ 4C2,q′(K) and

∫

B1(0)\NK

UK dx ≤ cC2,q′(K).

Note. In general
∫
B1(0)\K

UK dx may be infinite. Of course, (4.4) is mean-

ingful only if 4C2,q′(K) < C2,q′(B1(0)).

Proof. Let c̄ be the constant in (2.7) with R = 2. Assume that

(4.5) C2,q′(K) ≤ a := C2,q′(B1)/8

and pick γ1 so that

(4.6) 0 < γ1 ≤ C2,q′(K).

By Lemma 2.2 and (2.21) there exists η ∈ XK(RN ) such that

(4.7)

‖η‖q′

W2,q′ (R
N )

≤ C2,q′(K) + γ1,
∫

B2(0)\K
UK(1 − η)2q′ dx ≤ c̄(C2,q′(K) + γ1).

Fix η and denote,

K(α) = {x ∈ B1(0) : (1 − α) ≤ η} ∀α ∈ (0, 1).

Then K ⊂ K(α) and

C2,q′(K(α)) ≤ (1 − α)−q′ ‖η‖q′

W2,q′ (R
N )

≤ (1 − α)−q′(C2,q′(K) + γ1) ≤
2C2,q′(K)

(1 − α)q
′ .

Therefore, using (4.5), we obtain

(1 − α)−q′ = 2 =⇒ C2,q′(K(α)) ≤ 4C2,q′(K) ≤ C2,q′(B1)/2.
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Hence, by (4.7),

(4.8)

∫

B2(0)\K(α)

UK dx ≤ c̄α−2q′(C2,q′(K) + γ1) ≤ (4c̄)C2,q′(K)

where α = 1 − 2−1/q′ . �

4.3. Wiener criterion for blow up of UF .

Theorem 4.3. For every point y ∈ F ,

(4.9) lim
F c∋x→y

UF (x) = ∞ ⇐⇒ WF (y) = ∞.

Proof. Without loss of generality we may assume that y = 0 and that F ⊂
B1(0). In order to justify the second part of this remark we observe that,
for every m ∈ N,

(4.10)
2−2m/(q−1)UF (2−mx) = U2mF (x) ∀x ∈ (2mF )c,

WF (0) = 22m/(q−1)W2mF (0).

Denote

(4.11) am(x) = C2,q′ (2
mFm(x)) , a∗m(x) = C2,q′ (2

mF ∗
m(x))

There exists a constant c = c(N, q) such that for every Borel set A ⊂ B1(0),

(4.12) C2,q′(2A) ≤ cC2,q′(A).

If x, ξ ∈ RN , |x− ξ| ≤ rm = 2−m and 0 ≤ k ≤ m then

2kF ∗
k (ξ) = 2k(F ∩Brk

(ξ)) ⊂ 2k(F ∩B2rk
(x)) = 2(2k−1(F ∩Brk−1

(x)).

Hence

(4.13) a∗k(ξ) ≤ ca∗k−1(x) for 0 ≤ k ≤ m,
m∑

k=0

22k/(q−1)a∗k(ξ) ≤ cW ∗
F (x).

As x→ ξ, m→ ∞ and we obtain

(4.14) W ∗
F (ξ) ≤ c(N, q) lim inf

x→ξ
W ∗

F (x).

By (4.1), (4.14) implies that (4.9) holds in the direction ⇐= .
In order to prove (4.9) in the opposite direction we derive the inequality,

(4.15) lim inf
F c∋x→0

W ∗
F (x) ≤ c(N, q)W ∗

F (0).

If W ∗
F (0) = ∞ there is nothing to prove. Therefore we assume that

W ∗
F (0) =

M(0)∑

−∞

2
2m
q−1C2,q′ (2

mF ∗
m(0)) <∞.
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By Lemma 4.2, with Km = 2mF ∗
m(0), there exists an open neighborhood

Gm of Km such that

C2,q′(Gm) ≤ 4C2,q′(Km) and

∫

B1(0)\Gm

UKmdx ≤ c(N, q)C2,q′(Km).

Put T ′ := [5/8 ≤ |x| ≤ 7/8] and let Em be a compact subset of T ′ \ Gm

such that

C2,q′(Em) >
1

2
C2,q′(T

′ \Gm) ≥
1

2
C2,q′(T

′) − 2C2,q′(Km)

≥
1

2
C2,q′(T

′) − 2
1− 2m

q−1W ∗
F (0).

Therefore, there exists an integer m0 such that, for m ≥ m0,

(4.16)

inf
Em

UKm ≤ |Em|−1

∫

Em

UKmdx

≤ |Em|−1c(N, q)C2,q′(Km) ≤ c(N, q)C2,q′(Km)/C2,q′(Em)

< 4c(N, q)C2,q′(B1(0))
−1C2,q′(Km) = c(N, q)C2,q′(Km).

Hence, by (4.10),

inf
2−mEm

UF ∗
m(0) = 22m/(q−1) inf

Em

UKm < c(N, q)22m/(q−1)C2,q′(Km),

which implies, for m ≥ m0,

(4.17) inf
(2−mT ′)\F

UF ∗
m(0) ≤ c(N, q)22m/(q−1)C2,q′(Km) ≤ c(N, q)W ∗

F (0).

Fix j > m0 and let ξ ∈ (2−jT ′) \ F . Denote

F j := F \B2−j+1(0), Ek,j := F j ∩{x ∈ B1(0) : |x− ξ| ≤ 2−k}, j̄ :=

[
j

8

]
.

Since dist (ξ, F j) ≥ 2−j/8,

WF j(ξ) =

j̄∑

−∞

22k/(q−1)C2,q′(2
kEk,j).

For k ≤ j̄

x ∈ Ek,j =⇒ |x| ≤ 2−k + 2−j ≤ 2−k + 2−8(k−1) ≤ 292−k.

Thus Ek,j ⊂ F ∗
k−9 and

(4.18) WF j(ξ) =

j̄∑

−∞

22k/(q−1)C2,q′(2
kF ∗

k−9(0)) ≤ c(N, q)W ∗
F (0)

for every ξ ∈ (2−jT ′) \ F . By (4.17), we can choose ξj ∈ (2−jT ′) \ F such
that

UF ∗
j (0)(ξ

j) ≤ c(N, q)W ∗
F (0).
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Hence, by (4.18), bearing in mind that UK ∼WK ∼W ∗
K for every compact

K we obtain

(4.19) UF (ξj) ≤ UF ∗
j (0)(ξ

j) + UF j(ξj) ≤ c(N, q)W ∗
F (0) ∀j ≥ m0.

This implies (4.15) and completes the proof. �

Corollary 4.4. Define

W̃F (x) = lim inf
y→x

WF (y) ∀x ∈ RN .

Then, W̃F is l.s.c. in RN and W̃F ∼ WF . In addition, W̃F satisfies Har-
nack’s inequality in compact subsets of RN \ F .

Proof. The lower semi-continuity of W̃F follows from its definition. The

equivalence W̃F ∼ WF follows from (4.14) and (4.15). The last statement

follows from the fact that UF satisfies Harnack’s inequality and W̃F ∼ UF .
�

4.4. UF is an almost large solution.

Theorem 4.5. For every compact set F ⊂ RN , UF is an almost large
solution.

Proof. In view of Theorem 4.3 it is enough to show that there exists a set
A ⊂ F such that

(4.20) C2,q′(A) = 0 and WF (y) = ∞ ∀y ∈ F \A.

It is known (see [1, Ch. 6]) that every point in F , with the possible exception
of a set A1 of C2,q′ capacity zero, is a C2,q′-thick point of F , i.e.,

(4.21) Λ2,q′

F (y) :=
∞∑

0

(
22m/(q−1)C2,q′(F

∗
m(y))

)q−1
= ∞ ∀y ∈ F \ A1.

We show that,

(4.22) Λ2,q′

F (y) ≤ c(N, q)(WF (y))q̃, q̃ = min(1, q − 1) ∀q > 1.

Recall that,

C2,q′(F
∗
m(y)) ≤ c(N, q)2−2m/(q−1)C2,q′(2

mF ∗
m(y))

so that

(4.23) Λ2,q′

F (y) ≤ c(N, q)

∞∑

0

(
C2,q′(2

mF ∗
m(y))

)q−1
.
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In view of the fact that C2,q′(2
mF ∗

m(y)) ≤ C2,q′(B1), if q ≥ 2, (4.23) implies
(4.22). If 1 < q < 2,

∞∑

0

(
C2,q′(2

mF ∗
m(y))

)q−1
≤

( ∞∑

0

2
− 2m(2−q)

q−1

)2−q( ∞∑

0

22m/(q−1)C2,q′(2
mF ∗

m(y))
)q−1

,

which again implies (4.22). Clearly (4.21) and (4.22) imply (4.20). �

5. ’Maximal solutions’ on arbitrary sets and uniqueness

For any Borel set E put

T (E) := {µ ∈W−2,q
+ (RN ) : µ(Ec) = 0},(5.1)

VE := sup{uµ : µ ∈ T (E)},(5.2)

where uµ denotes the solution of (3.3). If C2,q′(E) = 0 the only measure

µ ∈W−2,q
+ (RN ) that is concentrated on E is the measure zero. Therefore in

this case VE = 0.
By Theorem 4.1,

(5.3) E compact =⇒ VE = UE .

Therefore the definition of VE can be seen as an extension, to general sets,
of the notion of ’maximal solution’, previously defined for compact sets.
However, by its definition, VE dominates only σ-moderate solutions in Ec,
i.e., solutions of the form limuµn where {µn} is an increasing sequence of

measures in W−2,q
+ (RN ) concentrated in E.

At this stage, it is not clear in which sense VE is a solution of (1.1) in Ec,
which, in general, is not an open set. This question will be discussed in the
following sections.

The C2,q′ fine topology (see [1] for definition and details) plays a central

role in the remaining part of the paper. If A is a set in RN we denote by

Ã the closure of A in the C2,q′ fine topology and by intqA the interior of A
relative to this topology.

Recall that a set A ⊂ RN is C2,q′-quasi open if, for every ǫ > 0, there
exists an open set Gǫ such that

A ⊂ Gǫ, C2,q′(Gǫ \A) < ǫ.

A set is C2,q′-quasi closed if its complement is quasi open.
Every C2,q′-finely open set is C2,q′-quasi-open. On the other hand, if E is

C2,q′-quasi open then (see [1, Section 6.4])

C2,q′(E \ intqE) = 0.
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This implies that every C2,q′-quasi closed set F can be written in the form

F =

∞⋃

n

Kn

⋃
Z,

where {Kn} is an increasing sequence of compact sets and

C2,q′(F \Kn) → 0, C2,q′(Z) = 0.

Furthermore, if E is C2,q′-quasi closed then

C2,q′(Ẽ \ E) = 0.

In the first two theorems below we describe some basic properties of VE.
These results are then used in order to establish a rather general uniqueness
result for almost large solutions.

Theorem 5.1. Let F be a C2,q′-quasi closed set. Then

(5.4) lim
F c∋x→y

VF (x) = ∞ for C2,q′-a.e. y ∈ F

and VF satisfies

(5.5)
1

c
WF ≤ VF ≤ cWF ,

where c depends only on N, q. Finally, for every x ∈ F c,

(5.6) WF (x) <∞ =⇒ lim
C2,q′ (E)→0

E⊂F

VE(x) = 0.

Proof. There exists an increasing sequence of compact sets {Kn} such that
Kn ⊂ F and C2,q′(F \Kn) → 0. By Theorem 4.1 UKn = VKn and, obviously,
VKn ≤ VF . By Theorem 4.5, (5.4) holds if F is replaced by Kn. Therefore,
by taking the limit as n→ ∞, we obtain (5.4) in the general case.

If µ ∈ TF then uµ = lim uµn where µn = µχKn . Therefore

(5.7) VF = limUKn .

Since UKn satisfies estimates (2.5) and (3.6) for every n, it follows that VF

satisfies (5.5).
We turn to the proof of the last assertion. Let {Ej} be a sequence of

subsets of F such that C2,q′(Ej) → 0. We must show that

(5.8) ξ ∈ F c, lim supVEj (ξ) > 0 =⇒ WF (ξ) = ∞.

By taking a subsequence we may assume that there exists a > 0 such
that VEj (ξ) > a for all j. Since VẼj

(ξ) = VEj(ξ) and C2,q′(Ej) → 0 implies

C2,q′(Ẽj) → 0 we may assume that the sets Ej are C2,q′-finely closed. By
(5.7) it follows that, for every j, there exists a compact set Kj ⊂ Ej such
that

(5.9) UKj (ξ) > a.
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By negation, suppose that WF (ξ) <∞. Then

lim
J→∞

∞∑

J

22j/(q−1)C2,q′(2
jFj(ξ)) → 0,

Fj being defined as in (2.1). Pick a positive integer J such that

(5.10)
∞∑

J

22j/(q−1)C2,q′(2
jFj(ξ)) < a/4C,

where C is the constant in (2.5).
Pick a subsequence of {Kj}, say {Kjn}, such that C2,q′(Kjn) < ǫ/2n,

with ǫ to be determined. The set A :=
⋃∞

1 Kjn is C2,q′-quasi closed and
C2,q′(A) ≤

∑∞
1 C2,q′(Kjn) < ǫ. Further,

WA(ξ) =

∞∑

−∞

22j/(q−1)C2,q′(2
jAj(ξ)) ≤

−1∑

−∞

22j/(q−1)C2,q′(2
jA)

+

J−1∑

0

22j/(q−1)C2,q′(2
jA) +

∞∑

J

22j/(q−1)C2,q′(2
jFj(ξ)),

where Aj(ξ) is defined as in (2.1) with F replaced by A. (We used the fact
that Aj(ξ) ⊂ A ⊂ F .) By (2.28),

−1∑

−∞

22j/(q−1)C2,q′(2
jA) ≤ c1(N, q)

−1∑

−∞

2jNC2,q′(A) ≤ c2(N, q)ǫ.

By (2.29),

J−1∑

0

22j/(q−1)C2,q′(2
jA) ≤ c1(N, q, J)

J−1∑

0

22jNC2,q′(A) ≤ c2(N, q, J)ǫ.

Therefore, choosing ǫ = (a/4C)(c2(N, q) + c2(N, q, J))−1 and using (5.10)
we obtain,

WA(ξ) < a/2C.

Since VA satisfies (2.5) we conclude that VA(ξ) < a/2. As

UKjn
= VKjn

≤ VA,

this contradicts (5.9). �

Theorem 5.2. Let F be a C2,q′-quasi closed set and let {Fn} be an increas-
ing sequence of compact subsets of F such that C2,q′(F \ Fn) → 0. Then

(5.11) VF = limUFn .

Furthermore, there exists an increasing sequence of non-negative measures
{µn} ⊂W−2,q(RN ) such that µn(F c

n) = 0 and uµn → VF in F c.
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Finally, for every y ∈ F ,

(5.12) WF (y) <∞ ⇐⇒ lim inf
F c∋x→y

VF (x) <∞.

Proof. From the definition of VF it follows that VF = lim VFn . By Theo-
rem 4.1, VFn = UFn .

Let ξ ∈ Dn = F c
n and let {τn

k }
∞
k=1 be a sequence in W−2,q(RN ) such that

τn
k (Dn) = 0 and uτn

k
(ξ) → UFn(ξ). Note that wn

m = max(uτn
1
, . . . , uτn

m
) is a

subsolution of the equation

−∆w +wq = µn
m := max(τn

1 , . . . , τ
n
m) in Dn.

Therefore vn
m = uµn

m
is the smallest solution in Dn dominating wn

m. The
sequence {vn

m}∞m=1 is increasing, bounded by UFn and vn := limm→∞ vn
m is

a solution of (1.1) in Dn such that vn(ξ) = UFn(ξ). The fact that vn ≤ UFn

and equals it at a point ξ ∈ Dn implies that vn = UFn .
Put

(5.13) τ (n) :=
∑

m

an
mµ

n
m, an

m := 2−m ‖µn
m‖

W−2,q
+ (RN )

.

Then

(5.14) UFn = lim
k→∞

u
kτ(n) .

Finally, if µn :=
∑n

1 τ
(j) then {µn} is increasing and uµn → VF .

The last statement of the theorem is proved exactly as in the case that F
is compact (see Theorem 4.3). �

Theorem 5.3. Let E be a Borel set such that C2,q′(E) > 0. Then

(5.15) VE = V
Ẽ

and, if µ ∈W−2,q
+ (RN ),

(5.16) uµ < VE ⇐⇒ µ(RN \ Ẽ) = 0.

Furthermore, if E is C2,q′-quasi closed, there exists τ ∈ W−2,q
+ (RN ) such

that τ(Ec) = 0 and

(5.17) VE = lim
k→∞

ukτ .

Proof. We prove (5.15) under the assumption that E is bounded, say, E ⊂
BR. For the general case we observe that

lim
R→∞

VE∩BR
= VE .

Assertion 1: Let T (E) denote the closure of T (E) in W−2,q
+ (BR). If µ ∈

T (E) then uµ ≤ VE.

Let {νn} be a sequence in T (E) such that νn → ν in W−2,q
+ (BR). Let un be

the solution of

−∆un + uq
n = νn in BR, un = 0 on ΣR.
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Then {un} converges in Lq(BR) and the limit u is a weak solution of

−∆u+ uq = ν in BR, u = 0 on ΣR.

Since un ≤ VE it follows that u = uν ≤ VE .

Assertion 2:

(5.18) ν ∈ T (Ẽ) =⇒ ν ∈ T (E).

Suppose that ν ∈ T (Ẽ) but ν 6∈ T E . Then there exists φ ∈W 2,q′(RN ) such
that

(5.19) ‖φ‖W 2,q′(RN ) = 1, 〈φ, ν〉 > 0, 〈φ, µ〉 = 0 ∀µ ∈ TE.

We choose φ to be a C2,q′-finely continuous representative of its equivalence
class (see [1, Proposition 6.1.2]). Thus the inverse image (by φ) of every
open interval is quasi-open (see [1, Proposition6.4.10]). It follows that

A0 := {σ : φ(σ) = 0} is C2,q′-finely closed.

We show that

(5.20) C2,q′(Ẽ \A0) = 0.

Put A1 := Ẽ \ A0 and

A+
1 = {x ∈ A1 : φ(x) > 0}, A−

1 = {x ∈ A1 : φ(x) < 0}.

If (5.20) does not hold then

either C2,q′(A
+
1 ) > 0, or C2,q′(A

−
1 ) > 0.

Each of these sets is C2,q′-finely open relative to Ẽ, i.e., there exist C2,q′-finely

open sets Q1, Q2 such that Q1 ∩ Ẽ = A+
1 and Q2 ∩ Ẽ = A−

1 . If, say,

C2,q′(Q1 ∩ Ẽ) > 0 then C2,q′(Q1 ∩ E) > 0 (because C2,q′(G) ∼ C2,q′(G̃) for

any Borel set G ⊂ BR). Let µ ∈ W−2,q
+ (RN ) be a non-trivial measure ,

supported in a compact subset of Q1 ∩ E. Then

〈φ, µ〉 > 0.

This contradicts (5.19) and proves (5.20).

Further (5.20) implies that φ = 0 C2,q′-a.e. on Ẽ which implies 〈φ, ν〉 = 0
in contradiction to (5.19). This proves Assertion 2.

Combining these assertions we conclude:

(5.21) ν ∈ T (Ẽ) =⇒ uν ≤ VE =⇒ V
Ẽ

= sup{uν : ν ∈ T (Ẽ)} ≤ VE .

Since, trivially, VE ≤ VẼ we obtain (5.15).
If E is C2,q′-quasi closed then, by Theorem 5.2, there exists an increasing

sequence {µn} in W−2,q
+ (RN ) such that µn(Ec) = 0 and uµn → VE . Put

(5.22) τ :=
∑

anµn, an := 2−n ‖µn‖W−2,q
+ (RN ) .

Then τ ∈W−2,q
+ (RN ), τ(Ec) = 0 and (5.17) holds.
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We turn to the proof of (5.16). The implication

µ(RN \ Ẽ) = 0 =⇒ uµ < VE

is a consequence of (5.15). To prove the implication in the opposite direction
we may assume that E is compact. (This follows from Theorem 5.2.) By
negation, suppose there exists µ ∈ W−2,q(RN ) such that uµ < VE but

µ(RN \ Ẽ) > 0. It follows that there exists a compact set K ⊂ RN \ Ẽ
such that µ(K) > 0. Let vn := unµχK

. Then vn ≤ nuµ because nuµ is a
supersolution of the equation −∆w + wq = nµχK. On the other hand, VE

is the largest solution dominated by nVE, for every n. Therefore

(5.23) v = lim vn ≤ VE .

If A is an open neighborhood of K such that dist (A,E) > 0 then VE ∈
Lq(A). On the other hand

∫

A\K
vq = ∞.

Therefore (v−VE)+ is positive in an open subset of A\K. This contradicts
(5.23). �

Theorem 5.4. Let Ω be an open bounded set in RN such that Ω = ∪Ωn,
where {Ωn} is an increasing family of open sets satisfying

(5.24) C2,q′(Ω \ Ωn) → 0.

Put

(5.25)
Fn := ∂Ωn, Dn = RN \ Ω̄n, Ωn = Ω \ Ωn

F := ∂qΩ = Ω̃ \ Ω, D := RN \ Ω̃

and assume that

(5.26) C2,q′(Fn \ D̃n) → 0.

Under these assumptions, VD̃ is the unique ∂q-large solution in Ω.

The proof is based on several lemmas.

Lemma 5.5. Let Ω be a bounded open set such that, with the notation
F := ∂Ω, D := RN \ Ω̄,

(5.27) C2,q′(F \ D̃) = 0.

Then V
D̃

is the unique ∂q-large solution in Ω.

Proof. Let v be a ∂q-large solution in Ω. First we show that

(5.28) VD ≤ v in Ω.

If µ ∈ TD then µ = sup{µχK : K ⊂ D, K compact} and uµ = supuµχK

over compact sets K as above. Therefore it is sufficient to show that

(5.29) uµ ≤ v
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for every µ ∈W−2,q
+ (RN ) supported in a compact set K ⊂ D. Since K∩Ω̄ =

∅, uµ is uniformly bounded in Ω̄.
Let

Av := {y ∈ F : lim inf
Ω∋x→y

v(x) <∞}.

Note that
∂qD ⊂ ∂D ⊂ ∂Ω = F,

∂qD ⊂ ∂q(R
N \ Ω̃) = ∂qΩ.

By (5.27) C2,q′(F \ ∂qD) = 0; therefore C2,q′(F \ ∂qΩ) = 0. Therefore any
∂q-large solution in Ω is an almost large solution in Ω. Hence C2,q′(Av) = 0.

Let Gǫ be an open neighborhood of Av(F ) such that C2,q′(Gǫ) < ǫ. Put

Ωδ = {x ∈ Ω : dist (x, F ) < δ}, Ω′
δ = {x ∈ Ω : dist (x, F ) > δ}.

Let Ω∗
δ be a smooth domain such that Ω′

δ ⊂ Ω∗
δ ⋐ Ω′

δ/2. Put

Gǫ,δ := Gǫ ∩ (Ω \ Ω∗
δ).

Then v+VGǫ,δ
is a supersolution of (1.1) in Ω∗

δ and, if δ is sufficiently small,

uµ ≤ v + VGǫ,δ
on ∂Ω∗

δ .

Thus
uµ ≤ v + VGǫ,δ

in Ω∗
δ .

Since C2,q′(Gǫ) → 0 as ǫ→ 0, Theorem 5.1 implies that, for fixed δ > 0,

lim
ǫ→0

VGǫ,δ
= 0 in Ω∗

δ .

Letting δ → 0 we obtain (5.29) and hence (5.28). Further, by Theorem 5.3,

(5.30) VD̃ = VD ≤ v in Ω.

Next we show that the opposite inequality,

(5.31) v ≤ V
D̃
,

is also valid. (A-priori this is not obvious because we do not assume that v
is σ-moderate.)

By (5.27) C2,q′(D \ D̃) = 0; hence VD = V
D̃

.

Let R be sufficiently large so that Ω ⊂ BR(0). Then

(i) VD ≤ VD∩Br
+ VBc

R
, (ii) UD ≤ UD∩BR

+ UBc
R
.

and VD (resp. UD̄) is the largest solution in Ω, dominated by the right

hand side of inequality (i) (resp. (ii)). Since D ∩BR is compact, VD∩BR
=

UD∩BR
. The uniqueness of large solutions in smooth domains implies that

UBc
R

= U∂BR
= V∂BR

= VBc
R
.

Combining these facts we conclude that

UD = VD = V
D̃
.

By definition, v ≤ UD in Ω; hence v ≤ V
D̃

. �
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Lemma 5.6. Let v be a solution of (1.1) in a bounded open set Ω. Suppose
that A is a C2,q′-finely closed subset of ∂Ω such that

(5.32) lim
x→y

v(x) = ∞ ∀y ∈ ∂Ω \A.

If D := RN \ Ω̃ then,

(5.33) VD̃ = VD ≤ v + VA in Ω.

Proof. Let µ be a measure in W−2,q
+ (RN ) concentrated on a compact set

K ⊂ D. Let {On} be a decreasing sequence of open sets such that

A ⊂ On, C2,q′(On \A) → 0, lim
Ω∋x→∂Ω\On

v(x) = ∞.

Let Ω∗
n,δ be as in the proof of Lemma 5.5 and let {δn} be a sequence of

positive numbers decreasing to zero. Denote

Gn := On ∩ (Ωn \ Ω∗
n,δn

).

As in the proof of Lemma 5.5, we obtain

uµ ≤ VGn + v in Ω∗
n,δn

.

Since A ⊂ Gn and C2,q′(G
n \ A) → 0 it follows that VGn ↓ VA. Letting

n→ ∞ we obtain
uµ ≤ VA + v

which in turn implies (5.33). �

Lemma 5.7. Put

Sn,1 := Dn \ D̃n, Sn,2 = (∂qDn)∆∂q(R
N \ Ω̃n), En := Fn∆F.

Then, under the assumptions of the theorem,

(5.34) (a) C2,q′(Sn,1) → 0, (b) C2,q′(Sn,2) → 0, (c) C2,q′(En) → 0.

Proof. Since Sn,1 ⊂ Fn \ D̃n, (a) follows from (5.26).

Since Dn ⊂ RN \ Ω̃n it follows that

∂qDn ⊂ ∂q(R
N \ Ω̃n) ∪ ∂q(D̄n \ D̃n), ∂q(R

N \ Ω̃n) ⊂ ∂qDn ∪ ∂q(D̄n \ D̃n).

But (5.34) (a) implies that C2,q′(∂q(D̄n \ D̃n)) → 0. Therefore, the previous
relations imply (5.34) (b).

In order to establish (c) we observe that,

F ⊂ ∂qΩn ∪ ∂qΩ
n, ∂qΩn ⊂ ∂qΩ

n ∪ F.

It is known that (see [1]) there exists a constant c(N, q) such that, for every
Borel set A,

(5.35) C2,q′(Ã) ≤ cC2,q′(A).

Therefore (5.24) implies that C2,q′(Ω̃
n) → 0, which in turn implies that

C2,q′(∂qΩ
n) → 0. We conclude that

(5.36) C2,q′(F∆∂qΩn) → 0.
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Hence, as ∂qΩn ⊂ Fn,

(5.37) C2,q′(F \ Fn) ≤ C2,q′(F \ ∂qΩn) → 0.

On the other hand,

(5.38) Fn \ F ⊂ (Fn \ ∂qΩn) ∪ (∂qΩn \ F ).

Since

∂qΩn ⊇ ∂qΩ̃n = ∂q(R
N \ Ω̃n).

(5.34) (b) implies

C2,q′(∂qDn \ ∂qΩn) → 0.

This fact and assumption (5.26) imply

(5.39) C2,q′(Fn \ ∂qΩn) → 0.

Finally, (5.36), (5.38) and (5.39) imply

(5.40) C2,q′(Fn \ F ) → 0.

This together with (5.37) yields (5.34) (c). �

Proof of Theorem 5.4. Let An = Fn \ F . By (5.34) (b), C2,q′(An) → 0. If v
is a ∂q-large solution in Ω then v blows up C2,q′ a.e. on F and consequently
it blows up C2,q′ a.e. on Fn \An. Applying Lemma 5.6 to v in Ωn we obtain

VD̃n
= VDn ≤ v + VAn in Ωn.

Note that

Dn \D = Ω̃ \ Ωn = (Ω \ Ωn) ∪ (F \ Ωn) ⊂ (Ω \ Ωn) ∪ (F \ Fn)

and

D \Dn = Ωn \ Ω̃ = (Ωn \ Ω̃) ∪ (Fn \ Ω̃) ⊂ (Fn \ F ).

Therefore, (5.24) and (5.34) (c) imply that

(5.41) C2,q′(Dn∆D) → 0.

The definition of VE (see (5.2)) implies

VDn ≤ VD + VDn\D

and, by (5.41) and Theorem 5.1, VDn\D → 0. Hence

(5.42) VD̃n
→ VD̃.

By Theorem 5.1, VAn → 0 in Ω. Therefore, letting n→ ∞, we obtain

VD̃ ≤ v in Ω.

It remains to show that v ≤ VD̃. As UDn
is the maximal solution in Ωn,

v ≤ VDn
= UDn

.

Lemma 5.7, implies that

VDn
− VD̃n

→ 0 in Ω.
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Indeed, as an immediate consequence of the definition of VE (see (5.2)),

VDn
≤ VD̃n

+ VDn\D̃n
.

By (5.34) (a), C2,q′(Dn \ D̃n) → 0. Hence, by Theorem 5.1, V
Dn\D̃n

→ 0 in

Ωn. It follows that

limVDn
≤ limVD̃n

.

The limits exist because of monotonicity. Since VD̃n
≤ VDn

we obtain,

limVDn
= limVD̃n

.

Therefore

v ≤ limV
D̃n

= V
D̃
.

�

Corollary 5.8. Suppose that Ω = ∪∞
1 Qn where {Qn} is a sequence of open

sets such that

(5.43)

∞∑

1

C2,q′(Qn) <∞.

For every n ∈ N, put

Sn = ∪n
1Qk, Dn = RN \ Sn

and assume that

(5.44) C2,q′(∂Sn \ D̃n) → 0.

Then there exists a unique almost large solution in Ω.

Remark. If y ∈ ∂Sn and there exists an open cone Cy, with vertex y, such
that Cy ⊂ RN \ Sn then y ∈ ∂qSn. Hence if, for every n ∈ N, this condition
is satisfied C2,q′ a.e. on ∂Sn then (5.44) holds. In particular, if {Qn} is a
sequence of balls, (5.44) is satisfied.

Proof. Let Ωn = S0
n := Sn \ ∂Sn. Then {Ωn} is an increasing sequence

of open sets, (5.44) implies (5.26) and (5.43) implies (5.24). Therefore the
corollary is an immediate consequence of Theorem 5.4. �

Example. Let {xm} be a sequence of distinct points in B1(0). Let {rn} be
a decreasing sequence of positive numbers such that {Brn(xn)} is a sequence
of balls contained in B1(0) and

(5.45)

∑
rN−2q′
n <∞ if N > 2q′,

∑
(1 − log rn)1−q′ <∞ if N = 2q′.

Then there exists a unique large solution in Ω := ∪∞
1 Brn(xn).

Indeed C2,q′(Br) ∼ rN−2q′ if N > 2q′ and C2,q′(Br) ∼ log(1 − log r) if
N = 2q′ and 0 < r < 1. Therefore the conditions of Corollary 5.8 are
satisfied.
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Note that Ω̃ = ∪Brn(xn), but, in general Ω is much larger. For instance,
if {xm} is a dense sequence in B1(0) then Ω = B1(0). Therefore it is

important that our conditions in Corollary 5.8 require C2,q′(∂qΩ \ D̃) = 0

and not C2,q′(∂Ω \ D̃) = 0.

6. Very weak subsolutions

In this section F is a C2,q′-finely closed set contained in B1(0) and D =
B2(0) \ F . Note that D is a C2,q′-finely open set, but not necessarily open
in the Euclidean topology.

We denote by W 2,q′(D) the set {h
∣∣
D

: h ∈W 2,q′(RN )}. If f ∈W 2,q′(RN )
we denote by supp(2,q′)f (= the C2,q′-fine support of f) the intersection of

all C2,q′-finely closed sets E such that f = 0 a.e. in RN \ E.

The following subspace of W 2,q′(D) serves as a space of test functions in
our study:

(6.1) W 2,q′

0,∞(D) := {h
∣∣
D

: h ∈W 2,q′(RN ) ∩ L∞(RN ), supp(2,q′)h ⋐ D}.

The notation E ⋐ D means: E is ‘strongly contained’ in D, i.e., E is a com-
pact subset of D. Some features of this space are discussed in Appendix A.

The following statement was established in [29] (see Lemma 2.6). (The
framework in [29] is somewhat different, but the proof, with obvious modi-
fications, applies to the present case as well.)

Lemma 6.1. Let D be a bounded C2,q′-finely open set. Then there exists
an increasing sequence of compact sets {En} such that

(6.2)
En ⊂ intqEn+1, ∪∞

1 En ⊂ D,

C2,q′(D \ ∪∞
1 En) = 0, C2,q′(En) → C2,q′(D).

A sequence of sets {En} as above is called a q-exhaustion of D.

We denote by Lq
ℓ(2,q′)

(D) the space of measurable functions f in D such

that, for every positive φ ∈W 2,q′

0,∞(D), f ∈ Lq(D;φ), i.e., |f |qφ ∈ L1(D). We
endow this space with the topology determined by the family of semi-norms

(6.3) {‖·‖
Lq(D;φ)

: φ ∈W 2,q′

0,∞(D), φ ≥ 0}.

This topology will be denoted by τℓ(2,q′)(D).
Further we denote by Mℓ(2,q′)(D) the space of positive Borel measures µ

in D such that

(6.4)
(a) K ⊂ D, K compact =⇒ µ(K) <∞,

(b) E ⊂ D, E Borel, C2,q′(E) = 0 =⇒ µ(E) = 0.

We observe that,

Lemma 6.2. If µ ∈ Mℓ(2,q′)(D) then:
(i) There exists an increasing sequence {µn} of positive, bounded measures
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in W−2,q(RN ) such that µn(Dc) = 0 and µn ↑ µ.

(ii) W 2,q′

0,∞(D) ⊂ L1(µ).

Proof. (i) This is well known in the case that µ is a positive, bounded mea-
sure [6] and it follows from Lemma 6.1 in the case that µ is a positive measure
in Mℓ(2,q′)(D).

(ii) If ϕ ∈ W 2,q′

0,∞(D), it vanishes outside a compact set Kϕ ⊂ D. By defini-

tion, µ(Kϕ) <∞. Furthermore ϕ is the limit C2,q′ a.e. of smooth functions;
consequently it is µ-measurable. Since ϕ is bounded, it is integrable relative
to µ. �

Notation. A sequence {µn} as in Lemma 6.2 (i) will be called a determining
sequence for µ.

We introduce below a very weak type of subsolution of (1.2) defined as
follows.

Definition 6.3. Assume that the measure µ in (1.2) belongs to Mℓ(2,q′)(D).
A non-negative measurable function u is a very weak subsolution of (1.2) in

D if, for every non-negative φ ∈W 2,q′

0,∞(D),

u ∈ Lq(D; ζ) where ζ := φ2q′ ,(6.5)

−

∫

D
u∆ζdx+

∫

D
uqζdx ≤

∫

D
ζdµ.(6.6)

Remarks. (a) If (6.5) holds for every non-negative φ ∈W 2,q′

0,∞(D) then

(6.7) u∆ζ ∈ L1(D).

This is proved in the next lemma.

(b) Let φ ∈W 2,γ
0,∞(D), γ ≥ 1. By interpolation, |∇φ|2 ∈ Lγ(D) and

(6.8)
∥∥|∇φ|2

∥∥
Lγ (D)

≤ c(q,N)L
∥∥D2φ

∥∥
Lγ (D)

, L := ‖φ‖
L∞(D)

.

where |D2φ| :=
∑

|α|=2 |D
αφ|.

(c) If φ ∈W 2,γ
0,∞(D), γ ≥ 1 then

(6.9)

|φ|2γ = (φ2)γ ∈W 2,q′

0,∞(D),

∇(|φ|2γ) = 2γ(φ2)γ−1/2∇φ,

∆(φ2γ) = 2γ(2γ − 1)|φ|2γ−2|∇φ|2 + 2γ|φ|2γ−1∆φ.

The last two formulas are easily verified for φ ∈ C∞
c (RN ); in the general

case they are obtained by the usual density argument. The fact that |φ|2γ ∈

W 2,q′

0,∞(D) is a consequence of these formulas and (6.8). (6.9) imply,

(6.10)
∥∥|φ|2γ

∥∥
W2,γ (D)

≤ AL2γ−1 max(1, L) ‖φ‖
W2,γ (D)

.
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Theorem 6.4. (i) If u is a non-negative measurable function satisfying (6.5)
then u∆ζ ∈ L1(D) .

(ii) If u is a very weak subsolution of (1.1) in D (i.e. µ = 0) then, for every

non-negative φ ∈W 2,q′

0,∞(D),

(6.11)

∫

D
u|∆ζ|dx+

∫

D
uqζ ≤ c

(
L

∥∥D2φ
∥∥

Lγ (D)

)γ
,

where ζ := φ2q′ , c = c(N, q) and L := ‖φ‖
L∞(D)

.

(iii) Let µ ∈W−2,q(RN ) be a positive bounded measure vanishing outside D.
If u is a non-negative very weak subsolution of (1.2) then

(6.12)
‖u‖

Lq(D,ζ)
≤cL1/(q−1)

(( ∥∥D2φ
∥∥

Lq′ (D)

)1/(q−1)
+

(
L1/(q−1) ‖µ‖

W−2,q′

∥∥D2φ
∥∥

Lq′ (D)

)1/q
)

Finally, if L ≤ L, u satisfies

(6.13)

‖u‖
Lq(D,φ)

≤

c(N, q, L)L
1

q−1

(∥∥D2φ
∥∥

1
q−1

Lq′ (D)
+ ‖µ‖

1
q

W−2,q′

∥∥D2φ
∥∥

1
q

Lq′ (D)

)
.

Proof. Let φ be a non-negative function in W 2,q′

0,∞(D). By (6.9), with γ = q′,
we obtain

|∆ζ| ≤ c(q)ζ1/qM(φ), M(φ) :=
(
|∇φ|2 + φ |∆φ|

)

and hence, using (6.8),

∫

D
u |∆ζ|dx ≤ c(q)

(∫

D
uqζ dx

)1/q (∫

D
M(φ)q

′
dx

)1/q′

,(6.14)

∫

D
M(φ)q

′
dx ≤ c(q,N)L

∥∥D2φ
∥∥q′

Lq′ (D)
.(6.15)

Assuming that u ∈ Lq(D, ζ) we obtain u∆ζ ∈ L1(D).

We turn to the proof of (ii) and (iii). We assume that u is a non-negative
very weak subsolution as in Definition 6.3. Put

A :=

(∫

D
uqζdx

)1/q

, B :=

(∫

D
M(φ)q

′
dx

)1/q′

, C := ‖µ‖
W−2,q′ ‖ζ‖W2,q′ (D)

By (6.6) and (6.14)

(6.16) Aq =

∫

D
uqζdx ≤

∫

D
u∆ζdx+

∫

D
ζ dµ ≤ c(q,N)AB + C.

This implies

Aq ≤
1

q
Aq +

1

q′
(cB)q

′
+ C =⇒ Aq ≤ (cB)q

′
+ q′C ≤ c′(N, q)max(Bq′ , C).
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Thus

(6.17) A ≤ c(q,N)
(
B1/(q−1) + C1/q

)
.

By Poincaré’s inequality

‖ζ‖
W2,q′ (D)

≤ c(q,N)
∥∥D2ζ

∥∥
Lq′

and therefore, by the same computation as in (6.9),

‖ζ‖
W2,q′ (D)

≤ c(q,N)
( ∥∥∥φ2/(q−1)(∇φ)2

∥∥∥
Lq′

+
∥∥∥φ(1+q)/(q−1)D2φ

∥∥∥
Lq′

)
.

Therefore by (6.8) and (6.15),

(6.18) ‖ζ‖
W2,q′ (D)

≤ L
1
q (L+ L

1
q )

∥∥D2φ
∥∥

Lq′ .

This estimate and (6.17) imply (6.12). Further, if µ = 0, (6.12), (6.14) and
(6.15) imply (6.11).

Now let ψ be a non-negative function in W 2,q′

0,∞(D) and put

φ := (1 + ψ)
1

2q′ − 1, ζ := φ2q′ .

Then φ ∈W 2,q′

0,∞(D), ζ ∼ ψ and

∥∥D2φ
∥∥

Lq′ (D)
≤ c(N, q)

∥∥D2ψ
∥∥

Lq′ (D)
(1 + ‖ψ‖

L∞(D)
).

This inequality and (6.12) imply (6.13).
�

Lemma 6.5. If F is a Borel set such that C2,q′(F ) = 0 then the only non-
negative very weak subsolution of (1.1) in D = F c is the trivial solution.

Remark. A set of capacity zero is C2,q′-finely closed by defintion. Therefore
the notion of very weak subsolution in F c is well defined in the present case.

Proof. Since C2,q′(F ) = 0, there exists a sequence {ηn} in W 2,q′(RN ) such
that 0 ≤ ηn ≤ 1, ‖ηn‖

W2,q′ → 0 and ηn = 1 on a neighborhood of F

(depending on n). Applying (6.11) to u and φn = 1 − ηn yields:
∫

D
uqφ2q′

n dx ≤ c
∥∥D2ηn

∥∥q′

Lq′ (D)
→ 0.

Since ‖ηn‖Lq′ → 0 it follows that there exists a subsequence converging to
zero a.e.. Therefore

lim inf

∫

D
uqφ2q′

n dx ≥

∫

D
uq dx.

This implies that u = 0 a.e. �
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7. The equation (1.2) in finely open sets

We start with the definition of ’strong’ solutions of (1.2) in a C2,q′-finely
open set or more generally in a C2,q′-quasi open set. We recall that a set E
is C2,q′-quasi open if, for every ǫ > 0 there exists an open set O such that
E ⊂ O and C2,q′(O \E) < ǫ. Every C2,q′-finely open set is C2,q′-quasi open;

if E is C2,q′-quasi open then E
q
∼ intqE, (see [1, Chapter 6]).

Definition 7.1. Let D be a C2,q′-quasi open set, let µ ∈ Mℓ(2,q′)(D) be a
non-negative measure and let {µn} be a determining sequence for µ (see
Lemma 6.2).

(i) A positive function u ∈ Lq
ℓ(2,q′)

(D) is a strong solution of (1.2) in D if

there exists a decreasing sequence of open sets {Ωn}, such that D ⊂ Ωn and,
for each n, there exists a positive solution un ∈ Lq

loc(Ωn) of the equation

(7.1) −∆un + uq
n = µn

such that

(7.2) un → u in Lq
ℓ(2,q′)

(D).

We say that {(un,Ωn)} is a determining sequence for u in D.

(ii) A strong subsolution is defined in the same way as above except that un

is only required to be a subsolution of (7.1) in Ωn.

(iii) A positive strong solution of (1.2) in D is σ-moderate if, in addition,
the sequence {un} is non-decreasing and there exists a sequence {vn} such
that vn ∈ L1(Ωn) and

(7.3) −∆vn = µn, un ≤ vn in Ωn, n = 1, 2, . . . .

(iv) If µ is bounded and {‖vn‖L1(Ωn)
} is bounded we say that u is a moderate

solution.

Remark. If D is an open set we may choose Ωn = D for every n. Therefore
any non-negative solution of (1.2) in D is a strong solution in D. Fur-
thermore, if u is a σ-moderate solution of (1.1) in D in the standard sense
(i.e. the limit of an increasing sequence of moderate solutions) then it is a
σ-moderate strong solution in the sense of part (iii) of the above definition.

Definition 7.2. (a) A strong solution v of (1.1) in D is called a ∂q-large
solution if

(7.4)
q

lim
x→∂qD

v(x) = ∞ C2,q′ a.e. at ∂qD.

This condition is understood as follows. There exists a determining sequence
{(vn,Ωn)} for v in D such that

(7.5)

∞∑

1

C2,q′(Ωn \D) <∞,
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and, for every M > 0, k ∈ N, there exists an open set Qk,M such that

(7.6)

∪∞
n=kΩ̃n \D ⊂ Qk,M , lim

k→∞
C2,q′(Qk,M) = 0,

lim inf
x→∂qD\Qk,M

x∈Ωn

vn(x) ≥M ∀n ≥ k.

Note that ∂qD \Qk,M ⊂ ∂Ωn for all n ≥ k.
If F is a quasi closed subset of ∂D, the condition

(7.7)
q

lim
x→F

v(x) = ∞ C2,q′ a.e. at F

is defined in the same way except that the second line in (7.6) reads

lim inf
x→F\Qk,M

vn(x) ≥M ∀n ≥ k.

(b) Let v be a non-negative strong subsolution of (1.1) in D. The condition

(7.8)
q

lim
x→∂D

v(x) = 0 C2,q′ a.e. at ∂qD

is understood as follows. There exists a determining sequence {(vn,Ωn)} for
v in D satisfying (7.5) and a family of open sets

{Qk,ǫ : ǫ > 0, k ∈ N}

such that,

∪∞
n=k Ω̃n \D ⊂ Qk,ǫ, lim

k→∞
C2,q′(Qk,ǫ) = 0,(7.9)

lim sup
x→∂qD\Qk,ǫ

x∈Ωn

vn(x) ≤ ǫ ∀n ≥ k.(7.10)

If F is a quasi closed subset of ∂D, the condition

(7.11)
q

lim
x→F

v(x) = 0 C2,q′ a.e. at F

is defined in the same way except that (7.10) is replaced by

(7.12) lim sup
x→F\Qk,ǫ

vn(x) ≤ ǫ ∀n ≥ k.

(c) Let v be a non-negative strong solution of (1.1) in D and let u be a

non-negative classical solution in a domain G ⊇ D. We say that u
q

≤ v at
∂qD if there exists a determining sequence {(vn,Ωn)} for v in D satisfying
(7.5) and a family of open sets {Qk,ǫ : ǫ > 0, k ∈ N} satisfying (7.9) such
that

(7.13) lim sup
x→∂qD\Qk,ǫ

x∈Ωn

(u− vn)(x) ≤ ǫ ∀n ≥ k.
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If F is a quasi closed subset of ∂D, the condition u
q

≤ w at F is defined
in the same way except that (7.13) is replaced by

(7.14) lim sup
x→F\Qk,ǫ

(u− vn)(x) ≤ ǫ ∀n ≥ k.

We present several results concerning strong solutions. The main ingre-
dients in these proofs are: Theorem 6.4, the results of Section 5 concerning
VF and the results of Appendix A.

Theorem 7.3. For every L > 0, there exist constants c = c(N, q) and
c = c(L) such that, for every non-negative measure µ ∈ Mℓ(2,q′)(D) and
every non-negative strong solution u of (1.2) in D the following holds:

(7.15)
‖u‖q

Lq(D,φ)
≤

c(N, q)
(
(‖φ‖

L∞(D)

∥∥D2φ
∥∥)q

′

Lq′ (D)
+ c(L) ‖µ‖

W−2,q′

∥∥D2φ
∥∥

Lq′ (D)

)

for every φ ∈W 2,q′

0,∞(D) such that 0 ≤ φ ≤ L.
Every strong solution u as above satisfies,

uqφ ∈ L1(D), u∆(φψ) ∈ L1(D)(7.16)

−

∫

D
u∆(φψ)dx +

∫

D
uq(φψ)dx =

∫

D
φψ dµ(7.17)

for any non-negative φ,ψ ∈W 2,q′

0,∞(D). Finally u satisfies the estimate

(7.18) u ≤ c(N, q)WF a.e. in D.

Proof. We use the notation of Definition 7.1. If un is a solution of (1.2) in

Ωn and φ ∈W 2,q′

0,∞(D) then

(7.19)

∫

D
un∆φdx+

∫

D
uq

nφdx =

∫

D
φdµn

Evidently, un is, in particular, a very weak subsolution in D; consequently
it satisfies inequality (6.13). By assumption, un → u in Lq

ℓ(2,q′)
; hence u

satisfies (6.13).

Assume that φ,ψ ∈W 2,q′

0,∞(D) and 0 ≤ φ ≤ L and the same for ψ. Clearly,

(7.17) holds for un. In addition,
∫

D
uq

n(φψ)dx→

∫

D
uq(φψ)dx,

∫

D
(φψ) dµn →

∫

D
(φψ) dµ.

Further,
∆(φψ) = φ∆ψ + ψ∆φ+ 2∇φ · ∇ψ,

so that∫

D
un|∆(φψ)|dx ≤

∫

D
un(φ|∆ψ| + ψ|∆φ|) dx + 2

∫

D
un|∇φ · ∇ψ|dx.
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Using again the fact that un → u in Lq
ℓ(2,q′)∫

D
un(φ∆ψ + ψ∆φ) dx→

∫

D
u(φ∆ψ + ψ∆φ) dx.

In addition,
∫

D
un|∇φ · ∇ψ|dx ≤ (

∫

D
un(∇φ)2dx)1/2(

∫

D
un(∇ψ)2dx)1/2

By (7.19) ∫

D
un∆φ2dx+

∫

D
uq

nφ
2dx =

∫

D
φ2 dµn

so that ∫

D
un(∇φ)2dx ≤

1

2

∫

D
φ2 dµn +

∫

D
unφ|∆φ| dx.

By Fatou, this implies,
∫

D
u(∇φ)2dx ≤

1

2

∫

D
φ2 dµ+

∫

D
uφ|∆φ| dx.

Now assume temporarily that {un} is non-decreasing so that un ↑ u.
Then, by the dominated convergence theorem,

(7.20)

∫

D
un(∇φ · ∇ψ)dx→

∫

D
u(∇φ · ∇ψ)dx.

The convergence results obtained above and (7.19) imply (7.16) and (7.17).
This in turn implies, by Theorem 6.4, the estimate (7.15).

Discarding the assumption of monotonicity, put vn := max(u1, . . . , un).
Then vn is a subsolution of the equation

−∆v + vq = µn in Ωn

and there exists a solution v̄n of this equation which is the smallest among
those dominating vn. Then {v̄n} is non-decreasing and, by Theorem 6.4,

sup
n

∫

D
v̄q
nφdx <∞

for any non-negative φ ∈ W 2,q′

0,∞(D). Therefore w = lim v̄n ∈ Lq
ℓ(2,q′)

(D) and

by the previous part of the proof w is a strong solution in D. In particular

w|∇φ||∇ψ| ∈ L1(D) ∀φ,ψ ∈W 2,q′

0,∞(D).

Clearly,
un|∇φ · ∇ψ| ≤ w|∇φ||∇ψ|.

Therefore, once again by the dominated convergence theorem, we obtain
(7.20) which together with the previous convergence results imply (7.15),
(7.16) and (7.17).

Put Fn = BR \ Ω̃n, F = BR \ D̃. In order to prove the last assertion, we
observe that, in Ωn, un ≤ c(N, q)WFn with constant independent of n. As
{Fn} increases, WFn ↑ WF everywhere in D. By (7.2) and Lemma A.4, we
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can extract a subsequence of {un} which converges to u a.e. in D. Hence
u ≤ cWF . �

Theorem 7.4. (i) If F is a Borel set such that C2,q′(F ) = 0 then the only
non-negative strong subsolution of (1.1) in F c is the trivial solution.

(ii) If F is a C2,q′-finely closed set then VF is a σ-moderate strong solution
in F c.

(iii) Let F be a C2,q′-finely closed set and put D = RN \ F . If v is a strong
solution in D then v ≤ VF .

Proof. (i) By definition, a strong solution u in D = RN \ F is the limit of
classical solutions in open sets containing D. In the case that C2,q′(F ) = 0,
any such classical solution is the zero solution. Hence u = 0.

(ii) This is a consequence of Theorem 5.2.

(iii) By Theorem 7.3 :

v ≤ c(N, q)WF ≤ c′(N, q)VF a.e. in RN \ F.

In addition, for every α ≥ 1,

sup{u : u strong solution in F c, u ≤ αVF } = VF .

Hence v ≤ VF . �

Theorem 7.5. Let D be a C2,q′-finely open set and let {vk} be a sequence
of non-negative strong solutions of (1.1) in D converging a.e. in D. Then
v := lim vk is a strong solution in D.

Proof. By Lemma A.4 there exists an increasing sequence of compact sets
{E′

n} such that ∪E′
n ⊂ D and C2,q′(D \ ∪E′

n) = 0 and {vk} is uniformly
bounded in Lq(E′

n) for every n. Since {vk} converges a.e. it follows that it
converges in L1(E′

n) for every n. By Theorem 7.4 (iii) VDc dominates {vk}.
By the dominated convergence theorem, vk → v in the topology τ q

ℓ(2,q′)
(D).

By assumption, for each k, vk is a strong solution. This means that there
exists a decreasing sequence of open sets {Ωm,k}

∞
m=1, such that

(7.21) D ⊂ Ωm,k, lim
m→∞

C2,q′(Ωm,k \D) = 0

and, for each m, there exists a positive solution um,k ∈ Lq
loc(Ωm,k) of the

equation −∆u+ uq = 0 in Ωm,k such that

um,k → vk in Lq
ℓ(2,q′)

(D).

By Lemma A.3 the space Lq
ℓ(2,q′)

(D) with the topology τ q
ℓ(2,q′)

(D) is a metric

space. We denote a metric for this topology by dℓ(2,q′). For each k let mk be
sufficiently large so that

dℓ(2,q′)(vk, umk ,k) < 2−k and C2,q′(Ωmk,k \D) < 2−k.

Denote v′k = umk ,k and Ω′
k = ∩k

j=1Ωmj ,j. Then {(v′k,Ω
′
k)} is a determining

sequence for v in D. �
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Theorem 7.6. Let F be a C2,q′-finely closed set and let {An} be a sequence
of C2,q′-finely closed subsets of F . For each n, let vn be a strong solution in

Dn := RN \ An.
If C2,q′(An) → 0 then vn → 0 a.e. in RN \ F .
In particular, if

∑
C2,q′(An) < ∞ and v∗n denotes the extension of vn to

RN such that v∗n = ∞ in An then,

(7.22) v∗n → 0 a.e. in RN .

Proof. By Theorem 7.4(iii)

vn ≤ c(N, q)WAn ≤ c′(N, q)VAn a.e. in RN \ An.

By Theorem 5.1 VAn → 0 a.e. in RN \F . This proves the first assertion. To
verify the second assertion we apply the first to the sequence {An}

∞
n=k with

F replaced by F k = ∪∞
n=kAn. Note that F k is C2,q′-finely closed up to a set

of capacity zero. �

Theorem 7.7. Suppose that z is a non-negative strong subsolution of (1.1)
in a C2,q′-quasi open set D. Then there exists a strong solution dominating
it.

Proof. Let {(zn,Ωn)} be a determining sequence for z. Since (zn)+ is also
a subsolution we may assume that zn ≥ 0. Let Zn be the smallest solution
in Ωn which dominates max(z1, · · · , zn). Then Zn ≤ Zn+1 in Ωn+1. Fur-
thermore, by Theorem 7.4(iii) Zn ≤ VDc in D. Therefore, by Theorem 7.5,
Z = limZn is a strong solution in D. �

Theorem 7.8. Let Ω be a C2,q′-quasi open set. Suppose that there exists a
sequence of open sets {Gn} such that

(7.23)
(a) C2,q′(Gn∆Ω) → 0,

(b) C2,q′(∂Gn \ ∂qG̃n) → 0.

Assume also that, for every n ∈ N, ∂Gn has zero Lebesgue measure. If v is

a ∂q-large solution of (1.1) in Ω then v = V
D̃

in Ω, D := RN \ Ω̃. Thus V
D̃

is the unique ∂q-large solution in Ω.

Remark. Every C2,q′-quasi open set Ω is C2,q′-equivalent to the intersection
of a sequence of open sets {On} such that C2,q′(On \ Ω) → 0. However, in
the statement of the theorem, we do not require that Gn contain Ω. Instead
we require (7.23) (b).

The proof of the theorem is based on several lemmas. The first collects
several useful formulas:
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Lemma 7.9. Let A,E1, E2 be sets in RN . Then the following relations hold:

(7.24)

(i) ∂qA
c = ∂qA,

(ii) ∂q(E1 ∪ E2) ⊂ ∂qE1

⋃
∂qE2,

(iii) ∂q(E1 ∩ E2) ⊂ ∂qE1

⋃
∂qE2,

(iv) ∂qE1 ⊂ ∂qE2

⋃
∂q(E2 \E1)

⋃
∂q(E1 \ E2),

(v) ∂qE1∆∂qE2 ⊂ ∂q(E2 \ E1)
⋃
∂q(E1 \ E2),

(vi) ∂qA ⊂ ∂A, ∂qÃ ⊂ ∂qA.

Proof. (i),(ii) and (vi) follow immediately from the definition of boundary.
(iii) follows from (i), (ii) and the relation

(E1 ∩ E2)
c = (Ec

1 ∪ E
c
2).

By (ii),

∂qE1 ⊂ ∂q(E1 ∩E2)
⋃
∂q(E1 \ E2).

By (i) and (iii), the relation,

E1 ∩E2 = E2 ∩ (E2 \E1)
c,

implies that

∂q(E1 ∩E2) ⊂ ∂qE2

⋃
∂q(E2 \ E1).

These relations imply (iv) which in turn implies (v). �

Notation. Let {An} and {Bn} be two sequences of sets.

(a) The notation An
lim

⊂ Bn means that C2,q′(An \Bn) → 0.

(b) The notation An
lim
∼ Bn means that C2,q′(An∆Bn) → 0.

Lemma 7.10. Under the assumptions of the theorem,

(7.25) ∂qGn
lim
∼ ∂qG̃n

lim
∼ ∂Gn, G̃n

lim
∼ Gn

and

(7.26) ∂qGn
lim
∼ ∂qΩ.

Finally

(7.27) C2,q′(Gn \ Ω̃) → 0.

Proof. By (7.23)(b) and Lemma 7.9 (vi) we have

∂qGn ⊂ ∂Gn
lim

⊂ ∂qG̃n ⊂ ∂qGn.

This proves (7.25).
Condition (7.23) (a) implies that

(7.28) C2,q′(∂q(Gn \ Ω)) → 0, C2,q′(∂q(Ω \Gn)) → 0.

This fact and Lemma 7.9 (v) imply (7.26).
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By (7.25) and (7.26),

Gn \ Ω
lim
∼ G̃n \ Ω = (Gn \ Ω) ∪ (∂qGn \ Ω).

By (7.23)(a) and (7.24) (v),

C2,q′(Gn \ Ω) → 0, C2,q′(∂qGn∆∂qΩ) → 0.

Since Ω is C2,q′-quasi open,

C2,q′(∂qΩ ∩ Ω) = 0.

These relations imply (7.27). �

Lemma 7.11. Let G be an open set and Q be a C2,q′-quasi open set. Assume

that C2,q′(∂G \ ∂qG) = 0. Let v be a strong solution in G′ = G \ Q̃ and let u
be a (classical) solution of (1.1) in a domain G0 such that Ḡ ⊂ G0. Suppose
that u, v are non-negative and

(7.29) u
q

≤ v at F := ∂qG \Q.

Then

(7.30) u ≤ v + V
Q̃

in G′.

Proof. Let ǫ be a positive number. Condition (7.29) means that there exists
a determining sequence {(vn,Ωn)} for the strong solution v in G′ and a
family of open sets {Qk,ǫ} satisfying (7.5), (7.9) and (7.14) (with D replaced
by G′). We may and shall assume that Ωn ⊂ G, that {Ωn} is decreasing
and that, for every ǫ > 0, {Qk,ǫ}

∞
k=1 is decreasing.

In the next part of the proof we keep ǫ fixed. If K is a compact subset of
F \ Qn,ǫ then (7.14) implies that there exists an open neighborhood of K,
say OK , such that

u− vn ≤ ǫ in OK ∩ Ωn.

Therefore there exists an increasing sequence of compact sets {Kn,ǫ} and a
sequence of open sets {On,ǫ} such that

Kn,ǫ ⊂ F \Qn,ǫ, C2,q′(F \Kn,ǫ) → 0,(7.31)

Kn,ǫ ⊂ On,ǫ, u− vn ≤ ǫ in On,ǫ ∩ Ωn.(7.32)

Let {O′
n,ǫ} be a decreasing family of open sets such that

(7.33)
(∂G \ ∂qG) ∪ (F \Kn,ǫ) ∪ Q̃ ⊂ O′

n,ǫ,

C2,q′(O
′
n,ǫ) → C2,q′(Q), ∩∞

n=1O
′
n,ǫ

q
∼ Q̃.

Then En,ǫ := On,ǫ ∪O
′
n,ǫ is an open neighborhood of ∂G and

G \ En,ǫ ⊂ G′ ⊂ Ωn.

Consequently there exist smooth domains Ωn,ǫ such that

{x ∈ Ωn : dist (x, ∂Ωn) ≥ 2−n} ⊂ Ωn,ǫ ⊂ Ωn,ǫ ⊂ Ωn, ∂Ωn,ǫ ⊂ En,ǫ.
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The function wn,ǫ := (u− vn − ǫ)+ is a classical subsolution in Ωn and it
vanishes in Ωn ∩On,ǫ. Put Sn,ǫ = ∂Ωn,ǫ \On,ǫ and

zn,ǫ :=

{
wn,ǫ in Ω̄n,ǫ \ Sn,ǫ

0 in RN \ Ω̄n,ǫ.

Then zn,ǫ is a (classical) subsolution in RN \Sn,ǫ. Since vn → v in Lq
ℓ(2,q′)

(G′),

it follows that there exists a subsequence (still denoted {vn}) such that

vn → v a.e. in G′. Therefore {zn,ǫ} converges a.e. in D := RN \ Q̃ to the
function

zǫ :=

{
(u− v − ǫ)+ in G′

0 in RN \G.

In addition
sup

RN\Sn,ǫ

zn,ǫ ≤ sup
Ḡ

u <∞.

Note that D ⊂ RN \Sn,ǫ for all n. Therefore, by the dominated convergence
theorem, zn,ǫ → zǫ in Lq

ℓ(2,q′)
(D); consequently zǫ is a strong subsolution in

D. In fact {(zn,ǫ,R
N \ Sn,ǫ)} is a determining sequence for zǫ in D.

By Theorem 7.7, there exists a strong solution Zǫ in D such that zǫ ≤ Zǫ.
By Theorem 7.4 (iii), Zǫ ≤ V

Q̃
in D. Thus z ≤ V

Q̃
and so u− v− ǫ ≤ V

Q̃
in

G′. Letting ǫ→ 0 we obtain (7.30). �

Corollary 7.12. Let G,Q,G′ and u, v be as in the statement of the lemma.
If

(7.34)
q

lim
x→∂qG′

v(x) = ∞ C2,q′ a.e. at ∂qG
′

then (7.30) holds.

Proof. Since u is bounded in G, (7.34) implies (7.29). Therefore the previous
lemma implies (7.30). �

Proof of Theorem 7.8. Let K be a compact subset of RN \ Ω̃ = ∅ and let
µ ∈W−2,q(RN ) be a non-negative measure supported in K. We prove that

(7.35) uµ ≤ v in Ω

As µ(Ω̃) = 0, (7.23) (a) implies

(7.36) µ′n := µχGn = µχGn\Ω̃ → 0.

If ν is a bounded measure such that ν(Gn) = 0 and On,k is a sequence of

open neighborhoods of Gn such that ∩kOn,k = Gn then

ν(On,k \Gn) → 0 as k → ∞.

Applying this observation to ν = µ− µ′n and using (7.36) we conclude that,
for every n ∈ N, there exists a non-negative measure µn ≤ µ such that

(7.37) µn ≤ µ, suppµn ∩Gn = ∅, µn ↑ µ.
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As Kn := suppµn ⊂ K, Kn is a compact set disjoint from Gn. Therefore
uµn is a bounded solution of (1.1) in a neighborhood of Gn.

Let Qn := Gn \ Ω̃ so that Q̃n = G̃n \ Ω and, by (7.23),

(7.38) C2,q′(Q̃n) → 0.

Applying Corollary 7.12 to Gn, Qn with u = uµn and w = v we obtain

(7.39) uµn ≤ v + V
Q̃n

in Gn \ Q̃n.

By (7.37) uµn → uµ and, by (7.38), VQ̃n
→ 0. Therefore, by (7.23),

(7.40) uµ ≤ v C2,q′ a.e. in Ω.

This holds for every non-negative measure µ ∈ W−2,q(RN ) supported in a

compact subset of RN \ Ω̃. Therefore V
RN\Ω̃

≤ v and by Theorem 5.3

(7.41) VRN\Ω ≤ v C2,q′ a.e. in Ω.

On the other hand, every strong solution in Ω is dominated by VRN\Ω. Thus
v = VRN\Ω.

�

The following example shows that, in a sense, Theorem 7.8 complements
Theorem 5.4.

Example. Let {xm} be a sequence of distinct points in B1(0). Let {rn}
be a decreasing sequence of positive numbers such that (5.45) holds and
Brn(xn) ⊂ B1(0). Put

Ωn = B1(0) \ ∪
n
1Brk

(xk).

Then there exists a unique large solution in

Ω := ∩∞
1 Ωn = B1(0) \ ∪

∞
1 Brk

(xk).

Appendix A. On the space W 2,q′

0,∞

We establish some features of the space W 2,q′

0,∞ which show that it is suffi-
ciently rich in order to serve as a space of test functions in C2,q′-finely open
sets. These are used mainly in section 7.

Lemma A.1. Suppose that D a C2,q′ finely open set and K is a bounded
C2,q′-finely closed subset of D. Then, for every a > 0, there exists φa ∈

W 2,q′(RN ) such that:

(A.1)
(i) 0 ≤ φa ≤ 1, (ii) supp(2,q′)φa ⋐ D,

(iii) C2,q′({x ∈ K : φa(x) < 1}) < a.

Proof. Let 0 < ǫ(1 + 2q′) < a. Let K ′ be a compact set and D′ be an open
set such that,

K ′ ⊂ K, D ⊂ D′, C2,q′(K \K ′) < ǫ, C2,q′(D̃′ \D) < ǫ.
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Let φ be a smooth function with compact support in D′ such that 0 ≤ φ ≤ 1
and φ = 1 on a neighborhood of K ′. Let {An} be a decreasing sequence of

open neighborhoods of D̃′ \D such that

C2,q′(Ãn) → C2,q′(D̃′ \D).

Further, let {ηn} be a sequence of functions in W 2,q′(RN ) such that

0 ≤ ηn, ηn ≥ 1 C2,q′ a.e. in Ãn, ‖ηn‖
q′

W2,q′ (R
N )

= C2,q′(Ãn).

(See [1, Thm.2.3.10] for the existence of such functions.)
Let α ∈ (0, 1) and put En = {x ∈ D : ηn(x) ≥ 1 − α}. Then

(1 − α))−q′ ‖ηn‖W2,q′ (R
N )

≥ C2,q′(En)

so that

lim supC2,q′(En) ≤ C2,q′(Ãn)/(1 − α)q
′
< ǫ/(1 − α)q

′
.

Let h be a monotone, smooth cutoff function such that

h(t) =

{
0 if t < α/4

h(t) = t if t > α/2.

Then φn := h ◦ (φ− ηn) ∈W 2,q′(RN ) and

φn ≥ α on K ′
n := K ′ \ En, φn = 0 C2,q′ a.e. in An.

Thus, choosing α = 1/2,

(A.2)

{
φn/α ≥ 1 on K ′

n, supp(2,q′)φn ⊂ (suppφ) \ An ⋐ D,

lim supC2,q′(K \K ′
n) < ǫ(1 + (1 − α)−q′).

By applying (to φn/α) another smooth cutoff function which approximates
min(·, 1), we obtain a sequence of functions which, for n sufficiently large,
satisfy the statement of the lemma. �

Corollary A.2. Let D be a bounded C2,q′-finely open set and let {En} be a
q-exhaustion of D (see Lemma 6.1). Then there exists a sequence {ϕn} in

W 2,q′(RN ) such that:

(A.3)

(i) 0 ≤ ϕn ≤ 1, (ii) supp(2,q′)ϕn ⋐ En+1,

(iii)
∞∑

n=1

C2,q′(En \ [ϕn = 1]) <∞, (iv) {ϕn} is non-decreasing.

In particular ϕn ↑ 1 C2,q′ a.e. in D.

Proof. We construct φn as in Lemma A.1 with K and D replaced by En

and intqEn+1, a = 2−n and α = 1/2. Then we put ϕ̃n :=
∑n

1 ϕm and finally
apply to 2ϕ̃n a smooth cutoff function which approximates min(·, 1). �
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Lemma A.3. Let D be a C2,q′-finely open set and let τℓ(2,q′)(D) be the topol-
ogy in Lq

ℓ(2,q′)
(D) defined by the family of seminorms (6.3). Then τℓ(2,q′)(D)

is a metric topology.

Proof. It is sufficient to show that the space is separable. For each fixed φ ∈

W 2,q′

0,∞(D), the space Lq(D;φ) is separable. Let {ϕn} be as in Corollary A.2.

Then, for every f ∈ Lq
ℓ(2,q′)

(D),
∫

D
fψ(1 − ϕm)dx→ 0 ∀ψ ∈W 2,q′

0,∞(D).

Therefore, if {hk,m}∞k=1 is a dense set in Lq(D;ϕm) then

{hk,m : k,m ∈ N}

is a dense set in Lq
ℓ(2,q′)

(D). �

Lemma A.4. Assume that F is a C2,q′-finely closed set and F ⊂ BR/2(0).
Put D = BR(0) \ F . Let {En} be a q-exhaustion of D. Then there exists a
q-exhaustion {E′

n} such that

(A.4) E′
n ⊂ En, C2,q′(En \E′

n) → 0,

for which the following statement holds:
The set of non-negative very weak subsolutions of (1.1) in D is uniformly

bounded in Lq(E′
n) for every n ∈ N.

Proof. Let {ϕn} be as in Corollary A.2 and let An,k be an open neighborhood
of En \ [ϕn = 1] such that

C2,q′(An,k) ≤ (1+2−k)C2,q′(En\[ϕn = 1]), Ãn,k+1 ⊂ An,k ∀k ≥ n, n ∈ N.

Put E′
n = En\∪

∞
k=nAn,k. Then {E′

n} is a q-exhaustion of D and (A.4) holds.
Furthermore, ϕn = 1 on E′

n. Hence, by Theorem 6.4, every non-negative
very weak subsolution u of (1.1) in D satisfies

∫

E′
n

uq dx ≤

∫

D
uqϕ2q′

n dx ≤ c(q,N)
∥∥D2ϕn

∥∥q′

Lq′ (D)
.

�

Lemma A.5. Let K be a bounded C2,q′-finely closed subset of D. Then, for
every ǫ > 0, there exists a compact set Kǫ ⊂ K such that

C2,q′(K \Kǫ) < ǫ, f ∈ Lq(Kǫ) ∀f ∈ Lq
ℓ(2,q′)

(D)

Proof. This is an immediate consequence of Lemma A.1. �
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