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Abstract

Iron is a major component of atmospheric aerosols, influencing the light absorption

ability of mineral dust, and an important micronutrient that affects oceanic biogeochem-

istry. The regional distribution of the iron concentration in dust is important for climate

studies; however, this is difficult to obtain since it requires in-situ aerosol sampling or5

simulation of complex natural processes. Simultaneous studies of aerosol chemical

composition and radiometric measurements of aerosol optical properties, which were

performed in the Negev desert of Israel continuously for about eight years, suggest a

potential for deriving a relationship between chemical composition and light absorption

properties, in particular the spectral single-scattering albedo.10

The two main data sets of the present study were obtained by a sun/sky radiometer

and a stacked filter unit sampler that collects particles in coarse and fine size fractions.

Analysis of chemical and optical data showed the presence of mixed dust and pollution

aerosol in the study area, although their sources appear to be different. Spectral SSA

showed an evident response to increased concentrations of iron, black carbon equiv-15

alent matter, and their mixing state. An empirical relationship that relates the spectral

SSA, the percentage of iron in total particulate mass, and the pollution components was

derived. Results calculated using this relationship were compared with measurements

from dust episodes in several locations around the globe. The comparison reveals that

dust over the eastern Mediterranean and Saudi Arabia contains less iron than that over20

Asia and the Sahara desert.

1 Introduction

The presence of iron (Fe) in aeolian dust is of wide interest in climate studies due to its

biogeochemical and radiative impacts (Jickells et al., 2005; Mahowald et al., 2005). Iron

oxide (primarily hematite) is a major component that affects the ability of aeolian dust to25

absorb sunlight at short wavelengths (the blue spectral region). Variable concentrations
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of iron oxide alter the dust’s radiative properties (make dust darker or brighter) and

thus may influence climate(Sokolik and Toon, 1999). Bio-available iron is an important

micronutrient that affects oceanic biogeochemistry (Fan et al., 2006). Following dust

deposition in oceanic regions (Fung et al., 2000; Colarco et al., 2003; Gao et al., 2003;

Johnson et al., 2003; Kaufman et al., 2005b), iron fertilization supports phytoplankton5

growth and the cycles of other oceanic nutrients and bacteria (Martin and Gordon,

1988; Behrenfeld et al., 1996; Coale et al., 1996; Capone et al., 1997; Falkowski, 1997;

Boyd et al., 2000; Jickells et al., 2005; Mongin et al., 2006). Subsequently, changes

in the photosynthetic activity of phytoplankton alter the cycle of atmospheric CO2 and

of global carbon (Broecker and Henderson, 1998; Watson et al., 2000). The variability10

of iron concentrations supplied by aeolian dust may also be of importance for oceanic

biota in various ocean regions where dust deposition is significant (Gao et al., 2001;

Wiggert et al., 2006).

Transported aeolian dust can be contaminated by anthropogenic aerosols and thus

contain products of industrial and motor vehicle combustion emissions, or products15

of biomass burning. Such aerosols contain light-absorbing carbon that is a strong

absorber and therefore contributes to global warming (Jacobson, 2004; Chung and

Seinfeld, 2005). Dubovik et al. (2002a) showed that the spectral absorption of pollution

aerosols is distinctive from that of mineral dust. The spectral absorption properties of

light-absorbing carbon depend on the origin of the material and combustion conditions20

(Andreae and Gelencser, 2006; Schkolnik et al., 2007). Strongly absorbing black soot

particles are commonly called black carbon (BC) and are characterized by an increase

of absorption towards long wavelengths proportional to 1/λ (Kirchstetter et al., 2004).

In addition, the combustion of organic matter, such as biomass, or smoldering com-

bustion may produce particles containing light-absorbing organic compounds. These25

particles have relatively strong absorption in the UV, and are denoted as brown carbon;

they are suggested to be of higher relevance for regions outside of those that are highly

industrialized and for cases where light absorption is not dominated by pure soot (An-

dreae and Gelencser, 2006). Here we will use the quantity “equivalent black carbon”
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(BCe), operationally defined as the amount of strongly light-absorbing carbon with the

approximate optical properties of soot carbon, which would give the same signal in our

optical instrument as the sample.

Several approaches can be used for evaluation of iron or BC concentrations in par-

ticulate matter, e.g., in-situ sampling of atmospheric aerosol particles with further lab-5

oratory analysis. However, in-situ sampling requires considerable effort, and can even

be impossible for providing results of wide spatial and temporal coverage. Another

possibility is to employ chemistry transport model simulations. However, while models

may better account for human induced factors and adequately estimate BC concen-

trations, prediction of natural iron concentrations depends on wind speeds and local10

mineralogy, and thus may carry more uncertainty (Kaufman et al., 2005a). An ad-

ditional approach is modeling of aerosol optical properties (Sokolik and Toon, 1999),

which can be employed for inversion of measurable aerosol optical characteristics and

deriving concentrations of chemical elements. Modeling of complex refractive index,

aerosol scattering and absorption coefficients for various combinations of minerals15

was recently improved by incorporation of the results of specifically designed measure-

ments (Lafon et al., 2006). In their study Lafon et al. (2006) composed dust mixtures

from some key minerals, including hematite and goethite, typically found in soils and

aerosol samples. Laboratory-obtained information on the fraction of minerals in differ-

ent size modes was included in the modeling of aerosol optical properties. Schuster et20

al. (2005) demonstrated an approach of inversion of AERONET retrievals into chem-

ical elements concentrations (namely BC) and specific absorption, using an effective

medium approximation. This approximation enables effective optical constants calcu-

lation of internally mixed chemical elements in various volume fractions. An advantage

of the approach suggested by Schuster et al. (2005) lies in tying the effective medium25

approximation to real optical measurements of ambient aerosols.

Other studies showed the possibility of deconvoluting dust and BC spectral absorp-

tion and scattering properties, and thereby inferring iron and BC concentrations. For

instance, Fialho et al. (2005) differentiated the absorption spectral dependence of dust
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and BC measured by an aethalometer. In a subsequent study, Fialho et al. (2006)

calibrated these measurements with Fe on the filters, and derived empirical calibration

constants for the determination of the iron concentration from the aethalometer obser-

vations. Koven and Fung (2006) employed a similar concept of absorption spectral de-

pendence for the characterization of dust composition; however, they studied sun/sky5

radiometer measurements through the whole atmospheric column (AERONET) and

incorporated the mineralogical effects by using different modeled relative fractions of

hematite, silicate and BC.

The approach used in the present paper is similar to that of Koven and Fung (2006)

and Schuster et al. (2005) in referring to aerosol scattering and absorption spectral10

properties derived from a sun/sky radiometer. However, we do not employ the effective

medium approximation to connect the optical measurements to the aerosol chemical

composition, but use the chemical element concentrations measured on filter sam-

ples of atmospheric aerosols. Specifically, we take advantage of a large data set of

co-located and simultaneous long-term AERONET observations and aerosol sampling15

results. We use these data for deriving an empirical relationship between spectral sin-

gle scattering albedo and concentrations of Fe and BCe. This approach avoids usage

of bulk or modeled optical properties of a material, or absorption properties measured

on aerosol samples after they have been removed from atmosphere. Instead, we utilize

in-situ aerosol optical characteristics that correctly reflect the actual measured radia-20

tion field. We also do not reconstruct aerosol mineralogy or use soil characteristics, but

refer to actual Fe and BCe concentrations in real atmospheric aerosols.

The general motivation for this paper was to assess iron concentrations in atmo-

spheric dust by aerosol spectral absorption. The iron concentration in total dust mass

can be useful for estimating the amounts of iron deposited to the ocean. We have25

analyzed the differential aerosol spectral absorption from the blue to the NIR (near in-

frared) spectral region, which should be proportional to the associated concentrations

of iron and BCe. In this study, we consider concentrations of total iron, and assume

that the optically relevant iron oxides represent a fixed part of the total iron in airborne
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mineral dust. This iron oxide to total iron ratio may be unique for a given location with its

specific sources, but at the end of Sect. 4.6 we discuss the reliability and restrictions of

this assumption. The aerosol spectral absorption was obtained by inversion of sun/sky

photometer measurements (AERONET product). The aerosol chemical composition

was obtained from aerosol sampling at ground level. Specific objectives were: (1) to5

correlate data sets for events where ground level aerosol chemistry was found to be

representative for the total column optical measurement; (2) to estimate the contami-

nation of atmospheric dust by BC and its role in aerosol spectral absorption; and (3)

to derive an empirical relationship between iron concentrations and differential aerosol

spectral absorption.10

2 Site location

Measurements were conducted at the Sede Boker (in some sources referred to as

Sde Boker) Campus of the Ben-Gurion University of the Negev (30
◦
51

′
N, 34

◦
47

′
E,

470 m a.m.s.l.), Israel. The site is located in the eastern Mediterranean region, char-

acterized by relatively high levels of tropospheric aerosol burden due to the influence15

of anthropogenic aerosols that originate mainly from Europe, and mineral dust from

the North African, Sinai, and Saudi Arabian deserts (Ichoku et al., 1999; Formenti et

al., 2001; Andreae et al., 2002; Gerasopoulos et al., 2003; Israelevich et al., 2003;

Kubilay et al., 2003). Specifically, Sede Boker is situated in the northern part of the

Negev Desert, relatively far from highly populated and industrial areas. The climate is20

dry, with a mean annual precipitation of 100–200 mm and 20–40 rainy days throughout

the year. The average relative humidity at 14:00 local time for July is 30–35% and for

January, 40–50% (Stern et al., 1986).
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3 Data sets and instrumentation

The main data sets were obtained from a CIMEL sun/sky photometer, part of the

global Aerosol Robotic Network (AERONET), and a “Gent” PM10 stacked filter unit

(SFU) sampler. Additional data were obtained from a single-wavelength integrating

nephelometer and a scanning electron microscope (SEM) equipped with an energy5

dispersive spectrometer (EDS).

3.1 Sun/sky photometer

The AERONET program is an automatic robotic sun and sky scanning measurement

initiative (Holben et al., 1998). A CIMEL spectral photometer performs direct sun mea-

surements every 15 min, with a 1.2
◦

field of view at 340, 380, 440, 500, 675, 870, 940,10

and 1020 nm nominal wavelengths. The spectral aerosol optical thickness (AOT or τext)

was retrieved at seven of these wavelengths from the direct sun measurements; the

940 nm channel was used to retrieve water vapor content. The angular distribution of

sky radiance was also measured at 440, 670, 870, and 1020 nm. The measured spec-

tral sun and sky radiances were used to retrieve aerosol optical parameters at four15

wavelengths by the AERONET inversion code (Dubovik and King, 2000).

In this paper we utilize data from Version 2 (V2) inversion products. V2 inversion

partitions aerosol particles into spherical and non-spherical components, which are

modeled by an ensemble of polydisperse, homogeneous spheres and a mixture of

polydisperse, randomly-oriented homogeneous spheroids (Mishchenko et al., 1997)20

with a fixed spheroid aspect ratio distribution (Dubovik et al., 2006). The retrievals

utilized also contain redefined surface reflectance properties, which are obtained by

the inclusion of combined satellite data, and which account for possible improvements

in retrieved aerosol properties and single-scattering albedo in particular (Sinyuk et al.,

2007). In addition, all restrictions recommended in Dubovik et al. (2002a) for reliability25

of the inversion product were applied. More details on the development of the retrieval

algorithm, modifications and accuracy assessments can be found in Dubovik and King
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(2000), Smirnov et al. (2000), Dubovik et al. (2000, 2002a, 2002b), and Sinuyk et

al. (2007).

3.2 “Gent” PM10 stacked filter unit sampler

The “Gent” PM10 stacked filter unit (SFU) sampler collects particles on Nuclepore poly-

carbonate filters in a coarse (2–10µm aerodynamic diameter (AD)) and a fine (<2µm5

AD) size fraction. The SFU sampler is operated continuously on a two-two-three-day

scheme. The instrument was located at about 8 m above the ground and operated at

an air flow rate of ∼16 L min
−1

. To avoid the problem of filter clogging and consequently

non-representative measurements in the two-two-three-day scheme, the sampling was

always conducted with a timer set at 50% for the two-day sample and at 33% for the10

three-day sample, thus the SFU effectively sampled only 50 or 33% of the time evenly

distributed over two or three days, respectively. This generally results in little clogging

or effects from a decrease in flow rate during the sampling, except possibly during

episodes of extremely high aerosol concentrations. The volume of the sampled air is

obtained from a volume meter, which is accurate within 5% and is not affected by the15

concentration of the aerosol in the air or by the filter loading. The SFU samples were

analyzed for particulate mass (PM), in µg m
−3

, for over 40 elements including Fe, in

ng m
−3

, and black carbon equivalent (BCe), also in µg m
−3

. The PM was measured

using gravimetry at 20
◦
C and 50% relative humidity. The uncertainty associated with

the weighing is usually less than 3% for the coarse PM and less than 5% for the fine20

PM. More than 40 elements were measured using a combination of instrumental neu-

tron activation analysis (INAA) and particle-induced X-ray emission analysis (PIXE).

BCe, that is black carbon corresponding to a measured light extinction at fixed absorp-

tion efficiency, was measured by a light reflectance technique. The measurements

were performed with a commercial smoke stain reflectometer (Diffusion Systems Ltd,25

London, UK, model 43) that uses white light. Instead of assuming a mass absorption

efficiency (MAE, in m
2

g
−1

), the instrument was calibrated with secondary standards

for BCe determination. These secondary standards were produced by depositing soot
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from acetylene burning on filters. More details about the SFU samples and the chemi-

cal analysis, including studies conducted at the Sede Boker site, have been discussed

by Maenhaut et al. (1996a, b, 1997) and Andreae et al. (2002).

3.3 Nephelometer

The Integrating Nephelometer (M903, Radiance Research, Seattle, WA, USA) mea-5

sures the light scattering extinction coefficient (σscat) with a 2-min resolution at a wave-

length of 545 nm, with a scattering angular range of 7–170
◦
. The instrument is operated

indoors and air is supplied through a plastic tubing of up to 3 m length and of 2.2 cm in-

ternal diameter. The inlet of the tubing is located outdoors at about 10 m above ground

level and faces downwards. Pressure, temperature, and relative humidity (RH) in the10

scattering volume of the instrument are also monitored and recorded. In order to elim-

inate a non-linear increase in σscat due to high humidity, the data with RH > 80% were

removed (Andreae et al., 2002).

3.4 Scanning electron microscope

The high-resolution field emission scanning electron microscope (SEM) LOE 1530,15

equipped with an energy dispersive X-ray (EDX) spectrometer, at the Max Planck In-

stitute for Chemistry, Mainz, was used for visualization and qualitative analysis of in-

dividual aerosol particles collected on the Nuclepore polycarbonate filters of the SFU

samples. The working conditions for the images presented here were set at an accel-

erating voltage of 5 or 15 kV and magnification varied from about 70 000X to 400 000X.20

This enabled the observation of particles and their structures in sizes from a few tens

to hundreds of nanometers.
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4 Data analysis and discussion

This section presents an analysis of aerosol absorption obtained from radiometric

measurements (Sect. 4.1.), aerosol chemistry obtained from in-situ surface sampling

(Sects. 4.2. and 4.3.), their integration (Sect. 4.4.), and the derivation of an em-

pirical relationship between aerosol spectral absorption and chemistry (Sect. 4.5).5

The proposed relationship is examined with data from several episodes and locations

(Sect. 4.6).

4.1 Radiometric observations

The single-scattering albedo (SSA or ω0) is the ratio of light scattering to total light

extinction (scattering and absorption) and represents scattering effectiveness relative10

to total extinction. Therefore, SSA decreases when absorption increases. Mineral dust

and aerosol particles originating from combustion processes have different wavelength

dependencies for SSA (Dubovik et al., 2002a). This difference in aerosol spectral

absorption is predominantly related to absorption by two components, iron oxide and

black carbon. The SSA for mineral dust usually decreases towards short wavelengths15

due to the presence of iron oxide. The SSA for anthropogenic pollution aerosols that

contain BC decreases towards long wavelengths. Thus, the presence of iron oxide or

BC in aerosols can be determined by examining the behavior of the spectral SSA.

The mean spectral single-scattering albedo obtained during about eight years of

measurements at Sede Boker for periods with predominantly coarse (Ångström ex-20

ponent (å) <0.6) and fine (å>1.0) aerosol, respectively, is presented in Fig. 1. The

Ångström exponent represents the wavelength dependence of extinction and is calcu-

lated by

å = −

ln
τ

870
ext

τ440
ext

ln λ870

λ440

(1)
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In our study we employ the difference between SSA at 440 nm and 1020 nm (dSSA),

which provides two advantages: first, it is expected that the difference will provide

better accuracy than absolute values, since retrieval of spectral dependence is more

reliable than that of an absolute value; and second, the spectral behavior of an SSA

curve can be characterized by only one parameter, dSSA. Negative values of the differ-5

ence SSA(440 nm)–SSA(1020 nm) will be related to stronger absorption by iron oxide

at 440 nm, while positive values are related to stronger absorption by BC-containing

particles at 1020 nm.

Figure 2 shows all quality-assured observations of SSA(440 nm)–SSA(1020 nm) ver-

sus the Ångström exponent, which were made at the Sede Boker site from October10

1995 to May 2006. The data presented in this figure are stratified into different ranges of

SSA(1020 nm) in order to indicate events with different levels of absorption at 1020 nm.

This figure reveals that, as the Ångström exponent (870 nm–440 nm) increases from

about zero to about 1.5 (indicating a decreasing contribution of coarse dust particles

and increasing fraction of fine pollution particles), spectral SSA gradually changes from15

stronger absorption at 440 nm to stronger absorption at 1020 nm. It is noteworthy that

absorption at 1020 nm is quite weak (marked by red diamonds and blue circles) for

events dominated by coarse particles (Ångström exponent about zero). As the contri-

bution from fine particles increases (Ångström exponent from 0.5 to 1.0), absorption is

still strongest at 440 nm, but absorption at 1020 nm becomes significant (part of obser-20

vations marked by green squares). This spectral SSA behavior is related to mixtures of

dust and pollution, with characteristic Ångström exponent values in the range from 0.5

to 1.0. As the Ångström exponent continues to increase, which means that the con-

tribution of fine particles increases, absorption at 1020 nm becomes stronger than at

440 nm and SSA(1020 nm) may reach values of 0.85 (black triangles). Consequently,25

Fig. 2 classifies spectral SSA for events having dust- or pollution-dominated contribu-

tions and different degrees of mixing.
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4.2 In-situ surface sampling

Concentrations of BCe and total Fe at ground level were measured simultaneously

with the radiometric measurements. Figure 3 shows the percentage of BCe versus the

percentage of Fe in the PM10 total particulate mass (TPM). The BCe or Fe percentages

in the TPM (denoted hereafter as %TPM) were calculated as the sum of BCe or Fe5

concentrations (µg m
−3

) in the fine and coarse size fractions relative to the sum of the

particulate mass concentrations (µg m
−3

) in the two size fractions. This figure shows

a pattern of negative correlation between the percentages of BCe and Fe in the TPM.

This implies that, generally, sources of BCe (pollution tracer) and Fe (mainly from dust)

are different. Another conclusion, suggested by this plot, is that during most of the10

events both elements are present at measurable concentrations, i.e., that we generally

have a mixture of dust and pollution aerosol at our sampling site.

It should be mentioned here that the BCe concentration is measured by a light re-

flectance technique so that other species (e.g., Fe) or even just an increase of total

mass concentration (µg m
−3

) on the filter during a dust event may contribute to the15

BCe signal by additional light absorption. To test for these potential interferences, we

examine the possible influence of Fe and high mass concentrations on the BCe signal

(Fig. 4). This figure shows BCe, %TPM in the fine fraction, versus Fe, %TPM in the

coarse fraction. Different ranges of total mass concentration are indicated by different

symbols. Figure 4 reveals that (1) fine BCe of pollution origin is not positively correlated20

with dust-related coarse Fe; (2) increase in mass concentration does not coincide with

an increase of BCe, %TPM in fine fraction; and (3) increase in total mass concentration

is clearly coincident with an increase in coarse Fe, %TPM. Later, in Fig. 7, we will also

show that the main part of BCe is found in the fine and that of Fe in the coarse size

fraction. Thus, an increase in Fe, %TPM or total mass concentration does not cause a25

spurious increase in the measured BCe, %TPM.
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4.3 Individual particle analysis

Four pairs of SFU sample filters (coarse and fine) from four dust storm events were

analyzed by scanning electron microscope (SEM) in order to examine microphysical

characteristics and possible mixing of the sampled aerosols. In this paper we present

a few images from analyzed dust events on 2 April 2000 and 3 February 2001 in order5

to illustrate dust and pollution mixing and examples of the observed soot particles.

Figure 5 shows images of individual particles collected on the fine and coarse filters.

It demonstrates the presence of typical ring and open soot clusters that were found

among dust particles on the coarse filter from the dust event on 2 April 2000, and soot

clusters attached to dust that were found on the fine filter from the dust event on 310

February 2001. Quite similar pictures were observed on other analyzed filters, where

soot clusters were observed between mineral dust particles, as well as attached to dust

particles.

4.4 Data integration

A combined data set was created for the purpose of deriving empirical relationships15

between aerosol spectral absorption and chemical composition. A challenge in the

creation of an adequate data set was the adjustment between optical measurements

made through the total atmospheric column and aerosol sampling at ground level. Rep-

resentativeness of surface sampling for dust events is problematic due to the fact that

dust maybe transported at high altitudes (Hamonou et al., 1999; di Sarra et al., 2001;20

Tsidulko et al., 2002; Dulac and Chazette, 2003; Alpert et al., 2004) and not be ad-

equately sampled at the surface. An additional problem is that the aerosol-sampling

unit collects particles during two or three days on one filter, thus it may contain parti-

cles from different events and sources. In order to avoid involving filters that contain

particles from different events, a time series of AOT was analyzed for each preliminar-25

ily selected episode of elevated AOT. Data were selected only if the AOT time series

indicated one dust or pollution episode during the two or three day period of sampling.
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An additional analysis was conducted to assure representative surface sampling of

dust events (å<0.6). This analysis employs the ratio of τext

/

σscatt0 as a function of

time, where τext is aerosol optical thickness measured through the entire atmospheric

column and σscatt0 is the aerosol scattering coefficient measured by the nephelometer

at ground level. This ratio can be used for estimating the equivalent aerosol height,5

while its time series reflects vertical dynamics of aerosols passing over the site. For

example, if the main aerosol concentration is near the surface or aloft, the value of

the ratio will be low or high, and indicate an equivalent aerosol height. More detailed

discussion and examples of the ratio τext

/

σscatt0 usage can be found in (Derimian et

al., 2006). Thus, by parallel analysis of the ratio τext

/

σscatt0 and τext as a function of10

the time, we are able to follow the dynamics of dust events and to distinguish between

high altitude dust transport and dust settling episodes. This tool enables the selection

of representative filters where chemical characteristics of settled dust were expected to

reflect the measured optical properties. Based on the knowledge that pollution aerosols

in the study area are generally transported at lower heights (Formenti et al., 2001,15

2002a, b) and surface sampling is representative for them, events with å>0.7 were not

subjected to additional analysis for vertical dynamics.

Figure 6 presents averaged values of the difference SSA(440)–SSA(1020) versus

the Ångström exponent (870–440) for 25 selected events that cover a wide range of

optical data measured during elevated loadings of dust and pollution aerosols. This20

optical data set was matched with aerosol chemistry and selected from the general

data set (Figs. 2 and 3) by the above-mentioned criteria. Representation of the cov-

ered concentration range of the chemical elements BCe and Fe is shown in Fig. 3.

The selected data are marked using red circles (å>0.7 – fine particles dominating)

and squares (å<0.6 – coarse particles dominating), over the background of all ob-25

servations. Unfortunately, optical data for extremely high BCe concentrations were not

available, probably due to some systematic problem such as meteorological conditions,

or sky homogeneity that prevented sun/sky photometer measurements, or that violated

the criterion for proper almucantar retrievals. However, the existing optical data were
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matched to a range of points in Fig. 3 with the highest density of data, i.e., the range of

most frequent concentrations. Thus, at this stage we have a set of carefully matched

optical and chemical data for 25 dust and pollution loaded events.

Figure 7 presents the BCe and Fe percentages in the fine and coarse size fractions

and the corresponding differences: SSA(440) – SSA(1020), SSA(440)–SSA(670), and5

SSA(670)–SSA(1020). Data on this plot were sorted by decreasing total (fine and

coarse) iron concentration. A trend from negative to positive values of SSA(440)–

SSA(1020) can be noticed as the total concentration of iron decreases and the role of

the BCe contribution increases. In addition, spectral SSA subdivided by two ranges,

one from 440 nm to 670 nm and the second from 670 nm to 1020 nm, reveals the re-10

sponse to relative contributions of iron and BCe. The difference SSA(440)–SSA(670)

shows negative values in response to dominant iron contribution and gradually be-

comes positive as the role of BCe increases. The SSA(670)–SSA(1020) response is

similar to SSA(440)–SSA(670) and SSA(440)–SSA(1020) only when the contribution

of BCe is high, however it varies little and is close to zero when the iron contribution15

is dominant. This implies that spectral SSA from 440 nm to 670 nm responded to both

iron and BCe, while spectral SSA from 670 nm to 1020 nm generally responded to BCe.

Figure 7 also shows that the major concentration of iron is in the coarse size fraction,

which supports its mineral dust origin, while most of BCe is in the fine fraction, which is

typical for anthropogenic pollution. In summary, Fig. 7 reveals that SSA retrievals from20

AERONET are consistent with aerosol chemical composition and suggests a potential

for deriving a relationship between retrieved SSA, Fe, and BCe.

4.5 Empirical relationship analysis

The matched data set was employed to derive an empirical relationship between the

spectral SSA, and the Fe and BCe percentage in the total particulate mass. The orig-25

inal goal was the assessment of the Fe percentage in atmospheric dust by spectral

absorption; however, because the dust was found to be contaminated by pollution,

BCe had to be included in the analysis.
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The analysis includes spectral absorption, represented by the difference SSA(440)

– SSA(1020), and the concentrations of Fe and BCe using the following model:

SSA(440) − SSA(1020) = a1 ∗ Fe% + a2 ∗ BCe% + a3, (2)

where a1, a2, and a3 are regression coefficients. Multivariate regression analysis

yields a1 = –0.0635±0.0116, a2 = –0.0020±0.0065, and a3 = 0.1352±0.0429 (±5

Standard Error); the regression is significant at p<0.0001, the coefficient of multiple

determination (r
2
) is 0.73. It means that Fe and BCe in this model explain 73% of the

variance in SSA(440)–SSA(1020). The rest of the variance may be due to facts such as

(1) Fe is not directly related to the optically relevant iron oxide (Lafon et al., 2004), (2)

other components of mineral dust may contribute to dust absorption (Jacobson, 2001),10

(3) spectral absorption of pollution cannot be completely explained by measured BCe,

(Bond, 2001; Kirchstetter et al., 2004), and (4) measurement uncertainties. Neverthe-

less, 73% of explained variance is quite a strong response of spectral SSA to aerosol

chemistry. A drawback of the above model is that this approach requires information on

BCe in order to derive the Fe concentration. The regression model gives a higher Fe15

percentage without the inclusion of BCe due to its extra absorption. However, it should

be noted that the weight of BCe (coefficient a2) is small in this model and any error in

the BCe estimate has only a minor impact.

4.6 Evaluation of the empirical relationship

In order to evaluate our attempt to assess the Fe concentration, we utilized appropriate20

and available spectral SSAs that were retrieved from ground-based and satellite opti-

cal measurements for several episodes and locations (Table 1). Specifically, we used

data from Sede Boker (Negev desert) (an average for about eight years), Solar Village

(Saudi Arabia) (Sinyuk et al., 2007), Korean Strait (Asia) during ACE-Asia (Bergstrom

et al., 2004), and the Sahara desert (Senegal) (Kaufman et al., 2001). An accumulated25

error was also estimated in order to assess the uncertainty in calculated Fe percent-

age. This error is caused by uncertainty in the variables (SSA difference and BCe)
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and uncertainty in the assumed linear dependence between SSA difference, Fe and

BCe (i.e., errors of the regression coefficients a1, a2, and a3). Since BCe measured

concentrations were not available, they were assumed to be 2±2%. The error of the

SSA difference was assumed as ±0.03, which is the error of the SSA values (Dubovik

et al., 2002a). However, we used the SSA difference to describe the retrieved spectral5

dependence, and we expect that its accuracy will actually be better than either of the

absolute SSA values.

The calculated percentages of Fe for several episodes and locations are presented

in Table 1 for the assumed BCe concentration, and accompanied by the standard er-

rors representing a worst-case scenario. These errors were in the range of ±28% to10

36%. For others scenarios of typical dust events the errors were lower and, on aver-

age, ±25% to 30%; however, they may increase for low Fe concentrations and events

where BC spectral absorption is dominating. In Table 1 the calculated percentages of

Fe are compared with values reported in the literature. For example, Ganor and Foner

(1996) gave a median Fe content of 2.9% for dust storms in Israel. This value is a15

result of completely independent measurements, and agrees well with the value calcu-

lated by our empirical relationship. The calculated Fe percentage for the Korean Strait

area during ACE-Asia, 12 April 2001 is comparable to the estimated Fe in eastern Asia

during ACE-Asia in spring 2001 (Zhang et al., 2003), where the reported concentra-

tions were from 3.9±0.5 to 4.0±0.9%. The calculated Fe percentage for Sahara dust is20

comparable to the reported value of 4.45±0.49% (Guieu et al., 2002), which was pro-

posed as characterizing Saharan dust. It is, however, lower than the values reported

by (Lafon et al., 2004), who found a mean Fe of 6.3±0.9% in Niger, where the proba-

ble source was the Chad basin, and 7.8±0.4% in the Sahelian zone. In summary, the

calculated percentages of Fe and those reported in the literature are comparable, and25

yield a similar trend of less iron content in the eastern Mediterranean and Saudi Arabia

than in Asia and the Saharan deserts. Considering the good agreement of the calcu-

lated results to results reported in the literature, one also may expect improvement of

modeling accuracy by our empirical relationship with increasing number and quality of
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observations.

One additional aspect should be discussed here for the proper interpretation of the

results obtained. That is, how representative is the total iron concentration for the iron

oxide content of the aerosol? Iron oxide is present as a major aerosol component

affecting the short-wavelength absorption of mineral dust. However, iron oxide repre-5

sents only a part of the total iron, which may also exist in the crystal lattice of numer-

ous other desert minerals. The iron oxide-to-total iron ratio in natural and soil-derived

aerosols was characterized by (Lafon et al., 2004, 2006). They reported considerable

variability of iron oxide-to-total iron ratio for various regions and sampling conditions.

Lafon et al. (2006), however, conclude that there is no clear relationship between the10

oxide-to-total iron ratio and dust origin or aging; thus, probably both effects may play

a role and additional studies are required. Based on all values of oxide-to-total iron

ratio reported in (Lafon et al., 2004; 2006) we calculated an average of 0.54 (±0.10)

(± Std.Dev.), and with some outliers removed the variability can be reduced to around

10%. Thus, given the present lack of better knowledge, a fixed oxide-to-total iron ratio15

is a reasonable assumption for a specific region or observation, and the ratio given can

be considered as an overall rough estimate with some degree of variability.

5 Summary and conclusions

The importance of the radiative and biogeochemical impact of iron on the climate sys-

tem requires the estimation of the iron distribution, especially in regions of the globe20

that are strongly affected by mineral dust. The observed mixtures of dust and pollution

aerosols over the Negev desert of Israel enabled the characterization of the relation-

ship between spectral absorption and chemical composition. We have presented the

response of remotely sensed aerosol spectral absorption to varying iron concentra-

tions, and suggested an approach for the estimation of the iron content of the dust25

aerosol. The following is a summary of specific conclusions inferred in this study.

1. Mineral-dust–derived Fe (mostly in the coarse size fraction) and pollution-
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originated BCe (mainly in the fine fraction) were found to be supplied to the

Negev desert from different sources. Individual particle analysis of some dust

events demonstrated the presence of typical ring and open soot clusters, both

externally-mixed and attached to dust particles.

2. The difference SSA(440 nm)–SSA(1020 nm), which indicates SSA spectral be-5

havior, showed a trend from negative (stronger absorption in 440 nm) to positive

(stronger absorption in 1020 nm) values as the total iron concentration decreased

and the role of BCe increased.

3. The Fe percentage in the total particulate mass, calculated using an empirical

multivariate regression model, is comparable to values presented in the literature.10

The results suggest less iron content in dust from the eastern Mediterranean and

Saudi Arabia than from Asia and the Sahara.

An advantage of the derived empirical relationship between spectral SSA, Fe, and BCe

is the use of actual ambient aerosol measurements, namely, the retrieved spectral

absorption from the total column, and in-situ Fe and BCe concentrations. Such an ap-15

proach does not involve modeling of aerosol composition and optical characteristics.

The approach suggested here may be employed for the estimation of the iron concen-

tration in mineral dust, and further may enable quantification of the iron distribution and

deposition during dust storm events.
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Table 1. Reported in literature and calculated percentage of Fe in total particulate mass (TPM)
for several events and locations with dust-dominated conditions, and corresponding measured
spectral single-scattering albedo for the study area and reported in literature. Calculated Fe is
for an assumed BCe percentage and accompanied by an error assessed for the worst scenario.

Measured values in the study Calculated Reported in literature
area and reported in literature
ω0(440 nm) ω0 (1020 nm) Fe, %TPM* Fe, %TPM

Sede Boker, å<0.6, 0.91 0.96 2.86±1.00 2.9
this work (Ganor and Foner, 1996)
Solar Village, 13 June 2003
(Sinyuk et al., 2007)

0.90 0.94 2.70±0.98

Solar Village, 7 June 2003
(Sinyuk et al., 2007)

0.90 0.97 3.17±1.03

ASE-Asia, 12 April 2001 0.85 0.95 3.64±1.08 3.9±0.5 to 4.0±0.9
(Bergstrom et al., 2004) (Zhang et al., 2003)
Senegal, 17 April 1987 0.86 0.99 4.11±1.14 4.45±0.49
(Kaufman et al., 2001) (Guieu et al., 2002)

Fe, %TPM = {[ω0(440) – ω0(1020)] – a2·BCe% – a3}/a1,
where a1 = –0.0635±0.0116; a2 = –0.002±0.0065; a3 = 0.1352±0.0429 (±Std.Err.)

* Assumed BCe, %TPM: 2.0±2.0%; Accuracy of ω0(440) – ω0(1020): ±0.03
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Fig. 1. Average spectral single-scattering albedo for periods with dominant contributions of
coarse (Ångström exponent <0.6) and fine (Ångström exponent >1.0) aerosol for about eight
years of measurements at the Sede Boker site.
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Fig. 2. Difference of SSA(440 nm)–SSA(1020 nm) versus Ångström exponent. All observations
were conducted at the Sede Boker site from October 1995 to May 2006. Different ranges of
SSA(1020 nm) values are presented by different symbols and indicate events from weak to
strong absorption at 1020 nm.
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Fig. 3. BCe percentage of the total particulate mass (BCe, %TPM) versus Fe percentage of
the total particulate mass (Fe, %TPM). Black open circles represent all available data, red solid
circles (Ångström exponent <0.6) and open squares (Ångström exponent >0.7) represent a
subset of data matched to optical column measurements.
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Fig. 4. BCe, %TPM in the fine size fraction versus Fe, %TPM in the coarse size fraction.
Different symbols indicate different ranges of total mass concentration.
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Fig. 5. Scanning electron microscope images of individual particles (a), (b), (c) demonstrate
the presence of typical ring and open soot clusters that were found among dust particles on
the coarse filter from the dust event on 2 April 2000, and (d) soot clusters attached to dust that
were found on the fine filter from the dust event on 3 February 2001.
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Fig. 6. Averaged values of the difference SSA(440 nm)–SSA(1020 nm) versus the Ångström ex-
ponent for 25 selected events measured during elevated loadings of dust and pollution aerosols.
The presented data set was matched to the data set on aerosol chemistry.

8191

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/8159/2007/acpd-7-8159-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/8159/2007/acpd-7-8159-2007-discussion.html
http://www.egu.eu


ACPD

7, 8159–8192, 2007

Iron and black carbon

in aerosol light

absorption

Y. Derimian et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

0

1

2

3

4

5

6

03
-M

ay
-0

0
03

-F
eb

-0
1

21
-A

pr
-0

1
09

-S
ep

-9
8

31
-M

ar
-9

9
17

-J
ul

-9
9

17
-A

pr
-0

1
13

-A
pr

-0
0

24
-M

ay
-0

1
02

-A
pr

-0
0

01
-S

ep
-9

8
18

-A
ug

-9
9

09
-A

ug
-9

9
21

-A
ug

-9
9

19
-S

ep
-0

0
06

-M
ar

-0
1

30
-A

ug
-9

8
25

-A
pr

-9
6

04
-J

un
-9

8
18

-S
ep

-0
0

15
-A

ug
-0

0
17

-S
ep

-9
9

28
-A

ug
-0

0
27

-A
ug

-9
8

11
-O

ct
-9

9

BC
e
(Fine)

BC
e
(Coarse)

Fe(Fine)
Fe(Coarse)

-0.1

-0.05

0

0.05

0.1

SSA(440)-SSA(1020)
SSA(440)-SSA(670)
SSA(670)-SSA(1020)

E
le

m
en

t, 
%

TP
M

Total Iron decrease

S
SA

 D
iff

er
en

ce

Fig. 7. BCe and Fe percentage of the total particulate mass in the fine and coarse size fractions
for 25 selected events and the corresponding differences of SSA(440)–SSA(1020), SSA(440)–
SSA(670), and SSA(670)–SSA(1020). The data are sorted by decreasing total iron concentra-
tion.
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