

Light induced conversion of nitrogen dioxide into nitrous acid on submicron humic acid aerosol

K. Stemmler, M. Ammann, Y. Elshorbany, J. Kleffmann, M. Ndour, B.

d'Anna, C. George, B. Bohn

► To cite this version:

K. Stemmler, M. Ammann, Y. Elshorbany, J. Kleffmann, M. Ndour, et al.. Light induced conversion of nitrogen dioxide into nitrous acid on submicron humic acid aerosol. Atmospheric Chemistry and Physics Discussions, 2007, 7 (2), pp.4035-4064. hal-00328055

HAL Id: hal-00328055 https://hal.science/hal-00328055

Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Atmos. Chem. Phys. Discuss., 7, 4035–4064, 2007 www.atmos-chem-phys-discuss.net/7/4035/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License.

Light induced conversion of nitrogen dioxide into nitrous acid on submicron humic acid aerosol

K. Stemmler¹, M. Ammann¹, Y. Elshorbany^{2,3}, J. Kleffmann², M. Ndour^{4,5,6}, B. D'Anna^{4,5,6}, C. George^{4,5,6}, and B. Bohn⁷

¹Laboratory of Radio- and Environmental Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland

²Physikalische Chemie/FB C, Bergische Universität Wuppertal, 42097 Wuppertal, Germany ³National Research Centre, Dokki, Giza, Egypt

⁴IRCELYON, Institut de recherches sur la catalyse et l'environnement de Lyon, 2 avenue Albert Einstein, Villeurbanne, France

⁵CNRS, UMR5256, Villeurbanne, France

⁶Université Claude Bernard Lyon 1, Villeurbanne, 69626, France

⁷Institut für Chemie und Dynamik der Geosphäre II: Troposphäre, Forschungszentrum Jülich, 42425 Jülich, Germany

Received: 6 February 2007 - Accepted: 26 February 2007 - Published: 27 March 2007

Correspondence to: M. Ammann (markus.ammann@psi.ch)

7, 4035–4064, 2007

Light induced conversion of NO₂ on humic acid aerosol

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
_	
I	►I
•	•
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	
EGU	

Abstract

The interactions of aerosols consisting of humic acids with gaseous nitrogen dioxide (NO_2) were investigated under different light conditions in aerosol flow tube experiments at ambient pressure and temperature. The results show that NO_2 is converted

- on the humic acid aerosol into nitrous acid (HONO), which is released from the aerosol and can be detected in the gas phase at the reactor exit. The formation of HONO on the humic acid aerosol is strongly activated by light: In the dark, the HONO-formation was below the detection limit, but it was increasing with the intensity of the irradiation with visible light. Under simulated atmospheric conditions with respect to the actinic
- ¹⁰ flux, relative humidity and NO₂-concentration, reactive uptake coefficients γ_{rxn} for the NO₂→HONO conversion on the aerosol between $\gamma_{rxn} < 10^{-7}$ (in the dark) and $\gamma_{rxn} = 6 \times 10^{-6}$ were observed. The observed uptake coefficients decreased with increasing NO₂-concentration in the range from 2.7 to 280 ppb and were dependent on the relative humidity (RH) with slightly reduced values at low humidity (<20% RH) and high humid-
- ¹⁵ ity (>60% RH). The measured uptake coefficients for the NO₂→HONO conversion are too low to explain the HONO-formation rates observed near the ground in rural and urban environments by the conversion of NO₂→HONO on organic aerosol surfaces, even if one would assume that all aerosols consist of humic acid only. It is concluded that humic materials present on the Earth surface will have a much larger impact on
- ²⁰ the HONO-formation in the lowermost layer of the troposphere than humic materials potentially occurring in airborne particles.

1 Introduction

25

The formation of nitrous acid (HONO) in the atmosphere is of considerable interest as HONO is a major precursor of atmospheric hydroxyl radicals in the lowest layer of the troposphere (Acker et al., 2006b; Alicke et al., 2002, 2003; Aumont et al., 2003; Harrison et al., 1996; Kleffmann et al., 2005; Ren et al., 2003; Vogel et al., 2003; Zhou

ACPD 7,4035-4064,2007 Light induced conversion of NO₂ on humic acid aerosol K. Stemmler et al. **Title Page** Introduction Abstract Conclusions References **Figures** Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion EGU

et al., 2002). Recent atmospheric measurements and model calculations (Acker et al., 2006b; Honrath et al., 2002; Kleffmann et al., 2003, 2005; Ren et al., 2003; Staffelbach et al., 1997; Vogel et al., 2003; Zhou et al., 2001, 2002, 2003) show a strongly enhanced formation of HONO during daytime, which is inconsistent with known gas
⁵ phase formation mechanisms, direct emissions and heterogeneous processes occurring in the dark, i.e. during night. In our previous studies (George et al., 2005; Stemmler et al., 2006) it has been shown that nitrogen dioxide (NO₂) is effectively reduced to HONO on light activated surfaces containing humic acids, soil or selected synthetic aromatic compounds. The NO₂→HONO conversion rate on irradiated soil surfaces
¹⁰ in contact with moderate NO₂-concentrations was found to be sufficient to explain the high daytime concentrations of HONO observed in the ground near levels of the troposphere.

In this study the previous experiments on the photoreactivity of humic acid films and soil surfaces are extended to humic acid aerosol particles. This system has the ¹⁵ advantage that aerosol flow tube studies allow a better characterization of the reaction conditions with regard to light intensity, to relative humidity, and especially to the surface area, than in the case of films with a potentially complex structure. This study also aims to investigate the behaviour of particulate matter of complex organic composition in aerosols and its processing by atmospheric oxidants. It will provide an estimate of the significance of this process for HONO-formation on aerosol particles.

Humic substances are the most abundant group of organic species on the Earth surface (Batjes, 1996; IPCC, 2001; Janzen, 2004; Swift, 2001). They stem from the degradation of biological materials. As humic matter is ubiquitously found on ground surfaces, it is likely that such materials also exist on airborne surfaces (due to soil abrasion or biomass burning). Also atmospheric oxidation of VOC is a source of similar polymeric particle bound materials (Jang et al., 2002; Kalberer et al., 2004). Many studies focus now on the characterization of the complex organic material (the so called humic like substances) found in natural aerosol samples from different environments and search for the origins of these materials (Graber and Rudich, 2006). Such mate-

rials resemble in many properties the humic material found in the terrestrial or aquatic environment, but depending on the isolation methods and the type of analytical characterization significant differences between terrestrial and aquatic humic substances and aerosol borne humic-like substances were evident (Graber and Rudich, 2006). For ex-⁵ ample, airborne humic like matter appears to be of lower molecular size, may exhibit

a lower aromaticity and a smaller light absorption in the visible range as compared to aquatic or terrestrial humic acids.

Despite these differences, a humic acid model compound (Aldrich Humic Acid) was chosen in this aerosol study, which shows a similar photoreactivity towards NO₂ like ¹⁰ humic acids from soil, brown coal or peat (Stemmler et al., 2006), but has a nearly tenfold higher photoreactivity towards NO₂ during 400–700 nm irradiation compared to an aquatic fulvic acid (Suwannee River Fulvic Acid, (Stemmler et al., unpublished result), which properties might be closer to that of humic like organic matter in aerosol (Graber and Rudich, 2006). Aldrich humic acid was chosen because it is available in ¹⁵ sufficient quantities for aerosol experiments and to allow a better comparison with a previous study on stationary humic acid films (Stemmler et al., 2006).

2 Experimental

The experiments were performed in a horizontal aerosol flow tube (190 cm×7.1 cm i.d.) at a pressure of ~980 mbar. The glass flow tube was equipped with a movable 20 cm
long Teflon plug, which bore conically widens to reach the flow tube dimensions, allowing an adjustment of the gas-aerosol contact time between 1 and 10 min (0–150 cm flow path length, 0.6–2.1 L min⁻¹ gas flow). At the reactor exit, the gas flow was recollected by an identical Teflon plug. The reactor was installed in an air cooled lamp housing holding 7 fluorescence lamps (150 cm×2.6 cm o.d.), in a circular arrangement surrounding the reactor tube. Two types of lamps were used to examine the HONO-production under irradiation in the UV-A range (Philips Cleo Effect 70 W: 300–420 nm) and in the visible part of the tropospheric light spectrum (Osram Lumilux Deluxe 954,

ACPD 7,4035-4064,2007 Light induced conversion of NO₂ on humic acid aerosol K. Stemmler et al. **Title Page** Introduction Abstract Conclusions References **Tables Figures** Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion EGU

58 W: 400–750 nm). The spectral actinic flux in the reactor was measured by a calibrated spectroradiometer (Hofzumahaus et al., 1999) with an optical receiver scaled down for the measurements in the flow tube and corrected for the imperfect angular response. Actinic flux spectra for the different sets of lamps are shown in Fig. 1a.

- ⁵ The humic acid particles were produced by nebulising a solution containing 20 g L^{-1} Aldrich humic acid sodium salt acidified to pH 4.6 with HCl into a stream of N₂. The nebulised humic acid was initially dried in a 1.2 m long Silica Gel diffusion drier, and then the particles were passed through a bipolar ion source (⁸⁵Kr) to establish an equilibrium charge distribution. An electrostatic precipitator removed all charged particles
- ensuring that only neutral particles were passing on through the experiment. The particles were rehumidified to the desired relative humidity and mixed with a prehumidified stream of NO₂ in an O₂/N₂-mixture before the entrance of the reactor. The final carrier gas is a 1:4 mixture of O₂ and N₂. The aerosol produced by this way has a log-normal size distribution with a mean diameter of 100 nm and a geometric mean standard deviation of 1.85 at relative humidities of 20–40%. Figure 1a shows the absorption spectrum
- of the employed humic acid in aqueous solution.

20

The Reynolds numbers of the reactor under the given flow conditions were $\sim 12-43$ and indicate laminar flow conditions, but the laminar flow may be distorted by the fact that the reactor housing was heated by the lamps to about 300 K compared to the temperature of the entering gas of 296 K. The heating of the gas on the warmer reactor walls is expected to induce some turbulence in the gas flow. Figure 1b shows

a residence time analysis of the aerosol particles in the flow tube. The reactor was operated at a total flow of 2.18 L min⁻¹ corresponding to a calculated mean residence time of t_m =180 s. In Fig. 1b the aerosol concentration measured at the reactor exit during an "aerosol on-off" cycle is compared with modeled aerosol concentrations for plug

flow and for laminar conditions. The particle diffusion is neglected in the models. The first aerosol signal at the reactor exit is observed after 50% of the mean retention time $(t=t_m/2)$ as expected for a laminar flow profile (Fitzer and Fritz, 1989). The comparison further indicates that the real residence time distribution is less tailing towards higher

ACPD 7,4035-4064,2007 Light induced conversion of NO₂ on humic acid aerosol K. Stemmler et al. **Title Page** Introduction Abstract Conclusions References **Figures**

Interactive Discussion

Printer-friendly Version

Full Screen / Esc

Back

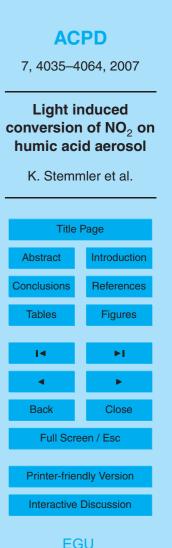
EGU

retention times than that expected from a laminar flow, indicating some radial transport in the flow tube. The reaction times given in this study refer to the calculated mean residence time. To justify this approach, the aerosol was injected for 20 min in each experiment to reach a homogeneous aerosol concentration in the reactor. The periods for which the aerosol concentration at the reactor exit was rising or falling due to the

switch on-off were not used for the analysis, as it is expected that in this situations the aerosol exposure to NO_2 was not constant.

The NO₂-concentration entering the reactor was measured with a chemiluminescence detector (Monitor Labs 9841 NO_x-analyzer with a detection limit 0.5 ppb and a precision of $\pm 5\%$) and the aerosol concentration at the reactor entrance was measured

- ¹⁰ precision of ±5%) and the aerosol concentration at the reactor entrance was measured by Scanning Mobility Particle Sizers (SMPS) consisting of a differential mobility analyzer (TSI Model 3071) and a condensation particle counter (TSI, Models 3022 and 3025, 13–777 nm, aerosol size range). At the exit of the reactor a LOPAP-instrument (Long Path Absorption Spectrometer) was used to determine the concentration of the
- reaction product HONO in the gas phase (Heland et al., 2001; Kleffmann et al., 2002, 2006). The instrument collects HONO by a fast chemical reaction in a stripping coil and converts it into a dye, which is measured in a long path absorption cell. Interferences for particles in the diameter range of the present study can be neglected, since the uptake of particles <600 nm are found to be ≤1% (Bröske et al., 2003) and thus, the</p>
- ²⁰ arising potential interferences are corrected for by the two channel instrument. During the campaign the instrument had a detection limit of 5 ppt and a total accuracy ±10%. The instrument was collecting two data points per minute, but its actual time resolution was 3 min under the employed operation conditions. NO_x at the reactor exit was detected by means of NO/NO_x-chemiluminescence detector (CLD, Eco Physics, model
- CLD 77AM, with an external home made molybdenum converter at 653 K and a detection limit 0.1 ppb and a precision of ±1%). The NO_x-detector was used in combination with a sodium carbonate denuder tube (50 cm×0.8 cm) at the inlet of the analyzer to remove HONO from the gas stream and therefore eliminate the known interference of HONO in the NO₂→NO conversion. For a continuous relative measurement of the


ACPD 7,4035-4064,2007 Light induced conversion of NO₂ on humic acid aerosol K. Stemmler et al. **Title Page** Introduction Abstract Conclusions References **Tables Figures** ►T. Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion EGU

aerosol surface concentration at the reactor exit, the aerosol was recharged using a ⁸⁵Kr source and deposited in an annular flow-through capacitor loaded by a 600 V battery and the resulting current was monitored by an electrometer.

- The general experimental procedure was the following: First the reactor was equilibrated under a given reaction condition (flows, length, humidity, light intensity, NO₂concentration). After equilibration, the conditions and the HONO-formation was monitored for 20 min in absence of the aerosol. Then the aerosol was injected for 20–25 min by pumping the humic acid solution into the nebulizer and by bypassing an aerosol filter system. After the aerosol was switched off all parameters were monitored for another
- 20 min under the same conditions. This procedure was necessary as a significant HONO-concentration (150–900 ppt) was observed in the reactor in the absence of the aerosol. This background depended on the experimental conditions, the cleanliness of the reactor, and on the purity of gas supplies. As the aerosol surface in the experiments is small compared to the surface of the flow tube wall, heterogeneous processes on
- ¹⁵ the reactor wall, such as heterogeneous hydrolysis of NO₂ (Finlayson-Pitts et al., 2003) or reaction with deposited particles, lead to a significant background HONO-formation. It was therefore necessary to monitor this background HONO-concentration under all conditions and subtract it from the measured concentrations in presence of aerosols in order to obtain the excess HONO-formation on the particle surface. Typical experimental results for the HONO-formation during the injection of the humic acid acrosol
- ²⁰ imental results for the HONO-formation during the injection of the humic acid aerosol and the procedure for the HONO-background subtraction are shown in Fig. 2.

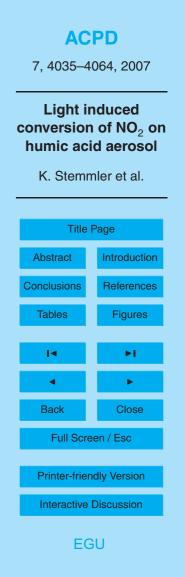
For comparison purposes, some additional measurements in which the photochemical HONO-formation was investigated on humic acid coatings were performed with an experimental set-up described previously (Stemmler et al., 2006). This experimental

set-up is briefly summarized here. The irradiations of the humic acid coatings were performed in 50 cm×0.8 cm Duran glass photo reactor cells installed in an air cooled lamp housing holding 7 fluorescence lamps (44 cm×2.6 cm o.d.), in a circular arrangement surrounding the reactor tube. The spectral distribution of the employed lamps (VISlamps: Osram Luminux Deluxe 954, 400–750 nm, UV-A lamps: Phillips Cleo Compact

300–420 nm) are very similar to that of the lamps used in the aerosol study (Fig. 1a). But the integrated actinic fluxes in the coated wall flow tubes are 12% and 40% higher for the visible and UV-A irradiations, respectively. The inner surface of the tubular glass flow reactor (surface=125 cm², surface to volume ratio=5 cm⁻¹) was coated with a thin layer of humic acids. This glass reactor surface was sandblasted to prevent droplet 5 formation during the coating procedure and therefore to reach a relatively homogeneous distribution of the organic test compound on the reactor walls. The humic acid coatings on the reactor wall were produced by gently drying 0.5 ml aliguots of agueous solutions of the humic acids dispersed on the reactor walls in a nitrogen stream at room temperature. In general, a quantity of 1 mg of humic acid $(8 \mu g \text{ cm}^{-2})$ was 10 used as coating. This amount had little effect on the spectral intensity distribution in the reactor, but was sufficient for a fast photochemical HONO-production. The carrier gas flow (synthetic air) and the NO₂-addition, from a 959 ppb mixture in synthetic air (Carbagas AG, Switzerland), was controlled by mass flow controllers. The total flow rate was 2.4 L min⁻¹ at ambient pressure leading to gas residence times of 0.6 s in the 15 photo-reactor. The NO₂-concentrations were adjusted in the 5–100 ppb range and the relative humidity between 0-50%.

3 Results and discussion

20


As shown previously, NO_2 is reduced on photo-activated humic acid containing surfaces to form HONO (Stemmler et al., 2006).

 $NO_2(g) \xrightarrow{\text{photoactivated aerosol surface}} HONO(g)$

(R1)

Here this reaction was examined on the surface of submicron humic acid aerosol. Figure 3 shows the dependence of the excess HONO-formation on the humic acid aerosol on reaction time and on the aerosol surface concentration in the reactor. For the aerosol surface concentration dependency all experiments were performed with

the aerosol surface concentration dependency, all experiments were performed with the same polydisperse, log normal size distributed aerosol, which concentration was

altered by changing the partial aerosol flow directed into the flow tube. The aerosol surface concentration was measured by two SMPS systems in parallel, which results agreed within 10%. The HONO-formation depended linearly on the aerosol surface concentration [S/V] and on the reaction time in the investigated interval of 0–10 min (i.e. dHONO/dt \propto [S/V]).

5

The photochemical nature of the reaction is demonstrated in Fig. 4. Humic acid aerosol at a surface concentration of $0.110\pm0.005 \text{ m}^2 \text{ m}^{-3}$ was introduced for periods of 20–25 min into the reactor, which was equilibrated under different visible light actinic fluxes, and the HONO-concentration was measured at the reactor exit. The exper-¹⁰ iments were performed at a NO₂-concentration of 35 ppb, a relative humidity of 30% and a reaction time of 3.75 min. In Fig. 4, the HONO-formation rate is expressed as the reactive uptake coefficient γ_{rxn} of gaseous NO₂ on the aerosol leading to the formation of HONO according to Reaction R1. The uptake coefficient γ_{rxn} is defined as the ratio between the rate of reactive collisions of NO₂-molecules on the aerosol surface to form gaseous HONO and the gas-kinetic collision rate of the NO₂-molecules with the particle surface.

The observed first order rate coefficient for the transformation of $NO_2 \rightarrow HONO$

$$k_{1.\text{order}} = -\ln\left(\frac{[\text{NO}_2](t=0) - [\text{HONO}](t)}{[\text{NO}_2](t=0)}\right) \times t^{-1}$$
(1)

is related to the uptake coefficient γ_{rxn} via Eq. (2), for which [S/V] is the aerosol surface concentration measured during the experiment, and ω is the mean thermal velocity of NO₂, given as $\omega = (8\text{RT}/(\pi M))^{1/2}$ with *R*, *T*, and *M* being the gas constant, the absolute temperature, and the molar weight of NO₂, respectively.

$$k_{1.\text{order}} = \frac{\gamma_{\text{rxn}} \times [S/V] \times \omega}{4}$$
(2)

In the dark, the HONO-formation on the aerosol surface was below the detection limit, corresponding to an uptake coefficient $\gamma_{rxn} < 10^{-7}$. This value is in agreement with the

ACPD 7,4035-4064,2007 Light induced conversion of NO₂ on humic acid aerosol K. Stemmler et al. **Title Page** Introduction Abstract Conclusions References **Figures** Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion EGU

upper limit given for NO₂ \rightarrow HONO conversion on secondary organic aerosol particles in the dark (Bröske et al., 2003). The uptake coefficient increases with increasing actinic fluxes to $\gamma_{rxn} = 1.8 \times 10^{-6}$ at the maximum actinic flux of 1.0×10^{17} photons cm⁻² s⁻¹ integrated over the 400–750 nm range of the lamp spectrum.

The HONO-production on the humic acid aerosol increases not linearly with the actinic flux showing less than proportional reactivity at higher light fluxes. As proposed previously (Stemmler et al., 2006), this may indicate that the photo-produced reductive species (A^{red}) formed on the humic acid (HA) surface deactivate by reaction with photo-oxidants (X^{ox}) formed simultaneously during the irradiation of humic acid surfaces in
 competition to their reaction with NO₂ (Reactions R2, R3, and R4). The lifetime of A^{red} is therefore decreasing with increasing actinic flux.

$$HA \xrightarrow{h\nu} A^{red} + X^{ox}$$
(R2)

$$A^{red} + X^{ox} \rightarrow HA'$$

 $A^{red} + NO_2 \rightarrow HA'' + HONO$

¹⁵ From the measured spectral actinic flux at full intensity (7 lamps illuminated), known absorption spectra, and quantum yields (Bongartz et al., 1994; Merienne et al., 1995; Troe, 2000), the photolysis frequencies of HONO and of NO₂ in the reactor are calculated as 5.8×10⁻⁵ s⁻¹ and as 5.5×10⁻⁴ s⁻¹, respectively. This calculated photolysis frequency of NO₂ is close to the measured value of 5.2×10⁻⁴ s⁻¹ (see Fig. 4) under
 the same light conditions. Experimentally the photolysis frequencies of NO₂ were determined from the measured NO yields at the reactor exit by modelling according to the Leighton relationship (Reactions R5–R7).

 $NO_2 + hv(< 420 \text{ nm}) \rightarrow NO + O(^3P)$

$$O(^{3}P) + O_{2} + M \rightarrow O_{3} + M$$
(R6)

$$^{25} O_3 + NO \rightarrow NO_2 + O_3$$

(R3)

(R4)

(R5)

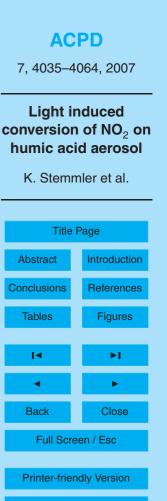
(R7)

The linear increase of the NO₂-photolysis frequencies with increasing number of lamps illuminating the reactor shows that the actinic flux in the reactor is proportional to the number of lamps used. Due to the small photolysis frequencies under the employed visible irradiation no correction for the loss of NO₂ and HONO by photolysis was applied to the uptake coefficients, which lead to an underestimation of the uptake coefficients by about 5% for the typical experimental conditions.

Figure 5 shows the dependence of the HONO-formation on the NO₂-concentration for the maximum actinic flux. The reaction is less effective at high (more than ambient) NO₂-concentrations. This manifests in decreasing uptake coefficients between 5.5×10^{-6} at 2.7 ppb and 4.3×10^{-7} at 280 ppb NO₂. Figure 5 compares the HONO-10 formation on humic acid aerosol and on humic acid films coated on the walls of a glass

photo-reactor (Stemmler et al., 2006). It is evident that a similar saturation curve is observed on both types of surfaces with increasing NO₂-concentrations. In the inset the calculated uptake coefficients γ_{rxn} are compared for the aerosol experiments and for the experiments in the coated wall flow tube. The uptake coefficients for the coated 15 wall flow tube are reanalyzed from data published by (Stemmler et al., 2006), where no uptake coefficients had been derived. In the coated wall flow tube the first order reactive loss rate of NO₂ according to Eq. (1) can be related to an uptake coefficient

²⁰
$$k_{1.order} = \frac{\gamma_{rxn}\omega}{2r}$$


 $\gamma_{\rm rxn}$ using Eq. (3):

^1.order

25

5

In Eq. (3), r is the flow tube radius (0.4 cm). However, Eq. (3) does not hold if gas phase diffusion limitations are present, i.e., when radial gas concentration profiles build up. To take into account gas phase diffusion, the Cooney-Kim-Davis (CKD) method (Cooney et al., 1974; Murphy and Fahey, 1987) was used to correct the measured uptake coefficients as described in detail by Behnke et al. (1997). Comparison of the CKD-corrected results with the uncorrected approach given by Eq. (3) was used to check to what degree uptake coefficients obtained in the coated wall flow tube were affected by gas phase diffusion limitations. At the highest observed uptake coefficients a maximum

Interactive Discussion

(3)

EGU

correction of <25% was applied to account for the gas phase diffusion limitation. Contrary, the experimental results obtained from the aerosol flow tube experiments are not affected by the gas phase diffusion limitation under the given conditions.

- The uptake coefficients derived from the humic acid coatings are approximately a factor of 3 higher than those obtained on the aerosol under comparable humidity and light conditions. The difference is probably related to uncertainties in the quantification of the humic acid surface areas. For the humic acid coatings the geometric surface of the inner surface of the glass reactor was used, a measure which must be viewed as an underestimation of the real surface, as it neglects any surface roughness of the sand blasted reactor surface and from the humic acid coating itself. We estimate this
- 10 sand blasted reactor surface and from the humic acid coating itself. We estimate this uncertainty in surface area to be up to a factor of 10. For the surface area of the aerosol the surface measurement with a SMPS are used. The surface is calculated from the aerodynamic diameter assuming spherical particles, which may be not true as long as the particles are not deliquesced. Furthermore, the uncertainty of SMPS sur-
- face measurements is difficult to assess. A comparison of different SMPS instruments showed a standard deviation of up to 22% for the number concentrations and 10% for the diameter (which results in an estimated standard deviation of 26% in the surface concentration measurements) (Dahmann et al., 2001). Nevertheless, the uptake coefficients obtained on the aerosol surface are favoured as (i) the overall uncertainties in
- the surface area determination are much lower and as (ii) the knowledge of aerosol size distribution in the real atmosphere is mainly based on SMPS measurements allowing an easier comparison of the laboratory data with atmospheric conditions.

The hypothetical elementary photochemical mechanism (Reactions R2–R4), including activation of reductive centres (A^{red}) in the humic acid aerosol by light, the corre-

²⁵ sponding deactivation process, and the reaction of A^{red} with adsorbed NO₂, predicts such a saturation curve for the HONO-formation with increasing NO₂-concentrations due to the competition of Reactions R3 and R4. But also alternative explanations, such as a Langmuir adsorption of NO₂ coupled to a surface reaction, which is commonly referred to in heterogeneous chemistry (Ammann et al., 2003; Arens et al., 2001; Pöschl

ACPD 7,4035-4064,2007 Light induced conversion of NO₂ on humic acid aerosol K. Stemmler et al. **Title Page** Introduction Abstract Conclusions References **Figures** Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion

EGU

et al., 2001), can explain the observed saturation curve.

As described previously (Stemmler et al., 2006) the saturation curve displayed by the concentration dependence can be analysed for the HONO-formation at low NO₂-concentrations, which is first order in NO₂ (i.e. d(HONO)/dt = $k_{eff}[NO_2]$), and for the limiting rate of HONO-production at highly elevated NO₂-concentration (i.e. d(HONO)/dt= k_{max}). From the data in Fig. 5 values of k_{eff} =4.3×10⁻⁴ s⁻¹ per m² m⁻³ aerosol surface concentration and k_{max} =1.1×10⁻²³ ppb s⁻¹ per m² m⁻³ aerosol surface concentration and per photon m⁻² s⁻¹ actinic flux are determined. With these parameters an empirical model description can be derived as described previously (Stemmler et al., 2006), which qualitatively describes the results for HONO-formation (Δ HONO) as a function of reaction time, aerosol surface concentration, light intensity, and NO₂concentration.

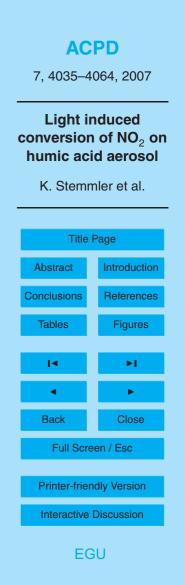
$$\Delta \text{HONO[ppb]} = \frac{t \times [S/V]}{k_{\text{max}}^{-1} \times [F]^{-1} + k_{\text{eff}}^{-1} \times [\text{NO}_2]^{-1}}$$

$$= \frac{t \times [S/V]}{9.3 \times 10^{22} \times [F]^{-1} + 2330 \times [\text{NO}_2]^{-1}}$$
(4)

and the uptake coefficient γ_{rxn} is described correspondingly by

¹⁵
$$\gamma_{\rm rxn} = \frac{4}{\omega} \times \frac{1}{9.3 \times 10^{22} \times [\rm NO_2] \times [F]^{-1} + 2330}$$
 (5)

where *t* is the reaction time in s, [S/V] is the aerosol surface concentration in m²m⁻³, *F* the actinic flux in the 400–750 nm range in photons m⁻² s⁻¹, ω is the mean thermal velocity of NO₂ in m s⁻¹ and [NO₂] the concentration of NO₂ in ppb. In Figs. 2–5 this model description is depicted by the dashed lines.


²⁰ The model is based on the spectral distribution of the visible lamps used in this study. A comparison (Stemmler et al., 2006) of two different visible light sources (400–

700 nm and 500–700 nm range) showed little differences with respect to the HONOformation on humic acid coatings. Therefore, it is suggested that the reaction is only weakly dependent on wavelength in the visible region. Using UV-A lamps (300-420 nm, λ_{max} =355 nm) it was observed (Stemmler et al., 2006) that the HONO-formation from humic acid coatings was enhanced by approximately a factor of 3 compared to the 5 visible irradiations, indicating a (relatively weak) wavelength dependence towards the UV-A range. The spectral actinic fluxes used were very similar to those in the aerosol flow tube (Fig. 1a). The aerosol experiment presented here is less suitable to investigate the HONO-formation on humic acid aerosol under UV-A irradiations, as both NO₂ and HONO photolyse during the long reaction time. Nevertheless, an experiment us-10 ing the UV-A light spectrum depicted in Fig. 1a was performed. The interpretation of the results is possible only if the system is modelled to account for NO₂ and HONO photolysis. This was performed in a simplified way based on the NO₂-photolysis (Reactions R5-R7), the HONO photolysis (Reaction R8), and the secondary reaction of OH-radical with the gaseous species NO₂, NO, O₃, and HONO. Due to the involved 15 modelling the results are less accurate.

 $HONO + hv(> 400 \text{ nm}) \rightarrow OH + NO$

A value of γ_{rxn} of 1.4×10^{-6} is modelled for an initial NO₂-concentration of 93 ppb (which corresponds to an average NO₂-concentration of 45 ppb in the reactor due to NO₂-photolysis). This value is similar to the value observed at comparable NO₂-

- to NO₂-photolysis). This value is similar to the value observed at comparable NO₂concentrations (Fig. 5), but under visible irradiations. The absence of a clear enhancement of the HONO-formation under UV-A light, as expected from the UV-A experiments on the humic acid coatings (i.e. by a factor of ≈3 under comparable light intensities), is likely explainable by the formation of ozone from the NO₂-photolysis (49 ppb in the photo-stationary state in the aerosol reactor). Ozone reacts in an analogous way and
- with comparable rates on the irradiated humic acid surfaces (unpublished results) as NO₂ (Reaction R1) and therefore likely competes with NO₂ for the reactive uptake on the humic acid aerosol.

(R8)

Figure 6 shows the NO₂→HONO conversion on humic acid aerosols at different relative humidities. At low humidities (<10%) the aerosol shows a somewhat reduced reactivity, indicating that the presence of water promotes the reaction. A similar deactivation was observed on humic acid coatings at low humidity. In these experiments, which were characterized by a much higher NO₂-conversion, it was evident that both, the loss of NO₂ from the gas phase and the formation of gaseous HONO are affected identically. Therefore, it is not the partitioning of HONO causing the effect. In the humidity range between 20 and 60% a constant reactivity of NO₂ with humic acid aerosol was observed, which appears to drop somewhat at humidities above 60%. The observed kinetic data can be compared with humidograms of Aldrich humic acid aerosol (Badger et al., 2006; Gysel et al., 2004). Gysel et al. report a steadily growing aerosol diameter upon hydration from 0–60% relative humidity, which is believed to be due to water adsorption and solubilisation of the most soluble humic acid molecules, followed

by an apparent size decrease between 60-75%, which they attribute to the full deli-

quescence of the particle. The particles then homogenously grow further up to 90%

RH (total growth factor 1.18). According to this explanation the observed decrease in the humic acid aerosol reactivity towards NO₂ above 60% RH would correspond to the

deliquescence of the particles. Two different explanations of the apparent decreasing reactivity above the deliquescence point could be equally valid. Either the reactivity

of the surface may be lowered due to the dilution by water or the aerosol transformed

from an irregularly shaped particle to a spherical particle due to the deliquescence. The latter would signify that below the deliquescence point the reactive surface of the

particles has been underestimated by the SMPS measurement. Some indication for the latter explanation is given by Gysel et al. (2004), who observed a decreasing aero-

dynamic diameter in the range between 60–75% relative humidity in their humidograms

of monodisperse humic acid aerosol, a sign for such an aerosol restructuring process.

In contrast, Badger et al. (2006) did not observe a deliguescence point of humic acid

aerosol and suggested that the particles are deliquesced over the entire 0–90% humidity range and that the aerosol may efflorescence only under extended residence times

15

20

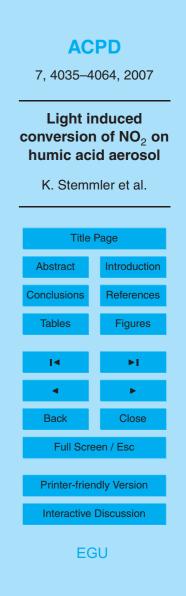
25

at zero humidity. From the present experiments one cannot decide at which humidity the aerosol gets deliquesced. However, we observed that a thin film of humic acid on a reactor glass surface visibly appeared deliquesced at 88% relative humidity. It is interesting to note that the overall humidity dependence as shown in Fig. 6 resembles that observed in the dark reaction of NO₂ with soot by (Kalberer et al., 1999).

Figure 7 shows the effects of the aerosol acidity on the formation of gaseous HONO. As nitrous acid is a weak acid (pKa=3.0-3.3)(da Silva et al., 2006; Park and Lee, 1988) it forms involatile nitrite salts in basic environments, which could be retained in the aerosol phase and would not be detected as gaseous HONO. Solutions of 20 g L⁻¹

5

- ¹⁰ humic acid sodium salts were acidified with HCl to pH 3–7 to produce humic acids with different degree of protonation. As humic acid contains large quantities of acidic organic functional groups they act as pH-buffers over a wide pH-range and stabilize the acidity of the aerosol depending on the degree of protonation. Figure 7a demonstrates no significant change in the yields of gaseous HONO for moderate acidic to neutral
- ¹⁵ aerosols. This indicates that nitrite salts are sufficiently rapidly desorbing as HONO to not affect the HONO-yields of the experiments with acid to neutral aerosols. As a comparison, also for water droplets, which may be viewed as a model for the humid humic acid aerosols, one would expect that less than 5% of the HONO is partitioning into the droplets at pH-values lower than 7.4, based on its Henry's law solubility
- ²⁰ (43±3 M atm⁻¹ at 28°C (Park and Lee, 1988), its pK_a of 3.3 (Park and Lee, 1988) and the total aerosol volume concentration in the experiment (3.5×10^{-3} cm³ m⁻³), leading to an effective solubility of $<5.7 \times 10^5$ M atm⁻¹. Figures 7b–d show the acidity dependence for the NO₂→HONO conversion on humic acid coatings, which gives more insights, as here also the NO₂-removal can be observed due to the larger conversion.
- The NO₂-removal and the HONO-production is compared for humic acid coatings produced from stock solutions acidified with phosphoric acid to pH 4.4, 7.5, and 10.3, respectively. At pH 4.4 and with some constraint also at pH 7.5, the formation of gaseous HONO is hardly retarded compared to the observed loss of gaseous NO₂, whereas at pH 10.3 only a delayed evolution of gaseous HONO occurs. The reason for this



behavior is that HONO partitions stronger to more alkaline reactor surfaces resulting in higher retention of HONO by chromatography through the reactor tube. The loss of NO₂ occurs instantaneously upon irradiation at all pH-levels and the magnitude of the NO₂-consumption by the photoreaction is similar in all cases $(7-8\times10^{10} \text{ molecules})$

- s⁻¹ cm⁻²). This indicates, that the rate of the photo-reduction of NO₂ on the humic acid surfaces is not dependent on pH, but the accumulation of the reaction product $(pK_a(HONO/NO_2^-)\approx 3.0-3.3)$, da Silva et al., 2006; Park and Lee, 1988) on the humic acid surface, which is much larger in the coated wall flow tube than in the aerosol flow tube and its travel time through the reactor increases with pH.
- It appears that the dark reaction of NO₂ with the humic acid coating increases with pH, leading also to an enhanced formation of HONO. This effect is pronounced between pH 4.4 and 7.5, but a further increase between pH 7.5 and 10.3 has not been detected. This might be related to the dark reaction between NO₂ and the abundant phenolic groups or aromatic amines, within the humic acid and the reactivity of such compounds increases drastically with deprotonation (Ammann et al., 2005). But as deprotonation will additionally affect the conformation and the surface structure of humic acid, the observed changes cannot be related unequivocally to the direct effects of the deprotonation.

4 Conclusions and atmospheric implications

In the presented kinetic experiments the photochemical formation of HONO by heterogeneous conversion of NO₂ on aerosol surfaces was simulated under realistic atmospheric conditions with respect to humidity, NO₂-concentration, and actinic flux. However, the employed aerosol concentrations of 5–30×10⁵ particles cm⁻³ are approximately a factor of 50 higher than the aerosol concentrations found in the urban or rural atmosphere (10⁴–10⁵ particles cm⁻³) due to experimental constraints. In the real atmosphere, where significant amounts of aerosol have a diameter below 100 nm, typical aerosol surface concentrations in the rural and urban atmosphere are 10²-

 $10^3 \mu m^2 cm^{-3}$, respectively (Seinfeld and Pandis, 1997; Wehner and Wiedensohler, 2003). In the present experiments the aerosol surface concentrations are roughly 200 times higher and amounted between $2-14 \times 10^4 \mu m^2 cm^{-3}$.

For NO₂-concentrations of 10 ppb and 20 ppb (typical for rural and urban regions in Europe), an actinic flux of 1.7×10^{17} photons cm⁻² s⁻¹ (typical clear sky flux in the 300–750 nm range, 40° Zenith angle), relative humidities between 20-60% uptake coefficients in the order of $\gamma_{rxn}=3.7 \times 10^{-6}$ and 2.6×10^{-6} for the NO₂→HONO-conversion on humic acid aerosol are expected according to Eq. (5). Under the assumption that all aerosol is composed from humic acids and for typical aerosol surface concentrations of $100 \,\mu\text{m}^2 \,\text{cm}^{-3}$ for rural and $1000 \,\mu\text{m}^2 \,\text{cm}^{-3}$ for urban conditions, this leads to an estimated HONO-formation of $1.2 \,\text{ppt} \,\text{h}^{-1}$ and 17 ppt h⁻¹ on aerosol surfaces in rural and urban environments, respectively. These values are upper limits as in reality rural and urban continental aerosol is composed only by 20–30 mass% of organic matter (Hueglin et al., 2005; Putaud et al., 2004) and the photo-reactivity of these real existing airborne organic materials towards NO₂ has never been shown. These low

- upper limits for the HONO-production on humic acid aerosol can be compared with reports of daytime HONO-formation in ground near air over a forested or rural sites of $170-500 \text{ ppt h}^{-1}$ (Acker et al., 2006b; Kleffmann et al., 2005; Zhou et al., 2002) or in urban environments of up to 2 ppb h⁻¹ (Acker et al., 2006a; Ren et al., 2003, 2006).
- Therefore, we suggest, that it is likely that photochemical HONO-formation on organic aerosol may be only a minor (or even no) contributor to the HONO-formation observed in the ground near atmosphere. Only at places with exceptional high pollution by organic aerosol and nitrogen oxides, as in biomass burning plumes or in mega-cities, a comparable HONO-photo-formation on organic aerosol may occur.
- ²⁵ In a previous study (Stemmler et al., 2006) the total photochemical HONO-production on a soil sample was estimated as 5×10^{10} molecules cm⁻²s⁻¹ for a urban pollution situation (~20 ppb NO₂) and solar irradiances (300–700 nm) of ~400 Wm⁻². Such a HONO-formation at the ground surface is sufficient to establish a HONO source strength integrated over the lowest 100 m height of the atmosphere of ~700 ppt h⁻¹

ACPD 7,4035-4064,2007 Light induced conversion of NO₂ on humic acid aerosol K. Stemmler et al. **Title Page** Introduction Abstract Conclusions References **Figures** Þ١ Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion

EGU

and appears to have a much larger impact on the HONO-formation in the lowermost part of the atmosphere than the reaction on aerosol investigated in this study.

References

25

Acker, K., Febo, A., Trick, S., Perrino, C., Bruno, P., Wiesen, P., Möller, D., Wieprecht, W., Auel,

- ⁵ R., Giusto, M., Geyer, A., Platt, U., and Allegrini, I.: Nitrous acid in the urban area of Rome, Atmos. Environ., 40, 3123–3133, 2006a.
 - Acker, K., Möller, D., Wieprecht, W., Meixner, F. X., Bohn, B., Gilge, S., Plass-Dülmer, C., and Berresheim, H.: Strong daytime production of OH from HNO₂ at a rural mountain site, Geophys. Res. Lett., 33, L02809, doi:10.1029/2005GL024643, 2006b.
- Alicke, B., Platt, U., and Stutz, J.: Impact of nitrous acid photolysis on the total hydroxyl radical budget during the Limitation of Oxidant Production/Pianura Padana Produzione di Ozono study in Milan, J. Geophys. Res., 107(D22), 8196, doi:10.1029/2000JD000075, 2002.
 - Alicke, B., Geyer, A., Hofzumahaus, A., Holland, F., Konrad, S., Pätz, H.W., Schäfer, J., Stutz, J., Volz-Thomas, A., and Platt, U.: OH formation by HONO photolysis during the BERLIOZ experiment, J. Geophys. Res., 108(D4), 8247, doi:10.1029/2001JD000579, 2003.
- experiment, J. Geophys. Res., 108(D4), 8247, doi:10.1029/2001JD000579, 2003.
 Ammann, M., Pöschl, U., and Rudich, Y.: Effects of reversible adsorption and Langmuir-Hinshelwood surface reactions on gas uptake by atmospheric particles, Phys. Chem. Chem. Phys., 5, 351–356, 2003.

Ammann, M., Rössler, E., Strekowski, R., and George, C.: Nitrogen dioxide multiphase chem-

- ²⁰ istry: Uptake kinetics on aqueous solutions containing phenolic compounds, Phys. Chem. Chem. Phys., 7, 2513–2518, 2005.
 - Arens, F., Gutzwiller, L., Baltensperger, U., Gäggeler, H. W., and Ammann, M.: Heterogeneous reaction of NO₂ on diesel soot particles, Environ. Sci. Technol., 35, 2191–2199, 2001.
 - Aumont, B., Chervier, F., and Laval, S.: Contribution of HONO sources to the $NO_x/HO_x/O_3$ chemistry in the polluted boundary layer, Atmos. Environ., 37, 487–498, 2003.
 - Badger, C. L., George, I., Griffiths, P. T., Braban, C. F., Cox, R. A., and Abbatt, J. P. D.: Phase transitions and hygroscopic growth of aerosol particles containing humic acid and mixtures of humic acid and ammonium sulphate, Atmos. Chem. Phys., 6, 755–768, 2006, http://www.atmos-chem-phys.net/6/755/2006/.

ACPD

7, 4035-4064, 2007

Light induced conversion of NO₂ on humic acid aerosol

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
14	►I
•	•
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	
FGU	

- Batjes, N. H.: Total carbon and nitrogen in the soils of the world, European J. Soil Sci., 47, 151–163, 1996.
- Behnke, W., George, C., Scheer, V., and Zetzsch, C.: Production and decay of CINO₂ from the reaction of gaseous N₂O₅ with NaCl solution: bulk and aerosol experiments, J. Geophys. Res., 102, 3795–3804, 1997.
- Bongartz, A., Kames, J., Schurath, U., George, C., Mirabel, P., and Ponche, J.L.: Experimentaldetermination of HONO mass accommodation coefficients using 2 different techniques, J. Atmos. Chem., 18, 149–169, 1994.

Bröske, R., Kleffmann, J., and Wiesen, P.: Heterogeneous conversion of NO₂ on secondary

organic aerosol surfaces: A possible source of nitrous acid (HONO) in the atmosphere?, Atmos. Chem. Phys., 3, 469–474, 2003,

http://www.atmos-chem-phys.net/3/469/2003/.

- Cooney, D. O., Kim, S. S., and Davis, E. J.: Analyses of mass-transfer in hemodialyzers for laminar blood-flow and homogeneous dialysate, Chem. Eng. Sci., 29, 1731–1738, 1974.
- Da Silva, G., Kennedy, E. M., and Dlugogorski, B. Z.: Ab initio procedure for aqueous-phase pKa calculation: The acidity of nitrous acid, J. Phys. Chem. A, 110, 11371–11376, 2006.
 Dahmann, D., Riediger, G., Schlatter, J., Wiedensohler, A., Carli, S., Graff, A., Grosser, M., Hojgr, M., Horn, H. G., Jing, L., Matter, U., Monz, C., Mosimann, T., Stein, H., Wehner, B., and Wieser, U.: Intercomparison of mobility particle sizers (MPS), Gefahrstoffe Reinhaltung
- ²⁰ der Luft, 61, 423–428, 2001.

5

25

30

Finlayson-Pitts, B. J., Wingen, L. M., Sumner, A. L., Syomin, D., and Ramazan, K.A.: The heterogeneous hydrolysis of NO₂ in laboratory systems and in outdoor and indoor atmospheres: An integrated mechanism, Phys. Chem. Chem. Phys., 5, 223–242, 2003.

Fitzer, E. and Fritz, W.: Technische Chemie: Einführung in die Chemische Reaktionstechnik, Springer-Verlag, Berlin, 1989.

George, C., Strekowski, R. S., Kleffmann, J., Stemmler, K., and Ammann, M.: Photoenhanced uptake of gaseous NO₂ on solid organic compounds: A photochemical source of HONO?, Faraday Discuss., 130, 195–210, 2005.

Graber, E. R. and Rudich, Y.: Atmospheric HULIS: How humic-like are they? A comprehensive and critical review, Atmos. Chem. Phys., 6, 729–753, 2006,

http://www.atmos-chem-phys.net/6/729/2006/

Gysel, M., Weingartner, E., Nyeki, S., Paulsen, D., Baltensperger, U., Galambos, I., and Kiss, G.: Hygroscopic properties of water-soluble matter and humic-like organics in atmospheric

7, 4035–4064, 2007

Light induced conversion of NO₂ on humic acid aerosol

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
	► I
•	•
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	
FGU	

fine aerosol, Atmos. Chem. Phys., 4, 35-50, 2004, http://www.atmos-chem-phys.net/4/35/2004/.

- Harrison, R. M., Peak, J. D., and Collins, G. M.: Tropospheric cycle of nitrous acid, J. Geophys. Res., 101, 14429-14439, 1996.
- 5 Heland, J., Kleffmann, J., Kurtenbach, R., and Wiesen, P.: A new instrument to measure gaseous nitrous acid (HONO) in the atmosphere, Environ. Sci. Technol., 35, 3207–3212, 2001.
 - Hofzumahaus, A., Kraus, A., and Müller, M.: Solar actinic flux spectroradiometry: a technique for measuring photolysis frequencies in the atmosphere, Appl. Opt., 38, 4443–4460, 1999.
- Honrath, R. E., Lu, Y., Peterson, M. C., Dibb, J. E., Arsenault, M. A., Cullen, N. J., and Steffen, 10 K.: Vertical fluxes of NO_x, HONO, and HNO₃ above the snowpack at Summit, Greenland. Atmos. Environ., 36, 2629–2640, 2002.
 - Hueglin, C., Gehrig, R., Baltensperger, U., Gysel, M., Monn, C., and Vonmont, H.: Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland, Atmos. Environ., 39, 637-651, 2005.

15

20


25

- IPCC: Climate Change 2001: The Scientific Basis. Chapter 3, Cambridge University Press, Cambridge, 2001.
- Jang, M. S., Czoschke, N. M., Lee, S., and Kamens, R. M.: Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions, Science, 298, 814-817, 2002.
- Janzen, H. H.: Carbon cycling in earth systems a soil science perspective, Agric. Ecosyst. Environ., 104, 399-417, 2004.
- Kalberer, M., Ammann, M., Arens, F., Gäggeler, H. W., and Baltensperger, U.: Heterogeneous formation of nitrous acid (HONO) on soot aerosol particles, J. Geophys. Res., 104, 13825-13832, 1999.
- Kalberer, M., Paulsen, D., Sax, M., Steinbacher, M., Dommen, J., Prevot, A. S. H., Fisseha, R., Weingartner, E., Frankevich, V., Zenobi, R., and Baltensperger, U.: Identification of polymers as major components of atmospheric organic aerosols, Science, 303, 1659-1662, 2004.
- Kleffmann, J., Heland, J., Kurtenbach, R., Lörzer, J., and Wiesen, P.: A new instrument (LOPAP) for the detection of nitrous acid (HONO), Environ. Sci. Pollut. Res., 9 (special issue 30 4), 48–54, 2002,
 - Kleffmann, J., Kurtenbach, R., Lörzer, J., Wiesen, P., Kalthoff, N., Vogel, B., and Vogel, H.: Measured and simulated vertical profiles of nitrous acid - Part I: Field measurements, Atmos.

ACPD

7,4035-4064,2007

Light induced conversion of NO₂ on humic acid aerosol

Environ., 37, 2949–2955, 2003.

5

15

- Kleffmann, J., Gavriloaeiei, T., Hofzumahaus, A., Holland, F., Koppmann, R., Rupp, L., Schlosser, E., Siese, M., and Wahner, A.: Daytime formation of nitrous acid: A major source of OH radicals in a forest, Geophys. Res. Lett., 32, L05818, doi:10.1029/2005GL022524, 2005.
- Kleffmann, J., Lörzer, J. C., Wiesen, P., Kern, C., Trick, S., Volkamer, R., Rodenas, M., and Wirtz, K.: Intercomparison of the DOAS and LOPAP techniques for the detection of nitrous acid (HONO), Atmos. Environ., 40, 3640–3652, 2006.

Merienne, M. F., Jenouvrier, A., and Coquart, B.: The NO₂ absorption-spectrum. 1. Absorption

cross-sections at ambient-temperature in the 300–500 nm Region, J. Atmos. Chem., 20, 281–297, 1995.

Murphy, D. M. and Fahey, D. W.: Mathematical treatment of the wall loss of a trace species in denuder and catalytic-converter tubes, Anal. Chem., 59, 2753–2759, 1987.

NCAR: Tropospheric Ultraviolet and Visible Radiation Model (TUV), National Center for Atmospheric Research, Boulder, CO, USA (http://cprm.acd.ucar.edu/Models/TUV/), 2006.

- Park, J.-Y. and Lee, Y.-N.: Solubility and decomposition kinetics of nitrous acid in aqueous solution, J. Phys. Chem., 92, 6294–6302, 1988.
- Pöschl, U., Letzel, T., Schauer, C., and Niessner, R.: Interaction of ozone and water vapor with spark discharge soot aerosol particles coated with benzo[a]pyrene: O₃ and H₂O adsorption,
- ²⁰ benzo[a]pyrene degradation, and atmospheric implications, J. Phys. Chem. A, 105, 4029– 4041, 2001.
 - Putaud, J. P., Raes, F., Van Dingenen, R., Brüggemann, E., Facchini, M. C., Decesari, S., Fuzzi, S., Gehrig, R., Hueglin, C., Laj, P., Lorbeer, G., Maenhaut, W., Mihalopoulos, N., Müller, K., Querol, X., Rodriguez, S., Schneider, J., Spindler, G., ten Brink, H., Torseth,
- K., and Wiedensohler, A.: European aerosol phenomenology-2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe, Atmos. Environ., 38, 2579–2595, 2004.
 - Ren, X. R., Harder, H., Martinez, M., Lesher, R. L., Oliger, A., Simpas, J. B., Brune, W. H., Schwab, J. J., Demerjian, K. L., He, Y., Zhou, X. L., and Gao, H. G.: OH and HO₂ chemistry
- ³⁰ in the urban atmosphere of New York City, Atmos. Environ., 37, 3639–3651, 2003.
 - Ren, X. R., Brune, W. H., Mao, J. Q., Mitchell, M. J., Lesher, R. L., Simpas, J. B., Metcalf, A. R., Schwab, J. J., Cai, C. X., Li, Y. Q., Demerjian, K. L., Felton, H.D., Boynton, G., Adams, A., Perry, J., He, Y., Zhou, X. L., and Hou, J.: Behavior of OH and HO₂ in the winter atmosphere

4056

ACPD

7, 4035–4064, 2007

Light induced conversion of NO₂ on humic acid aerosol

K. Stemmler et al.

Title Page		
Abstract	Introduction	
Conclusions	References	
Tables	Figures	
14	ÞI	
•	•	
Back	Close	
Full Screen / Esc		
Printer-friendly Version		
Interactive Discussion		

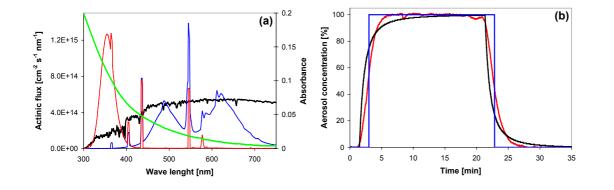
EGU

in New York city, Atmos. Environ., 40, S252-S263, 2006.

Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics: From air pollution to climate change, Wiley Interscience, New York, 1997.

Staffelbach, T., Neftel, A., and Horowitz, L. W.: Photochemical oxidant formation over southern Switzerland. 2. Model results, J. Geophys. Res., 102, 23363–23373, 1997.

Switzerland. 2. Model results, J. Geophys. Res., 102, 23363–23373, 1997. Stemmler, K., Ammann, M., Donders, C., Kleffmann, J., and George, C.: Photosensitized reduction of nitrogen dioxide on humic acid as a source of nitrous acid, Nature, 440, 195–198, 2006.

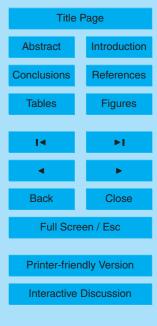

Swift, R. S.: Sequestration of carbon by soil, Soil Sci., 166, 858-871, 2001.

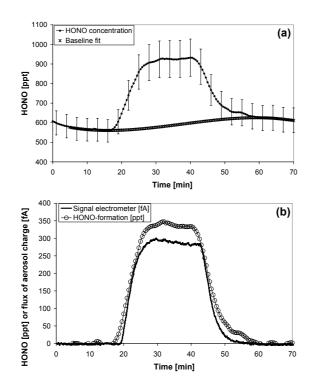
- ¹⁰ Troe, J.: Are primary quantum yields of NO₂ photolysis at $\lambda \le 398$ nm smaller than unity?, Z. Phys. Chem. (Muenchen Ger.), 214, 573–581, 2000.
 - Vogel, B., Vogel, H., Kleffmann, J., and Kurtenbach, R.: Measured and simulated vertical profiles of nitrous acid Part II. Model simulations and indications for a photolytic source, Atmos. Environ., 37, 2957–2966, 2003.
- ¹⁵ Wehner, B. and Wiedensohler, A.: Long term measurements of submicrometer urban aerosols: statistical analysis for correlations with meteorological conditions and trace gases, Atmos. Chem. Phys., 3, 867–879, 2003,

http://www.atmos-chem-phys.net/3/867/2003/.

- Zhou, X. L., Beine, H. J., Honrath, R. E., Fuentes, J. D., Simpson, W., Shepson, P. B., and
 Bottenheim, J. W.: Snowpack photochemical production of HONO: a major source of OH in the Arctic boundary layer in springtime, Geophys. Res. Lett., 28(21), 4087–4090, 2001.
 - Zhou, X. L., Civerolo, K., Dai, H. P., Huang, G., Schwab, J., and Demerjian, K.: Summertime nitrous acid chemistry in the atmospheric boundary layer at a rural site in New York State, J. Geophys. Res., 107(D21), 4590, doi:10.1029/2001JD001539, 2002.
- Zhou, X. L., Gao, H. L., He, Y., Huang, G., Bertman, S. B., Civerolo, K., and Schwab, J.: Nitric acid photolysis on surfaces in low-NOx environments: Significant atmospheric implications, Geophys. Res. Lett., 30(23), 2217, doi:10.1029/2003GL018620, 2003.

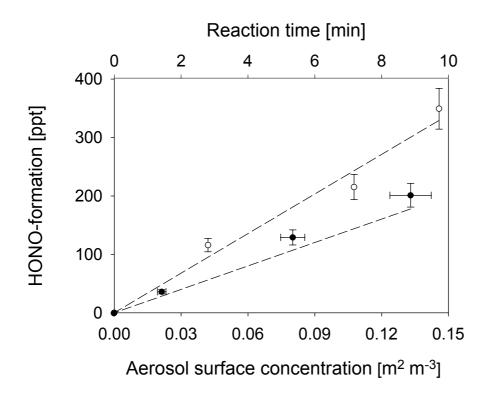
ACPD		
7, 4035–4064, 2007		
Light induced conversion of NO ₂ on humic acid aerosol K. Stemmler et al.		
Title Page		
Abstract	Introduction	
Conclusions	References	
Tables	Figures	
I	►I	
•	Þ	
Back	Close	
Full Screen / Esc		
Printer-friendly Version		
Interactive Discussion		

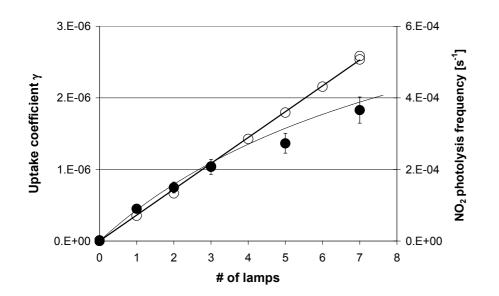



Fig. 1. Panel **(a)**: Spectral actinic flux measured in the aerosol flow tube under visible and UV-A irradiation in comparison with the spectral actinic flux on the Earth surface and the absorption spectra of the humic acid. The red line depicts the spectrum of the UV-lamps; the blue line is for the visible lamps. The black line is the modelled clear sky actinic flux at the Earth surface for a Zenith angle of 40°, a ozone column of 300 DU, a surface albedo of 0 and a standard aerosol of the Tropospheric Ultraviolet and Visible Radiation Model (TUV version 4.3; NCAR, 2006). The absorption spectrum (base 10) of the employed humic acid in solution (pH 4.3, 10.5 mg L^{-1} , pathlength 1 cm) is shown as green line (right scale). Panel **(b)**: Aerosol concentration measured at the reactor exit by an electrometer during a 20 min aerosol injection starting at t=0 min (red line, maximum concentration scaled to 100%) in comparison with the aerosol concentrations modelled assuming plug flow (blue line) or laminar flow conditions (black line).

ACPD

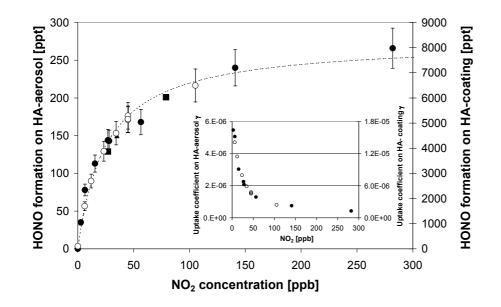
7, 4035–4064, 2007


Light induced conversion of NO₂ on humic acid aerosol

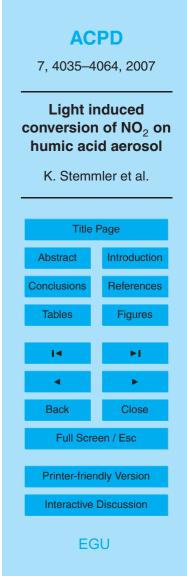

Fig. 2. Typical experimental result for the formation of HONO from gaseous NO_2 on photoactivated humic acid aerosol. Panel (a): Measured HONO-concentration during the injection of the aerosol under visible light irradiation (400–750 nm). A significant HONO-formation (500–600 ppt in this case) occurs on the reactor walls in the absence of aerosol. This background, which depends on the experimental conditions, the cleanness of the reactor, and the purity of gas and aerosol supplies was fitted before and after the aerosol injection (baseline fit) and was subtracted to obtain the excess HONO-formation on the comparatively small aerosol surface. Panel (b): Excess HONO-formation on the particle surface compared to the aerosol concentration measured at the reactor exit by the electrometer [fA].

ACPD 7,4035-4064,2007 Light induced conversion of NO₂ on humic acid aerosol K. Stemmler et al. **Title Page** Introduction Abstract Conclusions References **Figures** Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion EGU

Fig. 3. HONO-formation on humic acid particles (see Fig. 2 for the raw data treatment) as a function of the aerosol surface concentration (•) and as a function of the reaction time (•). The aerosol surface concentration experiment is performed in presence of 79 ppb NO₂, at 26% relative humidity, and for a reaction time of 2.7 min. The reaction time experiment was performed in presence of 44 ppb NO₂ and at 24% relative humidity and for an aerosol surface concentration of 0.082 m² m⁻³. Both experiments were performed under visible light irradiation (Fig. 1). The black dashed lines represent a model description of the results (Eq. 4).


Fig. 4. Dependence of the HONO-formation on the visible light intensity expressed by the reactive uptake coefficient of NO₂ on the aerosol surface (see Fig. 2 for the raw data treatment). The filled circles (•) are the derived uptake coefficients for HONO-formation. The dashed black line represents a model description of the results (Eq. 5). The empty cycles (•) are experimentally determined NO₂ \rightarrow NO photolysis frequencies from experiments without aerosol. The black line is a linear fit of the data, indicating that the actinic flux in the reactor is proportional to the number of illuminated lamps.

ACPD


7, 4035–4064, 2007

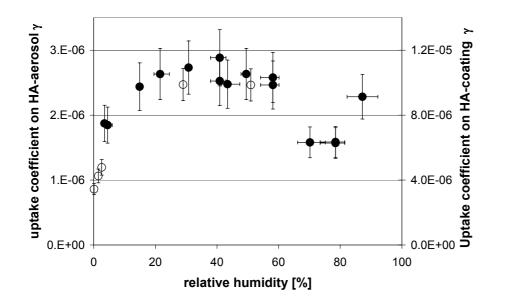

Light induced conversion of NO₂ on humic acid aerosol

Fig. 5. Dependence of the HONO-formation on humic acid (HA) aerosols on the NO₂concentration (filled symbols). The experimental conditions are as follows: reaction time 2.8 min, aerosol surface concentration $0.151\pm0.006 \text{ m}^2 \text{ m}^{-3}$, relative humidity 26%, actinic flux 1.0×10^{17} photons cm⁻² s⁻¹ in the 400–750 nm range. The filled squares and the filled triangle are from the experiments in Fig. 3 (**a**) and in Fig. 4 (**A**) under most similar, but not completely identical conditions. The thin dashed line represents a model description of the results (Eq. 4). The empty circles (o, right scale) show the dependence of the HONO-formation on the NO₂concentration as observed on humic acid (HA) coatings at 21% relative humidity. The inset shows the dependence of the reactive uptake coefficient of NO₂ on humic acid (HA) aerosol (o, left scale) and humic acid (HA) coatings (o, right scale) as a function of the NO₂-concentration.

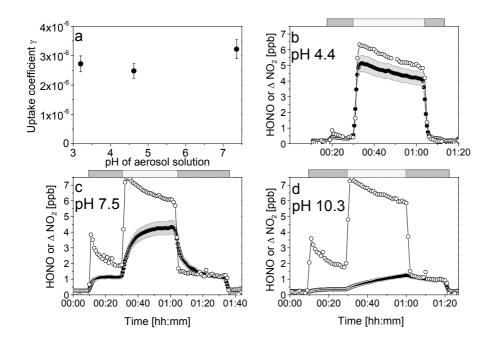


Fig. 6. Dependence of the HONO-formation on the relative humidity expressed as the uptake coefficients γ_{rxn} on humic acid (HA) surfaces. The filled symbols depict the uptake coefficient measured on humic acid (HA) aerosols at 25 ppb NO₂ and visible irradiation (left scale). The empty symbols depict the uptake coefficients measured on humic acid (HA) coatings at 20 ppb NO₂ and visible irradiation (right scale). At high humidities (i.e. 88%) it was visually observed that the humic acid coatings became deliquesced, preventing uptake measurements at such high humidities.

ACPD

7, 4035–4064, 2007

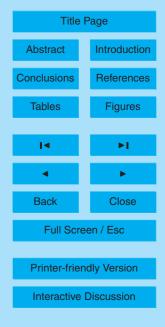


Fig. 7. Formation of HONO as a function of acidity of the humic acid aerosol and HONO-formation and NO₂-loss on humic acid coatings of different acidity. Panel **(a)**: HONO-formation on humic acid aerosol generated by nebulising humic acid solutions of pH 3.2, 4.6, and 7.4 in presence of 25 ppb NO₂. Panel **(b)–(d)**: Formation of HONO (filled circles) and removal of NO₂ (empty circles) on humic acid coatings with different acidity. The coatings are produced from 1 mg ml⁻¹ stock solutions with pH 4.4, pH 7.5, and pH 10.3. The dark grey shaded area at the top of the panels indicate the periods where the humic acid surface was exposed to NO₂ in the dark, the light grey area indicates the time when the surface was irradiated (400–750 nm).

ACPD

7, 4035–4064, 2007

Light induced conversion of NO₂ on humic acid aerosol

