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Abstract

Knowledge of the global distribution of tropospheric aerosols is important for studying

the effects of aerosols on global climate. Chemical transport models rely on archived

meteorological fields, accounting for aerosol sources, transport and removal processes

can simulate the global distribution of atmospheric aerosols. However, the accuracy5

of global aerosol modeling is limited. Uncertainty in location and strength of aerosol

emission sources is a major factor in limiting modeling accuracy. This paper describes

an effort to develop an algorithm for retrieving global sources of aerosol from satellite

observations by inverting the GOCART aerosol transport model.

To optimize inversion algorithm performance, the inversion was formulated as a gen-10

eralized multi-term least-squares-type fitting. This concept uses the principles of sta-

tistical optimization and unites diverse retrieval techniques into a single flexible inver-

sion procedure. It is particularly useful for choosing and refining a priori constraints in

the retrieval algorithm. For example, it is demonstrated that a priori limitations on the

partial derivatives of retrieved characteristics, which are widely used in atmospheric re-15

mote sensing, can also be useful in inverse modeling for constraining time and space

variability of the retrieved global aerosol emissions. The similarities and differences

with the standard “Kalman filter” inverse modeling approach and the “Phillips-Tikhonov-

Twomey” constrained inversion widely used in remote sensing are discussed. In order

to retain the originally high space and time resolution of the global model in the in-20

version of a long record of observations, the algorithm was expressed using adjoint

operators in a form convenient for practical development of the inversion from codes

implementing forward model simulations.

The inversion algorithm was implemented using the GOCART aerosol transport

model. The numerical tests we conducted showed successful retrievals of global25

aerosol emissions with a 2
◦×2.5

◦
resolution by inverting the GOCART output. For

achieving satisfactory retrieval from satellite sensors such as MODIS, the emissions

were assumed constant within the 24 h diurnal cycle and aerosol differences in chem-
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ical composition were neglected. Such additional assumptions were needed to con-

strain the inversion due to limitations of satellite temporal coverage and sensitivity to

aerosol parameters. As a result, the algorithm was defined for the retrieval of emis-

sion sources of fine and coarse mode aerosols from the MODIS fine and coarse mode

aerosol optical thickness data respectively. Numerical tests showed that such assump-5

tions are justifiable, taking into account the accuracy of the model and observations

and that it provides valuable retrievals of the location and the strength of the aerosol

emissions. The algorithm was applied to MODIS observations during two weeks in Au-

gust 2000. The global placement of fine mode aerosol sources retrieved from inverting

MODIS observations was coherent with available independent knowledge. This was10

particularly encouraging since the inverse method did not use any a priori information

about the sources and it was initialized under a “zero aerosol emission” assumption.

The retrieval reproduced the instantaneous global MODIS observations with a stan-

dard deviation in fitting of aerosol optical thickness of ∼0.04. The optical thickness

during high aerosol loading events was reproduced with a standard deviation of ∼48%.15

Applications of the algorithm for the retrieval of coarse mode aerosol emissions were

less successful, mainly due to the currently existing lack of MODIS data over high

reflectance desert dust sources.

Possibilities for enhancing the global satellite data inversion by using diverse a priori

constraints on the retrieval are demonstrated. The potential and limitations of applying20

our approach for the retrieval of global aerosol sources from aerosol remote sensing

are discussed.

1 Introduction

Knowledge of the global distribution of tropospheric aerosols is important for studying

the effects of aerosols on global climate. Satellite remote sensing is the most promising25

approach to collect information about global distributions of aerosol (King et al., 1999;

Kaufman et al., 2002). However, in spite of recent advances in space technology, the
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satellite data do not yet provide the required accuracy and details of time and space

variability of aerosol properties. Tropospheric aerosol may have strong local variations

and any single satellite needs at least several days of observations to provide global

nearly cloudless images. Also, satellite characterization of aerosol is limited to day-

time clear-sky conditions. Comprehensive global simulations of atmospheric aerosols5

with adequate time and space resolution can be obtained using global models that rely

on estimated emissions and account for aerosol transport and removal processes. At

present, there are a number of well-established Global Circulation Models (GCMs) –

that generate their own meteorology (e.g. models by Roechner et al., 1996; Tegen et

al., 1997, 2000; Koch et al., 1999; Koch, 2001; Ghan et al., 2001a, b; Reddy and10

Boucher, 2004) and Chemical Transport Models (CTMs) – that adopt the meterological

data (e.g. models by Balkanski et al., 1993; Chin et al., 2000, 2002; Ginoux et al.,

2001; Takamura et al., 2000, 2002). However, the accuracy of global aerosol models

is limited by uncertainties in estimates of aerosol emission sources, knowledge of at-

mospheric processes and the meteorological field data utilized. As a result, even the15

most recent models are mainly expected to capture only the principal global features

of aerosol transport, while the quantitative estimates of average regional properties of

aerosol may disagree between different models by magnitudes exceeding the uncer-

tainty of remote sensing aerosol observations (e.g. see Kinne et al., 2003, 2006; Sato

et al., 2003). Therefore, there are diverse continuing efforts focused on harmonizing20

and improving global aerosol modeling by refining all modeling components including

meteorology, atmospheric processes and emissions. The availability of aerosol remote

sensing products, especially global aerosol fields provided by satellite observations,

is of critical importance for verifying and constraining aerosol modeling. For example,

the direct comparisons of model outputs with observed aerosol properties are used for25

evaluating model accuracy and for identification of possible modeling problems (e.g.

Takamura et al., 2000; Chin et al., 2002, 2003, 2004; Kinne et al., 2003, 2006). The

observations can also be used as input for elaborate mathematical procedures that

constrain and adjust tracer transport models by optimizing the agreement between
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model predictions and the observations. For example, model predictions can be ad-

justed and enhanced by assimilating observations into the model. Collins et al. (2000,

2001) improved regional aerosol model predictions by assimilating the available satel-

lite retrievals of aerosol optical thickness. Weaver et al. (2006) suggested a procedure

for assimilating atmospheric radiances measured from satellite into the aerosol field5

produced by the GOCART global transport model. Another way of improving global

aerosol modeling is retrieving (or adjusting) aerosol emissions from available observa-

tions by inverting a global model. Such an approach is particularly promising because

the knowledge of aerosol emission sources is widely recognized as a major factor

in limiting the accuracy of global aerosol modeling. Inversion techniques have been10

shown to be rather effective for refining the fidelity of the trace gas chemical modeling

(e.g. Kaminski et al., 1999b; Khattatov et al., 2000; Kasibhatla et al., 2000; Elbern et

al., 1997; Para et al., 2003). However, implementing the same techniques for inverting

aerosol models appears to be more challenging. Indeed, a description of the aerosol

field generally requires a larger number of parameters compared to a description of at-15

mospheric gases, partly because of relatively high temporal and spatial variability (see

discussion in Sect. 2.5). Additionally, direct implementation of basic inversion methods

(that use the Jacobi matrices of first derivatives) is computationally demanding and,

therefore, hardly applicable in aerosol global modeling. In these regards, designing an

inversion on the basis of adjoint operators is rather promising. The adjoint operators20

(Marchuk, 1977, 1986; Cacuci, 1981; Tarantolla, 1987) allow direct calculation (without

explicit usage of Jacobi matrices) of gradients of the quadratic form with respect to

model input parameters. Such calculations have similar computational requirements to

those of forward modeling. Correspondingly, the model inversion can be successfully

implemented via adjoint operators provided the speed of the gradient method con-25

vergence is acceptable. The adjoint techniques are widely used in meteorology and

oceanography for data assimilation (Le Dimet and Talagrand, 1986; Talagrand and

Courtier, 1987; Courtier and Talagrand, 1987; Navon, 1997; etc.) and have been suc-

cessfully applied for atmospheric gases inverse modeling applications (Kaminski et al.,
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1999a; Elbern et al., 2000; Menut et al., 2000, Vukicevic and Hess, 2000; Vautard et al.,

2000; Elbern and Schmidt, 2001; Schmidt and Martin, 2003; Menut, 2003). Hakami et

al. (2005) used an adjoint approach for the retrieval of regional sources of black carbon

from aircraft, shipboard and surface measured black carbon data collected during the

ACE-Asia field campaign. Our paper explores the possibility of deriving the global dis-5

tribution and strength of aerosol emission sources from satellite observations. We are

employing the adjoint approach for implementing an inversion of an aerosol transport

model. Figure 1 illustrates the general retrieval concept. In addition we analyze possi-

ble parallels and analogies between inverse modeling and retrieval approaches widely

used in atmospheric remote sensing. Such analyses may be helpful for adopting some10

efficient methods developed in remote sensing applications into inverse modeling. For

example, numerous remote sensing applications utilize the Phillips-Tikhonov-Twomey

inversion technique developed in early sixties by Phillips (1962), Tikhonov (1963) and

Twomey (1963). The technique suggests constraining ill-posed problems by using a

priori limitations on the derivatives of the retrieved function. Here, we discuss the15

possibility to constrain temporal and/or spatial aerosol variability by applying a priori

limitations of the derivatives of aerosol mass with respect to time and space coordi-

nates. Also, we are formulating the inversion problem as a multi-term least squares

approach. This approach is convenient for utilizing multiple a priori constraints in the

same retrieval (Dubovik, 2004).20

Our approach resulted in an algorithm that retrieves global aerosol sources by invert-

ing the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model. The

performance of the algorithm is illustrated by numerical tests, as well as by applica-

tions of the algorithm to actual satellite observations. We demonstrate the possibility

of deriving global aerosol emissions from MODIS aerosol observations. The algorithm25

potentials and limitations are discussed.
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2 Methodology of inverse modeling

The spatial and temporal behavior of atmospheric constituents is simulated in chem-

istry models by solving the continuity equation (Brasseur et al., 1999; Jacob, 1999):

∂m

∂t
= −v ∇m +

(

∂m

∂t

)

diff

+

(

∂m

∂t

)

conv

+ S − R, (1)

where v is the transport velocity vector, m is mass (suffixes “diff” and “conv” denote tur-5

bulent diffusivity and convection, respectively). S and R denote source and loss terms

respectively. The characteristics m, v , S and R in Eq. (1) are explicit functions of time

t and spatial coordinates x=(x, y, z). The continuity equation does not yield a general

analytical solution and is usually solved numerically by using discrete analogues. The

different component processes in the numerical equivalent of Eq. (1) are isolated and10

treated sequentially for each time step ∆t (e.g. see Jacob, 1999):

m (t + ∆t,x) = T (t,x) (m (t,x) + s (t,x))∆t, (2)

where s(t,x) – mass emission, T (t,x) – transport operator that can be approximated

as:

T (t,x) = TnTn−1...T3T2T1 , (3)15

and Ti (i=1,. . . ,n) are operators of isolated transport processes such as advection,

diffusion, convection, wet scavenging, etc. Thus, the calculation of mass at any given

time can be reduced to numerical integration of known transport and source functions:

m (t,x) =

t
∫

t0

T (t′,x) (m (t′,x) + s (t′,x)) dt′. (4)

If the transport operator T (t,x) is linear, Eq. (4) can be equivalently written via matrix20

equation:

M = T (M0 + S) , (5)
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where M0 is a vector of mass values in all locations at time t0; M and S are corre-

spondingly the vectors of mass and emission values at all locations and considered

times t0, t1,. . . , tn−1,tn; T is the coefficient matrix defining the transport of mass to

each location x and time step tk from all locations x and previous time steps ti<n.
Thus, the source vector can be retrieved by solving the matrix equation if the mass5

measurements M
meas

=M+∆M are available.

2.1 Statistical optimization of linear inversion

If the statistical behavior of the errors ∆M is known one can use this knowledge to op-

timize the solution of Eq. (5). In that way, the solution Ŝ should not only closely repro-

duce observations M
meas

but also the remaining deviations ∆̂M=M
meas

-M(Ŝ) should10

have a distribution close to the expected error properties described by the Probability

Density Distribution (PDF) of errors P(∆M ). According to the well-known Method of

Maximum Likelihood (MML) the optimum solution Ŝ corresponds to a maximum of the

PDF as follows (e.g. Edie et al., 1971):

P (∆M ) = P (Mmeas−M(S)) = P (M(S)|Mmeas) = max . (6)15

Where PDF P(M(S)|Mmeas
) written as a function of retrieval parameters S for given set

of available observations M
meas

is known as a Likelihood Function. The MML is a fun-

damental principle of statistical estimation that provides a statistically optimum solution

in many senses. For example, the asymptotical error distribution (infinite number of

∆M realizations) of MML estimates has the smallest possible variances. Most statisti-20

cal properties of the MML solution remain optimal for a limited number of observations

(e.g. see Edie et al., 1971). The normal (or Gaussian) distribution is widely considered

as the best model for describing actual error distribution (Tarantola, 1987; Edie et al.,

1971; etc.):

P
(

M (S)|Mmeas
)

=
(

(2π)m det (CM )
)−1/2

exp

(

−
1

2

(

M (S)−Mmeas
)T

C−1
M

(

M (S)−Mmeas
)

)

, (7)25
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where (. . . )
T

denotes matrix transposition, CM is the covariance matrix of ∆M , det(C)

denotes the determinant of CM , and m is the dimension of the vectors M(S) and M
meas

.

The maximum of the PDF exponential term in Eq. (7) corresponds to the minimum of

the quadratic form in the exponent. Therefore, the MML solution is a vector Ŝ corre-

sponding to the minimum of the following quadratic form:5

Ψ (S)=
1

2

(

M (S)−Mmeas
)T

C−1
M

(

M (S)−Mmeas
)

=min . (8)

Thus, with the assumption of normal noise, the MML principle requires searching for a

minimum in the product of the squared terms of (M
meas −M(S)) in Eq. (7). This is the

basis for the widely known Least Square Method (LSM).

For linear M(S) (as in Eq. 5) the LSM solution can be written as (e.g. Rao, 1965):10

Ŝ =

(

TTC−1
m T
)−1

TTC−1
m M∗ . (9)

Here, M
∗

– vector of measurements corrected by the effect of the aerosol mass M0

presented in the atmosphere prior observations i.e. M
∗
=M

meas
–TM0.

2.2 Inversion constrained by a priori estimates of unknowns

If the problem is ill-posed and Eq. (5) does not have a unique solution, then some a15

priori constraints need to be applied. The expected distribution of sources is commonly

used as an a priori constraint in inverse modeling. In that case the inversion can be

considered as a joint solution of Eq. (5) and constraining a priori the system:
{

M
meas

= M (S) + ∆M

S
∗
= S + ∆S

, (10)

where S*=S+∆S is a vector of a priori estimates of the sources and ∆S is vector of the20

errors that usually considered statistically independent of ∆M and normally distributed
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with zero means and covariance matrix CS . For solving Eq. (10), MML should be

applied to the joint PDF of the measurements and a priori estimates:

P (M(S)|Mmeas,S∗) = P (M(S)|Mmeas)P (S|S∗) = max, (11a)

i.e.

P (M(S)|Mmeas,S∗)=∼exp

(

−
1

2

(

∆MTC−1
m ∆M

)

)

exp

(

−
1

2

(

∆STC−1
S
∆S
)

)

=max, (11b)5

where ∆M=M(S)−M∗
and ∆S=S−S∗

.

Accordingly, the MML solution of joint Eq. (11) corresponds to a minimum of the

following quadratic form:

2Ψ(S) = 2 (Ψm +ΨS ) = ∆MTC−1
m ∆M + ∆STC−1

s ∆S. (12)

Thus, in difference Eq. (8), utilizing a priori constraints requires simultaneous minimiza-10

tion both measurement term 2Ψm and a priori term 2ΨS .

The solution providing a minimum of Eq. (12) can be found using the following equa-

tions:

Ŝ =

(

TTC−1
m T + C−1

s

)−1 (

TTC−1
m M∗

+ C−1
s S∗

)

, (13a)

or15

Ŝ = S∗ − CsT
T
(

Cm + TC−1
s TT

)−1

(TS∗ −M∗) . (13b)

The covariance matrix of estimates Ŝ also can be obtained by using two formally equiv-

alent formulations:

CŜ =

(

TTC−1
m T + C−1

s

)−1

, (14a)

or20

CŜ = Cs − CsT
T
(

Cm + TC−1
s TT

)−1

TC.
s (14b)
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Most of efforts in deriving emission sources and in general assimilation of geophysical

parameters rely on these basic equations (e.g. Hartley and Prinn, 1993; Elbern et al.,

1997; Dee and Da Silva, 1998; Khattatov et al., 2000; Kasibhatla et al., 2000; Para et

al., 2003).

Equations (13a) and (13b), as well as Eqs. (14a) and (14b) are considered as gen-5

erally equivalent (e.g. see Tarantola, 1987). One of the important differences is that

the matrix (T
T
C
−1
m T+C

−1
S ) inverted in Eqs. (13a) and (14a) has dimension NS (number

of retrieved parameters) while (Cm+TCST
T
) inverted in Eqs. (13b) and (14b) has the

dimension Nm (number of measurements). In these regards, the pairs of Eqs. (13) and

(14) are fully equivalent for the situation when Nm=NS . Equations (13a) and (14a) are10

preferable for inverting redundant measurements (Nm>NS ), whereas Eqs. (13b) and

(14b) are preferable for an inverting underdetermined measurement set (Nm<NS ). In-

deed, Eq. (13a) directly relates to LSM Eq. (9) , the estimate Ŝ is mostly determined

by the measurement term T
T
C
−1
m M* and a generally minor a priori term is mainly ex-

pected to provide uniqueness and stability of the solution. In contrast, in Eq. (13b)15

the solution Ŝ is expressed in the form of an a priori estimate S* corrected or “filtered”

by measurements, which is the situation when the small number measurements Nm

(Nm<NS ) cannot fully determine the set of unknowns a, but can improve the a priori

assumed values S*. Also, it should be noted that in our consideration, the problem

of source retrieval as it is formulated by Eq. (5) assumes the simultaneous retrieval20

of the entire vector S that includes global emission sources for the entire time period

considered. However, often the problem of emission retrievals (e.g. Hartley and Prinn,

1993) and data assimilation in general (Dee and Da Silva, 1998; Khattatov et al., 2000)

is formulated as a time sequential correction of the known parameter field by observa-

tions where the optimal estimation Eq. (13b) is used to optimize the forecast of S(ti ),25

i.e. emission at time ti , on the basis of the known values for the emission at previous

time ti−1:

St = St−1 − CSt−1
TT
t

(

Cmt+1
+ TtC

−1
St−1

TT
t

)−1
(

TtSt −M∗
t+1

)

, (15a)
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and the covariance matrix Cst
is the following:

Cst
= Cst−1

− Cst−1
TT
t

(

Cmt+1
+ TtC

−1
St−1

TT
t

)−1

TtCst−1
. (15b)

where the index “t” indicates that the vectors are associated with time step t. Corre-

spondingly the Eqs. (15) do not solve Eq. (5) directly but it searches the solution by

solving the sequence of the following equations formulated for a single time step:5

M∗
t+1

= Mmeas
t+1

− TtMt = TtSt, (16)

where M
∗
t+1=M

meas
t+1 – Tt Mt – vector of mass measured at time step t+1 corrected

by the effect of the aerosol mass Mt presented in the atmospheres at the previous

time step t; St – vector of emission source at time step t, Tt – matrix describing the

transport of aerosol mass from time step t to time step t+1. The vectors St and Mt10

relate to vectors S and Mused in Eq. (5) as follows:

ST
= (St+n, . . .,St+1,St)

T and MT
= (Mt+n, . . .,Mt+1,Mt)

T . (17)

The relationship between matrix Tt and T can be seen in the Appendix from Eq. (B5).

Correspondingly, instead of the joint system given by Eq. (10), Eqs. (15) solve the

following joint system:15

{

M
meas
t+1 = Mt (St) + ∆M

S
∗
t = St−1 + ∆S

, (18)

where the second line describes an a priori assumption of continuity between emis-

sions at time steps t and t−1. (Note that in Eq. (10) the a priori estimates S* do not

directly assume such continuity). The solution given by Eqs. (15) corresponds to a

minimum of the following quadratic form:20

2Ψt+1(St) = ∆MT
t+1

C−1
mt+1

∆Mt+1 + ∆ST
t
C−1
St−1

∆St, (19)

where ∆Mt+1=TtSt−M
∗
t+1 and ∆St=St−St−1.
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This sequential correction (filtering) given by Eqs. (15) are widely known as a

“Kalman filter” named after the author (Kalman, 1960) who originated the technique

for engineering purposes.

The constrained inversion techniques are also widely used in remote sensing for

retrieving vertical profiles of atmospheric properties (pressure, temperature, gaseous5

concentrations, etc.), where Eqs. (13–14) are associated with the studies by Strand

and Westwater (1968) and Rodgers (1976). It should be noted that in remote sens-

ing Eq. (13b) is not related to a sequential time retrieval (as considered by Kalman,

1960), but instead it is formulated Rodgers (1976) for retrieval of the entire vector S of

unknowns as given by Eq. (17). The important difference between Eqs. (13b), (14b)10

and the Kalman filter Eq. (15) is that the solution St by Eq. (15) is influenced only by

the observations performed at one time step t+1, while in Eqs. (13b), (14b) (as well as

in Eqs. 13a, 14a) the component Ŝt of the entire solution Ŝ can be influenced by the

observations of aerosol performed at later time steps.

2.3 Inversion constrained by a priori smoothness constraints (limiting derivatives of15

the solution)

Equations (13–14) show only one group of methods for the constrained inversion. For

example, numerous atmospheric remote sensing retrievals are based on the con-

strained inversion approach originated in the studies by Phillips (1962), Tikhonov

(1963) and Twomey (1963). If one formally applies the Phillips-Tikhonov-Twomey ap-20

proach for solving Eq. (5), the solution would be the following:

Ŝ =

(

TTT + γΩ
)−1

TTM∗, (20)
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where γ is the Lagrange parameter and Ω is the so-called smoothness matrix of n-th

differences. For example, for the second differences the matrix Ω is the following:

Ω =





















1 −2 1 0 0 ...
−2 5 −4 1 0 0 ...
1 −4 6 4 1 0 0 ...
0 1 −4 6 4 1 0 0 ...

...
... 0 1 −4 5 −2

... 0 1 −2 1





















. (21)

The solution of Eq. (20) corresponds to a minimum of the following quadratic form:

2Ψ(S) = 2 (Ψm +Ψsmooth) = ∆MT
∆M + γST

ΩS. (22)5

In contrast with Eqs. (13–14), the Phillips-Tikhonov-Twomey original technique was not

based on the direct assumptions about error statistics. Nevertheless, this formula can

be generalized with statistical formalism by using normal noise assumptions (e.g. see

Dubovik, 2004). The main principal difference of Eq. (20) from Eqs. (13–14) is the

fact that Eq. 20) does not use direct a priori assumption about values of unknowns10

Si . Instead, the Eq. (20) limits the variability between the different components Si of

the unknown vector S. For example, if the vector S would be a discrete analog of a

continuous function of one parameters x, e.g.

Si = S(xi ), (23)

where xi are equidistant points (xi+1=xi+∆x) then the a priori term in minimized15

quadratic form (Eq. 22) would have represented the norm of n-th derivatives (see

Twomey, 1977; Dubovik, 2004):

xmax
∫

xmin

(

dnS(x)

dxn

)2

dx ≈

xi=xmax
∑

xi=xmin

(

∆
n

(xi )

(∆x)n

)2

= (∆x)−n (DnS)
T

(DnS)∼ST
(

DT
nDn

)

S=ST
ΩnS, (24)
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where Dn is the matrix of n-th differences:

∆
1
= Si+1 − Si , (n = 1),

∆
2
= Si+2 − 2Si+1 + Si , (n = 2),

∆
3
= Si+3 − 3Si+2 + 3Si+1 − Si , (n = 3).

(25)

For example, matrix D2 of the second differences is the following:

D2 =













1 −2 1 0 ...
0 1 −2 1 0 ...
0 0 1 −2 1 0 ...

...

... 0 1 −2 1













. (26)

The correspondent smoothness matrix Ω2=D
T
2D2 is given by Eq. (21).5

Thus, in many remote sensing applications where one parameter functions S(xi ) are

retrieved using smoothness constrained as shown in Eq. (20) is fruitful and popular. For

example, such constraints are widely utilized in the retrieval of aerosol concentration

size distributions (e.g. Twomey, 1977; King et al., 1978; Nakajima et al., 1996; Dubovik

and King, 2000, etc.).10

Using a priori limitations on the derivatives (shown above) does not seem to be pop-

ular and well accepted in geophysical parameters data assimilation and inversion of

tracer modeling. (Although, such constraint is certainly included in general formula-

tions of assimilation techniques (e.g. Navon, 1997).) One of the many reason is proba-

bly the fact that tracer modeling deals with generally 4-dimentional characteristics. For15

example, unknown vector S in Eq. (5) represent global aerosol sources. Correspond-

ingly, instead of one parametric function shown by Eq. (23), we should consider vector

Sas discrete equivalent of 4-parametric function:

Si = S(ti , xj , yk , zm), (27)
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i.e. vector S has Nt×Nx×Ny×Nz total number of elements, where Nt,Nx ,Ny and Nz are

the total numbers of discrete points for correspondent coordinates t, x, y and z. Obvi-

ously, the variability of emission S(t, x, y, z) with time t, vertically with z and horizontally

with y and x does not have to be the same. This is why, using single smoothness term

in Eq. (22) with single smoothness matrix Ω as the one given in Eq. (21) is not appro-5

priate for constraining the retrieval of four dimensional characteristic S(t, x, y, z). At

the same time, some temporal and spatial horizontal and vertical continuity of aerosol

emission (the same is applicable for most of geophysical parameters) can naturally

be expected. Therefore, applying smoothness constraints on variability of S(t, x, y, z)

with each single coordinate instead of using single variability constraint can be useful.10

However, that would require using several constraints simultaneously. The possible

approach for using multiple constraints is discussed in studies by Dubovik and King

(2000) and Dubovik (2004).

2.4 Constrained inversion within multi-term LSM

Dubovik and King (2000) and Dubovik (2004) demonstrated that Eqs. (13a) and (20)15

can be naturally derived and generalized by considering inversions with a priori con-

straints as a version of multi-term LSM. Formally, both measured and a priori data can

be written as

f ∗
k
= fk(a) + ∆fk , (k = 1,2, . . ., K ), (28)

where index k denotes different data sets. This assumes that the data from the same20

data set have similar error structure independent of errors in the data from other sets.

Assuming that ∆fk normally distributed with covariance matrices Ck , then the MML

optimum solution of Eq. (28) corresponds to the minimum of the following quadratic

form:

2Ψ (a)=

K
∑

k=1

(∆fk)T (Ck)−1 (∆fk)=min

K
∑

k=1

γk (∆fk)T (Wk)−1 (∆fk)=2

K
∑

k=1

γkΨk (a)=min , (29)25
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where ∆fk = fk(a) − f
∗
k

Wk =
1

ε2
k

Ck and γk =
ε2

1

ε2
k

. (30)

Here ε2
k is the first diagonal element of Ck , i.e. ε2

k={Ck}11. Using weighting matrix

Wk is, in principle, equivalent to using covariance matrices Ck , although sometimes

it is more convenient because it shows that since the absolute value of the minimum5

in Eq. (29) is not prescribed, the minimization depends only on relative contribution of

each term Ψk into total Ψ. The Lagrange parameters γk are weighting the contribution

of each source relative to the contribution of first data source (obviously, γ1=1). The

minimum of the multi-term quadratic form given by Eq. (29) can be found by the multi-

term equivalent of Eq. (9):10

â =

(

K
∑

k=1

γk (Kk)T (Wk)−1 (Kk)

)−1( K
∑

k=1

γk (Kk)T (Wk)−1 f ∗
k

)

. (31)

Correspondent covariance matrix can be estimated the following:

Câ ≈

(

K
∑

k=1

γk (Kk)T (Wk)−1 (Kk)

)−1

ε̂2, (32)

where ε̂2
is estimated from obtained minimum of Ψ as: ε̂2

=Ψ/(Nf –Na), Nf – total

number of elements {fk}j (in all sets fk), Na – total number of unknown parameters ai .15

Using the above multi-term equations, one can formulate an inversion with smooth-

ness constraints on variability of S(t, x, y, z) with each single coordinate. Specifically,

using such multiple smoothness constraints can be considered as solution of the fol-
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lowing joint system:






















M
meas

= M (S) + ∆M

0
∗
t = ∆

n
t (t,x) + ∆t

0
∗
x = ∆

n
x (t,x) + ∆x

0
∗
y = ∆

n
y (t,x) + ∆y

0
∗
z = ∆

n
z (t,x) + ∆z

, (33)

where ∆
n

(...) denotes n-th differences of aerosol sources regarding time or coordinates

x, y or z. For example, for time coordinate t, second differences (Eq. 25) can be written

as:5

{∆2
t
(t,x)}l=∆

2
t
(ti , xj , yk , zm)=S(ti+1, xj , yk , zm)−2S(ti , xj , yk , zm)+S(ti−1, xj , yk , zm). (34a)

where the index l can be calculated, for example, as follows

l = (i − 1)NxNyNz + (j − 1)NyNz + (k − 1)Nz + (m − 1). (34b)

The second line in Eq. (33) states that differences ∆
n
(ti ) are equal to zero with errors

∆ti
. Accordingly, for n=2 the vectors 0

∗
t, ∆

2
(t) and ∆t consist of (Nt–2)×Nx×Ny×Nz10

zeros, ∆
2
t (ti , xj , yk , zm) and ∆ti

correspondingly. The 3rd, 4th and 5th lines in Eq. (33)

are defined by the same way for coordinates x, y or z correspondingly. Assuming that

∆t, ∆x,∆y and ∆z are normally distributed with zero means and diagonal covariance

matrices Ct=ε
2
t It , Cx=ε

2
x Ix, Cy=ε

2
y Iy and Cz=ε

2
z Iz, the multi-term LSM solution of

Eq. (33) can be the following:15

Ŝ =

(

TTW−1
m T + γtΩt + γxΩx + γyΩy + γzΩz

)−1

TTW−1
m M∗, (35)

where

Wm =
1

ε2
m

Cm , γt =
ε2
t

ε2
m

, γx =
ε2
x

ε2
m

, γy =
ε2
y

ε2
m

, γz =
ε2
z

ε2
m

,
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and ε2
m={Cm}11, ε2

t={Ct}11, ε2
x={Cx}11, ε2

y={Cy}11 and ε2
z={Cz}11. The matrices Ω

are determined via correspondent matrices of n-th differences Ω=D
T
nDn. Equation (35)

provides minimum of the following quadratic form:

2Ψ(S) = 2Ψm(S)+2
∑

(q=t,x,y,z)

γq Ψq(S) = 2 (∆M)
T W−1

m ∆M+2
∑

(q=t,x,y,z)

γqS
T
ΩqS.(36)

Each of the smoothness terms in this equation can be considered as discrete equiv-5

alent of norm of the n-th partial derivatives. For example, for the second term corre-

sponding to time coordinate t one can write:

Ψt (S) =
∑

(i ,j,k,m)

(

∆
n
t (ti ,xj ,yk ,zm)

(∆t)n

)2

∆t ≈ Ψ
′
t (s) =

tmax
∫

tmin

(

∂ns(t,x)

∂tn

)2

dt
(37a)

and

Ψt (S) = (∆t)1−n (D(n,t)S
)T

D(n,t)S = (∆t)1−n ST
(

DT
(n,t)

D(n,t)

)

S = (∆t)1−n ST
ΩtS, (37b)10

where matrix D(n,t) is the matrix of differences corresponding to n-th partial derivatives

regarding time. For example, D(2,t)S would produce a vector with the elements equal

to second differences as shown in Eq. (34).

Thus, it was shown above that using multi-term LSM approach, one can use multiple

smoothness constraints in the retrieval of emission sources. Therefore, it is possible uti-15

lize knowledge about typical time, horizontal and vertical variability of the emission as a

priori constraints in the emission retrieval. As shown in Eqs. (33–37), such smoothness

constraints are included as restrictions on n-th partial derivatives of S(t, x, y, z) assum-

ing zero values for correspondent differences in Eq. (33) and the values of Lagrange

parameters determine variations from the zeros. The order of differences employed20

relates with character of expected variability, for example for one parameter function
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S(t) there are following relationships:

∆
1
(t) → S(t) = const − constant,

∆
2
(t) → S(t) = A + Bt − straight line,

∆
2
(t) → S(t) = A + Bt + Ct2 − parabola.

(38)

It can be noted that the constraints employed in Kalman filter Eq. (15) are equivalent

to restricting first differences (see Eq. 18), i.e. a priori assuming linear continuity of

source variability. In a contrast, using multiple constraints as in Eqs. (35–36) allows to5

use non-linear continuity as constraint that can be applied not only to time but also to

space and vertical variability of emissions.

2.5 Inversion using adjoint equations

The methods analogous to Eq. (13) are used for retrieving sources of CO2 from sur-

face based and satellite observations (e.g. see Enting et al., 1995; Patra et al., 2003).10

However, direct implementation of Eqs. (9, 13) for retrieval of aerosol emission sources

is not feasible due to very large dimensions of matrix T and vectors S and M. For

example, CO2 emission sources can be assumed monthly or yearly constant for large

geographic areas (e.g., Patra et al., 2003, used 22 and 53 global regions). The time and

spatial variability of tropospheric aerosol and its emission is much higher. For aerosol,15

GOCART model (see below) has 2
◦×2.5

◦
horizontal resolution (144 longitudes, 91 lat-

itudes) and 30 vertical layers with possibility to have variable source in the each layer.

Correspondingly, inversion of a few weeks of observations by Eqs. (9) or (13) requires

one to deal with the vector S having dimensions NS far exceeding 200 000, even un-

der conservative assumptions of near-surface daily independent sources. Performing20

direct operations of Eqs. (9, 13) with vectors and matrices of such high dimensionality

is problematic. One possibility to avoid dealing with such large vectors and matrices

is to perform inversion using sequential retrieval as the one given by Kalman filter

formulation Eq. (15), where the retrieval uses generally smaller matrices and vectors

containing values of parameters only at single time step ti . However, in Kalman filter25
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procedure (as it is given in Eq. 15) the retrieval relies only on the observation at single

time step and assumption of linear continuity of emission strength. At the same time,

the emitted aerosol is transported for a period of time and, therefore, observations

during that entire period of time (∼ one or two weeks) can be useful for the retrieval.

In these regards, using Eqs. (9, 13) seems preferable provided Eqs. (9, 13) can be5

implemented with the computational requirements close to those of forward modeling.

This can be achieved if inversion routine adopts the strategies of forward simulations

utilized in global modeling. As shown by Eq. (5) transport modeling can be formulated

as matrix operator, however, in practice, the transport models are implemented by nu-

merical time integration (Eq. 4) via sequential computing of chemical transport during10

each time step ∆t (Eq. 2) and with separate treatment of isolated processes (Eq. 3).

Similar approach can be employed in inverse modeling by means of developing so-

called “adjoint” transport operators (e.g. Le Dimet and Talagrand, 1986; Talagrand and

Courtier, 1987; Elbern et al., 1997; Menut et al., 2000). Indeed, any inversion can be

implemented by iterations without explicit use of matrix inversion. For example, the so-15

lution equivalent to the one of Eq. (9) can be obtained by the steepest descent method

iterations:

Ŝp+1
= Ŝp − tp∆Ŝ

p, (39)

∆Ŝp
= ∇Ψm(Sp) = TTC−1

m ∆Mp , (40)

where ∆M
p
=M(S

p
)−M∗

, ∇Ψm(S) denotes a gradient of Ψm(S) and tp is non-negative20

coefficient. Equations (39–40) do not require challenging inversions of high dimen-

sion matrices (inversion of usually diagonal covariance matrix is trivial). The gradient

∇Ψm(S) can be simulated using numerical scheme employed for forward modeling.

Namely, the elements of vector ∇Ψm(S) can be simulated in similar manner to Eqs. (2–

4) and an equivalent of Eq. (39) can be written as follows (detailed derivations is given25
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in Appendix B):

∆ŝp (t,x) =

t0
∫

t

T # (t′,x)
(

∆ŝp (t′,x) + σ−2 (t′,x)∆mp (t′,x)
)

(−dt′), (41a)

where

∆mp (t,x) = m∗ (t,x) −

t
∫

t0

T (t′,x)
(

m (t′,x) + sp (t′,x)
)

dt′, (41b)

and T #
(t,x) is adjoint of transport operator T (t,x) that is composed by adjoints T #

i (t,x)5

of component processes Ti (t,x):

T # (t,x) = T #
1
T #

2
T #

3
...T #

n−1
T #
n . (41c)

The vectors ∆ŝp (x, t) and σ−2
(t,x)∆m

p
(t,x) denote function equivalents of vectors

∆Ŝ
p

and C
−1
m ∆M

p
respectively. For example, if one intends to use continuous function

∆ŝp (t,x) in numerical calculations, it can represented by vector ∆Ŝ
p
with the following10

elements:
{

∆Ŝp
}

l
= ∆ŝp

(

ti ;xj ; yk ; zm
)

, (42a)

where index l can be determined same as given by Eq. (34b).

Similarly, if observation errors are uncorrelated, i.e. covariance matrix of measure-

ments Cm is diagonal with the elements on diagonal equal to σ2 (ti , xj , yk , zm
)

, the15

elements of vector C
−1
m ∆M

p
relate to continues function σ−2

(t,x)∆m
p

(t,x) in straight-

forward way:
{

C−1
m ∆Mp

}

l
→ σ−2

(

ti , xj , yk , zm
)

∆mp
(

ti , xj , yk , zm
)

. (42b)
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If observational errors do not have time correlations but have spatial correlations, then

Cm has array structure and can be included in the algorithm (see Eqs. B14 and B16 in

Appendix B), provided one can formulate a weighting function C−1
(t,x,x′

) from covari-

ance function C(t,x,x′
) performing analogous role to the one of matrix C

−1
m in discrete

representation. Inclusion of the spatial correlations during each time moment is feasi-5

ble because the model is integrated by time steps and each time step can be treated

rather independently. However, accounting for observational errors that are correlated

in time is not feasible without changing structure of Eq. (41).

It is important to note that Eq. (41) is convenient for practical implementation of

inversion. Indeed, Eq. (41) is allied to Eq. (4) with the difference that it uses ∆mp
(t,x)10

in place of s (t,x) and ∆ŝp (t,x) in place of m (t,x) and performs the backward time

integration of adjoint operator T #
(t, x) . If T (t, x) is functionally equivalent to the matrix

operator T, then the adjoint operator T #
(t, x) is an equivalent to the transposed matrix

T
T
. Therefore, the main idea of developing the adjoint operator T #

from T can be shown

from considering matrix transposition. For example, since the integration of transport15

operator can be approximated on the basis of operator split approach (e.g. see Jacob,

1999) where matrices corresponding to different atmospheric processes are multiplied

at each time step (e.g. see Eq. 3), the following matrix identity is helpful:

(T3 T2 T1)T
= (T1)T (T2)T (T3)T . (43)

This reversing of the order of operations by transposition results in overturned se-20

quence of applying component processes within each time step Eq. (41c) and in revers-

ing of the order of integration in Eq. (41a), i.e. in backward time integration Eq. (41a).

Also, transposition of matrix Ti changes rows and columns, therefore if T is non-square,

input of (Ti )
T

should have dimension of Ti output and output of (Ti )
T

should have di-

mension of Ti input. Thus, the adjoint model (executing Eq. 41) can be developed on25

the basis of the original model (executing Eq. 4) by reversing the order of operations

and switching inputs and outputs of routines (e.g. Elbern et al., 1997; Menut et al.,

2000).
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Thus, using adjoint to transport model allows implementation LSM inversion (Eq. 9)

without using explicit matrix inversion and therefore with moderate computational ef-

forts. Each iteration in Eq. (41) requires one forward integration of transport model

(Eq. 41b) followed by one backward integration of adjoint transport model (Eq. 41a).

Necessity to perform a number of iterations in Eq. (41) is a potential drawback of5

implementing inversions via adjoint modeling. Indeed, the steepest descent method

iterations of Eqs. (39–40), in general, converge to the exact solution at a very large

number of iterations. Even faster method of conjugated gradients may require up to

NS iterations (Press et al., 1992). Nevertheless, due to the local character of transport

processes, i.e. when an observation in any specific location can be influenced only by10

aerosol emitted within certain limited area surrounding this location, a rather limited

number of simple iterations appear to be effective for global inverse modeling of high

dimensionality. For instance, the iterations of Eq. (39–40) converge from an arbitrary

initial guess to the solution, if the following sequence leads to zero matrix (Dubovik,

2004):15

∞
∏

p=1

(

I − tpTTC−1
m T
)

⇒ 0, (44)

where I is unity matrix. It is clear, that fast convergence in Eqs. (39–40) can be achieved

only if T
T
T is predominantly diagonal (Cm is often diagonal and does not cause prob-

lems). Fortunately, in transport modeling, the diagonal elements of T
T
T dominate be-

cause local aerosol emission quickly influences only rather close locations (i.e. matrix20

T is rather sparse and has large number of zeros, see Eq. (B5) in Appendix B).

It should be noted, that Eqs. (41) expressing inversion via adjoint operators are gen-

erally analogous to techniques utilized in variational assimilation (e.g. Le Dimet and

Talagrand, 1986; Talagrand and Courtier, 1987; Menut et al., 2000; Vukicevic et al.,

2001). Nevertheless, the statistical estimation approach employed in our studies al-25

lows establishing direct relationships of Eqs. (41) with conventional LSM minimization

and therefore improves flexibility in implementing inversion. For example, direct using
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error covariances allows accounting for different levels of accuracy in inverted obser-

vations. Moreover, formulating inversion using statistical approach is convenient for

including various a priori constraints into retrieval, for example, following multi-term

LSM strategy discussed in Sect. 2.4.

2.6 Including a priori constraints into inversion via adjoint equations5

Equations (41) can be easily adopted for implementing constraint inversion. For exam-

ple, the inversion constraining solution Ŝ by its a priori estimates S* shown via matrix

inversion by Eq. (41) can be implemented iteratively, e.g. using steepest descent itera-

tions:

Ŝp+1
= Ŝp − tp∆Ŝ

p, (45a)10

∆Ŝp
= ∇Ψm(Sp) + ∇ΨS (Sp) = TTW−1

m ∆F p
+ γsW

−1
s ∆Sp . (45b)

Here we used weighting matrices W... instead of covariance matrices C... in order to

align these equations with LSM multi-term formulations given by Eqs. (28–32). If we

assume for simplicity that all measurements are statistically independent and have the

same accuracy εm (i.e. Cm=I ε2
m→Wm=I) and all a priori estimates are statistically15

independent and have the same accuracy εs (CS=I ε2
S→WS=I) than we can write

continuous analog to Eq. (45b) as follows:

∆ŝp (t,x) =

t0
∫

t

T # (t′,x)
(

∆ŝp (t′,x)+∆mp (t′,x)
)

(−dt′)+γS
(

ŝp (t′,x)−ŝ∗ (t′,x)
)

. (45c)

where γS=ε
2
m/ε2

S .

The iterative analog to Eq. (35) constraining the solution by limiting time and spatial20

derivatives of Ŝ (t,x) can be written as follows:

Ŝp+1
= Ŝp − tp∆Ŝ

p, (46a)
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∆Ŝp
= ∇Ψm(Sp) +

∑

(q=t,x,y,z)

γq ∇Ψq(Sp) = TTW−1
m ∆F p

+

∑

(q=t,x,y,z)

γq ΩqS
p. (46b)

The function ∆ŝp (t,x) correspondent to vector ∆Ŝ
p

can be formulated as follows:

∆ŝp (t,x) =

t0
∫

t

T ∗ (t,x)
(

∆ŝp (t′,x) + ∆mp (t′,x)
)

(−dt′)

+

∑

(q=t,x,y,z)

γq
δΨ′

q

(

sp (t,x)
)

δs (t,x′)
, (47)

where x
′
=(xj , yk , zm) and the functional derivative δΨ′

q(sp)/δs relates to derivatives5

of correspondent quadratic form ∂Ψq(S
p
)/∂Sl . For example, for the norm of second

derivatives of s(t,x) over time (Ψ
′
t(s) shown in Eq. 37) the following relationship can

be written:

δΨ′
t

(

sp (t,x)
)

δs (ti ,x
′)

≈
∂Ψt

(

S
p)

∂Sl

= (48)

= (∆t)−2 (S
(

ti+2,x
′) − 4S

(

ti+1,x
′)
+ 6S

(

ti ,x
′) − 4S

(

ti−1,x
′)
+ S
(

ti−2,x
′))

10

where the index l can be calculated according Eq. (34) and 2<i<Nt–2 (see Eq. 21).

Analogous equations can be written for the terms corresponding to spatial coordinates

x, y and z.

These formulations also can adopt the same a priori constraints, as those used in

Kalman filter, i.e. when only continuity of sources is constrained a priori by assuming15

S
∗
t=St−1+∆S (see Eqs. 15 and 18). In this situation, one can use assumption that

first derivative of s(t,x) over time is close to zero, i.e. ∂s(t,x)/∂t≈0. Correspond-

ingly, Eq. (47) should be used with only one a priori term with the functional deriva-

tive δΨ′
t(s

p
)/δs, where Ψ

′
t(s

p
) – the quadratic form for the norm of first derivatives
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∂s(t,x)/∂t (see Eq. 37), i.e.

δΨ′
t

(

sp (t,x)
)

δs (ti ,x
′)

≈
∂Ψt

(

S
p)

∂Sl

= (∆t)−1 (S
(

ti+1,x
′) − 2S

(

ti ,x
′)
+ S
(

ti−2,x
′)) . (49)

where the index l can be calculated according Eq. (34) and 1<i<Nt–1 (see Eq. 21).

If the deviations of ∂s(t,x)/∂t from zero are different in different locations and times

then these differences can be accounted in formulating quadratic form Ψ
′
t(s

p
) by in-5

cluding appropriate weighting. Thus, this way the Eq. (47) relies on the same a priori

constraints as those used in Kalman filter Eq. (15). However, in Eq. (47) observa-

tions m(t,x) during whole time period t>ti can contribute to the solution S(ti ,x) while

Eq. (15) relies only on observations m(ti ,x) at time ti .
Also, it should be noted that for clarity of presentation Eqs. (45c) and (47) were10

written for the case of the simplest covariance matrices of measurements and a priori

data errors C...=ε
2
... I.... However, the generalization of these equations to the cases

when accuracies within each data set are different ({C}i i 6={C}jj , i 6=j ) or the covariance

matrices are non-diagonal is rather straightforward (similar as shown by Eqs. 41–43).

2.7 Inversion of models with non-linearities15

Previous sections described an approach to invert linear transport model (Eq. 5) pro-

vided the global measurements of aerosol mass M
∗

are available. In practice, the

transport model may be non-linear and the global data of aerosol fields are available

only in form of satellite optical measurements:

f = F (m(t,x), λ, θ; ...), (50)20

where f (. . . ) is generally a non-linear function depending on aerosol m(t,x), instru-

ment spectral specifications λ, observation geometry θ, etc. Therefore, the following

non-linear equation should be solved instead of Eq. (4):

F ∗
= F (M(S)) + ∆F , (51)
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where F and ∆F are vectors of global optical data and their uncertainties. Since,

the steepest descent method can be applied to both linear and non-linear problems,

Eqs. (41, 45, 47) that use adjoint operators can be expanded for solving Eq. (51). For

example, for a basic case when only optical measurements F
∗

are inverted with no a

priori constraints, the steepest descent solution can be written as:5

Ŝp+1
= Ŝp − tp∆Ŝ

p, (52a)

∆Ŝp
= ∇Ψf (S

p) = KT
pC−1

f
∆F p

= TT
pFT

pC−1
f
∆F p , (52b)

where ∆F
p
=F (S

p
)–F

∗
. Matrices Kp Tp and Fp denote Jacobi matrices of the first

derivatives df/ds, dm/ds and df/dm calculated in the vicinity of the vector S
p
:

{

Kp

}

j i
=

dfj (m(S), λ, θ, ...)

dSi

∣

∣

∣

∣

∣

S=Sp

, (53a)10

and

{

Tp

}

j ′i
=

dmj ′(S, t,x)

dSi

∣

∣

∣

∣

∣

S=Sp

,
{

Fp

}

j i ′
=

dfj (M, λ, θ, ...)

∂mi ′

∣

∣

∣

∣

∣

Mp=M(Sp)

, (53b)

where indices j , j ′, i and i ′ are the indices for the elements fj ,mj ′ , mi ′ , Si of corre-

sponding vectors F
T
= (f1,f2,. . . ), M

T
=(m1,m2,. . . ), and S

T
=(S1,S2,. . . ). The following

relationship between Jacobi matrices of df/ds, dm/ds and df/dm derivatives was used15

in Eq. (52):

Kp = FpTp . (53c)

The function ∆ŝp (t,x) correspondent to vector ∆Ŝ
p

can formulated as follows:

∆ŝp (t,x) =

t0
∫

t

T #
p (t′,x) F #

p (t′,x)
(

∆ŝp (t′,x) + ∆f p (t′,x)
)

(−dt′), (54)

3656

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/3629/2007/acpd-7-3629-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/3629/2007/acpd-7-3629-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD

7, 3629–3718, 2007

Retrieving global

sources of aerosols

from MODIS

observations

O. Dubovik et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

where T #
p (t,x) and F #

p (t,x) are adjoint operators for mass transport T (s(t,x)) and the

optical model F (m(t,x)), index p indicates that these adjoint operators are equivalents

of transposed Jacobi matrices T
T
p and F

T
p. The development of F #

p (t,x) is quite trans-

parent because optical properties f (m(t,x), . . . ) usually are related only with local

aerosol and therefore in practical implementations of Eq. (54) (that usually performed5

in discrete representation) F #
p (t,x) can be explicitly replaced by the transposed Jacobi

matrix F
T
p.

Equation (54) can be easily expanded for implementing constraint inversion of

f=F (m(t,x), λ, θ, ...) . For example, in case when solution is constrained by a priori

limiting time and spatial derivatives of Ŝ (t,x) (utilized in Eqs. 35 and 47) can be writ-10

ten as follows:

∆ŝp (t,x) =

t0
∫

t

T #
p (t′,x) F #

p (t′,x)
(

∆ŝp (t′,x) + ∆f p (t′,x)
)

(−dt′)

+

∑

(q=t,x,y,z)

γq
δΨ′

q

(

sp (t,x)
)

δs (t,x′)
. (55)

Using this ∆ŝp (t,x) the iterative retrieval would minimize the following quadratic form:

2Ψ(S) = 2Ψf (S) + 2
∑

(q=t,x,y,z)

γq Ψq(S)=2 (∆F )
T
∆F + 2

∑

(q=t,x,y,z)

γqS
T
ΩqS. (56a)15

This quadratic form can be generalized by the following functional:

2Ψ
′
= 2

∫

t

∫∫∫

x,y,z

∆f # (t, x, y, z)∆f (t, x, y, z)dxdydzdt

+2
∑

(q=t,x,y,z)

γq

qmax
∫

qmin

(

∂ns(q, ...)

∂qn

)2

dq, (56b)
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where ∆f (t, x, y, z)=f ∗− f (t, x, y, z) and ∆f #
(t, x, y, z) denotes adjoint of ∆f (t, x, y, z).

Thus, the above derivations show rather high potential of using statistical estimation

approach for implementing inverse modeling of aerosol transport. For example, it was

demonstrated that following multi-term LSM strategy allows for flexible usage of various

types of a priori constraints in inverse modeling. For example, Eqs. (47–49) show how5

the limitation on derivatives of aerosol (or other tracer) emission with respect to coor-

dinates or time can be included into adjoint integration of tracer models that is widely

used in variational assimilation for source identification of atmospheric tracers (e.g. Le

Dimet and Talagrand, 1986; Talagrand and Courtier, 1987). Using such constraint in

inverse modeling may have high potential because, in principle, a priori limitations on10

derivatives of emission variability is a weaker and more flexible way of constraining

than using a priori values of emission. Equations (54–55) demonstrate the formulation

of the approach for inverting satellite observations (e.g. radiances measured by pas-

sive satellite observations). This generalization may have the high potential, because

using directly satellite observations in inverse modeling and satellite data assimilations15

has a number of advantages compare to relaying on satellite retrieval products (Weiver

et al., 2006). However, the utilization of steepest descent iteration in Eqs. (54–55)

makes the use of Eqs. (55–56) less attractive for practical use because in general

inverting radiative transfer equations by steepest method requires a large number of

iterations (Dubovik and King, 2000). Therefore, it might be useful to explore a possibil-20

ity of utilizing iterative strategy of conjugated gradients method (Appendix C), because

method of conjugated gradients is known for superior convergence than steepest de-

scent method.

3 Application of the inverse methodology for aerosol source retrieval from

satellite observations25

In this section, we attempt applying the inversion methodology (described in previous

sections) for deriving information about global aerosol sources from satellite observa-
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tions. First, we analyze a possibility to invert aerosol transport model, i.e. to derive

“unknown input” (aerosol emissions) of the model from “known output” (aerosol mass

distribution). Then we consider a possibility of applying such an inversion for deriving

global aerosol sources from satellite observations. Our studies are based on GOCART

aerosol transport model. We use satellite observations of aerosol by MODIS instru-5

ment.

3.1 GOCART based algorithm for inverting MODIS data

The GOCART – Goddard Chemistry Aerosol Radiation and Transport model is de-

scribed in papers by Chin et al. (2000, 2002) and Ginoux et al. (2001). The model uses

the assimilated meteorological data from the Goddard Earth Observing System Data10

Assimilation System (GEOS DAS) and provides four-dimensional distribution of aerosol

mass at several atmospheric layers (20–30) with horizontal resolution of 2
◦

latitude by

2.5
◦

longitude. The model calculates aerosol composition and size distribution, optical

thickness and radiative forcing. There are seven modules representing atmospheric

processes: emission, chemistry, advection, cloud convection, diffusion (boundary layer15

turbulent mixing), dry deposition, and wet deposition. The model solves continuity

Eq. (1) using an operator splitting technique (Eqs. 2–3). The model time step is 15 min

for advection, convection and diffusion and 60 min for other processes.

Inverse algorithm described by Eqs. (41, 54) was implemented based on GOCART

model. The adjoint transport operator T ∗p(t,x) was developed by redesigning GO-20

CART modules for each atmospheric process. Namely, the adjoint operation of advec-

tion was performed by original advection algorithm of GOCART (Lin and Rood, 1996)

using signed-reverse wind fields (Vukicevic et al., 2001). The exact equivalence be-

tween such physically derived retro-transport and adjoint equations has been proven

by rigorous derivations by Hourdin and Talagrand (2006). The adjoints of the local25

processes were developed by using analogies with correspondent transpose matrix

operators. Specifically, cloud convection, diffusion, dry deposition, and wet deposition

affect only vertical transport of aerosol motion. All these processes have local char-
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acter in the sense that for a single time step in the model they work independently in

each horizontally resolved vertical column. Therefore, such processes can be easily

modeled via explicit use of matrices of rather small dimension and the corresponding

adjoint operators can be obtained by direct transposition of those matrices. At first,

we have arranged the cloud convection, diffusion, dry deposition, and wet deposition5

in matrix form and derived the transpose to those matrices. Then, for achieving faster

calculation time we redesigned original programs so that their application to a vector

provides an equivalent product to the application of correspondent transpose matri-

ces. Chemical aging transformations of black and organic carbon aerosols change

only proportion between different components and do not induce any vertical or hori-10

zontal aerosol motions. Therefore, adjoint of chemical processes can be constructed

simply by changing the direction of chemical transformation.

In order to use satellite observations as the input for the inversion the conversion from

modeled aerosol mass into optical parameters, should be included into adjoint devel-

opments. Correspondingly, operator Fp in Eq. (53) should be rearranged into adjoint15

F #
p and used in the inversion according to Eq. (54). Since aerosol optical thickness op-

erator Fp summing up the contribution from different layers and different aerosol types,

its adjoint F #
p redistribute the total sum to the individual layers and aerosol types.

The inversion algorithm (Eqs. 39–41) treats the strength of aerosol emission at each

global location as an unknown. Therefore, in an ideal situation, when the observa-20

tion provide enough information for retrieving all emission parameters, the emissions

derived from satellite observation could potentially replace the original module of GO-

CART prescribing the aerosol emissions. Such an ideal situation can likely be expected

if the observations are rather sensitive to all aerosol characteristics provided by output

of GOCART model, i.e. if observations sensitive to all time and space (3×D) variations25

of all modeled aerosol components. Naturally, satellite observations (as well as obser-

vations of any other type) have some limitations and cannot provide the same amount

of details as model simulation. Correspondingly, the inverse algorithm settings should

address limitations of the used MODIS observations.
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The MODIS – MODerate resolution Imaging Spectroradiometer aboard both NASA’s

Terra and Aqua satellites provides near global daily observations of the Earth in a wide

spectral range (0.41 to 15.0µm). These measurements are used to derive spectral

aerosol optical thickness and aerosol size parameters over both land and ocean (Kauf-

man et al., 1997; Tanré et al., 1997; Remer et al., 2005). The main available aerosol5

products include aerosol optical thickness (at three visible wavelengths over land and

seven wavelengths over ocean), effective radius of the aerosol and fraction of optical

thickness attributed to the fine mode. The present study uses the MODIS aerosol opti-

cal thickness product aggregated to 1
◦

by 1
◦

spatial resolution. The expected accuracy

of MODIS optical thickness ∆τ=±0.03±0.05τ over ocean (Tanré et al., 1997; Remer et10

al., 2005) and ∆τ=±0.05±0.15τ over land (Kaufman et al., 1997; Remer et al, 2005).

Such passive remote sensor as MODIS has the following main limitations:

– no sensitivity to vertical variability of the aerosol;

– time and space limitation of observation coverage;

– limited capabilities of aerosol type identification.15

Indeed, the top of the atmosphere radiances are mostly sensitive to the total aerosol

content in the atmospheric column (that is optically characterized by aerosol opti-

cal thickness) and generally have no or very weak sensitivity to vertical variations of

aerosol properties. Correspondingly, measurements of MODIS do not provide any in-

formation about aerosol vertical distribution (Kaufman et al., 1997; Tanré et al., 199;20

Remer et al., 2005). Viewing specifications and aerosol retrieval limitations causes

the limitations of MODIS observation coverage. Namely, MODIS provides aerosol re-

trievals with nearly complete global coverage every 2 days for cloud-free atmospheric

conditions. The retrievals are not performed over pixels with very bright reflectance,

such as over desert (Kaufman et al., 1997) or for the observations affected by glint25

reflection over ocean (Tanré et al., 1997). The possibility to identify aerosol type from

MODIS data is also limited. GOCART differentiates emission and transport for each
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of at least 11 types of aerosol particles: sulfate, hydrophilic and hydrophobic Organic

Carbon (OC), hydrophilic and hydrophobic Black Carbon (BC), four size differentiated

sea salt bins and seven (in some versions of GOCART up to seven) desert dust size

differentiated bins (Chin et al., 2002, 2004; Ginoux et al., 2001). These aerosol com-

ponents could be uniquely differentiated by such optical parameters as real part of the5

refractive index, absorption and particle size. However, as concluded from sensitivity

studies (Tanré et al., 1996), the information content of MODIS data is insufficient for

deriving such detailed information as aerosol absorption and refractive index, while it

allows separating the contributions of fine and coarse aerosol particle into total opti-

cal thickness. On the other hand, separation between fine or coarse mode dominated10

aerosols allows some rather useful discrimination between aerosol groups. Specifi-

cally, desert dust and maritime aerosols are dominated by coarse mode particles, while

biomass burning and urban pollution are dominated by fine mode particles (Dubovik et

al., 2002).

Thus, MODIS data provide smaller amount of information compare to output of global15

model and therefore inversion of satellite observation is much less constrained than

formal inversion of the model that derives unknown “input” from known model “out-

put”. The problem of retrieving all aerosol emissions utilized by GOCART from MODIS

observations is clearly ill-posed (from formal viewpoint the number of observations

is significantly smaller than a number of retrieved parameters). One way to assure20

uniqueness of the retrieval is to use a priori constraints. For example, the original GO-

CART emissions can be used as a priori estimates of unknown emissions. This can

be implemented on the basis of Eqs. (45). At the same time using such a priori esti-

mates may limit in some cases the freedom of the algorithm in searching for the actual

solution. The appropriate choice of correspondent Lagrange multipliers in Eq. (41) (or25

covariance matrices of a priori estimates in general case) is supposed to prevent ap-

pearance of significant biases in solution due to incorrect a priori information. However,

the optimum choice of Lagrange multipliers is nontrivial because the level accuracy in

the knowledge of aerosol emissions is rather uncertain. Therefore, it is appealing to
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explore the potential of unsupervised retrieval that distributes the global aerosol emis-

sion based only on satellite observations and transport. In some way, this approach

is an alternative to using a priori constraints and it can be implemented by reducing

the number of variables in parameterization of aerosol emissions. Another possibility

is to implement retrieval without addressing ill-posed character of the problem. Indeed,5

our algorithm is based on steepest descent iterations (see Eqs. 39–41) and therefore

would not collapse even for ill-posed problem. However, the solution would strongly

depend on initial guess (e.g. see Dubovik, 2004), i.e. in such scenario if the algorithm

uses GOCART emissions as initial guess, it simply corrects GOCART emissions as

needed to improve agreement between model and observations. However, the solu-10

tion is not unique in the sense that if the initial guess is changed the retrieval results

also change.

Thus, in order to understand the potential of aerosol sources retrieval from MODIS

observations we will examine the effect of MODIS data limitations and test the per-

formance of the retrievals by different scenarios: retrieval constrained by a priori data15

or/and constrained by reduced parameterization of aerosol emissions, unconstrained

retrievals strongly dependent on the initial guess.

3.2 Inverse algorithm testing

A series of numerical tests was performed to verify and illustrate how the algorithm

inverts the modeled data in “no error” environment when inverted aerosol fields fully20

consistent with the model and neither measurements nor model errors are present.

First we verified how the algorithm inverts the model output, i.e. how it works in the

ideal situation when observation measure all time and space variations of mass for

each aerosol specie. The tests have shown that for such well-constrained situation the

algorithm retrieves the emissions of all aerosols accurately. Then we tested a possi-25

bility to retrieve emissions from the remote sensing MODIS like data that do not have

information on vertical variability of aerosol. The algorithm was applied to the global

“measurements” of τ(0.55) – optical thickness at 0.55µm of single aerosol type. Since
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MODIS sees each global location not more than once each 24 h, we assumed in the

numerical tests that τ(0.55) is available one time every 24 h for each global point. Cor-

respondingly, in order to make emission retrieval appropriately constrained the variabil-

ity of emission within 24 h was neglected. The tests were accommodated to the same

time period as the one chosen for inverting actual observations, i.e. the meteorological5

fields correspondent to 2 last weeks of August 2000 were used to perform tests. For

simplicity the aerosol was assumed as one component BC aerosol in the test and the

“observations” were simulated as BC optical thickness τBC(0.55). Chemical transfor-

mations (used in GOCART model) of aerosol were neglected in this retrieval test. The

“prescribed” emissions where assumed equal to the total of black and organic carbon10

emissions used in GOCART model for the same two weeks. The optical thickness was

modeled from the GOCART mass of aerosol in total atmospheric column, by deriving

the aerosol volume (using density 1 g/cm
3
) and assuming that it has the same optical

properties as fine mode of smoke during Zambian savanna burning (Dubovik et al.,

2002). The appearance of aerosol sources was allowed at 10 lower aerosol layers (i.e.15

approximately below 2 km). Figures 2–3 illustrate the retrieval results for one specific

day of 28 August. Figure 2 shows that the total emission in first 10 layers retrieved

in the test agreed well with “assumed” emissions. The agreement looks encouraging

taking especially into account the fact that the retrieval uses “zero emissions” (i.e. no

sources) as initial guess for emission estimate. The same initiation of retrieval is used20

in all following tests unless specified differently. There are some minor differences be-

tween “prescribed” and retrieved emissions of Fig. 2, such as appearance of minor

aerosol sources over ocean. Since the forward and backward aerosol mass and op-

tical thickness simulated under the same assumptions without adding any modeled

errors or other perturbations these differences can only be explained by limited num-25

ber of retrieval iterations or by the effect of numerical errors and instabilities inherent

for transport model simulations (Vukicevic et al., 2001).

The accuracy of optical thickness fitting during entire time period (considered in the
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test) was characterized by two residual values:

σabs =
1

Ni

√

∑

i

(

τ∗
i
− τi (Ŝ)

)2

, (57a)

σrel =
100

Nk

√

√

√

√

√

∑

i

(

τ∗
k
− τk(Ŝ)

τ∗
k

)2

, (τ∗
k
≥ 0.05), (57b)

where absolute standard deviation σabs was simulated using all locations and times

and relative standard deviation σrel simulated using only points where τBC(0.55) was5

not smaller than 0.05. The value σabs is directly related to the minimized quadratic

form. Specifically, under assumption of measurement covariance matrix as C...=ε
2
...

I, σabs corresponds to a first term in the quadratic form given by Eq. (56). The value

σrel was introduced for characterizing accuracy of fitting observations of aerosol events

with high loading. After 40 iterations the residual were σabs≈0.005 and σrel≈9%, i.e.10

achieved accuracy of fitting is below the measurements accuracy expected for MODIS

(∆τ = ±0.03±0.05τ over ocean and ∆τ=±0.05±0.15τ over land). It should be noted

that Fig. 2 shows the total mass emitted onto the first 10 atmospheric layers. Unfor-

tunately the exact vertical structure of emission was not reproduced well because the

observations of τBC(0.55) do not provide any vertical information.15

Figures 4–5 show the similar results for the test with coarse mode aerosol where

desert dust emissions were retrieved from simulated “measurements” of the desert

dust optical thickness τDust(0.55). For the simplicity desert dust was considered as

one component aerosol instead of eight size resolved components used in GOCART

model. The test was conducted using meteorology and values of desert dust emissions20

the same as assumed in GOCART model for two weeks in August 2000. The values of

fitting residual achieved after 40 iterations for this test were: σabs≈0.01 and σrel≈15%.

In a contrast to the BC and other fine mode aerosols that can be emitted not only at

the model surface layer but also at layers above the surface (e.g. within the boundary
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layer), desert dust and sea salt (another coarse mode aerosol) are emitted only at

the surface level. This fact can be considered as an extra factor contributing in the

constraining of the retrieval problem.

In the tests illustrated by Figs. 2–5 the “observations” were available in each global

location, although as mentioned earlier this is not a case for actual MODIS data. The5

observations for each single day have the gaps, e.g. Fig. 6 shows τfine(0.55) provided

by MODIS for 28 August, (compare with Fig. 3). To analyze the effects of the gaps

in MODIS data on the global emission retrieval, another test was performed where

“measured” τ(0.55) where sub-sampled by exactly the same way as the real MODIS

data for same period of observations.10

Figures 7 and 8 illustrate the results of such test for BC emissions retrieval. This test

is analogous to the one shown on Figs. 2–3 with only difference that the observations

τBC(0.55) had exactly the same coverage as actual MODIS observation collected dur-

ing the same time period. The convergence of the retrieval process was slightly slower

than in the test where τBC(0.55) had no gaps. After 40 iterations, fitting residuals15

were σabs≈0.009 and σrel≈12%. These numbers are still lower than expected MODIS

measurements accuracy and, as can be seen, from Fig. 8 fitted τBC(0.55) reproduces

“observed” τBC(0.55) rather well. The retrieved emissions shown on Fig. 7 also in good

agreement with the assumed emission, however the agreement slightly deteriorated if

to compare with the emission retrieval from τBC(0.55) with no gaps illustrated by Fig. 2.20

The retrieval of the desert dust emissions from τDust(0.55) sub-sampled according to

MODIS observations was less successful than retrieval BC emission. Figure 9 shows

that the retrieval was not able adequately reproduce the “assumed” emissions. For

example, some patterns of strong desert dust emissions in the Western Sahara do

not appear correctly in the retrieved emission field. This difficulty in the retrieval can25

be explained by the fact the observations of τdust(0.55) do not sufficiently constrain

the retrieval over the areas where the strongest desert dust sources are expected

(Ginoux et al., 2001) because MODIS does not provide aerosol retrievals over bright

desert surfaces (Kaufman et al., 1997; Remer et al., 2005; Hsu et al., 2004). As a
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result, the “prescribed” emission and “retrieved” emission produces virtually identical

τdust(0.55) (see Fig. 10), despite some false desert dust source locations from the

retrieval (e.g. over the Atlantic ocean near the western Africa coast). The values of the

fitting residuals are: σabs≈0.006 and σrel≈12%.

The tests discussed above suggest that unsupervised retrieval of global BC or desert5

dust emissions is possible (although the retrieval of dust emission was less appeal-

ing) if MODIS like observations of τBC(0.55) or τDust(0.55) are available. However,

as explained earlier MODIS retrieval can only discriminate the contributions of fine

and coarse modes of aerosol (i.e. τfine(0.55) and τcoarse(0.55)) into total aerosol op-

tical thickness τtotal(0.55) and does not discriminate aerosol type. Correspondingly10

distinction of aerosol in global emission retrieval can be done only between aerosols

composed by fine and coarse particles. Several numerical tests were performed to

evaluate consequences of such limitation on global emission retrieval from τfine(0.55)

and τcoarse(0.55) provided by MODIS. According to setting of GOCART model the sul-

fate, OC and BC aerosols are composed only by fine particles and minor fractions of15

fine particles also present in desert dust and sea salt. Figures 11–12 illustrate the

results of the test where modeled τfine(0.55) was equal to the sum of the optical thick-

nesses of sulfate, black and organic carbon aerosols simulated using original GOCART

model. Then the modeled τfine(0.55) were inverted using simplified model of single fine

mode aerosol. In this test the same conversion of aerosol mass to optical thickness20

was used as in inversion of τBC(0.55) (earlier test illustrated by Figs. 2–3). The retrieval

used the same parameterization of removal processes as GOCART uses for BC. As

can be seen on Figs. 11–12 the results of the retrieval using simplified single fine

mode aerosol look encouraging. For example, the retrieved fine mode aerosol source

shows (Fig. 11) all major features emission composed by assumed BC, OC and sulfate25

sources. It should be noted that because sulfate is formed in the atmosphere via pho-

tochemical oxidations of its precursor gases, the source of sulfate is not limited over

land. The differences in magnitudes and shapes of emission field that can be seen

between assumed and retrieved emissions in Fig. 11 can be explained by the fact that
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the algorithm used optical properties of single BC aerosol for reproducing observation

of a combination of BC, OC and sulfates. Nonetheless, as Fig. 12 shows the simplified

single fine mode aerosol effectively matches the observations. The fitting errors for this

test were σabs≈0.02 (and σrel≈25%). These values are higher than in previous tests

but they are still below the expected accuracy of aerosol optical thickness provided by5

MODIS retrievals. This fact suggests that even simplified transport model with no dis-

crimination by aerosol type can reproduce the global observations of τfine(0.55) at the

accuracy level of MODIS observations.

As stated above an implementation of under-constrained retrieval could be the alter-

native approach to using the simplified single component aerosol model. In order to10

illustrate such methodology, we have implemented the version of the algorithm that uti-

lizes all chemical processes used in GOCART and retrieves simultaneously emissions

of several aerosol types. Specifically, the inversion algorithm was developed for simul-

taneous retrieval of hydrophilic and hydrophobic BC and OC global emissions. The

numerical test shows that if “measured” τfine(0.55) was composed by BC and OC only15

the retrieval provides better fit than the retrieval based on single fine mode aerosol.

The fitting errors were: σabs≈0.005 and σrel≈15%, while the retrieval with single fine

mode aerosol in better fitting errors σabs≈0.01 and σrel≈20%. However, as expected,

the partitioning between BC and OC emissions was not correct and strongly depen-

dent on initial guess. Therefore, the retrieval cannot categorize retrieved emission by20

aerosol type from τfine(0.55) and if such discrimination is critical then substantial a priori

constraints should be utilized.

In case of retrieving emissions of coarse aerosols the situation is simpler. Indeed,

in GOCART model only two aerosol types have coarse particles: desert dust and sea

salt. The locations of the emission sources are fundamentally different: dust is emitted25

over land while sea salt over water. This physical restriction can be used as a natural

constraint in the emissions of desert dust and sea salt.

We have also performed a number of tests verifying the efficiency of using a priori

constraints in the retrieval. As expected the tests showed that using a priori estimates
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of unknown emissions helps to improve retrievals. However, the appropriate accu-

racy of a priori estimates is critical because significant differences between a priori

estimates and actual “true” emissions may bias retrieval results. Tests showed that

limitations on time and space variability of emissions can be useful for inverting data

that have gaps in time and spatial coverage. Some illustrations will be shown in next5

section.

3.3 Inverting MODIS observations

The algorithm was applied to the actual measurements of τfine(0.55) and τcoarse(0.55)

obtained by MODIS. For global inversion of the optical thickness of fine mode aerosol

τfine(0.55) we used the data obtained during the period of 18 to 30 August 2000. This10

is a period of known high biomass burning activity and performing global inversion

was expected to illustrate a potential of the approach for improving knowledge about

BC and OC emissions that are rather uncertain (Sato et al., 2003). For the test, the

global retrieval product of τfine(0.55) delivered by MODIS at 1
◦

by 1
◦

was rescaled to

GOCART horizontal resolution of 2
◦

by 2.5
◦
. If MODIS retrievals were available in15

more than 90% of 2
◦

by 2.5
◦

of GOCART grid then the average value of available

τfine(0.55) was assigned to entire 2
◦

by 2.5
◦

grid. If MODIS data available in less than

of 90% of 2
◦

by 2.5
◦

GOCART grid then data in such grid points were not used in

the inversion. Figure 13 shows the results of the retrieval under the assumption of

single fine mode aerosol. The retrieved emissions are averaged over the whole con-20

sidered time period. Figure 14 compares average MODIS observations of τfine(0.55)

with the values fitted by retrieval algorithm. The fitting accuracy of global instantaneous

observations (rescaled to GOCART resolution) was σabs≈0.04 and σrel≈48% after 40

iterations. Thus, as follows from Fig. 14 and the values of σabs, and σrel, the τfine(0.55)

simulated from retrieved sources reproduces most of spatial and temporal tendencies25

in MODIS observations. It is also important to note than even in the situation when

retrieved emissions are not restricted to the land surface and also allowed over oceans

the distribution of main aerosol sources does not significantly change (compare the
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panels a and b in Fig. 13). The retrieved emissions (Fig. 13) may be attributed largely

to BC, OC and Sulfates. They also may include some emission of fine mode com-

ponents of dust and possible sea salt, although the emissions of fine mode dust and

sea salt are likely to be small in magnitudes and have rather predictable locations

(e.g. sea salt emitted over the water and main dust sources are over the deserts). In-5

deed, the emissions retrieved over oceans have rather small magnitudes and can be

interpreted as emissions of sea salt. In a contrast, separation of BC, OC and Sulfate

sources is particularly difficult because the emissions of all these species are compa-

rable in magnitudes and associated with the same sources, such as, biomass burning,

fuel combustion and industrial activity (Chin et al., 2002). Therefore, for convenience10

of retrieval result interpretation, we displayed BC, OC and Sulfate sourtces assumed

in GOCART for August of 2000 in Fig. 15. In addition, Fig. 16 shows total carbon

emission from biomass burning obtained from a combination of satellite data and bio-

geochemical modes by van der Werf et al. (2004). It should be noted that the default

biomass burning sources in GOCART model were also based on these data. The15

comparison of Fig. 13 with Figs. 15–16 suggests that the global placement of the ma-

jor fine aerosol sources in the retrieved field of emission is in general agreement with

known emission fields of carbon and sulfates. At the same time one can note some

differences between retrieved emissions (Fig. 13) and emissions assumed in GOCART

model (Fig. 15). Namely, the exact shapes and magnitudes of the main emission pat-20

terns in the retrieval generally differ from GOCART assumptions and carbon emissions

provided by van der Werf et al. (2004). As discussed above, some of these differences

can be attributed to the usage of the simplified assumption of single aerosol employed

in the retrieval. However, it seems likely that the driving factor predetermined these

differences is the mismatch between modeled global aerosol distribution and satellite25

observations. This mismatch can be caused by many factors including various limi-

tations of both measurements and modeling. The main assumption of our approach

is that the factor driving the disagreement between satellite observations and model-

ing is the uncertainty in emissions assumed by models, i.e. differences in the location
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and magnitudes between modeled emissions and those observed by satellite. This

assumption is recognized in modeling community (e.g. Kinne et al., 2003) and there

are many efforts on utilizing observations for improving accuracy of emission modeling.

For example, the emissions utilized by GOCART Fig. 15 as well as, carbon emissions

showed in Fig. 16 are also determined with the aid of the aerosol information derived5

from satellite observation. However, the emission modeling utilized satellite informa-

tion only about monthly variability of observation, while the emission retrieval approach

considered here allows daily variability of the emissions. The fact is that the retrieved

aerosol emissions allow better agreement between output of GOCART model than if

standard emission fields of BC, OC and sulfates are used. For example, standard out-10

put of GOCART model results into much higher residuals (σabs≈0.12 and σrel≈170%)

than those achieved by retrieval (σabs≈0.04 and σrel≈48%). At the same time, even the

achieved lower residual values σabs≈0.04 and σrel≈48% are noticeably higher than the

fitting errors that can be expected based on the results of numerical tests. Indeed the

numerical test shown above provided generally better fits of “observations”. For ex-15

ample, the inversion of GOCART output using simplified single aerosol model resulted

in the almost double smaller residuals (σabs≈0.02 and σrel≈25%). Thus, these high

residual of fitting MODIS observations indicate the retrieval limitations. Probably, the

main factor limiting the level of observation fitting is the accuracy of τfine(0.55) provided

by MODIS since the values σabs≈0.04 and σrel≈48% are close to accuracy of MODIS20

data (∆τ=±0.03±0.05τ over ocean and ∆τ=±0.05±0.15τ over land). At the same,

the observation accuracy is not the only factor limiting the retrieval approach. Other

limitations and their possible effects on the retrieval will be discussed in next section.

Figures 17 and 18 show the results obtained from inversion of the optical thickness

τcoarse(0.55) provided by MODIS for coarse mode aerosol. The desert dust and sea25

salt emission distribution used by GOCART for the same time period of August 2000

is shown in Fig. 15. As follows from comparison of Figs. 17 and 15, the major desert

dust emission sources, in principle, can be identified in the retrieved emission field.

However the most intense desert dust sources (e.g. over Saharan Desert) seem to be
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underestimated in magnitudes and have unrealistically spread locations. As discussed

earlier the main cause of these uncertainties is the lack of MODIS observations over

the desert dust sources (see Fig. 18). Therefore, even though the τcoarse(0.55) are fitted

rather accurately (σabs≈0.04 and σrel≈48% after 40 iterations), the desert dust retrieval

is obviously less robust than in case of inversion of τfine(0.55). Also, some likely false5

sources can be seen over Atlantic Ocean near western coast of African continent.

These sources correspond to rather high concentrations of τcoarse(0.55) in the same

region that cannot be explained by desert dust transport from desert dust sourced in

Sahara. At the same time, high loading of biomass burning aerosol was transported

from the African continent in the same period of time that is shown on Figs. 13–14.10

Correspondingly, one can speculate that τcoarse(0.55) observed over that area could be

attributed to the coarse of mode of biomass burning aerosol. However the accurate

derivation of biomass coarse mode fraction of smoke is probably challenging because

smoke is dominated by small particles. Therefore some inconsistency of MODIS re-

trieval would be surprising in this situation. The agreement between retrieved sea salt15

emission (we attribute all coarse mode aerosol emissions over ocean) and assumed by

GOCART model is rather dubious. That probably can be explained by the fact that typ-

ical loading of marine aerosol is rather low (Smirnov et al., 2003) and therefore it often

is at the level of MODIS retrieval uncertainty. At the same time, both the retrieval and

GOCART assumption (not shown) indicate the pronounced sea salt emissions over20

roaring forties region in the Southern Hemisphere.

In addition to the illustrations shown on Figs. 17–18 we have analyzed time and

spatial changes in the retrieved emissions and we found several cases of unrealistically

high variability in the retrieved emission patterns. Therefore, we have tried the usage of

a priori constraints on the time and horizontal variability of the emission. The effects of25

applying such a priori constraints is illustrated by Fig. 19. There it can be seen that such

constraints (especially those on spatial variability) help to eliminate some unrealistically

strong emissions over oceans. However, the fitting residuals were higher (σabs≈0.06

and σrel≈61% after 40 iterations) once the a priori constraints were applied.
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3.4 Issues and perspectives

Thus, the numerical tests and the applications to the real satellite data have shown

that employed approach and the developed algorithm allow deriving useful information

about global distribution of aerosol emissions without using excessive a priori informa-

tion about locations and strength of aerosol sources. Correspondingly, one can expect5

that applying the algorithm to long time records of satellite observation should provide

a climatology of global aerosol emissions that can be a very valuable asset in efforts

aimed to improve understanding of aerosol forcing of global climate. Although all dis-

cussions above in this paper are focused on analysis only two week of observations

the application of the developed algorithm to longer sets of observations is very fea-10

sible. For illustrating this capability of the algorithm we have processed 6 months of

τfine(0.55) MODIS data in year 2001. Figure 20 shows the distribution of the fine mode

aerosol global emissions for February, May and July of 2001. These retrievals can

be potentially useful for studying dynamics of global aerosol emissions. For example,

for Central and Southern Africa Fig. 20 shows higher emissions in February and July15

compare to emissions in May. Such dynamics can be explained by known seasonality

of biomass burning. Also, the retrievals show high emission over Indian sub-continent

in February that agrees with known high level of pollution in this region during win-

ter. In future studies we expect to conduct comprehensive analysis of the long record

of the retrievals and provide climatologically valuable emission fields. Such analysis20

can be rather extensive and likely will be combined with various improvements of the

method. Therefore, the retrievals in Fig. 20 are shown here mainly for illustrating algo-

rithm functionality and a comprehensive assessment of potential of this approach will

be a subject of the continuation of these studies. Nonetheless, the analysis of both

the limitations and possibilities of improvements in the developed method can already25

provide useful outlook on the potential of the presented developments.
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3.4.1 Limitation of satellite observations

Obviously the quality of the global emission retrieval is driven by the content and quality

of MODIS aerosol data. Specifically, as discussed earlier, MODIS data do not provide

any information about vertical variability of aerosol properties and do not allow any

distinction between aerosol types with different chemical composition (e.g. between5

BC, OC and sulfates). The lack of MODIS retrieval reliability over bright surfaces se-

riously limits the outcome of desert dust emission retrievals. The accuracy of MODIS

retrieval also imposes considerable limitations on global emission retrievals. For ex-

ample, the inversion of τfine(0.55) resulted to measurements fitting errors (σabs≈0.04

and σrel≈48%) that are at same level as MODIS data accuracy (∆τ=±0.03±0.05τ over10

ocean and ∆τ=±0.05±0.15τ over land). Our numerical tests suggest that such er-

ror level by itself would not allow us fully benefit from atmospheric modeling refine-

ments. Indeed, in the numerical tests shown in Figs. 11–12, τfine(0.55) composed

from BC, OC and sulfates (simulated using GOCART model) was fitted with notice-

ably higher accuracy (σabs≈0.02 and σrel≈25%) under assumption of single fine mode15

aerosol that neglects the differences in chemical composition of these aerosols. It

should be noted that values of errors in MODIS retrievals (∆τ=±0.03±0.05τ over

ocean and ∆τ=±0.05±0.15τ over land) are provided for MODIS total aerosol opti-

cal thickness τtotal(0.55), while the procedure separating τtotal(0.55) into τcoarse(0.55)

and τfine(0.55) that used in present studies is likely associated with some decline of20

accuracy of τcoarse(0.55) and τfine(0.55) compare to accuracy of τtotal(0.55) (Remer et

al., 2005; Anderson et al., 2005). Obviously, at least, some of the above-mentioned

measurements limitations will be addressed in future studies. For example, a number

of improvements in the operational MODIS aerosol algorithm are under developments

(Remer et al., 2005). Also, there are some new retrieval algorithm developments (Hsu25

et al., 2004) that are expected to improve MODIS retrieval over bright surfaces.

In addition, the global emission retrieval can be applied not only to the MODIS data

but also to the data provided by other aerosol satellite sensors, such as, MISR (Diner
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et al., 1998; Kahn et al., 2005), POLDER (Deschamps et al., 1994; Deuze et al., 2001),

APS (Mischenko et al., 2004), etc. For example MISR sensor has multi-angle measure-

ment capability that generally allows retrieval of the larger number of aerosol parame-

ters and results into more robust retrievals over strongly reflective surfaces (e.g. Kahn

et al., 2005; Mischenko et al., 2004). Moreover, the satellite instruments with multi-5

angular polarimetric capabilities have sensitivity to detailed aerosol properties includ-

ing such parameters as aerosol absorption and index of refraction. Correspondingly,

the observation from satellite polarimeters may allow global retrieval to discriminate be-

tween emissions of aerosols of different chemical composition. In addition, using data

from multiple satellite sensors as an input to the global inversion should be beneficial10

due to enhanced spatial and temporal data coverage that should be improved compare

to the coverage of any single sensor.

3.4.2 Limitation of modeling accuracy

As discussed in the Sect. 2, the employed inversion approach optimizes the solution us-

ing known statistics of the measurement errors under assumption that the errors of the15

model are much smaller than those of measurements and the effect of the model errors

can be neglected. Such assumption is employed in most inverse methodologies and it

can be easily justified in many applications. For example atmospheric remote sensing

relies on radiaitive transfer models that simulate atmospheric radiances with very high

accuracy. Global modeling is not unified to the same level of certainty as radiative mod-20

eling and the effects of modeling uncertainties on the retrievals may not be negligible.

Many factors may potentially contribute into the modeling uncertainty. For example,

the meteorological fields, such as atmospheric temperature, pressure, distributions of

winds, etc., used by models as inputs are known with limited accuracy. Significant un-

certainty in four-dimensional distribution of clouds affects the aerosol modeling, e.g. via25

uncertainty in aerosol transport by cloud convection. The aerosol removal processes

that are employed in the models are known only with a limited accuracy. Such atmo-

spheric processes as those responsible for aerosol-cloud interactions are known only
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qualitatively and do not have well-established quantitative formalism. The limitations

of time and space resolution (e.g. GOCART model provides aerosol on the scale of

2
◦×2.5

◦
in version used n this study) do not allow reproducing some local details of

aerosol dynamics. In addition, all models suffer from numerical instabilities that re-

sult into modeling problems such as appearance of negative aerosol mass, failure to5

conserve aerosol mass in transport simulations, etc. All these uncertainties limit the

accuracy of global aerosol modeling as demonstrated in recent model intercomparison

studies via inter comparisons of different models outputs and also by comparison of

modeling results with observations (e.g., Kinne et al., 2003, 2006; Textor et al., 2006).

At the same time, there are a number of efforts that will likely address in near future10

many of above mentioned uncertainty factors. For example, four-dimensional meteoro-

logical wind fields and cloud distributions are expected to be improved via assimilations

of all available observations. The modeling resolution to be improved, e.g. new version

of GOCART model with resolution of 1
◦×1

◦
recently became avaliable.

There are also some noticeable differences in modeling aerosol optical properties15

between approaches employed by the global models and by remote sensing. For

example, GOCART, as most of models, is built on the assumption that all coarse

aerosol particles belong either to dust or sea salt. The satellite retrieval algorithms

(e.g. Kaufman et al., 1997; Tanré et al., 1997; Remer et al., 2005, etc.) rely on cli-

matologies formed by aerosol retrievals obtained from remote sensing observations of20

ambient aerosol. In a contrast to global models, such climatologies (e.g. Remer et al.,

1997; Dubovik, 2002) indicate the presence of coarse particles in practically all types

of aerosol including biomass burning and urban pollution. Also, the aerosol compo-

sition is included differently in satellite retrieval algorithm compare to global models.

The satellite retrievals usually utilize complex index of refraction derived from remote25

sensing observations for ambient aerosol, while the models tend to calculate radiative

properties of aerosol based on chemical composition using index of refraction obtained

from in situ or laboratory measurements for each chemical component. This difference

also may be a source of inconsistency between remote sensing observations and mod-
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els. For example, recent analysis of aerosol remote sensing retrievals (Kaufman et al.,

2001; Dubovik et al., 2002) showed that mineral dust is less absorbing than it was

previously considered (and assumed in most of global models). Correspondingly, the

comparisons of aerosol global modeling showed systematic differences with remote

sensing observations for the absorption of aerosol dominated by mineral dust (e.g.5

Takemura et al., 2002; Sato et al., 2003). One of possible ways of addressing this

inconsistency is to include satellite retrieval as part of inverse modeling. In such ap-

proach the aerosol emissions will be retrieved directly from atmospheric radiances (e.g.

using mathematical formalism described in Sect. 2.8). This technique also may be ad-

vantageous for retrieving global emission form the measurements by several satellite10

sensors since it should eliminate effects that could be caused by differences in the

satellite retrieval algorithms.

3.4.3 Limitations of employed retrieval approach

The numerical inversion approach has some limitations by itself. Namely, as explained

in Sect. 2.6, the inversion algorithm is based on steepest descent method. This is iter-15

ative method that usually has very slow convergence (e.g. Tarantolla, 1987). Nonethe-

less, the convergence is sufficiently fast in problems of global models inversion because

the transport operator T (written in matrix form) is rather sparse. In our applications,

(see Sects. 3.2–3.3) after 40 iterations the retrieval algorithm was decreasing the fitting

residual to the value much smaller than expected noise level in inverted satellite data.20

Since each iteration includes two runs of GOCART model (forward and backward),

the inversion of some global data takes about 80 times more time than simulations of

aerosol fields by GOCART model for the same time period. This is substantial increase

in computation time compare to forward modeling. Nonetheless, taking into account

global nature of the problem and quickly improving speed of modern computers these25

time expenses are probably acceptable. Even with the moderately powerful computers

used for this study we did not feel necessity to put too much limitation due to the com-

putational time. Nonetheless, we tried to identify possibilities to use smaller number of
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iterations (e.g. Gill et al., 1982; Tarantolla, 1987). Theoretically, implementing method

of conjugated gradients can accelerate the convergence. This method is known for

superior convergence than steepest descent method and also uses only gradient vec-

tors and, therefore, can be implemented using transport model adjoint operators (see

details in Appendix C). However, in practice rounding errors often cause the computed5

directions to rapidly loose conjugacy, and the method behaves more like an iterative

method and it makes converge much slower than theoretically predicted (Gill et al.,

1982). In order to check this possibility of accelerating inversion convergence we have

implemented method of conjugated gradients as described in Appendix C. The tests

showed improvements in convergence: after only 20 iterations method of conjugated10

gradients was reaching the same level of residual as steepest descent method after

40 iterations. However, as can be seen from derivations in Appenidx C, our imple-

mentation of the one iteration of the method of conjugated gradients required running

GOCART model 4 times, instead of two runs as it was used in the steepest descent

method. Therefore, 20 iterations by method of conjugated gradients were equal in15

computing time to 40 iterations by steepest descent method and using the method of

conjugated gradients practically did not allow us to accelerate inversion. At the same

time, implementing the method of conjugated gradients required more efforts because

the formal logistic of the method of conjugated gradients is noticeably more complex

than that of the steepest descent method. Thus our efforts did not reveal a practical20

advantage of using the method of conjugated gradients. Nonetheless, there might be

a need of some more studies on possibilities to accelerate convergence of the inver-

sion, in particular taking into account prospective future developments. For example,

inevitable increase in resolution of aerosol global models will result in less sparse equa-

tions and, therefore, in possible slowing in convergence of the steepest decent method25

iterations. Similarly, steepest decent method may converge slower if satellite retrieval

(discussed in Sect. 2.8) will be included as a part of inverse modeling, because of

rather complex mathematical structure of radiative transfer equations.

Using diverse a priori constrains is another direction requiting further exploration. In
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Sect. 2.7 we have described the mathematical techniques for using a priori estimates

of emissions or a priori limitations on derivatives of time and space variability of emis-

sions. Using these a priori constraints can substantially extent the field of the retrieved

parameters. For example, using a priori estimate of emissions MODIS data can be

used in emission retrieval discriminating aerosol type in spite of the lack of information5

in MODIS data about aerosol type. However, in such situation the retrieval may be

too dependent on used a priori assumptions. Correspondingly, it is necessary to make

sure that used a priori information is really available in amount used in the retrieval.

Otherwise, if the constraints are used to make solution unique but they are not sup-

ported by actual knowledge, the retrieval can be unique and stable but, at the same10

time, misguiding and therefore useless. Therefore, in this study we have developed

and tested retrieval using a priori estimates of emissions but we placed the focus of

our applications on the retrieval that did not use such a priori constraints. We have also

shown (Fig. 19) that using a priori limitations on time and space derivatives of emission

variability one can retain physically realistic time and space continuity (with no sharp15

oscillations) of the emission fields, even if inverted measurements do not provide suf-

ficient constraints. However, generally we found that due to rather coarse time (24 h)

and space (2.0
◦×2.5

◦
) resolution used in this study these constraints do not seem to be

critical in our retrievals. Nonetheless, in future studies attempting retrieval with much

higher resolutions the importance of continuity constraints will likely increase.20

4 Conclusion

This paper describes development of an algorithm using inverse modeling for retrieving

global sources of aerosol from satellite observations.

The numerical inversion in the algorithm was structured as multi-term least-squares-

type fitting. This scheme of statistical optimization allows for high flexibility in con-25

straining the retrieval. For example, it allows using multiple constraints in single re-

trieval. Also the possibility of constraining time and space variability of the retrieved
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global aerosol emissions by applying a priori limitations on the partial derivatives of

retrieved characteristics was discussed and demonstrated. Such a way of constraining

is not common in inverse modeling while it is widely used in atmospheric remote sens-

ing. The similarities and differences of the developed inversion scheme with standard

Kalman filter inverse modeling approach and Phillips-Tikhonov-Twomey constrained5

remote sensing inversion are discussed. In order to apply the numerical inversion for

simultaneous retrieval of global aerosol fields for extended period of time at space and

time resolution of model the fitting was expressed using an adjoint operators in the

form convenient for practical implementation of the inversion. Applying various a priori

constraints in the retrieval utilizing adjoint operation to the global model is discussed.10

The algorithm was practically implemented on the basis of GOCART aerosol trans-

port model for retrieving global aerosol emissions with 2
◦×2.5

◦
horizontal resolution

from global distribution of aerosol optical thickness. The conducted numerical tests

showed that the algorithm accurately derives aerosol emissions by inverting detailed

aerosol mass global distribution produced from forward run of GOCART model. At15

the same time the test revealed that once MODIS data used as an input for the inver-

sion some extra constraints are needed for making retrieval unique due to limitation in

coverage and information content of MODIS observations. Specifically, the emission

variability within 24 h was neglected. Also aerosol types were discriminated only by

particle size but not by their chemical composition. The emissions of fine and coarse20

mode aerosols were retrieved from the MODIS fine and coarse mode aerosol opti-

cal thickness data respectively. Both numerical test and the results of actual MODIS

data inversion showed that the developed method allows appropriate retrieval of the

location and the strength of the fine mode global emissions. Namely, the global place-

ment of the fine mode aerosol sources retrieved from MODIS observations during two25

weeks in August 2000 was coherent with available independent knowledge. That was

particularly encouraging since the developed inverse method did not use any a priori in-

formation about sources and it was initialized under “no aerosol emission” assumption.

The retrieval reproduced two weeks of instantaneous global observations of MODIS
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with the standard deviation in fitting of aerosol optical thickness of ∼0.04. The optical

thickness during high aerosol loading events of loading was reproduced with the stan-

dard deviation of ∼48%. Such agreement between global modeling and observation

seems to be quite encouraging given that the coherency between models and obser-

vations may be limited by a number of factors. For example, the MODIS observations5

have limited accuracy. The variability of aerosol can be much higher than the model

resolution, there are uncertainties in meteorological data (wind fields, 3-dimensional

cloud distribution, etc.), formalization of atmospheric processes has limited accuracy

due to employed physical assumptions, numerical instabilities, etc. As a result, the

model prediction can significantly differ from observations even for monthly and yearly10

averaged regional aerosol properties (Kinne at al., 2003; Sato et al., 2003).

The applications of the algorithm for the retrieval of coarse mode retrieval was less

successful, mainly because of lack of MODIS data over desert dust sources due to the

fact that MODIS retrievals are not performed over surface with very bright reflectance

such as desert dust. This situation will be much improved since the most recent version15

of MODIS (collection 5) should include the retrieval over desert provided by algorithm

of Hsu et al. (2004).

The efficiency of using a priori constraints on values of the emissions or on their

variability was also evaluated. The use of such a priori constraints is a clear alternative

to a straightforward reduction of the number of retrieved parameters characterizing the20

aerosol emission. For example, in spite of limitations in MODIS data, if the algorithm

uses GOCART emission fields as a priori estimates it can be set for retrieval of aerosol

emissions in the same format as they used in GOCART model (i.e. fully discriminated

by chemical composition and sizes). Such strategy is usually employed in assimilation

approach. However in that retrieval scenario tends to tie up the retrieved emissions to25

a priori estimates of emissions that may devaluate the usage of satellite observations.

Therefore, further efforts are desirable for minimizing the possible effect of overcon-

straining the solution and in present paper we did not utilize a priori estimates for in-

verting MODIS observations. Instead we applied constraints that limit general time and
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spatial variability of emissions and demonstrated that such general constraints were

useful for eliminating some unrealistic features in underdetermined retrievals such as

retrieval of coarse mode aerosol emissions from MODIS observations.

To illustrate performance of the algorithm for processing long records of satellite ob-

servations we have inverted optical thickness of fine mode aerosol provided by MODIS5

for first six months of year 2001. The derived emissions demonstrate realistic distribu-

tion of global aerosol emission patterns and their seasonal dynamics.

Thus, the developed method can be a useful tool for improving global aerosol

sources in chemical models. Nevertheless, this paper described only the first phase

of the efforts and further analysis is necessary for understanding full potential of the10

method. Specifically, we plan using MODIS data for generating climatological records

of remote sensing driven aerosol emission fields that are expected to provide a useful

input for improving global aerosol sources in chemical models. The usage a priori con-

straints and the method convergence are planned to be refined and optimized. Also, at

least some of the satellite measurements limitations are expected to be addressed in15

future studies. For example, a number of MODIS aerosol algorithm improvements are

under developments that are expected to improve MODIS retrieval over bright surfaces.

Moreover, the global emission retrieval can be a combination of the products provided

by other aerosol satellite sensors, such as MODIS, CALIPSO, MISR, PARASOL, APS

etc. Using data from multiple satellite sensors as an input should improve spatial and20

temporal constraints for the global emission retrieval compare to the usage of the data

from any single sensor. In addition, using data from multi-angle radiometers (MISR),

polarimeters (PARASOL, APS) and lidar data (CALIPSO) may allow global retrieval to

discriminate between emissions of aerosols of different chemical composition.
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Appendix A

Adjoint operator

According to its formal definition (e.g. Tarantola. 1987), the adjoint of G, G
#
, is a linear

operator defined by equality of scalar products:5

< G#x,y >=< x, G y > . (A1)

If scalar product is defined as follows:

< a,b >= aTb, (A2)

Then, the right side of Eq. (A1) is:

< x, G y >= xT G y. (A3)10

The left side of Eq. (A1) is:

< G#x,y >= (G#x)Ty = xT (G#)Ty. (A4)

Thus, in order to achieve the equality between Eqs. (A3) and (A4) we can write for G
#
:

G#
= GT. (A5)

It should be noted that Tarantola (1987) gives more general definition of adjoint operator15

that is not used here.

Appendix B

Derivation of Eq. (41)

Equation (2) can be written for one time step in matrix form as follows:20

Mn = Tn−1(Mn−1 + Sn−1), (B1)
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where subscripts “ n−1 “ and “ n “ are associated with times steps tn−1 and tn=tn−1+∆t,
i.e. matrix Tn−1 and vectors Sn−1, Mn−1 and Mn represent T

(

tn−1,x
)

, s
(

tn−1,x
)

,

m
(

tn−1,x
)

and m
(

tn−1+∆t,x
)

correspondingly. For time steps tn−2, tn−1 and tn one

can write:

Mn = Tn−1(Mn−1 + Sn−1) = Tn−1(Tn−2(Mn−2 + Sn−2) + Sn−1) =5

= Tn−1Tn−2Mn−2 + Tn−1Tn−2Sn−2 + Tn−1Sn−1. (B2)

Correspondingly, the mass transport for t0, t1, . . . , tn can be expressed as:

Mn =

(

i=n−1
∏

i=0

Ti

)

M0 +

k=n−1
∑

k=0

(

i=n−1
∏

i=k

Ti

)

Sk , (B3)

where

i=n−1
∏

i=0

Ti = Tn−1Tn−2...T2T1T0 . (B4)10

Based on Eq. (B3) the entire matrix Eq. (5) for mass distribution during time period

from t0 to tn can be written as follows:













M
∗
n

...
M

∗
3

M
∗
2

M
∗
1













=



























Tn−1

i=n−1
∏

i=n−2

Ti ...
i=n−1
∏

i=2

Ti

i=n−1
∏

i=1

Ti

i=n−1
∏

i=0

Ti

... ... ... ... ... ...

0 0 ... T2

i=2
∏

i=1

Ti

i=2
∏

i=0

Ti

0 0 ... 0 T1

i=1
∏

i=0

Ti

0 0 ... 0 0 T0







































Sn−1

...
S2

S1

S0













, (B5)

3684

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/3629/2007/acpd-7-3629-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/3629/2007/acpd-7-3629-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD

7, 3629–3718, 2007

Retrieving global

sources of aerosols

from MODIS

observations

O. Dubovik et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

where M
∗
n denotes mass distribution of aerosol emitted during time period from t0 to

tn: i.e.

M∗
n = Mn −

(

n−1
∏

i=0

Ti

)

M0. (B6)

Thus, Eq. (B5) is equivalent to generalized matrix expression:

M∗
= M − TM0 = T S, (B7)5

This is slightly modified form of Eq. (5). Correspondingly, for the correction term ∆Ŝ
p

of the steepest descent iterative solution given by Eq. (40) can be written as:

∆Ŝp
= TTC−1

m ∆Mp
= TT

∆
p
=



































T
T
n−1 ... 0 0 0

i=n−2
∏

i=n−1

T
T
i ... 0 0 0

... ... ... ... ...
i=2
∏

i=n−1

T
T
i ... T

T
2 0 0

i=1
∏

i=n−1

T
T
i ...

i=1
∏

i=2

T
T
i T

T
1 0

i=0
∏

i=n−1

T
T
i ...

i=0
∏

i=2

T
T
i

i=0
∏

i=1

T
T
i T

T
0



























































∆
p
n

∆
p

n−1

...

∆
p

3

∆
p

2

∆
p

1

























, (B8)

where ∆
p
=C

−1
m ∆M

p
, ∆

p

i
denotes the component of vector ∆

p
corresponding to time

step ti and the following identity for a transposed of the matrix multiplication product is10

used:

(

i=n
∏

i=0

Ti

)T

=
(

TnTn−1...T2T1T0

)T
= TT

0
TT

1
TT

2
...TT

n−1
TT
n =

i=0
∏

i=n

TT
i
. (B9)
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From Eq. (B8), ∆S
p

can be obtained as:

∆Sp
=



















∆S
p
n

∆S
p

n−1

...

∆S
p

2

∆S
p

1

∆S
p

0



















=































T
T
n−1∆

p
n

T
T
n−2∆

p

n−1
+ T

T
n−2T

T
n−1∆

p
n

...
k=n−1
∑

k=3

(

i=k
∏

i=n−1

T
T
i ∆

p

k

)

k=n−1
∑

k=2

(

i=k
∏

i=n−1

T
T
i ∆

p

k

)

k=n−1
∑

k=1

(

i=k
∏

i=n−1

T
T
i ∆

p

k

)































=

























T
T
n−1∆

p
n

T
T
n−2

(

∆
p

n−1
+ S

p

n−1

)

...

T
T
2

(

∆
p

3
+ ∆S

p

3

)

T
T
1

(

∆
p

2
+ ∆S

p

2

)

T
T
0

(

∆
p

1
+ ∆S

p

1

)

























. (B10)

From this equation it can be seen that ∆S
p

i
can be calculated via the following sequence

starting from i=n as follows:

∆S
p

i−1
= TT

i−1

(

∆
p

i
+ ∆S

p

i

)

. (B11)5

The component ∆
p

i
of vector ∆

p
corresponding to time step ti can be easily formulated

if observational errors ∆M
∗

do not have time correlations but may have spatial correla-

tions. In this case then Cm has array structure:

C=

m









Cmn

... ... ... ...
.. ... Cm2

0

... ... 0 Cm1









, (B12)
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and ∆
p

can be decomposed:

∆
p
=









∆
p
n

...

∆
p

2

∆
p

1









=















C
−1
mn

(

Mn

(

Ŝ
p
)

−M
∗
n

)

...

C
−1
m2

(

M2

(

Ŝ
p
)

−M
∗
2

)

C
−1
m1

(

M1

(

Ŝ
p
)

−M
∗
1

)















. (B13)

Thus, Eq. (B11) gives relationship between ∆S
p

i−1
corresponding to time step ti−1 and

∆S
p

i
corresponding to time step ti=ti−1+∆t. Once time step is very small, i.e. ∆t→0

then Eq. (B11) can be rewritten via integral equivalent:5

∆ŝp (t,x) =

t0
∫

t

T # (t′,x)
(

∆ŝp (t′,x) + ∆
p (t′,x)

)

(−dt′), (B14)

where function ∆
p

(t,x) is continuous analog to vector ∆
p

that can be formulated via

weighting function C−1
(t,x,x′) (from covariance function Ct(t,x,x

′)) performing anal-

ogous role to the one of matrix C
−1
mi

in discrete representation, i.e.:

{

∆
p

i

}

=

{

C−1
mi
∆Mp

}

l
→

∫∫∫

x′,y ′,z′

C−1
t

(

ti , xj , yk , zm, x
′, y ′, z′

)

∆mp (ti , x
′, y ′, z′)dx′dy ′dz′.10

(B15)

The T #
(t,x) is adjoint of transport operator T (t,x) that is composed by adjoints

T #
i (t,x) of component processes Ti (t,x):

T # (t,x) = T #
1
T #

2
T #

3
...T #

n−1
T #
n . (B16)

If errors of observation are uncorrelated, i.e. covariance matrix of measurements Cm15

is diagonal with the elements on diagonal equal to σ2 (ti , xj , yk , zm
)

, the elements of
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vector C
−1
m ∆M

p
relate to continues function σ−2

(t,x)∆m
p

(t,x) in straightforward way

(see Eq. 42 in body text) then Eq. (B14) can be written as:

∆ŝp (t,x) =

t0
∫

t

T # (t′,x)
(

∆ŝp (t′,x) + σ−2 (t′,x)∆mp (t′,x)
)

(−dt′). (B17)

where

∆mp (t,x) = m∗ (t,x) −

t
∫

t0

T (t′,x)
(

m (t′,x) + sp (t′,x)
)

dt′, (B18)5

The symbols ∆ŝp (x, t) and σ−2
(t,x)∆m

p
(t,x) denote function equivalents to the vec-

tors ∆Ŝ
p

and C
−1
m ∆M

p
respectively.

Thus, the steepest descent iterative solution written via matrix expression in Eq. (40)

can be replaced by the integral equivalents (Eqs. B17–B18). Further discussion is

given is Sect. 2.5.10

Appendix C

Application of conjugated gradient method to inversion based on adjoint

transformation of the transport forward model

C1 Basic formulations of the conjugated gradient method15

Let us formally write linear system as follows:

Ax = y∗. (C1)
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Then, the solution of this system by the conjugated gradient method is the following

iterative process:

xk+1
= xk − αkpk , (C2)

where

αk =
p
T
k∇k

pT
k
Apk

=
∇T
k∇k

pT
k
Apk

, (C3)5

and the gradient ∇k is:

∇x(xk) = Axk = Axk − y∗. (C4)

The vector pk is determined as the following:

pk = ∇k + βpk−1, (C5)

where10

β =
∇T
k∇k

∇T
k−1

∇k−1

. (C6)

The initial condition for the iterative process is the following:

p0 = ∇0. (C7)

C2 Application to inversion of the transport forward model using adjoint operators

For inverting aerosol mass transport model M=T (S + M0) by the basic LSM the fol-15

lowing equation should be solved:

(TTC−1T) S = TTC−1M∗, (C8)

where M
∗
= M

meas
–TM0.
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Correspondingly, for applying the method of conjugated gradients we can determine

the matrix A and vector y* as:

A = TTC−1T, (C9)

y∗
= TTC−1M∗, (C10)

∇k = ASk − y∗
= (TTC−1T)Sk − TTC−1M∗

= TTC−1(TSk −M∗) = TTC−1
∆Mk , (C11)5

pT
k
Ap=

k
(Tpk)T C−1(Tpk) = pT

k
TTC−1Tp.

k
(C12)

Finally, we have the following procedure:

pk = ∇k + βk−1pk−1, (C13)

p−1 = 0 and β−1 = 0 (C14)

∇k = TTC−1
∆Mk , (C15)10

where ∆Mk=TSk–M
∗
. This equation can be used only for the first iteration (Then ∇k

can be calculated using Eq. C20).

βk−1 =
∇T
k∇k

∇T
k−1

∇k−1

. (C16)

Sk+1
= Sk − αkpk , (C17)

where15

αk =
∇T
k∇k

pT
k
TTC−1Tpk

, (C18)
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The vector bk=T
T
C
−1

Tpk can be calculated using adjoint transformations:

bk (t,x) =

t0
∫

t

T # (t′,x)
(

bk (t′,x) + σ−2 (t′,x)∆gk (t′,x)
)

(−dt′) (C19)

where bk (t,x) are the components of the vector T
T
C
−1

Tpk , and ∆gk (t,x) are the

components of the vector Tpk .

In addition, we can use the following equation:5

∇k+1 = ASk+1 − y∗
= A(Sk − αkpk)− y∗

= A(Sk − y∗)− αk Apk = ∇k − αk Apk .(C20)

Thus, for implementing the method we need to run transport model 2 times for

calculating T
T
C
−1

Tpk : one forward for Tpk and one backward T
T
C
−1

Tpk (where

S = Tpk). The problem may appear if transport operator does not allow use of

negative sources, then we should always carry two terms Sk=Tpk=S
(+)

k
+S

(−)

k
, then10

TS=T(S
(+)

k
+S

(−)

k
)=TS

(+)

k
–T(–S

(−)

k
).
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Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A., Martins, J. V., Li, R.-R., Ichoku,

C., Levy, R. C., Kleidman, R. G., Eck, T. F., Vermote, E., and Holben, B. N.: The MODIS

Aerosol Algorithm, Products and Validation, J. Atmos. Sci., 62, 947–973, 2005.25

Rodgers, C. D.: Retrieval of atmospheric temperature and composition from remote measure-

ments of thermal radiation, Rev. Geophys. Space Phys., 14, 609–624, 1976.

Roeckner, E., Arpe, K., Bengtsson, L., Christoph, M., Claussen, M., Duemenil, L., Esch, M.,

Giorgetta, M., Schlese, U., and Schulzweida, U.: The atmospheric general circulation model

ECHAM-4: Model description and simulation of present-day climate, Tech. Rep. 218, Max-30

Planck-Inst. für Meteorol., Hamburg, Germany, 1996.

Sato, M., Hansen, J., Koch, D., Lacis, A., Ruedy, R., Dubovik, O., Holben, B., Chin, M., and

Novakov, T.: Global atmospheric black carbon inferred from AERONET, Proc. Nat. Acad.

3696

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/3629/2007/acpd-7-3629-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/3629/2007/acpd-7-3629-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD

7, 3629–3718, 2007

Retrieving global

sources of aerosols

from MODIS

observations

O. Dubovik et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Sci., 100(11), 6319–6324, 2003.

Schmidt, H. and Martin, D.: Adjoint sensitivity of episodic ozone in Paris area to emissions on

the continental scale, J. Geophys. Res., 108(D17), 8561, doi:10.1029/2001JD001583, 2003.

Smirnov A., Holben, B. N., Dubovik, O., Frouin, R., Eck, T. F., and Slutsker, I.: Maritime com-

ponent in aerosol optical models derived from Aerosol Robotic Network data, J. Geophys.5

Res., 108(D1), 4033, doi:10.1029/2002JD002701, 2003.

Strand, O. N. and Westwater, E. R.: Statistical estimation of the numerical solution of a Fred-

holm internal equation of the first kind, J. Assoc. Comput. Mach., 15, 104–114, 1968.

Takemura, T., Okamoto, H., Maruyama, Y., Numaguti, A., Hiragushi, A., and Nakajima, T.:

Global three dimensional simulation of aerosol optical thickness distribution of various ori-10

gins, J. Geophys. Res., 105, 17 853–17 873, 2000.

Takemura, T., Nakajima, T., Dubovik, O., Holben, B., and Kinne, S.: Single scattering albedo

and radiative forcing of various aerosol species with a global three-dimensional model, J.

Clim., 4, 333–352, 2002.

Talagrand, O.: A study of the dynamics of four dimensional data assimilation, Tellus, 33, 43–60,15

1981a.

Talagrand, O.: On the mathematics of data assimilation, Tellus, 33, 321–339, 1981b.

Talagrand, O. and Courtier, P.: Variational assimilation of meteorological observations with the

adjoint of the vorticity equations: Part I., Theory, Quart. J. Roy. Meteorol. Soc., 113, 1311–

1328, 1987.20

Tarantola, A.: Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estima-

tion, Elsevier, Amsterdam, 614 pp., 1987.
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 Fig. 1. The scheme of the retrieval concept.
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 Fig. 2. Illustration of inversion tests: upper panel – BC sources (10
7

kg of mass/day) “pre-

scribed” for 28 August 2000; lower panel shows BC aerosol emission retrieved for the same

day (in total 9 days the data were inverted).
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Fig. 3. Illustration of inversion tests: upper panel – 28 August 2000 “measurements” of

τBC(0.55) simulated using “prescribed” BC aerosol emission; lower panel – τBC(0.55) simulated

using retrieved BC emission.
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Fig. 4. Illustration of inversion tests: upper panel – Dust sources (10
8

kg of mass/day) “pre-

scribed” for 28 August 2000; lower panel shows Dust aerosol emission retrieved for the same

day (in total 9 days the data were inverted).
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Fig. 5. Illustration of inversion tests: upper panel – “28 August 2000 measurements” of

τDust(0.55) simulated using “prescribed” Dust aerosol emission; lower panel – τDust(0.55) simu-

lated using retrieved Dust emission.
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Fig. 6. Illustration of availability of MODIS aerosol retrieval products for one day (28 August

2000 measurements): upper panel – τtotal(0.55); lower panel – τfine(0.55).
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Fig. 7. Illustration of inversion test results of retrieving BC aerosol emission from τBC(0.55) sim-

ulated by the model and sub-sampled according to the actual coverage of MODIS observation

collected during the same time period: upper panel – “prescribed” averaged BC emission for

20–28 August 2000 (10
7

kg of mass/day); lower panel shows averaged BC aerosol emission

retrieved for the same period.

3705

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/3629/2007/acpd-7-3629-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/3629/2007/acpd-7-3629-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD

7, 3629–3718, 2007

Retrieving global

sources of aerosols

from MODIS

observations

O. Dubovik et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

71 

 

 

 

Fig. 8. Illustration of inversion test results of retrieving BC aerosol emission from τBC(0.55) sim-

ulated by the model and sub-sampled according to the actual coverage of MODIS observation

collected during the same time period: upper panel – averaged (20–28 August 2000) measure-

ments of τBC(0.55) simulated using “prescribed” BC aerosol emission; lower panel – averaged

(20–28 August 2000) “measurements” of τBC(0.55) simulated using retrieved BC emission.
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Fig. 9. Illustration of inversion test results of retrieving Dust aerosol emission from τDust(0.55)

simulated by the model and sub-sampled according to the actual coverage of MODIS observa-

tion collected during the same time period: upper panel – “prescribed” averaged Dust emission

for 20–28 August 2000 (10
8

kg of mass/day); lower panel shows averaged Dust aerosol emis-

sion retrieved for the same period.
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Figure 10 – Illustration of inversion test results of retrieving dust aerosol emission Fig. 10. Illustration of inversion test results of retrieving Dust aerosol emission from τDust(0.55)

simulated by the model and sub-sampled according to the actual coverage of MODIS obser-

vation collected during the same time period: upper panel – averaged (20–28 August 2000)

“measurements” of τDust(0.55) simulated using “prescribed” Dust aerosol emission; lower panel

– averaged (20–28 August 2000) “measurements” of τDust(0.55) simulated using retrieved Dust

emission.
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Fig. 11. Illustration of inversion test results of retrieving aerosol emission from

τ(0.55)=τBC(0.55)+τOC(0.55)+τsulfates(0.55) simulated according BC, OC and sulfates emission

assumed in GOCART model for 20–28 August 2000: upper panel – “prescribed” averaged total

BC , OC and sulfates emission for 20–28 August 2000 (10
7

kg of mass/day); lower panel shows

averaged aerosol emission retrieved for the same period under assumption of single aerosol

type (BC). 3709
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Fig. 12. Illustration of inversion tests results of retrieving aerosol emission from

τ(0.55)=τBC(0.55)+τOC(0.55)+τsulfates(0.55) simulated according BC and OC assumed in GO-

CART model for 20–28 August 2000: upper panel – τ(0.55)=τBC(0.55)+τOC(0.55)+τsulfates(0.55)

on 20–28 August 2000 simulated using BC, OC and sulfates assumed in GOCART model; lower

panel shows τBC(0.55) simulated using retrieved BC emission.
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Fig. 13. Averaged (20–28 August 2000) fine aerosol sources (10
7

kg mass/day) retrieved from

τfine(0.55) MODIS data: upper panel – retrieval with emission constrained to land only; lower

panel – retrieval with emission not constrained to land.
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Fig. 14. Illustration of fitting MODIS data in the inversion: upper panel – averaged (19–30

August 2000) measurements of τfine(0.55), lower panel – averaged over the same time period

measurements of τfine(0.55) measurements using retrieved emission.
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Figure 15 – Averaged (August 20-28, 2000) aerosol sources of sulfates, black and 
Fig. 15. Averaged (20–28 August 2000) aerosol sources of sulfates, black and organic carbon

(unit 10
7

kg mass /day) assumed in GOCART model: upper panel – BC+OC emissions; middle

panel – sulfate source (emission + atmospheric production; lower panel – total BC + OC +

sulfate sources.
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 Fig. 16. Monthly (August 2000) carbon emission (g/m
2
) obtained from combining satellite

hotspots and burned area with a biogeochemical model (Van der Werf et al., 2003).
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Figure 17 – Averaged (August 20-28, 2000) coarse aerosol sources (10
8
 kg mass/day) 

Fig. 17. Averaged (20–28 August 2000) coarse aerosol sources (10
8

kg mass/day) retrieved

from τcoarse(0.55) MODIS data; upper panel – retrieval with emission constrained to land only;

lower panel – retrieval with emission not constrained to land.
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Fig. 18. Illustration of fitting MODIS data in the inversion: upper panel – averaged (19–30

August 2000) MODIS measurements of τcoarse(0.55), lower panel – averaged over the same

time period τcoarse(0.55) measurements simulated using retrieved emission.
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Figure 19 – Illustration of the smoothness constraint (on time and horizontal 

Fig. 19. Illustration of the smoothness constraint (on time and horizontal continuity) effect on

the retrieval of global coarse mode sources (unit 10
8

kg mass/day): upper panel – only time

continuity smoothness constraints were applied; middle panel – the smoothness constraints

were applied only to limit horizontal (xy) variability of aerosol emissions; lower panel – the

smoothness constraints were applied to limit both time and horizontal (xy) variability of aerosol

emissions.
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Fig. 20. Illustration of fine mode aerosol source (unit 10
7

kg mass/day) retrieval for extended

time periods: upper panel – February 2001; middle panel – May 2001; lower panel – July 2001.
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