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Abstract

This study aims to assess the potential and limits of an advanced inversion method to

estimate pollutant precursor sources mainly from observations. Ozone, sulphur diox-

ide, and partly nitrogen oxides observations are taken to infer source strength esti-

mates. As methodology, the four–dimensional variational data assimilation technique5

has been generalised and employed to include emission rate optimisation, in addition

to chemical state estimates as usual objective of data assimilation. To this end, the

optimisation space of the variational assimilation system has been complemented by

emission rate correction factors of 19 emitted species at each emitting grid point, in-

volving the University of Cologne mesoscale EURAD model. For validation, predictive10

skills were assessed for an August 1997 ozone episode, comparing forecast perfor-

mances of pure initial value optimisation, pure emission rate optimisation, and joint

emission rate/initial value optimisation.

Validation procedures rest on both measurements withheld from data assimilation

and prediction skill evaluation of forecasts after the inversion procedures. Results show15

that excellent improvements can be claimed for sulphur dioxide forecasts, after emis-

sion rate optimisation. Significant improvements can be claimed for ozone forecasts

after initial value and joint emission rate/initial value optimisation of precursor con-

stituents. The additional benefits applying joint emission rate/initial value optimisation

are moderate, and very useful in typical cases, where upwind emission rate optimi-20

sation is essential. In consequence of the coarse horizontal model grid resolution of

54 km, applied in this study, comparisons indicate that the inversion improvements can

rest on assimilating ozone observations only, as the inclusion of NOx observations does

not provide additional forecast skill. Emission estimates were found to be largely inde-

pendent from initial guesses from emission inventories, demonstrating the potential of25

the 4D-var method to infer emission rate improvements. The study also points to the

need for improved horizontal model resolution to more efficient use of NOx observa-

tions.
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1 Introduction

The last decade has seen increasing efforts to introduce advanced spatio–temporal

data assimilation methods in atmospheric chemistry. An abundance of new earth

observation data and progress in modelling skills are driving incentives to engender

more reliable and comprehensive pictures of the chemical evolution of the atmosphere,5

mapped to regular grids. In view of the variety of information sources as given by ob-

servations, with all their heterogeneity in terms of accuracy, spatial representativity,

density, frequency, and various retrieval techniques on the one hand, and model re-

sults on the other hand, advanced data assimilation and inverse modelling techniques

provide the appropriate data fusion and analysis technique. Early attempts to analyse10

tracer fields were based on monovariate kriging techniques in the troposphere (e.g.,

Fedorov, 1998), and other purely spatial methods in the stratosphere (e.g., Stajner

et al., 2001; Struthers et al., 2002). These methods produce chemical state estimates,

frequently referred to as analyses, after assimilation of observations in model simulated

fields as background.15

Remote sensing earth observation data from space are mostly scattered in space

and time, giving only very little information at a single time. Prerequisite for a full

exploitation of these sensors is therefore some application of numerical models for

spatio–temporal interpolation by assimilation of data. Attempting to combine obser-

vations of different times, intermittently applied spatial data assimilation procedures20

cannot make use of the known physical and chemical laws as a most useful constraint.

In contrast, ability to do so, would not only enlarge the observational data base per as-

similation procedure by measurements over a full time interval, but also enforce some

chemical consistency, dependent on the model design.

To achieve this goal, a first successful demonstration by a stratospheric chemical25

box model with a small number of constituents had been provided by Fisher and Lary

(1995), assessing the applicability of a variational data assimilation method. Eskes

et al. (1999) applied the variational method to a two dimensional model for the assim-
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ilation of total satellite columns. For the troposphere the usefulness of the variational

method has been shown by Elbern et al. (1997), applying the box model version of

the chemistry mechanism RADM (Regional Acid Deposition Model) (Stockwell et al.,

1990). Further, the successful extension to a full chemical 4-dimensional variational

(4D-var) data assimilation system could be demonstrated in the context of identical twin5

experimentation (Elbern and Schmidt, 1999), and for an ozone case study (Elbern and

Schmidt, 2001), using the University of Cologne EURAD regional chemistry–transport

model. Additional chemistry applications of the 4D–var technique were provided for

both the troposphere (e.g., Chai et al., 2006) and the stratosphere (Errera and Fonteyn,

2001; Elbern et al., 2005).10

In atmospheric chemistry, as is in meteorology, the parameters to be optimised by

data assimilation are usually the initial state variables of the model. Hence, these initial

values are implicitly assumed to be the least well known parameters and, at the same

time, a critical factor for an improved analysis or forecast skill.

As chemistry transport models solve an initial–boundary value problem with strong15

dependencies on surface parameters, the restriction to initial value optimization is no

longer justified, at least in tropospheric chemistry. For example, it is well known that,

under favouring conditions, freshly emitted surface pollutants can easily enter the free

and upper troposphere. In this case, better knowledge of the emission strength and

meteorological stability conditions appear to be at least as important as of initial values.20

A thorough assessment of uncertainties and sensitivities of ozone prediction due

to uncertainties of various input parameters has been provided by various studies,

e.g., Hanna et al. (1998, 2001) or Schmidt and Martin (2003). While parameters like

photolysis rates and meteorological conditions are of importance, emissions still figure

prominently as control parameters. At the same time, emission rates are not sufficiently25

well known. Especially in areas exposed to air quality problems, the errors in the

emission rate estimates can be considered as among the primary causes for prediction

deficiencies of pollution levels.

Independent from activities termed “data assimilation”, research on the solution of
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inversion problems aiming at source and sink estimates is well established over the

last decades. In most cases inversion with respect to quasi–passive tracers has been

performed. Newsam and Enting (1988) and Enting and Newsam (1990) addressed

the global problem of the distribution of sources and sinks of carbon dioxide by the

inversion of a diffusion equation, formally solved by associated Legendre functions.5

In the sequel a variety of other studies were made, all based on a very limited number

of flask measurements (Bousquet et al., 1999a,b; Enting et al., 1995; Fan et al., 1998;

Gloor et al., 1999; Gurney, 2002). The variational approach too has been adopted for

source and sink estimates aiming to contribute to better specification of greenhouse

gas budgets (Kaminski et al., 1999a,b; Houweling et al., 1999).10

In order to optimise model parameters, Kaminski et al. (2002) assimilated 41 CO2

measurement data in a simplified terrestrial biosphere model by the 4D-var technique,

achieving more realistic flux simulations. Attempting to overcome the limitations of CO2

in situ observations, satellite data from the Atmospheric Infrared Sounder (AIRS) has

been assimilated into the ECMWF model using the 4D–var technique by Engelen et al.15

(2004). As the results were satisfying only in tropical regions, improved global source

and sink estimates cannot be expected with the present data base and assimilation

system configuration.

On the mesoscale, Robertson and Langner (1992) used variational data assimilation

for source estimation in the frame of the ETEX experiment. By adjoint modelling, Is-20

sartel (2003) applied the concept of retroplumes for source identification and estimates

within the framework of “illumination”. Another approach has been selected by Boc-

quet (2005a,b), where the maximum entropy principle has been invoked to estimate

position, time, and strengths of emission sources.

So far, all emission source studies cited above remained focused on source or sink25

estimates of a single passive tracer, which is observed in some way, without modelling

reactive chemistry. Only few attempts have been made to address the general fea-

sibility to solve the source inversion problem for reactive chemistry, ideally estimating

precursor sources by observational data from product pollutants.
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From a theoretical viewpoint, only spatio–temporal data assimilation or inversion

techniques are candidates for solution, which are able to combine model information

with data in a consistent way, while, at the same time, are able to provide for a Best

Linear Unbiased Estimate (BLUE). Given all requested assumptions are satisfied, this

property is provided by the four–dimensional variational data assimilation technique5

and the Kalman filter, including appropriate variants thereof.

Within the scope of an identical twin set-up, a first implementation of the 4D–

variational technique for emission optimisation including reactive chemistry is de-

scribed in Elbern et al. (2000). A first real world application with the EURAD model

is given in Elbern and Schmidt (2002), along with a technical description. By including10

all emitted species at each surface grid point, the typical optimisation space of initial

values by atmospheric chemical state constituents is replaced by a scaled emission

rate space. A practical application on the microscale has been presented by Quélo

et al. (2005) for NOx emissions and their diurnal profile, using the Polair3D model.

Adopting the variational inversion technique on the global scale, Muller and Stavrakou15

(2005) assimilated tropospheric column retrievals of CO and NO2, to assess emission

rates of continental scales.

Related Kalman filter implementations with sophisticated complexity reduction tech-

niques are presented by van Loon et al. (2000), where a reduced rank square-root

approach was selected to factorise covariance matrices by a few principal components20

(Verlaan and Heemink, 1995). Further elaboration on this technique by combination

with an ensemble Kalman filter method resulted in additional skill (Hanea et al., 2004).

Optimisation parameters include emission rates, photolysis rates, and deposition rates,

the correction quantities of which are formally introduced as “noise” parameters in the

Kalman filter formulation.25

As a step toward a more comprehensive system inversion, the present study seeks

to exploit the flexibility of the variational inversion technique and to combine, for the first

time, emission rate and chemical state optimisation. Acknowledging the fact that area

emission rates are not directly observable, inversion success can best be validated
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by forecast skills, ideally by data from sites permanently withheld from assimilation.

Neither for the variational approach, nor for the Kalman filter method, a systematic

assessment of this kind has been provided.

Hence, it is the objective of the present paper, to

– explore the feasibility and assess the benefits of emission rate optimisation of all5

gaseous species emitted in a comprehensive chemistry-transport model, and

– to gain insight into the limitations, be it due to system set-up or of more funda-

mental nature.

As independent success criteria, assimilation analyses are validated with observations

withheld from the assimilation procedure and by forecast improvements.10

The paper is organised as follows: Sect. 2 exposes the underlying theory, and Sect. 3

presents the implementation of the variational assimilation system. In Sect. 4 the ob-

servation data base is given. The results of the case study are delineated in Sect. 5.

Section 6 presents the conclusions.

2 Variational model inversion15

The problem of finding the most probable model parameter values can be treated as

a generalisation of the 4D-var approach, which is usually applied to estimate the state

space variables as parameters of interest. In practical forecast applications these then

serve as best known initial values (Daley, 1991; Lorenc, 1986, 1988; Talagrand and

Courtier, 1987). As explained above, the focus of this paper is the inclusion of further20

parameters. For a review of variational parameter optimisation studies, which also

consider parameters other than initial values, see for example Navon (1997). In the

case of the present study, it is the emission rates which are also taken to be subject to

optimisation, in addition to and joint with the initial values of the chemical constituents.
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This section presents a brief outline of the theoretical background, resting on El-

bern et al. (2000). The notational convention here follows as closely as possible the

suggestions given in Ide et al. (1997).

We are given an a priori or first guess estimate of the chemical state vector xb ∈ R
N

,

also termed background field, with N the dimension of the phase space portion for the5

chemical constituents, and the emission rates eb ∈ R
E

, with E the dimension of partial

phase space of the emission rates. The background field is frequently obtained from

a short range forecast, as in this study, or from some climatological files. The back-

ground emission rates are usually taken from emission inventories. In addition, M(t)
observations y

0
(t) will be available at time t, scattered in a time interval

[

t0, tT
]

. The10

innovation vector, that is the difference between observations, available at time t, and

the corresponding model equivalent state xb(t), which evolved from the background

initial value xb(t0) and emission rates eb(t), is denoted

d (t) = y0(t) −H(t)xb(t). (1)

The forward observation operator H maps from model space to observation space,15

producing the model equivalents of oberservations, given at the time t.
The innovation vector d , the deviations from the background chemical state δx(t0) :=

x(t0) − xb(t0), and a suitably defined perturbation function of emissions δu=u(e,eb),

scaling the deviation of modified emissions e from background emission rate values

eb, are combined in a quadratic form to define an incremental formulation of a cost20

function, objective function or distance function J as follows (Courtier et al., 1994):

J (δx(t0), δu) =

1

2
(δx(t0))TB−1δx(t0) +

1

2
(δu)TK−1δu+

1

2

N
∑

i=0

(d (ti ) − H(t)δx(ti ))
T R−1(d (ti ) − H(ti )δx(ti )), (2)

J is a scalar functional defined on the time interval t0≤t≤tN dependent on the vector25
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valued state variable x(t). H(t) ∈ R
M(t)×N

is a linearised approximation of the forward

observation operator H. The error covariance matrix of the first guess or background

values xb is denoted B ∈ R
N×N

, while error covariance matrices of emission perturba-

tion functions δu and of observations y(t) are denoted K ∈ R
E×E

and R ∈ R
M(t)×M(t)

,

respectively.5

Chemical tendencies as prescribed by a chemistry transport model (CTM) and by

emissions, are given by

dx

dt
= M(x) + e(t), (3)

where M acts as a generally nonlinear model operator. Both x(t0) and e(τ), τ ∈ [t0, t]
control the state variable x(t) at time t. For a chemistry-transport model as the EURAD10

model applied in this study, the differential equation can be written as (Elbern and

Schmidt, 2001):

∂ci

∂t
+ ∇ · (vci ) − ∇ · (ρG∇

ci

ρ
) −

R
∑

r=1



k(r)
(

si (r+) − si (r−)
)

U
∏

j=1

c
sj (r−)

j



 = Ei + Di (4)

where ci is the concentration of species i , v is the wind velocity, s ∈ IN0 is the stoichio-

metric coefficient, k(r) is the reaction rate of reaction r , either being productive (r+) or15

destructive (r−) for species i , U is the number of species in the mechanism, Ei is the

emission rate of species i , Di deposition rate of species i , the air density is denoted by

ρ, and G is the symmetric eddy diffusivity tensor.

Now let M
′
be the tangent linear model operator of M. The evolution of perturbation

δx from xb(t) and e(t) follows from the tangent linear form of (3)20

dδx

dt
= M′δx(t) + δe(t). (5)

Aiming to optimise initial values xb(t0) and emission rates δe(t) jointly, both parameters

must be combined in a common vector by suitable scaling. This will be accomplished
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by introducing a function u= u(e). The relation between perturbation δu and the per-

turbation of emission rates δe(t) is implementation dependent and will be specified

later. The composit vector δz : =(δxT
(t0), δuT

)
T

is the full control parameter of the

model evolution.

For the related integration operator or resolvent, performing a model integration from5

time t0 to time t, we can reformulate

δx(t) = M̃(t, t0) δz, (6)

where M̃(t, t0) is the integration operator from time t0 to t. In order to minimise J
by gradient descent or quasi–Newton methods efficiently, we want to determine the

gradient of J with respect to the joint chemical state and emission rate variable δz,10

that is ∂J/∂δz. The gradient of the cost function J then reads

∂J/∂z = B−1δx(t0) + K−1δu

−
tN
∑

ti=t0

HT (ti )M
T (t0, ti )R

−1 (d (ti ) − H(ti )δx(ti )) . (7)

Here, H
T

and M
T

denote the adjoint of the tangent–linear observation operator H and

model M
′
. With the costs J , the perturbation fields δz, and ∂J/∂δz once calculated,15

the minimisation routine can be processed, resulting in a further step toward a better

estimate δza : =(δxT
a(t0), δuT

a)
T
, expected to converge to the best linear unbiased

chemical state of the atmosphere and emission rate, provided that the tangent linear

approximation is sufficiently valid.

The adjoint formulation of (4) then reads, after application of the variational calculus20

−
∂δc∗

i

∂t
− v∇δc∗

i
− 1

ρ
∇ · (ρK∇δc∗

i
) +

R
∑

r=1



k(r)
si (r−)

ci

U
∏

j=1

cj
sj (r−)

U
∑

n=1

(

sn(r+) − sn(r−)
)

δc∗
n



 = 0 (8)

with δc∗
i being the adjoint variable of ci , while Di is held fixed.

1734

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/1725/2007/acpd-7-1725-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/1725/2007/acpd-7-1725-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD

7, 1725–1783, 2007

Variational emission

rate estimation

H. Elbern et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

3 Implementation of the EURAD 4D–var system

The description of the components of the EURAD 4D–var system follows the algorithms

exposed in the previous section. It includes (i) the EURAD model M and its adjoint

M
T
, (ii) the formulation of both background error covariance matrices B and K for the

initial states and the emission factors, respectively, and their treatment to precondition5

the minimisation problem, (iii) the observational basis and its related error covariance

matrix, and (iv) the minimisation including the transformation for preconditioning.

3.1 The EURAD forward model CTM2 and its adjoint

The chemistry transport model from which the adjoint version is developed is the Uni-

versity of Cologne EURopean Air pollution Dispersion model (EURAD) (Hass et al.,10

1995; Elbern and Schmidt, 2001), which is an early offspring of the Regional Acid

Deposition Model RADM2 (Chang et al., 1987).

The chemistry transport model calculates the transport, diffusion, and gas phase

transformation of 60 chemical species with 158 reactions. These processes are cal-

culated sequentially by a symmetric operator splitting technique, when stepping from15

t to t+∆t (Yanenko, 1971; McRae et al., 1982). This approach is shown to minimise

systematic biases as introduced by a fixed sequence in the splitting technique. In the

present configuration the following operator sequence is implemented:

xt+∆t
= ThTzDzADzTzThx

t, (9)

where T,D denote transport and diffusion operators in horizontal (h) or vertical (z)20

direction, respectively. The parameterisation of the emission sources and deposition

processes are included in the gas phase chemistry module A and vertical diffusion Dz,

respectively. The dynamic time step ∆t of the advection operators is 10 min. The Bott

(1989) upstream algorithm is chosen to calculate the horizontal and vertical advection.

The vertical diffusion is semi-implicitly discretised following Crank–Nicholson, with the25

Thomas algorithm used as solver.
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In the present configuration a semi-implicit and quasi steady state approximation

method (QSSA) is applied for the numerical solution of the gas phase chemistry stiff

ordinary differential equation system, following Hesstvedt et al. (1978). The chemistry

time step ∆tc of the stiff ordinary differential equation solver is highly variable in time,

the calculation of which follows McRae et al. (1982), with a limited set of species se-5

lected to determine the time step. By practical reasons a lower bound is defined at

1/50 min, while the upper bound is given by the dynamic time step of 10 min.

In this study the radiative transfer equation solver of Madronich (1987) is applied as

preprocessor to the CTM and its adjoint.

The integration domain applies the Lambert conformal projection centered at 50
◦
N10

latitude, 10
◦
E longitude. A horizontal resolution of 54 km with 77 grid points in the

x-direction and 67 grid points in the y-direction is employed. The model’s horizontal

grid structure is defined by the “Arakawa C” grid stencil. In the vertical 15 levels with

terrain–following σ coordinates of Lorenz type are used, with refinements at the lowest

levels. The lowest model half layer, where concentrations, temperature and winds are15

given, is chosen to represent 38 m height. The isobaric level of 100 hPa which defines

the top of the model, is taken as a material surface. Grid size and number of species

result in a state space dimension dim(δx)≈4.6×10
6
.

The initial model state, that is, the initial values prior to the spin-up run at the onset of

a case study, includes a seasonal mean concentration of longer lived species depen-20

dent on latitude and height for the first forward model run, covering 1–2 August, while

serving as model spin-up period. Inflow boundary values are defined in the same way

as the initial model state. All later model runs start with the simulated final model state

of the preceeding run.

The emission module includes 19 emitted species, formally available at each emitting25

grid-point. Emissions into other layers than the lowest are simulating injections due to

stack overshooting (Briggs, 1975). Emission rates are distributed over typical diurnal

cycles for working days, saturdays, and sundays. Predefined diurnal cycles are taken

as a priory knowledge, shaping the emission rates over the day. Examples of working
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day diurnal cycles of six species are given in Fig. 1. With this configuration, a phase

space dimension of the emission rates of dim(δe)=O(10
5
) results.

The emission data in this study are taken from EMEP (co-operative programme for

monitoring and evaluation of the long range transmission of air pollutants in Europe)

and further processed as presented in Memmesheimer et al. (1995). Processing in-5

cludes also the seasonal and diurnal redistribution, as well as attributions to working

days, saturdays, and sundays. Therefore, emission correction factors inferred in this

study by a 3 week case study cannot serve as any validation of the EMEP inventory

for the year 1997. The deposition modelling follows the method proposed by Wesely

(1989).10

The adjoint of the EURAD model can be developped from the adjoint differential

Eq. (8), from the adjoint of the numerical solvers of the forward model (4), or from the

forward code. In this study the latter approach is adopted, which comprises the coding

and implementation of the adjoint operators of Th, Tz, A and Dz given in (9). The ad-

joint chemistry was coded by hand, while for the advection and diffusion routines the15

AMC adjoint model compiler (Giering and Kaminski, 1998) and O∂yssée differentiation

system (Rostaing et al., 1993; Faure and Papegay, 1998) has been used. The correct-

ness of the adjoint code was checked by the method proposed by Chao and Chang

(1992). For the gas phase chemistry solver and the implicit vertical diffusion operator,

which apply adaptive time step techniques, the same time steps are taken for backward20

integration as determined by the forward integration.

As meteorological driver the Penn State/NCAR mesoscale model MM5 is applied.

For a comprehensive description of the model see Anthes et al. (1987) for the pre-

cursor version MM4 and for an extended update description see Grell et al. (1993).

MM5 is a primitive equation model, used in this study with an integration domain en-25

compassing the area from the Mediterranean Sea to North Norway and from the East

Atlantic to European Russia. For the presented simulations the hydrostatic mode of

MM5 is taken. The horizontally staggered grid for surface pressure, temperature, water

vapour, and horizontal velocity is based on the Arakawa B-grid scheme with a resolu-
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tion of 54 km. Key parameterisations for the simulation of air mass transport include

Blackadar mixing-layer parameterisations, Kuo cumulus parameterisation, fourth order

horizontal diffusion, and K-theory vertical diffusion with Richardson number dependent-

coefficient Gzz above the mixed layer.

A detailed application of MM5 as part of the EURAD model configuration is given in5

Jakobs et al. (1995).

3.2 Preconditioning of the cost function

According to (2), the present implementation requires information about the back-

ground error covariances of both the system state variables (= “tracer concentrations”)

and the emission rates. While it is obvious that there are correlations between con-10

centration levels of emitted species and their emission rates in the vicinity of sources,

as well as further correlations after the action of chemical transformation and transport

processes, the implementation does not yet include cross-covariances between the ini-

tial state and the emission rates. This is evident from the formulation of (2). This is due

to the facts that even the numerical treatment of B is computationally challenging, given15

a space state dimension of 4.6×10
6
, that the cross–correlations are highly dependent

on weather conditions, and that sufficient information on this can hardly be compiled

within a limited case study.

In Elbern and Schmidt (2001) a first implementation of chemical 4D-variational data

assimilation by singular value decomposition was presented, where B has been fur-20

nished with off-diagonal elements for spatial correlations. It is also pointed out, that the

condition number of B becomes sensibly unfavourable for efficient minimisation with

extending radius of influence and smoothness of the structure functions. As a con-

sequence, preconditioning the minimisation problem becomes increasingly difficult. An

effective procedure to introduce preconditioning is by transformation of the optimisation25

parameters by square roots of B and K. With square root factoriszations B=B
1/2

B
T/2
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and K=K
1/2

K
T/2

following Courtier (1997), we define new variables v and w by

v := B−1/2δx, w := K−1/2δu, (10)

leading to a minimisation problem equivalent to Eq. (2).

The cost function then reads

J(v ,w ) =
1

2
v Tv +

1

2
w Tw+5

1

2

tN
∑

ti=t0

(d (ti ) − Hδx(ti ))
T R−1 (d (ti ) − Hδx(ti )) . (11)

The gradient of J with respect to (v ,w )
T

can be shown to be

∇(v ,w )T J =

(

v

w

)

−
(

B
1/2

0

0 K
1/2

)

×

N
∑

i=0

MT (t0, ti )H
TR−1(d (ti ) − Hδx(ti )), (12)

The transformation (10) efficiently compensates for the specific part of ill-conditioning10

introduced by any formulation of B and K.

3.3 Background error covariance matrix B

Due to its size, formally comprising O(10
12

) entries, the background error covariance

matrix B has to be limited to a few principal components only, like leading singular

vectors (e.g., Elbern and Schmidt, 2001). The generalisation of B to anisotropic and15

inhomogeneous radii of influence by an explicit covariance matrix model without re-

laxing the required property of positive definiteness is not straightforward (Hölzemann

et al., 2001). In that paper an explicit inversion in observation space is chosen, which
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is hardly practical in three dimensions. In addition, in the context of variational data as-

similation, the preconditioning of the minimisation procedure requires the square root

of the covariance matrix. For optimisation problems with a dimension as high as the

problem at hand, both requirements can only be met by choosing a proper covariance

model operator, rather than a full matrix. Hence, in contrast to the prior studies, and5

following Weaver and Courtier (2001) with the promise of higher flexibility in designing

anisotropic and hetereogeneous influence radii, the latter option is implemented in this

work. We need to define B as an operator, which can be easily factorised as B
1/2

B
T/2

,

to account for the preconditioning requirements. Weaver and Courtier (2001) show

that the diffusion equation serves as a valid operator for square-root covariance opera-10

tor modelling, with flexibility to account for inhomogeneous and anisotropic correlation

length, by suitable adjustments of local diffusion coefficients. Additionally, the diffusion

equation is self-adjoint. Therefore, the operator can be easily split into B
1/2

B
T/2

by

applying only half the integration time of the diffusion equation.

The following operator splitting scheme is implemented as covariance filter, the sin-15

gle elements of which will be described in detail later:

B = Σ C Σ (13)

C1/2
= ΛL

1/2
v L

1/2

h
W−1/2 (14)

δx = ΣΛL
1/2
v L

1/2

h
W−1/2v (15)

Σ is the diagonal matrix of background-error standard deviations, C is the covariance20

filter, with Λ a normalisation operator and Lh,v the horizontal and vertical diffusion op-

erators, respectively. The diagonal matrix W includes correction factors needed for the

grid, which accounts for the changing heights of the grid cells due to the application of

σ-coordinates.
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3.3.1 Background error standard deviations

In 4D-var, the background errors of the chemical species, that is the standard de-

viations
√

diag(B), must be selected a priori, but are amenable to posteriori by χ2
–

validation following Talagrand (1998). After several test runs, the standard deviations

are assumed to be dependent of species and height, the former accounting for the5

different degree of variability of the individual constituents, and the latter reflecting the

decreasing confidence in knowledge on the chemical states with height. Introducing a

height level k dependent relative error ǫrel(k) and a species l dependent absolute error

ǫabs(l ), the following formulation is selected, with the double indices indicating height

and species dependence for the square roots of diagonal elements. Here10

√

(Bl ,l ,k,k) = max (xb(l , k) · ǫrel(k), ǫabs(l )) (16)

where the relative error is modelled as

ǫrel(k) = 1/2 · exp

(

0.69
1 − k

1 − kmax

)

, (17)

with kmax being the number of model levels. Equation 17 implies that the relative

background error is increasing exponentially with model height from 50% to 100%. The15

absolute background errors ǫabs(l ) for the different species taken are given in Table 1.

3.3.2 Radii of influence

While the diffusion approach for covariance modelling allows for highly anisotropic and

inhomogeneous radii of influence or (de-)correlation length L, the related information

requested is not available in 4D-var, and must be estimated in some way. In Elbern20

and Schmidt (2001), assimilation performance dependencies have been investigated

for different influence radii of up to more than 150 km, but the result was found to be of

moderate sensitivity only. This is due to the fact that the adjoint backward integration

over a longer time span gains properties to disperse information spatially as well, which
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easily overrides formally introduced small radii of influence, that is, a few grid cell units.

This situation is given, where radii no larger than 3 grid cells (L=162 km) are selected.

The horizontal radii of influence are defined to be increasing with height. Figure 2

shows height-dependent influence radii for calculation of the corresponding diffusion

parameters. The procedure to infer the diffusion coefficients κh(i , j ) and κv (k) and5

the corresponding number of time steps has to comply with the following conditions:

As demonstrated in Weaver and Courtier (2001), L is related to the pseudo-diffusion

coefficient κ and integration time T by

L =

√

2κT . (18)

On the other hand, the stability condition for explicit solvers of diffusion equations as10

parabolic differential equations, requires time stepping constrained by

∆th ≤ (∆x)
2

2 maxi ,j (κh(i , j ))
, ∆tv ≤

min∆σ(k)(∆σ(k))
2

2 maxk(κv (k))
(19)

for horizontal and vertical pseudo-diffusion, respectively. ∆x and ∆σ(k) denote hori-

zontal and level k dependent vertical grid spacing. For the uppermost level, a horizontal

correlation length of Ltop=250 km is estimated, while for the surface layer Lbot=54 km15

are taken. The vertical interpolation rule is chosen to be linear on the bi-sectioned

σ-level height scale, taking the planetary boundary height σpbl as inner limit and the

corresponding correlation length is Lpbl=80 km.

In contrast to the horizontal correlation length, the vertical variability of the vertical

correlation length Lv is inferred from the vertical diffusion coefficient κv , as provided by20

the preprocessed MM5 run. This ensures features like well mixed boundary layers and

related heights being well reflected by vertical correlation lengths. Therefore, a dynam-

ical control of the vertical correlation length is provided at no additional computational

costs.
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3.3.3 Normalisation matrix

The normalisation operator Λ is a diagonal matrix counteracting the flattening due to

the action of the diffusion operators L. It is ensured that the background errors on the

main diagonal of B are those given by Σ.

Following Weaver and Courtier (2001), the normalisation matrix has to be calcu-5

lated for each grid cell at analysis time t0, since vertical diffusion depends on varying

meteorological conditions. The present application accomplishes this by two options:

– Applying the diffusion filter consisting of horizontal and vertical diffusion to input

vectors el=(0, . . . ,0,1,0, . . . ,0)
T
, the entry equal to one being located at grid

point l . For each grid point l the normalisation factor then reads:10

(Λ)l l =
1
√

tl
with (20)

tl = eT
l
L

1/2
v L

1/2

h
W−1L

T/2

h
L

T/2
v el . (21)

– Alternatively, a randomization method Fisher and Lary (1995) can be applied,

where a set of Q Gaussian random vectors v q ∈ R
N

are generated, with the

statistical expectations E(v q)=0 and E(v qv
T
q)=I, q=1, . . . , Q. With the square15

root of the covariance filter v q=L
1/2
v L

1/2

h
W

−1/2
v q we then obtain

t−2
i

≈ diagi





1

Q − 1

Q
∑

q=1

v qv
T
q



 . (22)

The estimated randomization error is then =1/
√

2Q.
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3.3.4 Emission parametrisation and covariance matrix

Formally, emission rates can vary for each species l at each emitting grid cell (i , j, k)

and at each time step ti . Allowing for stepwise emission variations results in an ex-

tremely ill-posed inversion problem. Therefore, the degree of freedom of the emis-

sion rate space state can be drastically reduced by taking the diurnal profile shape as5

strong constraint, as this is comparatively well known. By this adherence to diurnal

cycle shapes, given a priori, only the amplitudes can be taken as control parameter

subject to optimisation. Further, positive definiteness of emissions must be enforced.

Presevation of both, diurnal cycle shape and positive definiteness define the function

δu=u(e,eb) as10

δu := ln (e) − ln (eb), (23)

where the logarithms are taken componentwise at each location and for each emitted

species, that is δu(i , j, k, l )= ln (e(i , j, k, l )/eb(i , j, k, l ))= const. throughout the assim-

ilation interval.

We set δe(t)= : e(t)−eb(t). For notational convenience, grid and species indices15

are temporarily mapped on vector index (i , j, k, l ) → s. Then, with the diagonal ma-

trix diag(U)s : =exp (δus)−1, Eq. (5) can be reformulated in terms of the emission

parametrisation

dδx

dt
= M′δx(t) + Ueb(t). (24)

Hence, optimisation of δu results in a correction factor20

f (i , j, k, l )=e(i , j, k, l )/eb(i , j, k, l ), which is location and species dependent, yet time

independent.

In the progression of the case study, the emission inventory values are taken as

background eb only for the first assimilated day. For later days background values eb

are taken from the optimized emission correction factors of the preceeding assimilation25

cycle.
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The background emission rate covariance matrix K is specified as block diagonal

matrix by sub-matrices K̃(i , i , j, j ) for each surface grid cell (i , j ), describing emission

rate covariances between emitted species at each location. The construction is imple-

mented by first estimating K̃
1/2

. The information used is a table of the annual emitted

amount of NOx, SOx and volatile organic compounds (VOC), splitted into different pol-5

luter groups as provided by the EMEP inventory: http://www.emep.int. Emission error

correlations have been coded by squaring K̃
1/2

and composing the full K, granting pos-

itive definiteness of K and enabling transformation (10). The upper triangle sub-matrix

entries are presented in Fig. 3.

Background emission standard deviations are assumed to be Gaussian distributed10

in logarithmic scale. The following relative standard deviations have been applied (per-

sonal communication Michael Memmesheimer):

SO2 ln (1.7) = 0.53

NH3 ln (1.7) = 0.53

NO ln (1.3) = 0.26

others ln (2.0) = 0.69

Hence, for most emitted species a factor of 2.0 is assumed (this means that factors 2.0
and 0.5 define the error bar). Only SO2, NH3 and NO are defined to be better known.15

The chemical correlation follows the ad hoc approach as described in Elbern and

Schmidt (1999).

3.4 The minimisation procedure

The minimization procedure follows the forward model run, based on a prior or updated

initial state and emission rates, followed by the adjoint (backward) integration. The in-20

put for the iterative minimisation procedure are the total costs J , deviation δx from the

background state xb, and the gradient ∂J/∂(δx0(t0), δu)
T
, due after each backward

integration and resulting in an updated deviation from the background state and emis-

sion correction factor. Taking the first guess identical to the background state xb and
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eb avoids the need to calculate any inverse of B and K nor square root thereof, and

allows for the straightforward application of the pseudo-diffusion approach.

The following sequence performs the minimisation and associated preconditioning

with transformations:

1. Calculate the transformed gradient (12) by executing vertical diffusion and hori-5

zontal diffusion, both with half the number of time steps as inferred from (18) and

(19). Finally, the normalisation is applied.

2. Run minimisation routine with δz saved from the last minimisation output, (or

δz=0 for the first iteration).

3. Save δz for next iteration.10

4. Apply transformation (15) to v to calculate δx = B
1/2

v .

5. Add first guess xb to δx to obtain improved initial state values for the next iteration,

and likewise for δu .

The quasi–newton limited memory L-BFGS algorithm described in Nocedal (1980)

and Liu and Nocedal (1989) is applied for the minimisation, after modification to a15

parallel version. The assimilation procedure is taken as successfully finished after the

minimum is attained, while the a posteriori validation (see Sect. 5) is passed.

4 Observational data basis

4.1 Available data

Surface in situ observations assimilated for this study stem from the archives of the20

European Environmental agency (EEA) as compiled at the time of study (see Air-

Base – EEA’s public European Air quality data base http://air-climate.eionet.europa.

eu/databases/airbase/, and from some national and regional environmental agencies.
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The EEA database covers geographically all countries from the European Union, the

EEA member countries and some EEA candidate countries. EEA files contain infor-

mation submitted by the participating countries throughout Europe. For some coun-

tries, for whom national and regional data sources with higher observation density were

available, EEA data has been replaced by original sources. These include: the environ-5

mental protection agencies from the German states (LUA) and the federal state (UBA),

Switzerland, Austria, The Netherlands, Denmark, and the United Kingdom. Measure-

ment sites are operated routinely under the auspices of government authorities. A

partly dense, partly very coarse coverage of Europe by observation sites is provided

by this configuration (see Fig. 4). Including all types of stations, a typical day consists10

of about 130 000 observations, with about 13% observations of SO2, 37% observations

of NO2, 20% observations of NO, and 30% observations of O3. In most cases, NOx

data are available with a half–hourly frequency, while other data with hourly frequency.

The air quality database consists of air quality measurement data and their statistics

for a representative selection of stations and for a number of pollutants, also meta-15

information on the involved monitoring networks, their stations, and measurments. Ob-

servations of SO2, O3, NO, NO2, and CO are assimilated. Due to its small number, and

therefore lack of statistical representativity, CO assimilation results are not presented

in this study.

4.2 Observation error covariance matrix20

In the cases presented here, observation errors are not provided with the data. Expe-

riences from the BERLIOZ experiments are now used to determine the measurement

and representativeness errors of the observation. The measurement error is chosen

following a scheme exposed in Mohnen (1999), defining a relative error and a minimal

absolute error for each species:25

rmeas = max (eabs
min

, erel × yo) (25)

The representativeness of an observation is depending on the grid resolution and
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the characteristics of the location. Most of the European organisations provide charac-

teristics of their measurement locations. This information has been translated to this

scheme.

The representativeness errors are encoded in the current study as a characteristic

absolut error ǫabs
(see Table 2) portion for each species, scaled by a factor depending5

on the grid resolution ∆x and a characteristic representativeness length Lrepr, given for

the measurement station characteristics in Table 3:

rrepr =

√

Lrepr

∆x
× ǫabs (26)

The observation error covariance matrix is here assumed to be diagonal, that is, the

observation errors are not correlated. The diagonal elements of R are thus given by10

the sum of the measurement and representativeness errors,

Ri i = ri ,meas + ri ,repr, i = 1, . . . , nobs. (27)

5 Case study and results

5.1 Case study period and meteorological conditions

From 3 to 20 August 1997, a long lasting episode of elevated ozone levels over cen-15

tral Europe took place. The mesoscale meteorological simulations of this time span

performed by MM5 has been restarted every 48 h, beginning with 1 August 00:00 GMT

until 20 August 24:00 GMT. Meteorological initial and boundary values were taken from

ECMWF analyses. The meteorological and chemistry–transport simulation of the first

two days of the episode serve to attain a chemically balanced initial state by 3 August.20

The ozone episode started with a shallow ridge with south-western to north-eastern

tilt, extending from the Alps to southern Finland at 3 August. The centres of shallow

adjacent depressions were situated south-west of the British isles in the west and over
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the west coast of the Black Sea in the east. During the following days the ridge moved

slightly westward, attaining a more north-south alignment. At 7 August, a flat Scan-

dinavian high pressure system evolved from the ridge with a saddle point over central

Europe. Regional weather conditions in that area were mostly sunny with local thunder-

storms. After weakening of the high, a blocking ridge still prevailed with small variations5

of its longitudinal position until 17 August, when a shallow summerly depression devel-

oped over the river Rhine area. This low moved slightly eastbound while filling up in

the flat but increasing blocking ridge until 20 August. Surface weather conditions were

characterised by weak varying winds and occasional local thunderstorms over central

Europe during these last days of the episode. After 21 August 1997, unsettled condi-10

tions resumed over central Europe and enforced the end of this episode with elevated

ozone levels.

5.2 Assimilation runs set-up

To estimate the success gained by the 4D-var assimilation process, a suite of exper-

iments has been conducted, which differ in various ways. The assimilation window15

is set to 24 h, from midnight to midnight, unless otherwise noted. The ensuing fore-

casted second day only serves for success control by improved predictions, stated by

reduced model-minus-observation discrepancies. Hence, the study period consists of

a sequence of assimilation days and forecast days. In each sequence, the background

chemical state field is taken from the 2 day forecast, resting on the related assimilation20

result. Likewise, the new background emissions are taken from the preceding analysis

result for the emission factors.

The case study comprises assimilation procedures in three different modes:

1. only initial value optimisation (IV),

2. only emission rate optimisation (ER), and25

3. joined initial value/emission rate optimisation (IE).
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All initial assimilation runs of the case study, that is those starting with 3 August after

2 days spin-up time, have been performed with background emission rates taken from

the EMEP emission inventory. The only exception is an assimilation sequence in order

to verify the analysed correction factors of the emission rates. In this case, a second

suite of assimilation runs has been performed with significantly different emission rates,5

aiming to approximate the analysis result of the first suite. Further, the value of NOx

measurements is assessed by omitting these data, and comparing the analysis results

with the NOx-observation augmented case.

5.3 A Posteriori Validation

The validity of the assimilation results can only be shown satisfactorily by independent10

observations. Retaining observations from assimilation and preserving them for quality

check is the usual way to demonstrate assimilation improvements. Given the task to

ameliorate forecasts, an improved prediction skill also provides a means of validation,

when chemical state forecasts with and without data assimilation are compared. Both

modes are presented in this study.15

Given properly defined background and observation error covariance matrices, and

further given a statistically representative and unbiased innovation vector d=y−Hx,

the expected minimum Jmin of a quadratic objective function of the form (2) is equal to

E(Jmin) = 1
2
E
(

trace

(

(

HBH
T
+ R
)−1 (

dd
T
)

))

=
1
2
trace

(

(

HBH
T
+ R
)−1

E
(

dd
T
)

)

20

=
1
2
trace (IM ) = M/2, (28)

where IM is the unit matrix in observation space. The generalisation for the spatio-

temporal case is straightforward. Hence, it is easy to check whether this condition

(often called the χ2
-condition) is satisfied (Talagrand, 1998, 2004; Ménard et al., 2000).
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With the error estimates described in section 2.4 and averaged over all eight assimi-

lation days, mean costs of 50×10
3

are inferred, with a halfed number of observations of

67×10
3

. This indicates a moderate overestimation of presumably observation errors,

as both types of background costs remain too low to be effective in modifying the total

costs. Rather, given the coarse resolution of the grid, the error of representativeness5

is suspected to contribute most to the deficit from the optimal cost value. In the case of

nitrogen (di)oxide measurements, the high error of representativity attributed may be a

specific reason. While modifying error estimates is simple in technical terms, only long

and continuous operational applications, comprising different weather conditions, can

give aid to better estimate the error statistics involved in the cost function.10

As an example for a single assimilation run with joint initial value/emission rate op-

timisation, Fig. 5 exhibits iteration dependent decreases of cost results for 9 August

1997, with absolute costs broken down in terms of species and observation types.

The minimisation of the partial costs of ozone, which contributes the highest portions

in most cases, then virtually determines minimisation progress. Minimisation of SO215

shows a similar reduction, however on a much smaller absolute basis. Further, NOx

species show nearly no minimisation effect. This is an indication that the 54 km grid

cells are not suited to resolve emission patterns and surface fields of NOx. The costs

emerging from the iterative digression from background values of both initial values

and emission rates, remain low. Nevertheless, the background term is indispensable20

for both reasons, to formally pose an overdetermined optimisation problem and practi-

cally to enforce an analysis result complying with model and observations.

5.4 Forecast improvements

The relative importance of emission rate optimisation compared to initial value optimi-

sation must be expected to be highly dependent on conditions like emission strengths,25

boundary layer height and stability, and chemical life time. Therefore, in order to pro-

vide a representative example illustrating typical difficulties, local conditions should be

selected which are influenced by both rural and urban conditions inside a model grid
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box. With the dates 9 and 10 August 1997, this case is just in the middle of the then

mature ozone episode. Figure 6 presents an example case, which is amidst the cen-

tral European region, where the small to medium size cities of Wetzlar, Gießen, and

Linden are surrounded by rural conditions. While the former stations are classified as

sites “traffic”, Linden is attributed the “rural” type. Nevertheless, visual inspection of5

the observed time series clearly indicates a strong diurnal cycle also for this station. It

must be concluded, that the available measurements, at least for NO and NO2, may be

of limited representativity for the model grid cell.

In the case of SO2, only a short measurement sequence of a few hours duration is

available for each day. Observed values of about 3 to 7 ppbV are strongly overpredicted10

without any data assimilation, except during the last 12 h of the 2-day simulation cycle.

Pure emission rate optimisation, building on inversion for the preceeding days 3, 5, and

7 August, is successful to predict the 10 August levels, after marginal overprediction of

the assimilated measurements available during the morning hours of 9 August. Pure

initial value optimisation is able to better simulate the assimilated observations. How-15

ever, in contrast to emission rate optimisation, strong relaxation toward the simulation

without data assimilation occurs in the course of the forecasted second day. For SO2,

it can be concluded that emission rates are more likely to be the right optimisation pa-

rameter. It can be corroborated by visual inspection of forecast improvements in this

special grid cell, that combined emission rate-initial value optimisation does not provide20

for a better performance than in the case of pure emission rate optimisation.

It has been stated above, that the representativity of routinely operated NO and NO2

observations in typical central European areas is poor. The vicinity of streets and the

practice of environmental agencies to deploy observation sites mostly in populated ar-

eas renders assimilation of these data critical. In this study, this fact has been taken into25

account by increasing the error of representativity and hence the overall observation

error as described in Sect. 3, thereby reducing the effect of assimilation of these ob-

servations. Consequently, deviations from the free simulation of all assimilation based

simulated NO und NO2 times series are hardly visible in Fig. 6. Further, simulated con-
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centration levels of NO und NO2 remain significantly lower than observed levels, but

still inside the error margins. This is a direct consequence from the unequal distribution

of observation sites, favouring densely habitated areas with enhanced emission levels.

Ozone data assimilation results for the selected sites show clearly a different perfor-

mance. Observations exhibit distinct diurnal cycles with peak values between 60 and5

70 ppbV during the afternoon hours and massive ozone depletion after midnight, which

is a typical behaviour for strong anthropogenic emissions. The free simulation predicts

too high concentration levels by 20 to 30 ppbV, exceeding error margins. Further, the

observed strong nighttime concentration drop is only weakly featured by the model.

The data assimilation procedure with optimisation of only initial values shows a good10

agreement with observations of the first day, that is the assimilation window, includ-

ing a much better, though not perfect simulation of the nighttime depletion. During

the ensuing forecast of the second simulation day, the initial value optimisation based

simulation slowly relaxes toward the free run, indicating the beneficial, yet short and

ceasing impact of initial value modification, as was assessed in Elbern and Schmidt15

(2001).

The pure emission rate optimisation case shows nearly a coincidence with the free

simulation during the first day, but significant improvements for the second, forecasted

day. This demonstrates that (i) this specific model area has not yet benefitted from

data assimilation of preceding days of the case study, and that (ii) emission optimisa-20

tion of emitted precursor species requires a latency time prior to observing beneficial

effects for photooxidant products like ozone. While obviously emission rates need to

be optimised, the initial values of ozone remain poor.

Generally, for a satisfying inversion procedure, benefits from both procedures are

expected. This can be observed from the case of combined emission rate-initial value25

optimisation. Here, the results approximate the initial value optimisation case during

the first day and the emission rate optimisation case during the second day. In addition,

the nightime ozone depletion is better forecasted than in either homogeneous case.

To present representative results, the relative benefits of data assimilation proce-
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dures with and without emission rate optimisation will be discussed by examining bi-

ases and root mean square errors (RMS) of ensuing forecasts, resting on data assimi-

lation in a variety of configurations.

For sulfur dioxide Fig. 7 presents mean bias and RMS time series for two day fore-

casts, averaged over eight consecutive 48 hour simulations from 3 to 18 August 1997.5

The first 24 h cover the assimilation interval. The extension to forecasts for the second

day are displayed for quality control only.

Without any data assimilation the observation-minus-model bias (OmM) gives an

average of 8 ppbV too high simulated values and a root mean square error (RMS)

of about 10 ppbV. During the two day simulation the performance is poorer at hours10

centred around 07:00 UTC, which means 09:00 local summer time in most European

countries, where observations were available. The possible reasons for this are still

speculative, where poor vertical exchange due to a surface layer modelled too cold,

poor vertical resolution, inexact diurnal emission profiles, and combinations thereof

might be the reason. While these possible reasons point toward a violation of the “per-15

fect model assumption” commonly made in 4D-var data asimilation, errors appear not

to be strong enough to degrade later simulation severely, as the onset of vertical mix-

ing during the following morning relaxes the problem. However, future investigation will

focus on possible causes for the intermittent model performance drops at the surface

layer.20

Data assimilation with respect to optimisation of initial values only (IV case) shows a

slight positive bias at initial time, which is a compensation for later relaxation toward the

free simulation within the assimilation window. Later during the forecast period (that is,

the second day), bias values approximates the reference run, providing a time scale

for the memory for initial values in the system. A similar bevaviour is visible for the25

RMS error, which starts with an average of 5 ppbV and ends after 48 h with 15 ppbV

only 1 ppbV less than that of the free simulation. From these error features it must be

concluded that a severe bias in prevails. As mentioned above, this study adopts the

hypothesis that one principal part of the bias stems from erroneous emission rates,

1754

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/1725/2007/acpd-7-1725-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/1725/2007/acpd-7-1725-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD

7, 1725–1783, 2007

Variational emission

rate estimation

H. Elbern et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

apart from initial values.

Pure emission rate optimisation results in a dramatical reduction of the bias down to

values lower than 20%. Likewise, the RMS errors are reduced to levels between 30 and

50%. However, the initial RMS error of the initial value optimisation is smaller during

the first five hours, clearly indicating an example of “over-optimisation” due to the opti-5

misation of the less influential parameter, as this assimilation result is not sustainable

over 48 h.

The data assimilation performance after joint optimisation of emission rates and ini-

tial values shows a further improvement for both bias and RMS error. It combines

the improved features from initial value optimisation with those from emission rates,10

exhibiting the expected sustainability throughout the forecasted second day.

In a similar way, Fig. 8 presents biases and RMS errors for ozone in the control run,

with values of about 10 ppbV and 22 ppbV, respectively. The early morning degrada-

tions are visible as for SO2, indicating that the problem is not dominantly caused by

chemical transformation. On the other hand, it is known that the coarse resolution of15

54 km is not sufficient to resolve point and line sources of emitted ozone precursors

correctly, leading to NOx levels, which are too low to reduce ozone levels as observed

at sites, mostly deployed close to NOx emission sources.

Initial value optimisation reduces the bias mostly, inside the assimilation intervall a

bias is even slightly reversed. A tendency for relaxation toward the free simulation can20

be observed for the second, forecasted day. As in the corresponding case of SO2, the

averaged RMS errors are reduced during the assimilation window, with later relaxation

toward the free run average.

The pure emission optimisation based assimilation provides a substantial bias re-

duction of more than 50%, without attaining the success achieved for SO2 however.25

In contrast, the RMS average values are only marginally better than exhibited for the

free run. It can be concluded that emission rate optimisation gives a smooth control

over the concentration levels, while initial value optimisation accounts for smaller scale

variations, which are more suitable to fit to observed temporal variations.
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The combined emission rate and initial value optimisation gives the best results, how-

ever only with modest improvements in comparison with the initial value optimisation.

The assimilation interval bias is smallest and there is less relaxation of the bias toward

the free run during the final hours of the forecasted second day. Also RMS errors are

only slightly smaller than in the case of initial value optimisation.5

While there is a clearly visible benefit for optimising both initial value and emission

rates of precursors for ozone jointly, there is only a moderate improvement with respect

to initial value only optimisation. The reason for this is presumably the coarse reso-

lution and the effect, that gross biases of emission rates are reduced during the first

two-day cycles of the case study, leaving the remaining discrepancies to initial value10

optimisation.

Validation of results can also be undertaken by observations withheld from the as-

similation algorithm, in addition to assessing increments in prediction skills after data

assimilation. In the sequel, a combination of both methods is presented, where ob-

servations of quasi-randomly selected measurement sites were not assimilated, but15

taken for validation of assimilation and forecast results. Figure 9 presents the average

results for SO2 and O3, again by bias and RMS. For clarity only the joint emission rate-

initial value optimisation option is selected. The free simulation results of the stations

withheld are included for comparison only.

In addition to the initial value/emission rate optimisation based simulation, the first20

guess based simulation is included, to assess possible accumulated benefits from ear-

lier data assimilation runs, made in two days steps. It can be seen that there is a

drastic improvement for SO2, with nearly no distinction from the actual assimilation

based simulation. In contrast, for ozone a significant improvement for the performance

at the locations of withheld stations can be claimed, when compared with the free25

run. Improvements with respect to the first guess based line indicate information gain

achieved from the other 75% observation sites.

In comparison with ozone and its precursors, it can be concluded that the success

of SO2 forecasts after assimilation is due to the better representativity of grid cells,
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less temporal and spatial variability, and considerably reduced chemical dynamics on

time scales of days. Consequently, a denser observational network is required as

well, to significantly improve performance in the realm of tropospheric photochemistry

data assimilation. Further, basic assumptions of 4D-var, like the tangent-linear ap-

proximation being sufficient and prevalence of Gaussian error characteristics must be5

rendered moot for this case. Nevertheless, both forecast improvements and analysis

improvements at stations withheld from assimilation prove a benefitial impact from the

assimilation procedure.

5.5 Emission optimisation results

Besides improved forecast skills, improved estimates of emission rates can be ex-10

pected from the 4D-var emission rate inversion procedure. Correction factors should

be, with variable degree of confidence, provided for all 19 emitted species. Formally,

the 4D-var procedures performed over the 16 days result in independent analyses of

emission rates. Despite its differentiation in terms of working days, saturdays and sun-

days, there is surely an unknown day-to-day variability in emissions, which the emission15

inventory may not fully capture. Nevertheless, under conditions described here, and

taking note of the results described above, the emission inventory must be assumed to

be biased, with respect to real emission rates including its margins of daily variations.

The possible presence of biases has been ignored in the assimilation procedure. At

least in cases of not too strong differences it can be expected that the inversion pro-20

cedures converge toward less biased emission estimates, which may be manifest in

stabilising correction factors of emission rates. After inspection of the results, for the

entire period the correction factors of the emission rates exhibit a stable tendency.

Figure 10 displays the analysed correction factors for the emission rates of sulfur

dioxide, NO2, terminal alkenes, and isoprene for the lowest model layer, based on joint25

emission rate-initial values optimisation with a 24 h assimilation interval. 17 August

1997 is the last day of the case study with data assimilation. As most of the integra-

tion domain is void of observations, interpretation is restriced to observed areas as
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displayed in Fig. 4. In the case of SO2 a general reduction by about 20 to 25% can be

observed for England and the central European area, except in occasional locations.

For the limited territory of the former German Democratic Republic, it can be concluded

that the transition from older coal fueling power houses to fewer, but cleaner plants pro-

gressed more rapidly than estimated by the emission inventory. The correction factors5

for the Iberian peninsula are, not uniform, yet mostly amplifying the emissions.

A similar picture as for SO2, though with less spread, can be stated for NO2. In most

observed areas, emission inventory rates must be reduced by a percentage of 15 to

20%. Nevertheless, various urban centres can be identified where a small increment

up to 15% is inferred.10

As examples for VOCs Fig. 4 presents correction factors for terminal alkene and

isoprene. While the latter is purely emitted by deciduous forests, the former includes

anthropogenically emitted alkenes and terpenes from coniferous forests. In either case,

and in contrast to SO2 and NO2, there are major contiguous regions in eastern central

Europe, where the emission parameterisation proved to provide slightly too low values15

of about 10 to 15%. Probably, this effect is due to an underestimation of biogenic VOC

emissions. Generally, for VOC emission rate optimisation correction factors excert a

less significant deviation from unity.

As SO2 and NO2 emission rates from the EMEP emission inventory proved to be

too high, the result comes under scrutiny by starting with significantly too low emission20

rates, expecting the result to converge toward the same analysed absolute emission

rates. Therefore, validation of emission correction factors inferrerd from EMEP based

initial background emission rates are contrasted with an analog inversion procedure,

based on halfed initial background emission rates at the beginning of the case study.

Figure 11 exhibits the results for 17 August 1997, the same day as in the exposi-25

tion before, with initial emission rates reduced to 50%. As expected, most areas with

former drastic reduction are now characterised by amplified emission rates. For SO2,

mostly moderately amplifying factors are visible, and still reducing factors in eastern

Germany, pointing toward a drastic overestimation of emission in that area by EMEP.
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This corroborates the former result, again indicating a faster reduction of lignite coal

combustion and more efficient SO2 filter techniques, following the change of economic

system after 1990 in that area.

In the case of NO2, stronger amplification factors are analysed over central Europe,

reflecting a less strong misspecification. Again, the approximation of emission rates5

from below converges to an absolute result similar to that from above in central Europe

and England.

For terminal alkenes the correction factors remain small and without clear correction

signal. Given an analysis virtually resting on ozone observations, and NOx observa-

tions strongly devaluated by the error of representativity, a plausible and likely expla-10

nation for the NO2 and VOC correction scenario can be explained in the frame of the

Empirical Kinetics Modelling Approach (EKMA). See for example Kinosian (1982) for

further explanations. It is known that the coarse spatial resolution of the model and the

strict confinement of NOx sources to point and line sources renders the system to be

biased toward the preference of “NOx constrained” states, where ozone formation is15

very sensitive to variations in NOx emission rates and concentration levels, and rather

insensitive to VOC changes. This implies, that under “NOx constrained” conditions, and

without VOC observations available, the optimisation system is too ill-posed to provide

credible VOC correction factors.

In fact, the minimal impact gained from assimilation of NO2 observations can be20

concluded from Fig. 12, where a very similar pattern and absolute values for reduction

factors are exhibited as in Fig. 10. A closer inspection of earlier assimilated days

corroborates this finding.

6 Conclusions

In the chosen frame of continental scale air quality modelling, the 4D–var method for25

inverse modelling of emission estimates has been shown to perform excellent for SO2.

This species may however serve as representative for slowly reactive species, with
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emission patterns other than low level line sources like streets. In fact, for the Euro-

pean areas featured by the available observation sites, sulfur emission sources are

characterised by the predominance of single point sources of power plants, rather than

by a dense distribution of small sources from, say, housekeeping. In this context, the

presented 4D-var approach has been able to demonstrate the outstanding importance5

of emission rate optimisation rather than initial value optimisation. If only initial values

were optimised, estimated initial states relax toward a mean 10 ppb SO2 bias already

after two days simulation, which is emission inventory induced. In contrast, emission

rate optimisation reduces biases nearly perfectly and reduces RMS errors by about

60%, which may delineate the observational and representativity accuracy of the set-10

up of model resolution and observational network. It could be analysed that the emis-

sion inventory grossly overestimates sulfur emissions, especially in areas of economic

transition in Germany.

The optimisation of emission rates in the case of photolytically active species proved

to be considerably more challenging. With ozone being a central constituent of interest,15

the following conditions appear to exert a high influence on the predictive skill:

– with 54 km horizontal resolution, the feasible model grid resolution for continental

scale regional model is too coarse in urban and densely populated rural areas

with typical point and line source emission patterns,

– the observational network density of NOx as emitted precursor species is biased20

toward populated regions, measuring higher NOx levels than simulated on the

coarse domain and requiring elevated representativity errors of the in situ mea-

surements,

– in urban areas, simulated conditions suffer from a model proclivity for NOx con-

trolled conditions for ozone production, rendering emission estimates of VOC un-25

certain.

The following can be concluded: Despite the fact that, in most cases, observed NOx

levels are significantly higher than modelled NOx levels, emission estimates indicate
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markedly lower emission rates, to achieve better ozone forecasts. The precision of

analysed reductions of NOx emission may be hampered by the above mentioned

coarse model grid. However, in view of two additional assimilation validation exercises,

taking either emission rates halfed or without NOx observations, the general tendency

must be considered as correct.5

This statement is corroborated by performance assessments of forecast skill, where

the bias could be decreased and the RMS error remains lower than for a forecast

without data assimilation longer than 48 h.

On the basis of this relative performance increment it can be expected that further

difficulties for forecast improvements is most likely caused mainly by the coarse model10

resolution. Accepting the computational costs by selecting finer grids is the direct mea-

sure to avoid the double problem of nearly invaluable NOx observations and the model

proclivity to simulate NOx constrained photochemical scenarios. Future work will there-

fore focus on substantial grid refinement, with 4d-var only feasible after introducing

nesting techniques. Further to this, preconditioning by empirical factors, now optimised15

for the total model domain, must be refined to local conditions. It can be expected, that

these measures offer further avenues for forecast skill improvements.
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Quélo, D., Mallet, V., and Sportisse, B.: Inverse Modeling of NOx Emissions at Regional Scale

over Northern France. Preliminary Investigation of the Second-Order Sensitivity, J. Geo-

phys. Res., 110, D24310, doi:10.1029/2005JD006151, 2005. 1730

1766

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/1725/2007/acpd-7-1725-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/1725/2007/acpd-7-1725-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD

7, 1725–1783, 2007

Variational emission

rate estimation

H. Elbern et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Robertson, L. and Langner, J.: Source function estimate by means of variational data assimi-

lation applied to the ETEX-I tracer experiment, Atmos. Environ., 32, 4219–4225, 1992. 1729

Rostaing, N., Dalmas, S., and Galligo, A.: Automatic differentiation in Odyssee, Tellus, 1993.

1737

Schmidt, H. and Martin, D.: Adjoint sensitivity of episodic ozone in the Paris area to emissions5

on the continental scale, J. Geophys. Res., 108, 8561, doi:10.1029/2001JD00158, 2003.

1728

Stajner, I., Riishøjgaard, L. P., and Rood, R. B.: The GEOS ozone data assimilation system:

Specification of error statistics, Q. J. R. Meteorol. Soc., 127, 1069–1094, 2001. 1727

Stockwell, W. R., Middleton, P., and Chang, J. S.: The second generation regional acid depo-10

sition model chemical mechanism for regional air quality modeling, J. Geophys. Res., 95,

16 343–16 367, 1990. 1728

Struthers, H., Brugge, R., Lahoz, W. A., O’Neill, A., and Swinbank, R.: Assimilation of

Ozone Profiles and Total Column Measurements into a General Circulation Model, J. Geo-

phys. Res., 107, 4438, doi:10.1029/2001JD000957, 2002. 172715

Talagrand, O.: A posteriori evaluation and verification of analysis and assimilation algorithms,

in: Proceedings of the Workshop on Diagnosis of Data Assimilation Systems, European

Centre for Medium-range Weather Forecasts Reading, England, 2–4 November, 1998. 1741,

1750

Talagrand, O.: Objective Validation and Evaluation of Data Assimilation, in: Proceedings of the20

Seminar on Recent developments in data assimilation for atmosphere and ocean, ECMWF,

European Centre for Medium-range Weather Forecasts, 2004. 1750

Talagrand, O. and Courtier, P.: Variational assimilation of meteorological observations with the

adjoint vorticity equation. I: Theory, Q. J. R. Meteorol. Soc., 113, 1311–1328, 1987. 1731

van Loon, M., Builtjes, P. J. H., and Segers, A. J.: Data assimilation of ozone in the atmospheric25

transport chemistry model LOTOS, Environ. Model. and Software, 15, 603–609, 2000. 1730

Verlaan, M. and Heemink, A. W.: Reduced rank square root filters for large scale data as-

similation problems, in: Second International Symposium on Assimilation of Observations in

Meteorology and Oceanography, 1995. 1730

Weaver, A. and Courtier, P.: Correlation Modelling on the Sphere Using a Generalized Diffusion30

Equation, Q. J. R. Meteorol. Soc., 127, 1815–1846, data assimilation covariance matrix,

2001. 1740, 1743

Wesely, M. L.: Parameterization of surface resistances to gaseous dry deposition in regional-

1767

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/1725/2007/acpd-7-1725-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/1725/2007/acpd-7-1725-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD

7, 1725–1783, 2007

Variational emission

rate estimation

H. Elbern et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

scale numerical models, Atmos. Environ., 23, 1293–1304, 1989. 1737

Yanenko, N. N.: The method of fractional steps: solution of problems of mathematical physics

in several variables, Springer, 1971. 1735

1768

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/1725/2007/acpd-7-1725-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/1725/2007/acpd-7-1725-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD

7, 1725–1783, 2007

Variational emission

rate estimation

H. Elbern et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Table 1. Selected minimal background errors ǫabs(l ) for species in the RADM mechanism.

SO2 H2SO4 O3 NH3

20 ppb 5 ppb 15 ppb 2 ppb

CO HCHO,TOL NOx others

800 ppb 10 ppb 5 ppb 1 ppb
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Table 2. Charateristic error portion used to calculate the representativeness error for a ground

based observation.

ǫabs

Species
[ppbV]

SO2 0.4

NO2 1.4

NO 3.0

O3 1.2

CO 15.0
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Table 3. Radii of influence associated with each type of ground based in-situ observation.

LreprStation Type
[km]

Remote 20.0

Rural 10.0

Suburban 4.0

Urban 2.0

Traffic 1.0

Unknown 3.0
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Fig. 1. Example diurnal profiles applied in the emission module for six of the 19 emitted species.

Given are profiles for working day conditions of NO, NO2, lower alkanes, SO2, CO, and ammo-

nia, as indicated.
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Fig. 2. Horizontal influence radius as a function of model height.
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Fig. 3. Implemented background emission rate correlation matrix. All correlation values are

given in percent.
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Fig. 4. The EURAD integration domain resolved with 54 km resolution and locations of available

surface measurement stations for 9 August 1997. Contributions from the European Environ-

mental Agency (EEA, grey ⋆), environmental protection agencies from the German states (LUA,

black +) and the federal state (UBA, black ⋆), Switzerland (CH, grey �), Austria (AT, black ♦),

The Netherlands (NL, black △), Denmark (DAN, grey +), and the United Kingdom (UK, grey

×).
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Fig. 5. Iterative decrease of partial and total costs of the joint emission rate/initial value op-

timisation for the 24 h assimilation interval of 9 August 1997. Top panel with partial costs of

observed species. Bottom panel with cost types, where GD: surface in situ observations, BG:

background costs of initial values, EM: background costs of emission rates, TO: total costs.
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Fig. 6. Modelled and observed 48 h time series starting 9 August 00:00 UTC for a central Euro-

pean model grid box covering the 3 urban influenced measurement stations Gießen, Wetzlar,

and Linden, with values given by red dots with error bars. The assimilation window covers the

first 24 h within the grey shaded area. Later observations of 10 August serve for quality control

only. Top left panel SO2, top right: NO2, bottom left NO, and bottom right O3. Green dotted

line: initial value optimisation, blue solid line: emission rate optimisation, pink dash-dotted line:

combined initial value-emission rate optimisation. For comparison black dahed line: run with-

out any data assimilation on this and prior days, started with spin-up background values of the

spin-up period 1–2 August.
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Fig. 7. Mean observation-minus-model differences (top) and RMS differences (bottom) of all 8

two-day simulations for sulfur dioxide. Observations assimilated the first 24 h, with hours 25–

48 displayed for quality control only. Green stippled line: only initial value optimisation, blue

full line: only emission rate optimisation, pink dash-dotted line: combined initial value/emssion

rate optimisation. Dashed line: control run without any data assimilation in the case study, for

reference only.
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Fig. 8. Plotting conventions as for Fig. 7, except for ozone.
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Fig. 9. Mean observation-minus-model differences (left panels) and RMS differences (right

panels) of all 8 two-day simulations for sulfur dioxide (top panels) and ozone (bottom panels)

for 25% randomly selected observation sites. Green stippled line: first guess performance

at locations at randomly selected sites, the data of which is not assimilated. Blue full line:

performance at selected sites, withheld from assimilation. Dashed line: control run without any

data assimilation in the case study, for reference only. Observations assimilated the first 24 h

in the joint initial value/emission rate optimisation mode, with hours 25–48 displayed for quality

control only.
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a b

c d

Fig. 10. Emission correction factors for (a) sulfur dioxide, (b) nitrogen dioxide, (c) terminal

alkenes, and (d) isoprene at the surface layer, analysed by joint initial value/emission rate

optimisation with 24 h assimilation interval placed at 17 August 1997.
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a b

Fig. 11. Emission correction factors for (a) sulfur dioxide and (b) nitrogen dioxide as for Fig. 10,

however with emission inventory reduced by 50% throughout the case study, for convergence

control. 1782
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Fig. 12. Emission correction factors for nitrogen dioxide as for Fig. 10, however without any

assimilation of NOx observations throughout the case study.
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