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Abstract

A variety of thermodynamic models have been developed to predict inorganic gas-
aerosol equilibrium. To achieve computational efficiency a number of the models rely
on a priori specification of the phases present in certain relative humidity regimes. Pre-
sented here is a new computational model, named UHAERQO, that is both efficient and
rigorously computes phase behavior without any a priori specification. The computa-
tional implementation is based on minimization of the Gibbs free energy using a primal-
dual method, coupled to a Newton iteration. The mathematical details of the solution
are given elsewhere. The model also computes deliquescence and crystallization be-
havior without any a priori specification of the relative humidities of deliquescence or
crystallization. Detailed phase diagrams of the sulfate/nitrate/ammonium/water system
are presented as a function of relative humidity at 298.15 K over the complete space of
composition.

1. Introduction

The inorganic constituents of atmospheric particles typically consist of electrolytes of
ammonium, sodium, calcium, sulfate, nitrate, chloride, carbonate, etc. The phase state
of such a mixture at a given temperature and relative humidity will tend to thermody-
namic equilibrium with the gas phase. A variety of thermodynamic models have been
developed to predict inorganic gas-aerosol equilibrium (Table 1; see also Zhang et al.,
2000). The models can be distinguished based on two general features: (1) the method
of computing activity coefficients of the aerosol-phase species; and (2) the numerical
technique that is used to determine the equilibrium state. Obtaining the equilibrium
composition of the aerosol is challenging because multiple liquid and/or solid phases
can exist, depending on the chemical composition, ambient relative humidity (RH), and
temperature.

One may calculate the composition of the aerosol either by solving the set of non-
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linear algebraic equations derived from mass balances and chemical equilibrium or
by performing a direct minimization of the Gibbs free energy. Direct minimization of
the Gibbs free energy has tended to be computationally demanding, making its use in
large-scale atmospheric models unattractive, since the thermodynamic model must, in
principle, be implemented in each grid cell at each time step. The most challenging
aspect of the numerical determination of the equilibrium is prediction of the partitioning
of the inorganic components between aqueous and solid phases in the aerosol. For
computational efficiency, a number of the current methods (see Table 1) rely on a priori
specification of the presence of phases at a certain relative humidity and overall com-
position; two models that fall into this category are SCAPE2 and ISORROPIA, both
of which employ divided RH and composition domains in which only certain equilibria
are assumed to hold. While these assumptions greatly facilitate numerical determina-
tion of the equilibrium, they lead to approximations in the phase diagram of the system
that may be undesirable (Ansari and Pandis, 1999). What is ultimately needed is an
efficient computational model for the equilibrium partitioning of aerosol components
between aqueous and solid phases that does not rely on a priori knowledge of the
presence of certain phases at a given relative humidity and overall composition.

The physical state of the atmospheric aerosol phase depends on the RH history of
the particle. As RH increases from a value at which the particles are dry, crystalline
particles spontaneously take up water at the deliquescence RH (DRH) transforming
into aqueous droplets containing dissolved ions; as AH decreases from a value above
the DRH, aqueous particles do not crystallize (effloresce) until the crystallization RH
(CRH) is reached. Between the DRH and the CRH, particles may be either crystalline
or aqueous, depending on their RH history. The upper and lower branches of the
particle diameter versus RH behavior constitute a hysteresis loop, in which crystalline
particles below the DRH follow the lower ascending branch and aqueous particles
above the CRH follow the upper descending branch. Current aerosol thermodynamic
models account for the deliquescence and efflorescence hysteresis based on a priori
knowledge of the presence of solid phases at a certain relative humidity and overall
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composition. They either assume crystallization of a solid in a multicomponent solution
once the RH drops below the DRH of the solid salt, or neglect solidification altogether.
What is needed is a model that predicts both deliquescence and crystallization based
purely upon the thermodynamics.

The goal of this paper is to present the results of application of a new inorganic
gas-aerosol equilibrium model (UHAERO) that is based on a computationally efficient
minimization of the Gibbs free energy, and in which no a priori assumptions are made
about the phases present at any particular relative humidity and temperature. Also
included in the model is a formulation based on classical theory of nucleation kinetics
that simulates the transformation from a metastable phase into a thermodynamically
more favorable phase. This physically consistent theory predicts explicitly the physical
state of the particle and the deliquescence and efflorescence hysteresis. The model
is capable of representing the phase transition and state of atmospheric aerosols over
the full range of relative humidity regimes.

The next section summarizes the minimization problem; its mathematical founda-
tion and computational implementation are presented elsewhere (Amundson et al.,
2005,7). The third section discusses the determination of phase transitions, such as
deliquescence and crystallization. The remainder of the paper is devoted to computa-
tion of aerosol phase equilibria in the sulfate/nitrate/ammonium system.

2. Determination of equilibrium

The multicomponent chemical equilibrium for a closed gas-aerosol system at constant
temperature and pressure and a specified elemental abundance is the solution to the
following problem arising from the minimization of the Gibbs free energy, G,

Min  G(ny, ng, ng) = njpu, +npu, +nug, (1)

subject to n,>0, n,>0, n;>0, and

Ayng+Ain; +Ang = b, (2)
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where ng, n;, ng are the concentration vectors in gas, liquid, and solid phases, re-
spectively, Hg, 1), Ug are the corresponding chemical potential vectors, Ag, A, A are
the component-based formula matrices, and b is the component-based feed vector.
Condition (2) expresses the fact, for example, that in calculating the partition of sulfate
between aqueous and solid phases the total sulfate concentration is conserved, while
maintaining a charge balance in solution.

The chemical potential vectors are given by

Mg =py+ATInay, (3)
u =p)+RTIna, (4)
M = 1, (5)

where R is the universal gas constant, 7 is the system temperature, ug and u? are the
standard chemical potentials of gas and liquid species, respectively, and a, and a, are
the activity vectors of the gas and liquid species. For ionic components the elements
of the activity vector a,=y;m;, where y; and m; are the activity coefficient and molality
(mol kg'1 water), respectively, of component /. The water activity is denoted by a,,.
Equations (1)—(5) represent a constrained nonlinear minimization problem.

Water exists in the atmosphere in an amount on the order of g m~2 of air while in
the aerosol phase at less than 1 mg m~° of air. As a result, the transport of water to
and from the aerosol phase does not affect the ambient partial pressure of water in
the atmosphere, which is controlled by larger scale meteorological factors. Thus the
equilibrium of water between the gas and aerosol phases is defined by a,,=RH, where
RH is the relative humidity in the atmosphere, expressed as a fraction (Seinfeld and
Pandis, 1998).

The key parameters in the equilibrium calculation are the activity coefficients. For
aqueous inorganic electrolyte solutions, the Pitzer molality-based model (Pitzer, 1973,
1975; Pitzer and Mayorga, 1973) had been widely used, but it is restricted to high
RH regions where solute molalities are low. These concentration restrictions were
relaxed with the Pitzer, Simonson, Clegg (PSC) mole fraction-based model (Clegg and
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Pitzer, 1992; Clegg et al., 1992). On a mole fraction scale, the activity of component
i is expressed as a;=f; x;, where f; is the mole fraction-based activity coefficient, and
x; is the mole fraction of species /. The molality- and mole fraction-based activity
coefficients are related by f,x,=y;. A number of methods exist for calculating the water
activity a,,. The most widely used is the ZSR mixing rule (Stokes and Robinson, 1966;
Clegg et al., 2003), in which only data on binary solute/water solutions are needed to
predict the water content of a multicomponent mixture. A more accurate determination
of the water content can be obtained using the solvent activity model of Clegg et al.
(1998a,b), which includes interactions between solutes, in addition to those between
the solutes and water; in this case, the water activity is calculated from a,, =7, x,,.

The numerical algorithm for thermodynamic equilibrium problems related to model-
ing of atmospheric inorganic aerosols has been implemented in UHAERO as module 1
(inorganic thermo) and incorporated together with two mole fraction based multicompo-
nent activity coefficient models, namely the PSC model and the Extended UNIQUAC
(EXUNIQUAC) model (Thomsen and Rasmussen, 1999). The PSC model has been
incorporated in the Aerosol Inorganic Model (AIM). The AIM thermodynamic mod-
els are considered as the most comprehensive and accurate over the entire range
of compositions and relative humidities. To assess the computational performance,
UHAERO module 1 using PSC (UHAERO-PSC) will be benchmarked against pre-
dictions obtained with AIM. The phase state and chemical composition of ammo-
nium/sulfate/nitrate aerosols at thermodynamic equilibrium will be investigated via the
reconstruction of comprehensive phase-diagrams. UHAERO-PSC can be run in two
modes: (1) the water content in the system is specified; (2) the system is equilibrated
to a fixed relative humidity (RH). In case (2), the aerosol water content is directly
computed from the minimization process, i.e., without using an empirical relationship
such as the ZSR equation. The water activity is predicted using PSC in both cases.
Also, in both cases, the equilibration of trace gases between the vapor and condensed
phases can be enabled or disabled as required, as can the formation of solids, which
allows the properties of liquid aerosols supersaturated with respect to solid phases to
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The numerical minimization technique of UHAERO is based on a primal-dual active-
set algorithm, which is described in detail elsewhere (Amundson et al., 2005,7). In
short, the algorithm applies Newton’s method to the perturbed Karush-Kuhn-Tucker
(KKT) system of equations arising from the minimization of G at each step to find the
next primal-dual approximation of the solution. The active set method adds a solid salt
when the components reach saturation and deletes a solid phase from the active set
when its concentration violates the non-negativity constraint. Phase stability criteria
are incorporated into the algorithm to ensure that it converges to a stable equilibrium
rather than to any other first-order optimality point, such as a maximum, a saddle point,
or an unstable local minimum.

3. Computation of the crystallization of metastable solutions

Transformation from a metastable phase, such as a supersaturated aqueous solution,
to a thermodynamically more favorable phase, such as a crystal salt, is initiated by
the nucleation and growth of a germ of the new phase. It is reasonable to assume
that the overall time over which crystallization occurs is controlled by the time required
for nucleation of a single germ, and that the subsequent crystal growth is rapid. The
energy required for the formation of a germ of volume Vg, and surface area Agen,
is the difference in the energy cost of creating the two-dimensional interface with the
surrounding aqueous medium and the energy released from the three-dimensional
association of the germ:

AGgerm = _Aus pgerngerm + O-germAgerm- (6)

where pgerm is the molecular density of the germ and oyr, is its surface tension. The
free energy barrier AG,,; that must be surmounted to form a nucleus of critical size is
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that at the maximum of AGye,r,; we have

3
167 Ogerm

germ

where S (>1) is the saturation ratio of the aqueous phase, which is supersaturated
with respect to the salt that forms a nucleus. Thus, AG,; is the energy required for the
formation of a critical nucleus for which the energy released from its formation exceeds
the energy cost of creating the interface with the medium. In Eq. (7), the constant factor
Cgeom IS @ geometrical parameter defined as

1 A
germ
Cgeom = @ V2 (8)
germ

In general, c4eom=1, Where c4eom=1 holds for a spherical nucleus. For a cubic

nucleus, cgeongm.gog. For most salts of interest here, cgeom~2. In Table 3
of Cohen et al. (1987), cgeom,Nam:% and Cyeom, (NH,),s0,=2-072; no data are avail-
able for other crystals. In the present calculation, we employ the approximation
Cgeom, (NH,)sH(SO,), =Cgeom,(NH,),S0,- 1h€ molecular density of the germ pgerm can be
obtained via pgerm : =V+, where vgerm is the molecular volume. In Table 1 of Tang

germ

and Munkelwitz (1994) vgerm=85.307 for (NH4),SO, and 148.99 for (NH,)3H(SO,),; no
data are available for other crystals.

According to classical nucleation theory, the nucleation rate J, (cm™2s7"), describ-
ing the number of nuclei (i.e., a critical germ) formed per volume per time, is given by:

_AG..
Jnucl = JO exp ( Cm) ; 9)

KT

where k is the Boltzmann constant, and J,, (cm_3 s‘1) is a pre-exponential factor that is
related to the efficiency with which collisions between supernatant ions and the crystal
9298

ACPD
5, 9291-9324, 2005

UHAERO

N. R. Amundson et al.

Title Page

Abstract | Introduction

Conclusions| References

Tables | Figures
| e
I B

Back | Close |

Full Screen / Esc

Print Version |

Interactive Discussion |

EGU


http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/5/9291/acpd-5-9291_p.pdf
http://www.atmos-chem-phys.org/acpd/5/9291/comments.php
http://www.copernicus.org/EGU/EGU.html

10

15

20

25

interface produce crystal growth. J, usually is approximated by Jozn%, where N is

the molecular concentration in the liquid phase and h is Planck’s constant. J, has a
value of order 1024-1036, and we choose J0=103° here. For salt nucleation from an
aqueous supersaturated droplet, the nucleation rate J,,,; depends on the mole frac-
tion composition of the aqueous particle and, consequently, ambient relative humidity
when water activity is maintained in equilibrium with the gas-phase. Nucleation is a
stochastic process, that can be approximated by the Poisson distribution. After a time,
t, the probability of an individual particle having produced a critical nucleus is given
by Pruci(t)=1-exp(=Jnya Vp 1), Where V, (cm3) is the particle volume. This probability
also describes complete crystallization when crystal growth is rapid compared to the
nucleation time. The expectation time 7, after which a particle of volume V, forms a

single nucleus is given by Tnuclzm.

In order to apply the classical nucleation theory (CNT) in the computation of crys-
tallization of salts on the metastable branch of the hysteresis curve, one needs sur-
face tension data for the supersaturated aqueous salts solutions. Although a num-
ber of methods for calculating surface tension of dilute agqueous solutions of single
electrolytes exist, there are few theoretical models available for the surface tension of
aqueous solutions of highly concentrated and mixed electrolytes (Chen, 1994; Li et al.,
1999; Li and Lu, 2001; Hu and Lee, 2004). Topping et al. (2005) present a summary of
models for the surface tension of aqueous electrolyte solutions. We first calculate the
surface tensions for the single-electrolyte aqueous solutions, H,SO, and (NH;),SO,,
respectively, to correlate model parameters against the laboratory data reported in
Martin et al. (2000) for H,SO,/H,0 and HNO3;/H,O and in Korhonen et al. (1998) for
(NH,4)»,S0O,4/H,0. No data are available for NH;NO3;/H,O. We employ Li and Lu’s (Li
and Lu, 2001) formula for the surface tension of single electrolyte aqueous solutions,

0 =0, - RTT % In(1 + Kyxawx). (10)

where o, is the pure water surface tension at the system temperature and ayy is the
activity of the electrolyte MX. The two parameters of Eq. (10), F,\”;‘;( and Ky x are ob-
9299
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tained from correlating the surface tension o against the measurements of Martin et al.
(2000) and Korhonen et al. (1998) for MX=H,SO, and MX=(NH,),SO,, respectively.
Without introducing any additional parameters or empirical coefficients, the fitted pa-
rameters are capable of predicting surface tensions of mixed-electrolyte aqueous solu-
tions. The calculation is based the formula for the surface tension of mixed electrolyte
aqueous solutions (Li and Lu, 2001),

n
o=0,-RT > I°In(1+Ka,), (11)
i=1
where, for the binary system (NH,),SO,/H,SO,, we have n=2, j € {1,2}={(NH,),SO,,
H,SO,}, and FI% and K; are determined from Eq. (10). Note that, for the predicted
surface tension of this binary aqueous electrolyte system, the acid and its salt have
opposite effects on surface tension as their concentrations increase.
We employ Antonoff’s rule to obtain the surface tension of crystalline germs in aque-
ous electrolyte solutions, ogey, (i.€., between the crystal and the liquid), as the absolute
value of the difference between O¢ysiai/air @Nd Ojiguid/air that is

Ogerm *= Ocrystal/liquid = |Gcrystal/air - O—quuid/air|' (12)

In Eq. (12), the surface tension of aqueous electrolyte solutions 0jqiq/+ir &N be ob-
tained from Eq. (11), whereas Oystai/air is @ constant for a given crystal and can be de-
termined as a parameter based on one value of Ogerms which, in turn, can be computed
from one measurement of the efflorescence RH of the corresponding crystalline salt.
Data for the surface tension of salt (NH4),SO, in the solute mixture of ASR=2 (ASR:
ammonium-sulfate-ratio) are reported by Cohen et al. (1987). The measured value
O(NH,),s0, (ASR=2)=0.0368 kg s™2 is then used to determine the parameter Ocrystal/air
in Eq. (12) for the calculation of the surface tension of crystalline germs of (NH,),SO,
in aqueous electrolyte solutions of 0<ASR<2. Since there are apparently no labora-
tory data for the surface tension of the salt (NH,)3H(SO,),, the parameter oyysiai/air
in Eq. (12) for (NH,4)3H(SO,), is computed from the measured efflorescence RH of
9300
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the corresponding crystalline salt in the solute mixture of ASR=1.5, reported by Martin
et al. (2003). More precisely, the surface tension of crystalline germs (NH,)3H(SO,),
in aqueous electrolyte solutions of 0<ASR<2 is determined by adjusting the parame-
ter Ogrystal/air i EQ. (12) so that its value at ASR=1.5 matches the lower bound of the
measured efflorescence RH=22%.

The active-set numerical solution strategy described above has been extended to
the computation of crystallization, the details of which are given elsewhere (Amundson
et al., 2005). In short, the supersaturated aqueous salts that are expected to crystallize
in a given time interval are converted into crystalline components. Then the matrix
algebra is updated to reflect the new set of crystal components, and the minimization
problem is solved by Newton iteration.

4. Simulation of inorganic phase equilibria and deliquescence/crystallization

The system that is arguably the most important with respect to atmospheric gas-
aerosol equilibrium and aerosol state is that of sulfate, nitrate, ammonium, and water.
Particles consisting of such species can be fully aqueous, fully crystalline, or consist
of liquid-solid mixtures, depending on the relative concentrations of the components,
RH, and temperature (Martin, 2000). In the present work we focus on this system and
present results of application of UHAERO to the computation of its phase diagrams.

To reconstruct phase diagrams of the five-component  system
SOi‘/NOg/NHZ/H“L/HzO, we use the X and Y composition coordinates intro-
duced by Potukuchi and Wexler (1995) and define:

) | o Dy
X = Ammonium Fraction = ———=* (13)
bNHZ + bH*
_ o = DsoF
Y = Sulfate Fraction = (14)

Den~2- + b -
SO; NO,
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where the system feeds bsof;’ bNo;s bNH;: and by. are subject to

electro-neutrality. It is more convenient to use the feeds in term of
(NH4),S0O,/H,S0,/NH4NO5/HNO3/H,0 and re-define the X and Y coordinates:

2D(NH,),s0, + PNH,NO,

X = 2b(NH,),50, + 2bn,s0, + Paryno, + o, (15)

Yy = b(nH,),s0, + PH,so, | .
bw,),s0,  bH,s0, T ONH,NO, T PHNO,

Thus, for a fixed (X,Y) coordinate, we can define a non-unique feed com-

position for the system (NH,),SO,4/H,SO,4/NH4NO3/HNO3/H,O as by, 304—1X,
szso4=%—%X, bNH4N03 ]:)):, bHNO =0, if X<1IY; otherwise, bNH4 )80, = 1_):),,

bi,50,=0, bn,No, =X —Fa7s Drno,=1-X

For Case (1) where the water content of the system needs to be specified, we intro-
duce an additional coordinate Z that has values between 0 and 1 and define the water
content by, to be by o 1}:), 7= The coordinate Z is actually a water fraction in the
sense that it can be interpreted as

(1+Y)by,0

= ) (17)
(1 + Y)bHQO + bNHZ + bH+

To facilitate the computation of the boundaries in phase diagrams, we also introduce
the fractions

f O (18)
N by + b + (1+Y)b0”

biye
f + = 5 19
" by + b + (1+Y)byo (19)
a0 = 1 = (Fupz + fue). (20)
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which actually are the barycentric coordinates of the unit triangle with vertices (1 +
Y)H,0, NHZ and H*. For a fixed Y, the (X, Z) coordinate is interchangeable with the
fraCtion Coordinate (fNHZ, fH+, szo) Via. fNHZ =X(1 —Z), fH+ =(1 —X)(1 —Z), fH20=Z, and,

fNH*
NH}

conversely, X= , Z=1 _(fNHZ + fy+). Therefore, the two dimensional (2-D) phase

fam+ i+
diagrams for fixed4 Y values can be generated in three coordinate systems: (X, RH),
(X, Z) and (fy-, fNHZ)’ which can be chosen on the basis of computational or graphic
convenience.

Figure 1 shows the ammonium/sulfate/nitrate phase diagram at 298.15K computed
with UHAERO. Abscissa X is the cation mole fraction arising from NHZ, with the re-
mainder coming from H*. This can be considered as the degree of neutralization of
the particle. Ordinate Y is the anion mole fraction arising from SOi‘, with the bal-

ance being made up of NO®~. The four corners of Fig. 1 thus represent sulfuric acid
(top left), ammonium sulfate (top right), ammonium nitrate (bottom right), and nitric
acid (bottom left). Coordinate Z is the third dimension, which is relative humidity. Fig-
ure 1 is identical to Fig. 1a of Martin et al. (2004), which was computed using the
same activity coefficient model as that employed here. Seven possible solid phases
exist in this system at 298.15K; these are labeled as A through G. A denotes ammo-
nium sulfate, (NH,),SO, (AS); B denotes letovicite, (NH,)3H(SO,), (LET); C denotes
ammonium bisulfate, NH,HSO, (AHS); D denotes ammonium nitrate, NH,NO3 (AN);
E denotes the mixed salt, 2NH,NO4-(NH,),SO, (2AN-AS); F denotes the mixed salt,
3NH4NO3:(NH,)»,SO, (BAN-AS); and G denotes the mixed salt of ammonium nitrate
and ammonium bisulfate, NH,NO3-NH,HSO, (AN-AHS). Regions outlined by heavy
black lines show the first solid that reaches saturation with decreasing RH. The thin
labeled solid lines are deliquescence relative humidity contours, and the dotted lines
give the aqueous-phase X-Y composition variation with decreasing relative humidity
as more solid crystallizes. These so-called liquidus lines were introduced by Potukuchi
and Wexler (1995).

Figures 2a, 4a, 6a, 8a and 10a show the computed phase diagrams in the
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(X, RH) coordinate, with tracking of the presence of each phase, for the system
(NH,4)»,S0,4/H,S0,/NH4NO5;/HNO;/H,0 at 298.15 K and fixed sulfate fraction Y =1,
0.85, 0.5, 0.3 and 0.2, respectively. For each region of space whose boundaries are
marked with bold lines, the existing phases at equilibrium are represented. Labels on
the contours (—) present the aqueous phase pH values (defined as pH=-log;q ay-)
as a function of X and RH. Accordingly, Figs. 2b, 4b, 6b, 8b and 10b show
relative particle mass contours (—) as a function of X and RH for the system
(NH4),S0,/H,S0O,4/NH4NO3/HNO3/H,0 at 298.15K and fixed sulfate fraction Y =1,
0.85, 0.5, 0.3 and 0.2, respectively. The relative particle mass, also called particle

mass growth factor, is defined as the ratio M";/T” of the particle mass W, at a specific RH
ry

and (X,Y) composition with respect to the particle mass Wy, of the same (X, Y) com-
position at the “dry-state”. Since W =Wy, + Wiyaer, Where W qe, is the water content
in the particle system, by subtracting by 1, the relative particle mass gives the relative
water content M,;/WTa:yef in the particle system.

To further demonstrate the capability for simulating the deliquescence be-
havior, Figs. 3, 5, 7, 9 and 11 show deliquescence curves for the system
(NH4),S0,/H,S0,/H,0O at 298.15K for various (X, Y) compositions. These figures
correspond to the vertical cuts at the corresponding X-values in Figs. 2 (Y=1), 4
(Y=0.85),6 (Y=0.5),8 (Y=0.3),and 10 (Y=0.2).

Figure 12 depicts the efflorescence RH for the system (NH4),SO4/H,SO4/H,0O at
298.15K. The activity coefficient calculation is carried out using the ExUNIQUAC
based thermodynamic model (Thomsen and Rasmussen, 1999). The labeled solid
lines are the efflorescence RH curves that are reconstructed based on the expectation
time contours of efflorescence. Labels on the contours (—) present the expectation
time (min) of efflorescence in log scale, log 7,4, for AS and LET. The dotted line and
dashed line are the crystallization RH observations of initial crystal formation and com-
plete crystallization, respectively, reported in Martin et al. (2003), where laboratory
data of the crystallization RH of particles at 293 K throughout the entire sulfate-nitrate-
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ammonium composition space are expressed as an empirical polynomial.

5. Computational efficiency

The initialization of UHAERO has two modes depending on the circumstance of its
application: (a) a so-called cold start, in which no a priori information is available and
the system is initialized as an infinitely dilute solution, or (b) a warm-start, in which a
convergent solution of a neighbor state is available to initialize the system; this is the
case when applying it in conjunction with a 3-D chemical transport model. The com-
putational cost for Case (1) (i.e., the water content is specified) is estimated with the
model runs for generating phase diagrams. For the contour plots shown in Fig. 13,
a uniform grid with %n(n + 1) (n=100) points on the unit triangle is used. When the
warm start strategy is applied where the model run for the (i,j) point is initialized with
the solution of the (i,j-1) point, the elapsed time is 2.32s (for Y=0.85) on a Linux PC
equipped with Intel(R) Pentium(R) 4 CPU 3.06 GHz processor. It requires an average
4.25 Newton iterations per grid point with a stopping criterion for convergence being
that the square-root of the residuals does not exceed 1078, If a cold start is used for
generating contours, the average number of Newton iterations required for the conver-
gence is 14.6. The computational cost for Case (2) (RH is fixed) is in the same order
as that of Case (1). By using a uniform grid of n? points (n=100) on the unit square
and applying the same warm-start strategy, the generation of the contour plots in the
(X, RH) coordinate as shown in Fig. 4 takes 4.3 s (for Y'=0.85), a time that is doubled
in comparison with Case (1) due to the doubling of the grid points. The average New-
ton iterations per grid point is 4.1. The computation times quoted above are those for
generation of the entire phase diagram of 10* points. If implemented in a 3-D atmo-
spheric model with, say, 50x50x10=25 000 grid cells, then the total computing time
needed per time step for the thermodynamic calculation is estimated to be about 10s.
Moreover, this corresponds to a very strict convergence criterion that the square root
of the residuals is less than 1078, The same efficiency is achieved in either mode of
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application; there is no need, for example, to iterate on the water content as is required
in several other models.

6. Conclusions

Aerosol thermodynamic equilibrium models are a basic component of three-
dimensional atmospheric chemical transport models of aerosols. Because these equi-
librium models are computationally intensive, those that are currently implemented in
3-D models incorporate a priori specification of phase behavior in order to facilitate
computation. Presented here is a new inorganic aerosol thermodynamic computa-
tional model that is sufficiently numerically efficient to be included directly in 3-D at-
mospheric models. The model also includes a first-principles calculation of deliques-
cence/crystallization behavior based on liquid-solid nucleation theory. Extensive re-
sults are presented for the phase behavior in the sulfate/nitrate/ammonium/water sys-
tem, using the Pitzer-Simonson-Clegg (PSC) activity coefficient model.

Acknowledgements. This work was supported by US Environmental Protection Agency grant
X-83234201. The authors thank S. L. Clegg for providing the code for the PSC model based
activity coefficient calculation.
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Table 1. Gas-aerosol equilibrium models’.

Model System Activity  coefficient Computational method
name? addressed method®
SCAPE2 NH;/Na*/Ca®*/  Choice of Brom- Classifies problem into one of several subdomains.
Mg*/K*/NOg/ ley, KM, Pitzer @ Nonlinear equations solved by iterative bisection.
SO;Z/CF/CO:Z; 298.15K. ZSR for Each salt assumed to deliquesce at its own DRH.
water content.
ISORROPIA  NH;/Na*/NO;/ Bromle @ 298.15K. Classifies problem into one of several subdomains.
SO;Z/CI‘ ZSR for water con- Nonlinear equations solved by iterative bisection.
tent. Mixture assumed to deliquesce at RH > lowest
DRH of all salts present.
EQUISOLV Il NH;/Na*/Ca®*/ Bromley®. ZSR for Nonlinear equations solved one at a time then iter-
Mg*/K*/NOg/ water content. ated to to convergence.
S0,%/CI"/CO5™
GFEMN NH;/Na*/NO;/ PSC @ 298.15K. Iterative Gibbs free energy minimization.
SOf/CI‘ ZSR for water con-
tent.
AIM2 (Model NH;/Na*/NO;/ PSC @ 298.15K. lterative Gibbs free energy minimization.
1] SO;2/CI‘ ZSR for water con-
tent.
MESA solid-liquid: Choice of PSC, Simultaneous iteration of all solid-liquid equilibria
NHZ/Na+/Ca2+/ MTEMd/KM, Brom- using pseudo-transient continuation method.
NO;/SOZZ/CI_ ley @ 298.15K. ZSR
for water content.
ADDEM NH,/Na*/NO;/  PSC. Clegg solvent FFSQP (Fast Fortran Sequential Quadratic Pro-
5022/C|- activity model for wa-  gramming) to minimize Gibbs free energy.
ter content.
UHAERO NHZ/Na*/NO;/ Choice of PSC, ExU- Minimization of Gibbs free Energy (see text).
so;?/cr NIQUAC.

1 Table adapted from Zaveri et al. (2005b).

2 SCAPE2 (Kim et al., 1993a,b; Kim and Seinfeld, 1995; Meng et al., 1995); ISORROPIA (Nenes et al., 1998); EQUISOLV Il (Jacobson et al., 1996; Jacobson,

1999); GFEMN (Ansari and Pandis, 1999); AIM2 (Clegg et al., 1998a,b; Wexler and Clegg, 2002); MESA (Zaveri et al., 2005a); ADDEM (Topping et al., 2005)

3 Bromley (Bromley, 1973); KM (Kusik and Meissner, 1978); Pitzer (Pitzer and Mayorga, 1973); PSC (Pitzer and Simonson, 1986; Clegg et al., 1992, 1998a,b;

Wexler and Clegg, 2002); MTEM (Zaveri et al., 2005b); ZSR (Stokes and Robinson, 1966); EXUNIQAC (Thomsen and Rasmussen, 1999)

4 Binary activity coefficients for the electrolytes in the NHI/Na"/NOg/SO;Z/CI' system are temperature dependent, while they are fixed at 298.15K for the

Ca®* Mg* /K*INO3 /S0, 2/CI™ICO3™ system.
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Fig. 1. Water activity contours at saturation (—) for the aqueous solution of
SOi‘/NO;/NHZ/H*/HZO at 298.15 K. The dotted lines (---) indicate the subsequent aqueous
phase (X, Y) composition with decreasing relative humidity as more solid crystallizes. Phase
boundaries are marked with bold lines separating different solid phases. All the solid phases
are identified and are marked. Labels on the contours present water activities at saturation
which represent the deliquescence relative humidity values. This figure corresponds to the
contour plot for Fig. 1 in Potukuchi and Wexler (1995) and Fig. 1a in Martin et al. (2004).
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Fig. 3. Deliquescence curves for the system (NH,),SO,/H,SO,/H,0 at 298.15 K. Relative par-
ticle mass with changing relative humidity for several values of X. (a): (1) X=0.9, (2) X=0.73,
(3) X=0.6. (b): (4) X=0.4, (5) X=0.3, (6) X=0.1. Curves (1) to (6) represent the relative
particle mass on the vertical cuts at the corresponding X-values in Fig. 2b.
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Fig. 4. Reconstruction of the phase diagram for the system

(NH,),S0,/H,S0,/NH,;NO3/HNO4/H,O with the sulfate fraction Y=0.85 at 298.15K with
tracking of the presence of each phase. For each region of space whose boundaries are
marked with bold lines, the existing phases at equilibrium are represented. (a) Labels on the
contours (—) present the aqueous phase pH values (equal to —log;, ay-). (b) Labels on the
contours (—) present the relative particle mass.
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Fig. 5. Deliquescence curves for the system (NH,),SO,/H,SO,/NH,NO3/HNO4/H,O with the
sulfate fraction Y'=0.85 at 298.15 K. Relative mass with changing relative humidity for several
values of X. (a): (1) X=0.98, (2) X=0.9, (3) X=0.77. (b): (4) X=0.74, (5) X=0.7, (6) X=0.6
Curves (1) to (6) represent the relative particle mass on the vertical cuts at the corresponding
X-values in Fig. 4b.
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Fig. 6. Reconstruction of the phase diagram for the system

(NH,4),S0,/H,SO,/NH,NO;/HNO,/H,O with the sulfate fraction ¥'=0.5 at 298.15K with
tracking of the presence of each phase. For each region of space whose boundaries are
marked with bold lines, the existing phases at equilibrium are represented. (a) Labels on the
contours (—) present the aqueous phase pH values (equal to —log,q ay-). (b) Labels on the
contours (—) present the relative particle mass.
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Fig. 7. Deliquescence curves for the system (NH,),S0O,/H,SO,/NH,NO3/HNO4/H,O with the
sulfate fraction Y'=0.5 at 298.15K. Relative mass with changing relative humidity for several
values of X. (a): (1) X=0.95, (2) X=0.9, (3) X=0.86, (4) X=0.84. (b): (5) X=0.8, (6) X=0.77,
(7) X=0.75, (8) X=0.7. Curves (1) to (8) represent the relative particle mass on the vertical
cuts at the corresponding X-values in Fig. 6b.
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Fig. 8. Reconstruction of the phase diagram for the system |
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Fig. 9. Deliquescence curves for the system (NH,),SO,/H,SO,/NH,NO;/HNO4/H,O with the
sulfate fraction Y'=0.3 at 298.15K. Relative mass with changing relative humidity for several
values of X. (a): (1) X=0.98, (2) X=0.95, (3) X=0.9. (b): (4) X=0.87, (5) X=0.85, (6) X=0.8,
(7) X=0.77. Curves (1) to (7) represent the relative particle mass on the vertical cuts at the
corresponding X-values in Fig. 8b.
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Fig. 10. Reconstruction of the phase diagram for the system |

(NH,),S0O,/H,S0,/NH,NO;/HNO3;/H,O with the sulfate fraction ¥=0.2 at 298.15K with
tracking of the presence of each phase. For each region of space whose boundaries are
marked with bold lines, the existing phases at equilibrium are represented. (a) Labels on the Print Version

contours (—) present the aqueous phase pH values (equal to —log,q ay-). (b) Labels on the
Interactive Discussion

contours (—) present the relative particle mass.
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Fig. 11. Deliquescence curves for the system (NH,),SO,/H,SO,/NH,NO3/HNO4/H,O with the
sulfate fraction Y'=0.2 at 298.15K. Relative mass with changing relative humidity for several
values of X. (a): (1) X=0.98, (2) X=0.93, (3) X=0.9, (4) X=0.85. (b): (5) X=0.83, (6) X=0.7,
(7) X=0.6, (8) X=0.3. Curves (1) to (6) represent the relative particle mass on the vertical cuts
at the corresponding X-values in Fig. 10b.
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Efflorescence RH of (NH4)2804/HZSO4/H20 at 298.15K
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Fig. 12. Efflorescence RH for the system (NH,),SO,/H,SO,/H,O at 298.15K. Labels on the
contours (—) present the expectation time (min) of efflorescence in log scale. The dotted line
and dashed line are, respectively, the crystallization RH observations at 293 K of initial crystal
formation and complete crystallization (Martin et al., 2003).
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Fig. 13. Reconstruction of the phase diagram for the system
(NH,),S0O,/H,S0O,/NH,NO;/HNO;/H,O with the sulfate fraction Y=0.85 at 298.15K in
the (f4-, fNH;) coordinate with tracking of the presence of each solid phases. For each region
of space whose boundaries are marked with bold lines, the existing solid phases at equilibrium
are represented. Labels on the contours (—) present the water activity values as a function of
the fractions ;. and fNH;-
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