
HAL Id: hal-00327870
https://hal.science/hal-00327870

Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formation of solid particles in synoptic-scale Arctic
PSCs in early winter 2002/2003

N. Larsen, B. M. Knudsen, S. H. Svendsen, T. Deshler, J. M. Rosen, R. Kivi,
C. Weisser, J. Schreiner, K. Mauerberger, F. Cairo, et al.

To cite this version:
N. Larsen, B. M. Knudsen, S. H. Svendsen, T. Deshler, J. M. Rosen, et al.. Formation of solid
particles in synoptic-scale Arctic PSCs in early winter 2002/2003. Atmospheric Chemistry and Physics
Discussions, 2004, 4 (3), pp.2485-2512. �hal-00327870�

https://hal.science/hal-00327870
https://hal.archives-ouvertes.fr


ACPD
4, 2485–2512, 2004

Formation of solid
particles in

synoptic-scale Arctic
PSCs

N. Larsen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

© EGU 2004

Atmos. Chem. Phys. Discuss., 4, 2485–2512, 2004
www.atmos-chem-phys.org/acpd/4/2485/
SRef-ID: 1680-7375/acpd/2004-4-2485
© European Geosciences Union 2004

Atmospheric
Chemistry

and Physics
Discussions

Formation of solid particles in
synoptic-scale Arctic PSCs in early winter
2002/2003
N. Larsen1, B. M. Knudsen1, S. H. Svendsen1, T. Deshler2, J. M. Rosen2, R. Kivi3,
C. Weisser4, J. Schreiner4, K. Mauerberger4, F. Cairo5, J. Ovarlez6, H. Oelhaf7,
and R. Spang8

1Danish Meteorological Institute, Lyngbyvej 100, DK-2100 Copenhagen, Denmark
2University of Wyoming, Laramie, WY 82071, USA
3Finnish Meteorological Institute, Arctic Research Centre, 99600 Sodankyla, Finland
4Max-Planck-Institut für Kernphysik, Bereich Atmosphärenphysik, Postfach 103 980, 69029
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Abstract

Polar stratospheric clouds (PSC) have been observed in early winter (December 2002)
during the SOLVE II/Vintresol campaign, both from balloons carrying comprehensive
instrumentation for measurements of chemical composition, size distributions, and op-
tical properties of the particles, as well as from individual backscatter soundings from5

Esrange and Sodankylä. The observations are unique in the sense that the PSC par-
ticles seem to have formed in the early winter under synoptic temperature conditions
and not being influenced by mountain lee waves. A sequence of measurements dur-
ing a 5-days period shows a gradual change between liquid and solid type PSCs with
the development of a well-known sandwich structure. It appears that all PSC obser-10

vations show the presence of a background population of solid particles, occasionally
mixed in with more dominating liquid particles. The measurements have been com-
pared with results from a detailed microphysical and optical simulation of the forma-
tion processes. Calculated extinction(indices) are in good agreement with SAGE-III
measurements from the same period. Apparently the solid particles are controlled by15

the synoptic temperature history while the presence of liquid particles is controlled by
the local temperatures at the time of observation. The temperature histories indicate
that the solid particles are nucleated above the ice frost point, and a surface freezing
mechanism for this is included in the model. Reducing the calculated freezing rates by
a factor 10–20, the model is able to simulate the observed particle size distributions20

and reproduce observed HNO3 gas phase concentrations.

1. Introduction

It has been known for many years that polar stratospheric clouds (PSC) play a manda-
tory role for stratospheric ozone depletion (WMO, 2003), both as sites for activation
of halogen compounds, through heterogeneous chemical reactions on surfaces of the25

cloud particles, and removal of reactive nitrogen by sedimentation of the nitric acid con-
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taining cloud particles. This last process, known as denitrification, will in most cases
prolong the ozone depletion.

PSCs have been classified according to their optical properties as observed by lidar
(Poole and McCormick, 1988; Browell et al., 1990; Toon et al., 1990), reflecting the
physical state of the cloud particles, either composed of liquid supercooled ternary5

solutions (STS) (Tabazadeh et al., 1994; Carslaw et al., 1994; Schreiner et al., 1999a),
of solid nitric acid trihydrate (NAT) (Hanson and Mauersberger, 1988; Voigt et al., 2000),
or of ice. Only solid PSC particles can grow sufficiently in size to cause denitrification
and much effort has been directed towards explaining their formation.

Based on laboratory measurements, homogeneous freezing of ice out of STS re-10

quires temperatures 3–4 K below the ice frost point temperature (Tice) (Koop et al.,
2000) which, in mountain leewave conditions, may lead to solid particle formation (e.g.
Carslaw et al., 1998; Larsen et al., 2002). On synoptic scales in the Arctic stratosphere
such low temperatures seldom occur, yet solid PSC particles are frequently observed
(e.g. Toon et al., 2000). In addition, widespread denitrification without accompanying15

dehydration, i.e. without the involvement of ice PSCs, has been observed in Arctic
winters (Fahey et al., 1990; Popp et al., 2001). Thus, it has become clear that a freez-
ing process above Tice is required to explain many observations of solid PSC particles
(Drdla et al., 2002a). High number concentrations of small solid particles in equilibrium
with the gas phase could be nucleated in mountain wave conditions (Tsias et al., 1999).20

Other investigations show PSCs to be dominated by liquid particles with only small
concentrations of solid particles growing to large sizes; an observation which calls for
a selective nucleation mechanism (Drdla et al., 2002b). Large nitric acid hydrate parti-
cles in small concentrations <10−3 cm−3 with radii of 5–10µm were frequently sampled
in the Arctic winter 1999/2000 (Fahey et al., 2001), and it has been demonstrated how25

NAT particles could grow to such sizes under supersaturated conditions within a few
days, leading to severe denitrification (Fueglistaler et al., 2002; Carslaw et al., 2002;
Mann et al., 2002; Drdla et al., 2002a).

In this paper we describe and interpret a series of balloon-borne experiments, per-
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formed from Kiruna, Sweden, and Sodankylä, Finland, in the very early stage of PSC
formation in winter 2002/2003. The experiments were part of the joined US/European
SOLVE-II/Vintersol campaign. For the first time a comprehensive set of measurements
to characterize the chemical and physical state of PSC particles in early winter was
obtained from Kiruna in synoptic-scale temperature history conditions without the influ-5

ence of mountain leewaves.

2. Meteorological conditions

Small areas with stratospheric temperatures below the existence temperature (TNAT)
for nitric acid trihydrate (Hanson and Mauersberger, 1988) started to develop on the
550 K potential temperature surface around mid-November 2002 and grew larger in10

size around 20 November north-east of Scandinavia. At the end of November the
cold area moved west-ward to the area between Greenland and Scandinavia. By the
beginning of December it covered most of Greenland to the northern half of Scandi-
navia, reaching east of Novaya Zemlya. Areas with temperatures slightly below the
ice frost point started to form around 4 December between Spitsbergen and Norway,15

lasting until around 10 December. Huge areas with temperatures below TNAT persisted
throughout December in a stable vortex. Between 3 and 7 December, where the in-
vestigations were completed, northern Scandinavia was inside the polar vortex on the
550 K potential temperature surface. The meteorological situation in this period was
characterized by a blocking high over the region, with very low surface winds, pre-20

venting the occurrence of mountain lee waves and strong temperature perturbations in
stratospheric air parcels as they passed over the Norwegian mountains. This is also
reflected by the fact that rise rates on all of the balloon flights shown below are quite
steady or change gradually with time. If mountain waves had been present the rise
rates would have oscillated in a regular fashion. Hence, no wave clouds were present25

at any level during the entire measurement period, and the PSC particles discussed in
this paper can be assumed to have formed in synoptic scale cooling events over the
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North Atlantic.

3. Measurements

Two types of balloon-borne observations were performed from Esrange, Sweden
(67.◦9 N, 21.◦1 E) and Sodankylä, Finland (67.◦4 N, 26.◦6 E) between 3 and 7 Decem-
ber 2002. One set of observations consisted of 7 profiles of backscatter ratio. The5

instrument, a backscatter sonde (Rosen and Kjome, 1991), carries pressure and tem-
perature sensors and is equipped with a white light flash lamp and two photo detectors
with filters, providing in-situ measurements of the vertical profile of aerosol backscatter
ratios at 940 nm and 480 nm. From the aerosol backscatter ratio (particulate to molec-
ular) at these two wavelengths (B940 and B480), a colour index, B940/B480, is calculated.10

Results from four soundings at Esrange and three from Sodankylä are shown in
Fig. 1. Based on experience from previous measurements (Larsen et al., 2002), liq-
uid particle clouds are characterized by high backscatter and low and nearly constant
colour indices (e.g. 4 December at 24 km). This corresponds to type 1b PSCs in the
lidar classification (Toon et al., 1990). Solid particle clouds give rise to larger and more15

variable colour indices and lower backscatter (e.g. 6 December at 26 km), equivalent to
type 1a PSCs. During the first sounding on 3 December temperatures are just slightly
below TNAT, and the profile is characterized by type 1a PSCs. Later, between 4 and 6
December, when temperatures drop further, type 1b layers are observed at the lowest
temperatures in the middle of the profiles. Temperatures above and below the type20

1b layer are still just slightly below TNAT, giving rise to the development of a “sandwich
structure” with thick layers of type 1b clouds surrounded by type 1a clouds at the bot-
tom and top of the profile. “Sandwich” structures in PSC layers have previously been
observed by lidar, e.g. Shibata et al. (1997, 1999), Shibata (1999), Stein et al., (1999),
and Biele et al. (2001). At the end of this measurement period temperatures rise again,25

the type 1b layers disappear, and most of the profile again consists of type 1a layers.
In the middle of the period, on 4 and 6 December, the main set of observations were
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performed, consisting of two balloon flights with multi-instrument gondolas for compre-
hensive in-situ measurements of the chemical and physical properties of PSC particles
and characterization of the ambient air environment. Two identical independent gon-
dolas were equipped with the following instrumentation. An aerosol composition mass
spectrometer (ACMS) measured the chemical composition of individual PSC particles5

(Schreiner et al., 1998; Schreiner et al., 1999b). A condensation nuclei (CN) counter
and two optical particle counters (OPCs) measured particle size distributions (Desh-
ler et al., 2003). One OPC used a vertical inlet and the second a horizontal inlet,
to, perhaps, reduce bias for measurements on descent. In practice this was not the
case. More large particles were observed with the vertical inlet during both ascent and10

slow descent, and measurements from the vertical inlet are presented here. A laser
backscatter sonde (LABS) (Adriani et al., 1998) and the above mentioned backscat-
ter sonde measured the aerosol backscatter at four wavelengths (480, 532, 690, and
940 nm) together with aerosol depolarisation at 532 nm. A frost point hygrometer mea-
sured the water vapour concentration in the gas phase (Ovarlez and Ovarlez, 1996),15

and several sensors on the gondolas measured temperature and pressure. Analyses
of particle chemical composition, including the uptake of HCl in the PSC particles, are
presented by Weisser et al. (2004). Gondolas, equipped with identical instrumentation,
have previously been flown from Esrange for measurements of PSC properties under
mountain wave conditions (Voigt et al., 2000, 2003; Schreiner et al., 2003; Larsen et20

al., 2002; Deshler et al., 2003).
Integral size distributions, measured by the OPCs during the first ascents on 4 and

6 December through the PSCs, appear in Fig. 2. The figure also shows the aerosol
depolarisation ratio, measured with the LABS on 6 December. The thick type 1b PSC
layers, identified by colour index in Fig. 1, clearly appear with low depolarisation values,25

roughly between 500 and 580 K potential temperature, with elevated concentrations of
the smallest particle sizes. Within the type 1b layer nearly all particles have grown to
sizes larger than 0.15µm, as the curve for this size class approaches the total particle
number concentration, measured by the CN counter. The ACMS clearly identifies H2O
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and HNO3 as the major components (Weisser et al., 2004). Above and below the thick
type 1b layer, the type 1a layers appear with high depolarisation, also identified by
colour index in Fig. 1. Only a small number concentration (≈10−3 cm−3) of relatively
large particles (>≈1µm) are observed while most of the particles have sizes smaller
than 0.15µm.5

An important feature to notice is that the mode in the size distributions with relatively
large particles and small number concentrations, characteristic of the upper type 1a
layers, appears throughout both vertical profiles, indicated by the gray boxes in Fig. 2.
What is interpreted from the backscatter measurements (Fig. 1) as thick type 1b PSC
layers appear to be layers of mixed liquid and solid particles. Similar interpretations10

have been reached from lidar measurements of PSCs, e.g. Shibata et al. (1997, 1999),
Shibata (1999), Stein et al. (1999), Biele et al. (2001), and Toon et al. (2000).

When the local temperatures drop below the threshold for STS, roughly 4 K below
TNAT, the majority of the background stratospheric sulphate aerosols (SSA) grow to
sizes larger than 0.15µm. This is illustrated in the two right-hand panels in Fig. 2,15

showing examples of bimodal lognormal fits to the measured size distributions in the
liquid particle layer at 527 K potential temperature and in the solid particle layer at
606 K on 6 December. At the low temperatures in the 527 K layer, the SSA particles
have grown into fully developed STS particles (red curve) with a median radius of
0.14µm, representing nearly all particles. A small fraction of the particles reside in20

the large mode with median radius 1.05µm, interpreted as solid particles, and mixed
with the liquid particles. The liquid particles dominate the optical properties, giving rise
to high backscatter ratios and low colour indices (Fig. 1) and thereby a type 1b PSC
classification (or what hereafter will be called a liquid particle layer). In the upper layer,
where the temperature is just slightly below TNAT, the majority of the particles are SSA,25

having a small median radius of 0.034µm, and the optical properties (low backscatter
ratio and high colour index) are dominated by large solid particles and thereby a type
1a PSC classification (or what hereafter will be called a solid particle layer). In both
cases the observations actually show mixtures of many liquid particles (either SSA or
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more highly developed STS, their size being controlled by the local temperature) and
a small fraction of larger solid particles. This interpretation is in agreement with an
analysis by Drdla et al. (2002b), showing that most stratospheric aerosols are liquid
particles, even at the lowest temperature.

4. Optical modeling5

Throughout both flights on 4 and 6 December, uni-modal or bi-modal lognormal size
distributions have been fitted to the measured integral size distributions as shown in
the two examples in Fig. 2. A T-matrix optical model (Mishchenko and Travis, 1998)
has been used to calculate, from the size distributions, the expected extinction at 449
and 1022 nm, assuming the small mode to consist of liquid STS particles and the10

large mode to consist of solid NAT particles. The wavelengths chosen correspond
to two of the wavelengths where aerosol extinctions are measured from satellite by
the Stratospheric Aerosol and Gas Experiment (SAGE) III (Poole et al., 2003). An
extinction (colour) index is defined as the ratio of the 1022 and 449 nm extinctions.

In the left-hand panels of Fig. 3, vertical plots of calculated 1022 nm extinction and15

extinction index for OPC measurements are shown between 450 and 675 K potential
temperature on 4 and 6 December. The dots in Fig. 3 have been colour coded ac-
cording to the temperature difference between the measured air temperature and TNAT,
using the measured H2O profile and assuming 12 ppbv HNO3. The extinction values
peak at the lowest air temperatures in the liquid PSC layers roughly between 500 and20

580 K potential temperature with nearly the same values as observed by SAGE III in
the same period (Poole et al., 2003). High extinction indices are mainly calculated
at the highest altitudes above 580 K, where the measurements show the presence of
solid PSCs. In the right-hand side of Fig. 3 the calculated extinction versus extinction
index is plotted. A clear bifurcation in the plot is noticed with one branch going to high25

extinction values, approaching the top of the branch at the lowest temperatures and
corresponding to the liquid PSC layers. Another branch is seen with high extinction
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indices and moderate extinction at temperatures a few K below TNAT, corresponding
to the observed solid PSCs. Similar bifurcation has been observed in satellite data
from the Polar Ozone and Aerosol Measurement (POAM) (Strawa et al., 2002) and
in SAGE III data (Poole et al., 2003), demonstrating the ability of satellite extinction
measurements to discriminate between dominantly liquid and dominantly solid PSCs5

in agreement with the results in Fig. 3.

5. Microphysical simulations

Air parcel trajectories of the observed PSCs have been calculated based on analyses
from the European Centre for Medium Range Weather Forecasts (ECMWF). Examples
of 6-day backward temperature histories for the upper solid particle layers and middle10

liquid particle layers (Fig. 1) appear in Fig. 4. Due to the absence of mountain leewaves
over Scandinavia the temperature histories can be regarded as relatively accurate,
at least within a few days prior to the time of observation, which is most important
for microphysical simulations. Figure 4 shows that the liquid and solid particle layers
have experienced nearly the same temperature history. The main difference is that the15

liquid particle layers are observed at lower temperatures than the solid particle layers.
The solid particles have passed through lower temperatures a few hours prior to the
observation. The particles have spent not more than 2.5 days at temperatures below
TNAT in the final cooling before observation. The solid particles have not experienced
temperatures below the ice frost point, and in particular not temperatures 3–4 K below20

Tice which is required for ice to freeze homogeneously in STS droplets (Koop et al.,
2000).

The formation of solid particles at 606 K potential temperature on 6 December (cf.
right-hand panels in Fig. 2) has been simulated using a detailed microphysical model
(Larsen, 2000; Larsen et al., 2002), applying the ECMWF temperature history. The25

model calculates the time dependent changes in size distributions of liquid sulphate
and STS particles, and solid NAT, ice, and sulphuric acid tetrahydrate (SAT) particles
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together with changes in gas phase HNO3 and H2O, using the basic vapour diffusion
equation and applying a full kinetic approach. Homogeneous volume dependent nu-
cleation of ice 3–4 K below the ice frost point (Koop et al., 2000) and homogeneous
surface dependent nucleation of nitric acid dihydrate (NAD) (Tabazadeh et al., 2002)
above Tice are included in the model, assuming an instantaneous conversion of NAD5

to NAT particles. The surface nucleation rates have been reduced by a factor 20 as
discussed in more detail below.

The model is initialized 240 h prior to observation when temperatures were above
TSAT, using OPC and frost point hygrometer measurements on 6 December at the
606 K potential temperature level. Measurements from an OPC on the gondola with a10

1 m vertical inlet, heated to 300 K, indicate the liquid background SSA can be described
using a uni-modal lognormal size distribution with number density Nt=9.3 cm−3, me-
dian radius rm=0.07µm, and geometric standard deviation σ=1.4. The gas phase H2O
concentration is set to 6 ppmv according to the frost point hygrometer measurements.
The initial HNO3 concentration is assumed to be 12 ppbv. This number is consistent15

with a mean-vortex value, measured by the MIPAS instrument onboard the Envisat
satellite late November 2002 and not being influenced by uptake of HNO3 in PSC par-
ticles. The actual HNO3 gas phase concentration in the PSC layers was measured with
the MIPAS balloon-borne infrared spectrometer on 7 December 2003 from Esrange be-
tween 5 and 10 h after the particle measurements, showing between ≈9 and ≈12 ppbv20

HNO3 at 600 K potential temperature, depending if the instrument was looking to the
north or to the south of the region where the particle measurements were performed.
These measurements indicate an uptake of HNO3 in the particles of not more than
roughly 2 ppbv at 600 K.

Time dependent results from the simulation are shown in Fig. 5. At time −18 h, i.e.25

1.75 day before observation, the temperature (Panel A) drops below TNAT and around
−4 h is sufficiently low for the growth of substantial STS volumes (Panel D). The num-
ber concentrations in the smaller size classes of the OPC (<0.5µm, Panel C) increase
as well as the aerosol backscatter ratio and extinction (Panel B), and the gas phase is
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depleted in HNO3 (Panel E). Around time −3 h, the model predicts that small number
concentrations of NAT particles are formed by the adopted homogeneous surface nu-
cleation. The NAT volume increases (Panel D) as well as the number concentrations
in the large mode in the OPC size classes (Panel C), now forming a bimodal size dis-
tribution with a small number concentration of solid particles mixed together with the5

abundant liquid particles. The generated NAT particles continue to grow throughout
the rest of the simulation. Until around time 18 h temperatures are sufficiently low for
the total particle volume to be dominated by the STS particles; the backscatter ratio is
high and colour index is low (Panel B), and the small mode in the OPC size distribution
is shifted to larger sizes. If the particles had been observed at these low temperature10

conditions, the observations would resemble the liquid PSC particle layers in Figs. 1
and 2 (actually a mixture of liquid and solid particles). Instead, within a few hours before
observation, the temperature increases and the liquid particles evaporate, whereas the
large solid particles remain nearly unchanged. The backscatter decreases and colour
index increases (Panel B) and the cloud appears as a solid particle PSC in good agree-15

ment with the observations (Fig. 1). During the evaporation of the liquid particles the
gas phase HNO3 increases until the STS particles have disappeared whereas the solid
particles continue to grow, again lowering the HNO3, corresponding to a final uptake of
2 ppbv in the particles in good agreement with the MIPAS measurements. Throughout
the simulation the solid particles are out of equilibrium.20

Panel F in Fig. 5 shows a scatter plot of simulated extinction versus extinction index,
corresponding to SAGE-III observations, for every time during the simulation, using the
T-matrix model, assuming particles >1.0µm are NAT and smaller particles are STS. As
the liquid particles form, the extinction versus extinction index follows the upper branch
until the extinction index slightly exceeds 0.5. During the subsequent STS particle25

evaporation, and as the solid particles begin to dominate the particle volume, the points
shift to the lower branch. As the solid particles continue to grow towards the end of the
simulation, the extinction index in the lower branch increases in the diagram with nearly
constant extinction. These results are consistent with SAGE-III measurements (Poole
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et al., 2003).
The final calculated differential size distributions (dn/dlogR) at 606 K are shown in

the upper left-hand panel in Fig. 6. There are two clearly distinct modes in the size
distributions consisting of a background of liquid sulphate aerosols (red curve) with
median radius less than 0.1µm, the particles on which the liquid STS particles grew,5

and the NAT particles with a median radius larger than 1µm (green curve). Together
the two differential distributions add up to the integral size distribution (black curve)
which can be compared directly to the measured integral size distribution by the two
versions of OPC displayed, one equipped with horizontal and one with vertical inlet.
The model represents the large mode of the NAT particles quite well.10

A similar calculation has been performed for the 6 December case at 527 K poten-
tial temperature in the liquid particle layer (using an initial suphate size distribution
with Nt=8 cm−3, rm=0.06µm, σ=1.3 and H2O=5.9 ppmv, HNO3=12.5 ppbv) with re-
sults presented in the lower left-hand panel in Fig. 6. Here the small particle mode is
dominated by STS particles with a median radius around 0.25µm mixed in with the15

NAT particle mode. Again the model reproduces the measurements reasonably well.
At this altitude the OPC measurements could be influenced by particles falling in from
higher altitudes; a process which is not considered in the model. This is not the case
at 606 K at the top of the PSCs where sedimentation from above is not a factor. The
model calculates an HNO3 gas phase concentration at 527 K, corresponding to an up-20

take in the particles of 6.5 ppbv. This value is consistent with the balloon-borne MIPAS
measurements in the north looking scan where temperatures allowed the existence of
STS particles. MIPAS measurements in the south-looking scan at temperatures above
TSTS show an uptake around 2 ppbv.

6. Discussion25

As mentioned above the homogeneous surface nucleation rates for NAD, given by
Tabazadeh et al. (2002), have been reduced by a factor 20 (i.e. the nucleation rates

2496

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/4/2485/acpd-4-2485_p.pdf
http://www.atmos-chem-phys.org/acpd/4/2485/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
4, 2485–2512, 2004

Formation of solid
particles in

synoptic-scale Arctic
PSCs

N. Larsen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

© EGU 2004

have been multiplied by an adjustment factor 0.05). If this adjustment had not been
made, the model would produce too many solid particles and too few liquid particles in
conflict with the OPC measurements. Calculated size distributions without the adjust-
ment (i.e. adjustment factor 1.0) appear in the right-hand panels of Fig. 6 for the 606 K
and 527 K potential temperature cases. Equally important is the fact that the larger5

number concentrations of solid particles leads to a much stronger uptake of HNO3 in
the particles in conflict with the balloon-borne MIPAS measurements. In both cases the
model without the nucleation adjustment calculates gas phase concentrations around
1 ppbv, i.e. uptake in the particles of around 11 ppbv, in contrast to the measurements
showing uptake not more than ≈2 and ≈7.5 ppb at 606 K and 527 K potential tempera-10

ture, respectively.
Nucleation adjustment factors in the range between 0.05 (as shown in Fig. 6) and 0.1

produce results in reasonable agreement with all measurements. The main difference
using the more moderate factor 0.1 is that the shoulder around 1µm in the integral
size distribution is shifted to higher number concentrations, the HNO3 uptake in the15

particles is increased to 3 ppbv, and the extinction is slightly increased, moving these
results towards somewhat better agreements with SAGE-III measurements (Poole et
al., 2003).

A reduction in the surface nucleation rates by a factor between 20 and 10 corre-
sponds to an increase of ≈4% or ≈1 kcal mol−1 in the free energy (∆G) of formation20

of a crystal nucleus on the droplet surface, applying the parameterization of ∆G by
Tabazadeh et al. (2002). As mentioned by the authors, the empirical parameterizations
of ∆G are based on laboratory nucleation experiments on concentrated, pure aqueous
nitric acid, extrapolated to stratospheric conditions with much more dilute solutions.
The effect of even small amounts of H2SO4 has not been considered. Maintaining the25

caveats of the extrapolations, an increase of ≈4% in the free energy would correspond
to a reduction in the HNO3 mole fraction of the surface of about 20% according to the
applied parameterization.

It appears from the observations that solid particles with number concentrations on
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the order of 10−3 per cm3 of air are produced in less than 1.75 day, resulting in a
hydrate particle production rate of at least 7·10−9 cm−3(air) s−1, if only temperatures
below TNAT are required, increasing the production rate above 10−8 cm−3(air)s−1 if
temperatures have to go below TSTS before the onset of nucleation. If hydrate parti-
cles form by homogeneous nucleation, these production rates are orders of magnitude5

higher than derived from laboratory experiments by Knopf et al. (2002). The obser-
vations and microphysical simulations presented here may not clarify whether surface
effects (Tabazadeh et al., 2002; Tabazadeh, 2003) or heterogeneous nucleation (Drdla
et al., 2002a) is responsible for the higher production rates, but the applied surface
nucleation scheme results in reasonable agreement between observations and micro-10

physical simulations.
The model results are not highly sensitive to the accuracy of the temperature history.

Adding a constant temperature correction of −1 K to +1.5 K in the 606 K case, which is
within the estimated accuracy of the analyzed ECMWF temperatures (Knudsen, 2003),
the model still produces results in good agreement with the observations. A reduction15

in temperature increases the width of the solid particle size distribution (higher number
of the smallest solid particles), but reduces the median radius, whereas an increase
in temperature has the opposite effect. Increasing the temperatures between +1.5 K
and +2.7 K would gradually decrease the number concentrations of solid particles from
slightly above 10−3 cm−3 to less than 10−5 cm−3, bringing the resultant size distribution20

in disagreement with the observations, but demonstrating a potential scenario for gen-
erating a small number concentration of solid particles with radii around 2µm. Such
particles could grow to larger sizes within days if temperature stays below TNAT.

If the simulation of early winter PSC formation (not being influenced by mountain
leewaves) as shown in Fig. 5 represents real processes in the atmosphere, it would25

mean that synoptic scale solid PSC particles are formed in quasi co-existence with
liquid PSC particles at temperatures below TSTS, and that solid PSC particles emerge
downwind of the cold region after the evaporation of STS particles at temperatures
between TSTS and TNAT. There are previous indications from lidar observations of such
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synoptic scale liquid to solid type PSC transitions (Toon et al., 2000). Synoptic scale
solid PSCs may of course also appear upwind of the cold region if the particles have
formed in a previous cooling cycle and survived at temperature below TNAT, but this
may not be as prominent as the appearance on the downwind side. The scenario is
also in agreement with analyses of POAM III satellite data, indicating dominance of5

solid PSC particles on the eastern side (downwind) of the cold pool axis (Fromm et
al., 2003). The scenario would also mean that synoptic scale solid PSCs in general
would be observed in air parcels which have spent a longer time at temperatures below
TNAT than air parcels where liquid type PSC are observed; conditions which are in
agreement with observations (e.g. Tabazadeh et al., 1996; Larsen et al., 1997, Toon et10

al., 2000).
The applied surface freezing process implies a highly selective nucleation of hydrate

particles, allowing only a small number of particles to grow to large sizes in a solid state
whereas the smaller particles remain liquid in agreement with previous findings from
the Arctic winter 1999–2000 (Drdla et al., 2002b). According to the scenario presented15

in Fig. 5, pure liquid PSCs with a uni-modal size distribution would only exist initially
in a narrow temperature range and thereby for a relatively short time before the onset
of hydrate nucleation and the development of a mixed phase cloud with a bimodal dis-
tribution. Lidar observations have indicated a smaller presence of pure liquid clouds
than the presence of mixed phase or solid type PSCs (Toon et al., 2000). However,20

the discrimination between pure liquid clouds and mixed liquid/solid phase clouds in
lidar measurements could be difficult and may require depolarization measurements
in the near-infrared (Toon et al., 2000). A large mode, mixed into an apparent liquid
type PSC, has previously been observed in early winter 1994/95 from Ny Ålesund by
Hayashi et al. (1998) and also seen in some, but not all, non-depolarizing liquid particle25

layers in observations from Andoya (Deshler et al., 2000). Bi-modal size distributions
are seen in PSC measurements from Antarctica (e.g. Hofmann and Deshler, 1991),
but the physical state and temperature histories are uncertain here. Lidar measure-
ments from Antarctica have also been interpreted as mixed phase clouds (Gobbi et al.,
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1998). A large mode in liquid particle size distributions have been noted in previous
measurements from Kiruna (Schreiner et al., 2003; Deshler et al., 2003), but the for-
mation mechanism could be different in these cases under the influence of mountain
leewaves.

7. Conclusions5

Polar stratospheric clouds, formed in synoptic-scale low temperature regions, not influ-
enced by mountain leewaves, have been observed in a series of balloon-borne mea-
surements from Esrange and Sodankylä in early December, shortly after the first onset
of PSC formation in winter 2002/2003. The measurements have shown the develop-
ment of the characteristic ”sandwich” structure with layers of solid particles above and10

below a thick layer of liquid particles. The liquid layers, however, appear to contain
a small abundance of solid PSC particles with nearly the same concentrations as in
the surrounding upper and lower layers. It appears that the liquid layers are controlled
by local temperatures. When the temperatures, typically in the middle of the PSC lay-
ers between 20 and 27 km, are below the threshold for STS, the liquid stratospheric15

aerosols particles grow into fully developed STS particles. In many optical measure-
ments the layer will appear as a liquid particle layer even though it may contain mixtures
of solid particles. The solid particles at the top and bottom at higher temperatures and
the solid particles, mixed in with the liquid layers, are nearly unaffected as long as
temperatures are below TNAT.20

Good agreement is found between measured and calculated optical properties, as-
suming the PSCs to be composed of mixtures of liquid and solid particles, confirming
the ability to discriminate in satellite extinction measurements between PSCs domi-
nated by either liquid or solid particles.

Neither the observed solid PSC at high altitudes, nor the solid particles mixed into liq-25

uid particle layers, have experienced temperatures below Tice, but could have formed
by selective homogeneous nucleation of NAD or NAT above the ice frost point. Of
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course we cannot rule out that the solid particles formed by heterogeneous nucle-
ation (Drdla et al., 2002a). However, good results in microphysical simulations of the
PSC formation in comparison with measured size distributions, optical properties, and
gas phase concentrations are obtained using the surface nucleation by Tabazadeh et
al. (2002) and applying a reduction factor of 10–20 in the nucleation rates. If this selec-5

tive nucleation mechanism is a real process in the atmosphere, it would imply that most
synoptic scale liquid PSCs actually contain a small mixture of solid particles. When the
liquid particles evaporate downwind of the synoptic scale cold regions, solid PSC par-
ticles with low number concentrations should emerge as long as temperatures stay
below TNAT.10
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Fig. 1. A sequence of vertical profiles, obtained between 3 and 7 December 2002 from Esrange
(ES) or Sodankylä (SD), of aerosol backscatter ratios (particulate to molecular) at 940 nm (red
curve), colour index (940/480 nm) (grey filled), and temperature depression below the threshold
for existence of nitric acid trihydrate (blue filled). TNAT values are calculated using the observed
water vapour profiles and assuming 12 ppbv HNO3.
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Fig. 2. Integral size distributions, measured by the optical particle counter with vertical inlet,
and condensation nucleus concentrations (colour-filled curves and black curve in the two left-
hand panels) from the first ascent during gondola-flights from Esrange on 4 and 6 December ,
2002. The integral size distributions give the number concentrations of particles with radii larger
than the indicated values in the legend. Also shown is the aerosol depolarisation at 532 nm,
measured by the LABS on 6 December. The thick liquid particle layers and the solid particle
layers above (also seen in Fig. 1) are shown with arrows. The gray boxes indicate the presence
of solid particles throughout the vertical profile and mixed in with the thick liquid particle layers.
Bimodal lognormal size distributions are fitted to all measured integral size distributions in the
two flights. Two examples from 6 December at 527 K and 606 K potential temperature are
shown in the right-hand panels, giving the differential size distributions (dn/dlogR) of the two
modes as red and green curves. Together the two modes correspond to the integral size
distribution (black curve) which fits the measurements (shown with error bars). Lognormal fit
parameters appear in the plots.
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Fig. 3. Calculated profiles (left-hand panels) of extinction at 1022 nm and extinction index (1022
to 449 nm ratio), based on measured size distributions with the optical particle counter. The
dots have been colour coded according to the temperature depression below TNAT. The panel
on the right-hand side gives a scatter plot of extinction at 1022 nm versus extinction index.
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Fig. 4. Six-day temperature histories, based on analyses from ECMWF, in connection with the
backscatter soundings shown in Fig. 1 from Esrange (ES) and Sodankylä (SD). The left-hand
panels give temperature histories in the liquid particle layers around 550 K and the right-hand
panels in the solid particle layers around 600 K potential temperature. The nearly horizontal
curves in each panel give the sulphuric acid tetrahydrate (SAT) melting temperature (red), TNAT
(green), and Tice (blue), calculated from the measured water vapour concentrations, assuming
12 ppbv HNO3.
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Fig. 5. The last 2 days of the PSC simulation at 606 K potential temperature. The panels show
as functions of time (UT hours on 6 December) (a) air temperature (Tair, black curve), TNAT
(green), Tice (blue), (b) aerosol backscatter ratio (940 nm, red), colour index (940/480 nm, gray)
and 1022 nm extinction, (c) cumulative number concentrations corresponding to the optical
particle counter size classes as indicated in the legend, (d) particle volumes of liquid (red) and
NAT (green) particles, (e) gas phase and total concentrations of HNO3 (green), H2O (blue),
H2SO4 (red), (f) scatter plot of extinction (1022 nm) versus extinction index (1022/449 nm) for
all data in the simulation.
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Fig. 6. Calculated differential size distributions of liquid sulphate aerosol (red) and solid NAT
PSC (green curve) particles at 606 K (upper row) and 527 K potential temperature (lower row).
The black curve is the corresponding calculated integral size distribution which can be com-
pared directly to the measured integral size distributions. Simultaneous measurements are
shown for both the vertical (black dots with error bars, see also Fig. 2) and horizontal inlets
(blue dots) of the two OPCs applied in the experiments. Simulation results are shown, using
a nucleation adjustment factor of 0.05 (left-hand column) and with no adjustment (right-hand
column) in the homogeneous surface NAD nucleation calculations.
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