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Abstract

The ozone variability observed by tropospheric ozone lidars during the ESCOMPTE
campaign is analyzed by means of a hybrid-Lagrangian modeling study. Transport
processes responsible for the formation of ozone-rich layers are identified using a
semi-Lagrangian analysis of mesoscale simulations to identify the planetary boundary5

layer (PBL) footprint in the free troposphere. High ozone concentrations are related
to polluted air masses exported from the Iberian PBL. The chemical composition of
air masses coming from the PBL and transported in the free troposphere is evalu-
ated using a Lagrangian chemistry model. The initial concentrations are provided by
a model of chemistry and transport. Different scenarios are tested for the initial condi-10

tions and for the impact of mixing with background air in order to perform a quantitative
comparison with the lidar observations. For this meteorological situation, the charac-
teristic mixing time is of the order of 2 to 5 days depending on the initial conditions.
Ozone is produced in the free troposphere within most air masses exported from the
Iberian PBL at an average rate of 0.2 ppbv h−1, with a maximum ozone production of15

0.4 ppbv h−1. Transport processes from the PBL are responsible for an increase of
13.3 ppbv of ozone concentrations in the free troposphere compared to background
levels; about 45% of this increase is attributed to in situ production during the transport
rather than direct export of ozone.

1 Introduction20

Transport and transformation of photochemically reactive species in the troposphere
are topics of sustained attention. Ozone is one of the main oxidants in the atmo-
sphere; it is either produced in the stratosphere, the planetary boundary layer (PBL)
or the free troposphere (FT). In the PBL, ozone precursors include biogenic and an-
thropogenic emissions (from both transports and industrial activities). Once in the25

troposphere, ozone can be transported over long distances enhancing local pollution
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in remote places (Zhang and Trivikrama Rao, 1999) or perturbing fragile equilibrium in
pristine areas (e.g. when transported to the poles, Eckhardt et al., 2003). In addition,
increased background ozone concentrations in the troposphere play an important role
in global climate change because of its radiative properties (Bernsten et al., 1997).

In this paper, we focus on transport processes from the PBL and their impact on5

free tropospheric ozone variability. Cotton et al. (1995) suggest that the PBL is vented
toward the FT 90 times per year on a global scale. This coupling occurs through a
wide spectrum of transport mechanisms: local circulations – either orographic (Henne
et al., 2004) or sea breezes (Bastin and Drobinski, 2006), convective systems (Hauf et
al., 1995) or frontal systems (Cooper et al., 2002). If such transport processes occur10

above polluted areas, they export ozone or its precursors to the FT.
The European ESCOMPTE program (Expérience sur Site pour Contraindre les

Modèles de Pollution Atmosphérique et de Transport d’Emissions, Cros et al., 2004)
was designed to gather measurements in order to better assess atmospheric chem-
istry transport models (CTM). Many publications related to the ESCOMPTE campaign15

are included in Cros and Durand (2005). During this campaign, several tropospheric
ozone profilers were operated, so that the ozone stratification above the PBL and its
temporal evolution are well documented (Ancellet and Ravetta, 2005).

The goal of the present study is first to identify the transport mechanisms responsible
for the observed ozone variability in the FT, and second to assess the photochemical20

transformation occurring during the transport. Three models are coupled to achieve a
hybrid-Lagrangian reconstruction of the observed ozone variability. A mesoscale non-
hydrostatic model is used to compute high-resolution backtrajectories in order to iden-
tify air masses coming from the polluted PBL. A CTM designed for PBL simulations al-
lows the evaluation of the chemical composition of selected air masses at the time and25

place of export from the PBL. Then, photochemical transformation during the transport
is computed using a 1-D-chemistry model. This approach leads to a reconstruction of
the ozone variability that matches observations and allows the discussion of the impact
of mixing with background air as well as the quantification of ozone production rates
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for different transport pathways. The advantages of such a Lagrangian approach com-
pared to Eulerian simulations are twofold. First, at similar computational cost, scales
resolved with a Lagrangian model are smaller (Norton, 1994), which is of crucial impor-
tance considering the large ozone variability observed during ESCOMPTE. Second, by
tracking air masses, it allows a better understanding of their temporal evolution during5

the transport.
The field campaign, ozone lidar measurements and the general synoptic context are

presented in Sect. 2. Section 3 addresses the results of the hybrid-Lagrangian analy-
sis of the observed tropospheric ozone variability. A mesoscale modeling study leads
to the identification of transport processes discussed in Sect. 3.1. The influence of10

photochemical transformation is investigated in Sects. 3.2 and 3.3. First, we describe
a purely advective reconstruction of the ozone variability with a reverse domain filling
method. Second, a 1-D chemistry model is used to simulate the transformation occur-
ring during the transport in the free troposphere; so that a quantitative comparison with
lidar observations can eventually be conducted.15

2 The ESCOMPTE campaign

2.1 General description

The ESCOMPTE campaign (Cros et al., 2004) took place in June and July 2001 in
the Aix-Marseille area (South-Eastern France). The region is densely inhabited; iron,
steel, petrochemistry factories and oil refineries are located around the Berre pond.20

The area is thus highly exposed to anthropogenic emissions of pollutants both from
transports and industrial activities. The local vegetation is also an important source of
volatile organic compounds.

In the ESCOMPTE region, a wide range of dynamic forcing plays a role in trace
gases circulation. Within the PBL, valley breezes develop in the Alpilles and Lubéron25

massifs and in the Durance and Rhône valleys. Strong sea breezes that can pene-
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trate as far as 100 km inland are frequently observed (Bastin et al., 2005; Puygrenier
et al., 2005). At night, land breezes can store polluted air masses above the maritime
boundary layer and thus build reservoirs of aged polluted air that may return onshore
on the following day (Gangoiti et al., 2001; Ancellet and Ravetta, 2005). Above the
PBL, local circulations have a limited impact and synoptic and mesoscale processes5

predominate. When a trough is located over the Balkan countries, the Alps and Mas-
sif Central channel a strong northerly flow (the Mistral) that shall carry anthropogenic
trace gases from the Lyons and Paris agglomerations (Corsmeier et al., 2005). In the
following, we will discuss in details how intra-European transport can import polluted
air masses to the ESCOMPTE domain. Last, this area is exposed to the long-range10

transport of polluted air masses; Lelieveld et al. (2002) suggest that air masses trans-
ported through the Westerlies above the Northern Atlantic Ocean during summer often
veer to South-Eastern France when reaching the European continent.

During the campaign, measurements included an enhanced network of ground
based stations, balloon soundings, constant volume balloon flights, sodars, radars,15

wind and ozone lidars and 6 instrumented aircrafts. In the present paper, we will pri-
marily use measurements performed by the Service d’Aéronomie (CNRS, France) with
the tropospheric lidar ALTO (Ancellet and Ravetta, 1998).

2.2 Selection of the time frame

Four intensive observation periods (IOP) were conducted during the ESCOMPTE cam-20

paign. We performed a preliminary analysis to define the most interesting case studies
in the framework of the coupling between the PBL and the FT. IOP2 (between 21 and 26
June) was recognized as an appropriate period because of its long duration, the vari-
ability of meteorological conditions monitored and the quality of the dataset available.
A first trajectory analysis was performed using large-scale wind fields for the whole25

IOP2 to target the time frame when mesoscale transport influenced the tropospheric
ozone variability in the ESCOMPTE area. For this purpose, we used the Lagrangian
particle dispersion model FLEXPART 5.1 (Stohl et al., 1998). The model was driven by
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6-hourly ECMWF operational analyses (T511L60) interleaved with forecasts every 3 h
(ECMWF, 1995). The selected domain extended from 100 W to 40 E of longitude and
20 N to 80 N of latitude.

Ozone measurements performed on 21 and 22 June are presented in Ancellet and
Ravetta (2005). The FLEXPART analysis shows that positive and negative ozone5

anomalies observed these days are associated to synoptic transport processes active
above the Northern Atlantic Ocean.

According to the FLEXPART simulations, the highest proportion of free tropospheric
air observed above the ESCOMPTE area coming from the European PBL (and thus
possibly influenced by continental emissions) is found between 23 and 26 June. During10

this period, 33% of the free troposphere below 5 km a.s.l. correspond to air masses
recently extracted from the PBL, mostly above the Iberian Peninsula. Consequently,
the 23 to 26 June period is well suited for an analysis of the impact of mesoscale
coupling between the PBL and the FT on the ozone variability.

2.3 Synoptic situation15

On 23 June a Mistral regime ends. During the following days, the axis of a strong ridge
extending from Morocco to Norway moves slowly eastward over France and is associ-
ated with weak northwesterly to westerly winds in the free troposphere (see the meteo-
rological analyses of the Deutscher Wetterdienst for 24 June at 500 hPa on Fig. 1a). In
the PBL, sea breezes develop daily. On 26 June, the wind regime turns southwesterly20

as the ridge moves eastward and a surface low pressure system develops South of
Ireland. Consequently, this day is discarded from the following analysis.

At the surface, the analyses (e.g. Fig. 1b) show that a thermal low develops daily
above Spain between 20 and 25 June. Millán et al. (1997) explain in details how such
a situation favors the export of PBL air to the lower FT; orographic circulations and25

sea breezes playing an important role inland and along the coast, respectively. These
two types of local circulations can also be observed in conjunction along mountainous
coastlines. Millán et al. (1997) also mention the importance of the convective activity.
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METEOSAT infrared images suggest that shallow convection occurred between 21
and 25 June above Spain. However, it did not organize in large Mesoscale Convective
Systems (MCS); one of the strongest events is shown on Fig. 1c.

To sum up, the thermal low above Spain exports PBL air to the FT where it is ad-
vected to the ESCOMPTE domain by the weak westerly flow. The paths followed by5

air masses arriving above the ALTO measurement site below 5 km between 23 and
25 June are presented on Fig. 1d. Exclusively air parcels coming from the PBL are
displayed; their trajectories illustrate well the synoptic situation summarized above.

2.4 Ozone profiling

The most complete coverage of free tropospheric ozone was performed by ground-10

based lidars. Two instruments were operated during the campaign. The Ser-
vice d’Aéronomie (CNRS, France) operated the ALTO lidar at Aix-les-Milles (5.48 E,
43.58 N, 110 m a.s.l.). This instrument is based on the DIAL technique (DIfferential
Absorption Lidar) using two wavelength pairs: 266–289 nm and 289–316 nm. The first
pair is very well suited for measurements at short distances (below 1.5 km) although15

no reliable measurement can be performed below 0.5 km. The second pair allows
measurements up to 4–5 km. The 316 nm signal is used for retrieving the aerosol
backscattering ratio. Ozone is biased when estimated by the DIAL technique in the
presence of high aerosol load. Consequently an additional correction is performed
using the backscatter estimate at 316 nm. When aerosols concentration is too high,20

uncertainty is so important that ozone measurements are discarded. Details on the
instrument are given in Ancellet and Ravetta (1998). Aerosol measurements, ozone
correction and validation of the measurements performed during ESCOMPTE can be
found in Ancellet and Ravetta (2005).

The ALTO record is sparse, that is why lidar measurements by the Ecole Polytech-25

nique Fédérale de Lausanne (EPFL, Switzerland) are also presented here (Simeonov
et al., 2004). The instrument was based at Saint-Chamas (35 km west of Aix-les-Milles,
5.04 E, 43.32 N, 210 m a.s.l.). The EPFL record presents a good temporal continuity.
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The instrumental setup is very similar to the ALTO lidar however no correction of ozone
in the presence of aerosols is performed. For both instruments, ozone measured above
4000 m a.g.l. is discarded because of the low signal to noise ratio.

Ozone records are presented on Figs. 2a and b. At first order, even if the instru-
ments are not co-localized, these two datasets present some similar patterns. For both5

records, below 1500 m a.s.l. important local pollution plumes are observed on 24 and
25 June. The synoptic situation is anticyclonic on these two days, which favors the
development of sea breezes that can transport ozone produced in the lee of urban or
industrial areas to the measurement sites. Regarding free tropospheric ozone variabil-
ity, the most striking pattern is a large enhanced ozone structure observed between10

the afternoon of 23 June and the morning of 25 June centered at 2500 m a.s.l. Other
interesting patterns include the low ozone concentrations measured in the morning of
23 June and an ozone depleted layer centered at 1500 m a.s.l. on 24 June.

More quantitatively, we found a +10 ppbv difference on average between EPFL and
ALTO data for the 23 to 25 June period. To our understanding, the lack of aerosol15

correction in the EPFL algorithm should explain this offset. Consequently, EPFL data
will be used for the qualitative comparison with modeled ozone variability, while ALTO
measurements are preferred for the quantitative comparison of ozone concentrations
(note that for a more appropriate reading of Fig. 2, we chose to account for this offset
in the corresponding color scales).20

3 Modeling analyses

The modeling analysis includes three steps: the identification of transport pathways
with a 3-D mesoscale model (MesoNH); the estimation of trace gases concentrations
in the PBL when the air mass is exported to the FT using a CTM (CHIMERE); the anal-
ysis of the photochemical transformation during the transport using a 1-D Lagrangian25

chemistry model (CiTTyCAT).
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3.1 Transport pathways

3.1.1 Description of the MesoNH model

MesoNH is a non-hydrostatic mesoscale model developed jointly at Laboratoire
d’Aérologie (CNRS, France) and at the French Centre National de Recherche
Météorologiques (Météo-France). Complete description of the model is given in Lafore5

et al. (1998); the version used here is 4.5.1. The domain is centered on Southern
France with 72×72 30 km-wide grid cells. The vertical grid is terrain following with 48
levels ranging from 60 m to 19 km a.s.l., including 10 levels below 1 km. The simula-
tion is initialized and relaxed at the boundaries toward T511L60 ECMWF operational
analyses (ECMWF, 1995). 7 simulations lasting 30 h each with 6 h of spin up were10

performed between 19 and 25 June 2001.
In these simulations semi-Lagrangian tracking of air parcels is activated (Gheusi and

Stein, 2002). This method consists basically in modeling an additional variable in the
Eulerian simulation: the 3-D field of the initial coordinates of the grid cells at the initial-
ization of the run. Consequently, at each timestep, the initial position of every grid cell15

is known throughout the domain. In addition to advection, these air parcels undergo
sub-grid scale processes such as turbulent mixing. In this study, the semi-Lagrangian
analysis is used to compute backtrajectories that are more reliable for documenting
mesoscale processes than classical Lagrangian trajectories, where wind fields are in-
terpolated in the advection process.20

3.1.2 Mesoscale trajectories

We mentioned in Sect. 2.2 that, according to the FLEXPART model most air masses
arriving above the ALTO measurement site are coming from the Iberian PBL. However
this trajectory analysis can be significantly improved using the mesoscale simulation.
Mesoscale backtrajectories were computed every hour between 23 and 25 June. Their25

ending points correspond to the ALTO measurement site every 250 m between the sur-
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face and 5000 m a.s.l. Trajectories are run for 3 days back in time. Indeed, considering
the extension of the domain and free tropospheric wind velocities, the parcels leave the
domain within 3 days if they remains in the FT.

Turbulent kinetic energy (TKE) is interpolated from the mesoscale simulation along
the trajectories to diagnose if air masses are coming from the PBL. If the TKE exceeds5

0.2 m2 s−2 for more than 3 contiguous hours of time, the air mass is considered as being
inside the PBL. However, an additional test is required to discard TKE generated by
clean air turbulence, i.e. when high TKE levels are modeled above 3000 m in the vicinity
of mountain ranges in relation with lee waves breaking. At the altitudes considered
(below 5000 m a.s.l.), turbulence related to shearing in the jet streak does not occur.10

With this TKE criterion we found that 48% of the trajectories are coming from the PBL
among a total of about 1350 trajectories.

The results of the trajectory analysis are synthesized on Fig. 3. If during the 72 h
before arriving in the ESCOMPTE area, the trajectory has been in the PBL, a square
is plotted on the top panel at the time and altitude of arrival of the trajectory. On the15

second panel, the square is plotted at the location of export from the PBL. The color
of the squares correspond to the time the air parcels spent in the FT. When this time is
shorter than 2 h, we can conclude that the corresponding air mass is influenced by the
local PBL. Every afternoon, such air masses are detected above the observation site,
in relation with the diurnal cycle of the PBL. This evolution of the local PBL is correlated20

with the enhanced ozone concentrations measured by the lidar at mid-day in the 1000–
1500 m altitude range which suggest a connection with local pollution plumes. Among
the trajectories arriving above 750 m a.s.l., 17% were extracted from the PBL in the
ESCOMPTE region and 31% are associated to an export from the Iberian PBL one to
two days before the end of the trajectory.25

The main free tropospheric ozone-rich layer centered around 2500 m on 24 June
(Fig. 2) matches well with the footprint of air masses exported from the distant PBL on
Fig. 3a. The trajectory analysis shows that this layer is constituted of air masses com-
ing from widespread locations above Spain; nevertheless it is not contradictory with
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the homogeneous ozone concentrations measured. Compared to this event, observed
ozone concentrations are slightly lower after 14:00 UT on 25 June in the altitude range
2500–3000 m. This feature can be related to the heterogeneity of the origins of the
air masses according to the mesoscale model. Using global GCM simulations, Dufour
et al. (2005), attributed the decrease of ozone concentrations observed on this day5

to vertical mixing with a tropical air mass in the upper layers. This hypothesis on the
vertical mixing is somewhat supported by the heterogeneity revealed by our analysis.
Low ozone concentrations measured by lidar on 23 June and in the morning of 24th at
moderate altitudes (around 1500 m), correspond to air masses exempt from any PBL
signature. These trajectories are coming from the troposphere above the Northern10

Atlantic Ocean which is consistent with their relatively low ozone content (Reeves et
al., 2002). The same conclusion holds for high altitude air masses (above 3000 m)
observed in the afternoon of 24 June and 25 June. To sum up, this analysis shows
that positive ozone anomalies observed by lidar above 1500 m a.s.l. between 23 June
12:00 UT and 25 June 23:00 UT are synchronized with air masses having undergone15

export from the PBL, while ozone depleted layers are associated to aged free tropo-
spheric air masses.

In the following, we will attempt to quantify the ozone content of air masses exported
from the PBL according to the trajectory analysis. Prior to this step, the precise fraction
of lidar data corresponding to air masses transported from the Iberian PBL must be20

selected. Possible mismatches in the timing between the model and the observations
prohibit a straightforward comparison (Methven et al., 2001). Methven et al. (2003)
propose a correction procedure using complementary in situ measurements such as
the specific humidity and the equivalent potential temperature; but in our case the
only available quantities above the lidar are the ozone concentrations and the aerosol25

backscattering ratio. Using large scale FLEXPART simulations we ensured that nei-
ther long range transport of pollutants nor stratospheric intrusions did play any role.
So ozone-rich layers whose temporal and spatial extension is similar to the PBL foot-
print given on Fig. 3 are selected as coming from the PBL (see the black contours on
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Fig. 2a). The only exception is found on 23 June when we discarded two layers (cen-
tered at 2500 m and 1500 m) because we did not find any matching evidence of PBL
export with the mesoscale model.

3.1.3 Transport processes analysis

Local processes play an important role in trace gases distribution in the ESCOMPTE5

area. In the framework of the campaign, Bastin et al. (2005), Kahltoff et al. (2005) or
Puygrenier et al. (2005) propose analyses of PBL processes that may lead to an export
to the FT. In this paper, we decided to focus on free tropospheric air masses extracted
from the distant PBL, i.e. air masses that have undergone transport and transformation
in the free troposphere.10

Figure 3b shows the very large variability of geographical origins of air masses ar-
riving in the FT above the ALTO lidar. To synthesize the information and identify the
main transport pathways, the trajectories were clustered using the k-means multivari-
ate clustering technique (Mac Queen, 1967). Each trajectory is characterized by its
date, latitude and longitude of extraction from the PBL, and its date and altitude of ar-15

rival. To maximize the consistency of the clusters of trajectories we imposed a high
number of clusters (about 20).

The clusters are displayed on Fig. 4 in a similar way as on Fig. 3a. Here, colors and
labels correspond to the clusters of trajectories and exclusively air masses extracted
from the distant PBL are presented. This way, one can infer the relation between air20

masses arriving above the ALTO measurement site and clusters of air masses listed
on Table 1. Table 1 summarizes the characteristics of each cluster of trajectories,
including the date and approximate location of extraction. We find that export from the
Iberian PBL occurred daily during this period and that these processes took place at
very widespread locations above Spain. The consistency of the clusters can be inferred25

from the root mean square distance between the locations of uptake from the PBL for
the trajectories belonging to each cluster. The number of trajectories belonging to each
cluster is also given to assess the significance of the clusters.
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Modeled convective available potential energy (CAPE) is used to diagnose if con-
vection could be responsible for the export to the FT. METEOSAT images suggest that
convection did not organized in large MCS. Consequently in areas where modeled
CAPE is high, export from the PBL remains limited to shallow convection. When CAPE
levels are negligible, the most likely processes playing a role in the export to the free5

troposphere are thermal circulations. As mentioned in Sect. 2.3, depending on the lo-
cation of export, these thermal circulations can be purely orographic, sea breezes, or
a combination of both.

For most clusters, the export occurred in the afternoon – when convection and ther-
mal circulations reach their peak efficiency in terms of PBL venting. The only trajecto-10

ries that left the PBL in the morning belong to clusters 3 to 6. They correspond to air
masses where ozone production is maximum as will be discussed in Sect. 3.5.

Using Eulerian chemistry simulations, Cousin et al. (2005) suggest that free tro-
pospheric ozone variability measured by the ALTO lidar is influenced by air masses
coming from the Barcelona area. The fact that they did not detect any transport pro-15

cesses from more distant places above Spain is probably related to the limited extent
of their simulation domain. Dufour et al. (2005) propose another explanation for the
free tropospheric ozone variability. They focus on CTM simulations and, by shutting
down the two-way coupling between four nested domains, they discuss the origin of
ozone-rich layers observed by the ALTO lidar on 24 and 25 June. They suggest strato-20

spheric intrusions played an important role because some ozone-rich layers are not
simulated when climatological boundary conditions are used above 5000 m. In fact,
an export from the PBL followed by tropospheric transport above 5000 m would give
the same results. At the continental scale, the resolution of their CTM is similar to that
of ECMWF analyses used in the FLEXPART simulation presented above. According25

to the FLEXPART model, many air masses coming from the Iberian PBL were indeed
transported at about 5000 m of altitude.
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3.2 Trace gases concentrations in the Iberian PBL

At this stage, we have shown a relationship between free tropospheric ozone-rich air
masses observed in the ESCOMPTE area and modeled air masses exported from the
Iberian PBL. The chemical composition of these air masses when they left the PBL
can be evaluated using CTM simulations. In this study we used the model CHIMERE5

(version V200501G).

3.2.1 Description of the CHIMERE model

The model is described in Vautard et al. (2001) and the validation of continental scale
simulations is given by Schmidt et al. (2001). The most update information regarding
the model can be found at http://euler.lmd.polytechnique.fr/chimere/.10

The CTM is driven by MM5 meteorological fields (Vautard et al., 2005). Surface
emissions are those of the annual EMEP inventory (http://www.emep.int) converted to
hourly fluxes using the GENEMIS database (GENEMIS, 1994). The general circulation
model LMDz (Hauglustaine et al., 2004) provides monthly means for the boundary
conditions. The chemical mechanism is MELCHIOR (Lattuati, 1997) which includes15

333 reactions of 82 gaseous species.
In the present simulation, the domain covers Western Europe with 67×46 0.5-degree

wide horizontal grid cells. The vertical grid is hybrid sigma-pressure up to 350 hPa with
30 levels (12 below 1 km) and the timestep is 2.5 min. The simulation runs continuously
between 15 June and 29 June. In the following, CHIMERE outputs will be used to initial-20

ize the Lagrangian simulation. Good et al. (2003) warned that using CTM simulations
with a T42 horizontal resolution to initialize a Lagrangian model induces spurious mix-
ing of trace gases. However, this effect is minimized here, considering the 0.5 degree
horizontal resolution of CHIMERE.
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3.2.2 Reverse domain filling of trace gases

For each trajectory, at the latitude and longitude of extraction from the PBL we interpo-
late the concentration of 19 species: O3 (ozone), H2O2 (hydrogen peroxide), NO (nitric
oxide), NO2 (nitrogen dioxide), HONO (nitrous acid), HNO3 (nitric acid), PAN (perox-
yacetyl nitrate), CO (carbon monoxide), SO2 (sulfur dioxide), CH4 (methane), C2H65

(ethane), C4H10 (butane), C2H4 (ethene), C3H6 (propene), C5H8 (isoprene), HCHO
(formaldehyde), CH3CHO (acetaldehyde), HCOCHO (glyoxal), CH3COCHO (methyl-
glyoxal). For our purpose, we must quantify the composition of air masses when they
left the PBL. The mesoscale backtrajectories are used exclusively in the free tropo-
sphere, i.e. trajectories are considered to start at the top of the PBL. This way, we avoid10

accounting for mixing processes occurring when the air mass crosses the dynamical
barrier constituted by the PBL top. However, since the updrafts did not necessarily
started at the top of the PBL, the proxy we used for the composition of air masses
exported to the free troposphere is the average of trace gases concentrations in the
PBL at the location of export (here the depth of the PBL is given by the MM5 model).15

Reverse domain filling (RDF) of ozone and NOx concentrations are displayed on
Figs. 5a and b for each trajectory at the time and altitude of arrival in the ESCOMPTE
area. On this figure we represent the composition air masses had when they left the
PBL. Using this RDF technique we find that some air masses have low ozone con-
tent, which do not match lidar observations. Most of these air masses are associated20

to high NOx levels. According to Fig. 4 and Table 1, these air masses left the PBL
in the morning, i.e. when ozone production was not yet initiated, which explain their
ozone and NOx load. After having left the PBL with high NOx concentrations, these air
masses are advected for a couple of days in the free troposphere and ozone production
is very likely to occur during the transport. Similar results are discussed by Lawrence25

et al. (2003). By redistributing exclusively ozone in convective systems, they find that
convection has a negative effect on the total tropospheric ozone burden whereas if they
include precursors, the convective transport induces an increase of background ozone.
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To sum up, this purely advective RDF approach does not yield a satisfactory compari-
son with the measurements and underlines the need to account for the photochemical
transformation.

3.3 Transport and transformation

A more realistic comparison between observed and modeled ozone in air masses com-5

ing from the distant PBL will be achieved by accounting for the photochemical transfor-
mation along Lagrangian trajectories.

3.3.1 Description of the CiTTyCAT model

The Cambridge Tropospheric Trajectory model of Chemistry and Transport (CiTTyCAT)
is a 1-D chemistry model designed to evaluate trace species transformation along10

prescribed trajectories. The model is described in Wild et al. (1996) and Evans et
al. (2000). Reactions of Ox, HOx and NOx are included as well as methane oxidation
and a parameterized hydrocarbon degradation scheme. The total number of species
considered is 88. Photolysis rates are computed using a two-stream method account-
ing for the effect of cloudiness on a climatological basis. Dry deposition is included but15

plays a limited role in the present simulations where air parcels are transported in the
free troposphere.

In this study, air masses follow MesoNH trajectories. Pressure, water content and
temperature along the trajectories are interpolated from the mesoscale model. Initial
chemical compositions of air masses are provided by CHIMERE simulations using the20

methodology presented in Sect. 3.2.2.

3.3.2 Analysis of the Lagrangian simulation

Modeled ozone concentrations at the ending point of the trajectories are presented on
Fig. 6 and can be compared with lidar measurements of Fig. 2a. At this stage, mixing
is not included, so that the chemical box is isolated from the surrounding environment.25
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Compared to the RDF approach discussed in Sect. 3.2.2, ozone concentration has
increased in the main layer centered on 2500 m between 23 June and the morning of
25 June. Consequently the match between observed and modeled ozone is better.
The high-ozone layer measured by the ALTO lidar on 24 June at 12:00 UT and cen-
tered around 2500 m is not reproduced, but the presence of a small cloud leads to an5

important uncertainty regarding this layer (Ancellet and Ravetta, 2005). For trajecto-
ries arriving during the afternoons of 23 and 25 June, ozone concentrations are similar
to those presented on Fig. 5, suggesting that the net ozone production is very limited
during the transport.

At the initialization of the hybrid Lagrangian simulation, average ozone and NOx10

concentrations prescribed by the CTM are 68.6 ppbv (σ=12.8 ppbv) and 1350 pptv
(σ=1650 pptv), respectively. Accounting for the photochemical transformation along
the trajectories leads to ozone and NOx concentrations of 75.6 ppbv (σ=7.2 ppbv) and
160 pptv (σ=84 pptv). Ozone is thus produced in most air masses, although it is de-
graded in the free troposphere for 31% of the trajectories. We performed an additional15

simulation to assess the sensitivity of our results to prescribed initial NOx concentra-
tions. In the additional run, initial NOx levels are multiplied by a factor 3, the con-
centrations of the other species being kept constant. Then, ozone is produced along
96% of the trajectories; average ozone and NOx concentrations at the ending point of
the trajectories are 80.7 ppbv (σ=8.5 ppbv) and 430 pptv (σ=1120 pptv), respectively.20

According to the ALTO lidar, the average ozone content of air masses coming from
the PBL (as defined in Sect. 3.1.2) is 71.9 ppbv (σ=7.7 ppbv). Consequently, for both
scenarios ozone concentrations are overestimated compared to the observations, this
overestimation is statistically significant (see Sect. 3.4.2). The fact that mixing with
background air is disabled for these simulations certainly plays an important role in this25

overestimation as will be discussed in Sect. 3.4.
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3.3.3 Discussion regarding the uncertainties at the initialization

Initial NOx concentrations play an important role in CiTTyCAT simulations and the vali-
dation of modeled NOx levels at the ending point of the trajectories is difficult. Few free
tropospheric NOx measurements were performed during the ESCOMPTE campaign
and most of them present large uncertainties. According to Saı̈d et al. (2005), the most5

reliable measurements are those obtained with a luminol analyzer (Metair NOxTOy) on
board a Dornier aircraft (Hasel et al., 2005) and with a chemiluminescence NOx ana-
lyzer (MONA) on board the ARAT aircraft (Marion et al., 2001). However the NOxTOy
instrument is not designed for sampling free tropospheric NOx concentrations below
1 ppbv so that we will use only MONA measurements in this study. Tropospheric pro-10

files up to 3000 m above Avignon, Istres and offshore were performed on 23, 24 and 25
June and show little variability. Average NOx concentrations measured above 1500 m
is 597 pptv (σ=119 pptv).

The modeled NOx concentrations for the reference run are way below this estimate
while those of the enhanced NOx scenario are within the range of the observations.15

This justifies the need to test the sensitivity of our results to higher NOx concentra-
tions than those prescribed by the CHIMERE model in the Iberian PBL. For the 20
to 25 June period, the average surface NO2 concentrations according to 7 Span-
ish stations of the EMEP network is 987 pptv while, the same quantity according to
CHIMERE is 441 pptv. Observational error as high as 25% (as reported by Schmidt20

et al., 2001) can not explain this discrepancy. A weakness of the emission model
above Spain could explain this gap. In addition the difficulty to represent correctly
pollutants dispersion in mountainous area certainly plays a role too (4 of these sta-
tions are located at an altitude of 800 m a.s.l. or above). However, considering the
size of the grid cells and the lifetime of NOx in the PBL, the reliability of comparison25

with surface stations remains limited. Nevertheless, by means of a comparison be-
tween CHIMERE simulations and tropospheric NO2 columns measured by the GOME
instrument (http://www.doas-bremen.de/), Konovalov et al. (2005) present similar re-
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sults. Although they perform strong assumptions on vertical distribution of NO2, they
find that, on average for the summer of 2001, the model underestimates NO2 concen-
trations above Spain. This analysis underlines the need to simulate an enhanced initial
NOx scenario and that this enhancement should be at least of a factor 2.

However, multiplying NOx concentrations in the PBL without changing secondary5

pollutants concentrations (such as ozone) is not realistic. For a sensitivity study, an
acceptable working hypothesis is to account for a 5% change of ozone concentrations.
Indeed, comparisons of ozone measured at the Spanish EMEP surface stations with
the CHIMERE simulation are quite good. The average surface ozone measured is
69.1 ppbv and the model gives 71.1 ppbv. Consequently, we performed two additional10

simulations, adding or removing 5% of ozone concentrations (the other species be-
ing kept constant) for the enhanced NOx scenario. At the end of the trajectories, we
find that average ozone increase or decreased of about 2.5 ppbv, respectively. These
values will be used in Sect. 3.4.2 to quantify the uncertainties of our approach.

Wild fires may influence trace gases concentrations of air masses exported from the15

PBL whereas they are not included in the CTM simulation that relies on climatological
surface emissions. Forest fires could thus be another explanation for the discrepancy
discussed above and would make the photochemical modeling a very difficult task.
Some forest fires were detected in Spain on 23 June, seen as hot spots by the AVHRR
instrument. However, these fires were not detected by the MODIS instrument. This20

difference may be due to different sensibilities and detection algorithms. The instru-
ments may also have flown above the area at different times and a cloud could have
occulted fires for the MODIS instrument. In addition, these fires were not reported by
the Global Fire Monitoring Center (http://www.fire.uni-freiburg.de/). Consequently, if
wild fires probably occurred, they were limited in space and time and their impact on25

observed trace gases concentrations should remain limited.

1933

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/6/1915/acpd-6-1915_p.pdf
http://www.atmos-chem-phys-discuss.net/6/1915/comments.php
http://www.copernicus.org/EGU/EGU.html
http://www.fire.uni-freiburg.de/


ACPD
6, 1915–1951, 2006

Impact of transport
and transformation
on ozone variability

A. Colette et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

3.4 Impact of the mixing along the trajectories

For both the reference run and the “enhanced NOx” scenario, the hybrid-Lagrangian
model overestimates ozone concentrations. The fact that air parcels are isolated from
the surrounding environment plays a role in this overestimation (Wild et al., 1996) and
justifies the need to account for the mixing with background air.5

3.4.1 Methodology

In this study, we chose to mix air parcels with a climatological background. The species
concerned by this mixing are: O3, H2O2, NO, NO2, HONO, HNO3, CO, SO2, CH4,
C2H6, C4H10, C2H4, C3H6 and PAN. A test case where mixing was limited to ozone
showed that the impact of mixing of the other constituents was limited. The strength10

of the mixing is characterized by a characteristic time, i.e. the e-folding time neces-
sary to reach background concentrations if the composition of air parcels were ex-
clusively subject to the mixing. The relaxation field is a climatology corresponding to
the three-dimensional average of CHIMERE outputs between 15 June and 25 June.
The average free tropospheric ozone concentration along trajectories coming from the15

Spanish PBL is 64.7 ppbv (σ=7.8 ppbv) which is in the range of the climatology based
on balloon soundings proposed by Logan (1999). The purpose of this parameteriza-
tion of the mixing is to account for the interactions with background air. That is why the
relaxation field is climatological. Mixing with time dependant 3-D CHIMERE outputs
would make sense if one would expect that the trajectory encountered an European20

polluted plume during the transport. However, considering the resolution of the semi-
Lagrangian trajectories, such an event would have been detected in the analysis of
transport processes.

The mean and standard deviation of modeled ozone distributions as well as aver-
age NOx concentrations are given on Fig. 7 for characteristic mixing times between25

half a day and 7 days. Results of the no-mixing runs and measured ozone and NOx
concentrations are also given.
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3.4.2 Results

Modeled and observed standard deviations of ozone are given on Fig. 7c. Figure 7d
displays the Fisher test used for comparing the standard deviation of two populations
when their mean is not known and the 95% confidence level (Bevington and Robinson,
1992). The reference is the ALTO record. Regarding CiTTyCAT outputs, standard de-5

viation decreases with the characteristic mixing time since concentrations are relaxed
toward a climatological 3-D field. Increasing initial NOx concentrations tend to produce
more ozone in air masses where NOx levels were already significant. Consequently,
standard deviations for these high-NOx simulations are higher. For the enhanced NOx
scenario, the mixing time should not be faster than about 2.5 days for the standard10

deviation of ozone to remain statistically similar to that measured by the lidar. For the
reference simulation, the modeled and measured standard deviations become similar
if the mixing time is larger than 5.5 days.

Average ozone concentrations are displayed on Fig. 7a. The Student t-test and its
95% confidence level are given on Fig. 7b, the reference being the ALTO estimate.15

Again, we find that average ozone concentrations are overestimated for no-mixing CiT-
TyCAT runs. Accounting for the turbulent mixing makes average ozone more realistic.
Nonetheless for the enhanced NOx scenario, it is not statistically similar to measured
ozone concentrations if mixing time differs from 1.5 to 2.5 days. For the reference run,
mixing times included in the 3 to 7 days range give satisfactory results.20

To sum up, the optimum between average and standard deviation of modeled ozone
is reached for a characteristic mixing time of 6 and 2.5 days depending on the initial
NOx concentrations considered. As mentioned above, important uncertainties exist
regarding the NOx levels at the initialization of the trajectories. For all the scenarios
investigated, modeled NOx concentrations are below the average measured NOx con-25

centrations (Fig. 7e). Nonetheless, results are much more realistic in the enhanced
NOx cases than in the reference runs.

Now that we have identified the optimum simulations, we will be able to quantify
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ozone production efficiency during the transport in the free troposphere. Before pro-
ceeding to this analysis, we must assess uncertainties on mixing time discussed here
above. First, we mentioned in Sect. 3.2.2 that a 5% change in initial ozone concentra-
tion yields a 2.5 ppbv difference at the ending point of the trajectory for the enhanced
NOx scenario. According to Fig. 7a, this difference corresponds to an uncertainty5

smaller than 1 day on the characteristic mixing time. Second, a 5% change in the
ozone climatological background leads to a 0.2 day change in the characteristic mixing
time (because the relaxation toward the climatological field follows an exponential law).
We can thus conclude that the uncertainty on the characteristic mixing time is about 1
day.10

3.5 Ozone production efficiency

Net ozone production (P(O3)) along the trajectories can be inferred from photochemical
ozone production and loss during the transport as modeled by CiTTyCAT. For the ref-
erence simulation the optimum mixing time is 6 days (Sect. 3.4.2). With this value, we
find an average ozone production rate of 0.09 ppbv h−1 (σ=0.12 ppbv h−1). However, if15

ozone concentrations are satisfactory in the reference run, NOx levels are underesti-
mated. Consequently, the average production rate of 0.19 ppbv h−1 (σ=0.11 ppbv h−1)
obtained with a mixing time of 2.5 days in the enhanced NOx scenario is probably a
better estimate.

Production rates in the clusters of trajectories are given on Table 1 for both sim-20

ulations. The clusters behave similarly when increasing initial NOx concentration,
i.e. P(O3) increases in every cluster. One exception is found for cluster 23 that is
of little significance considering the number of trajectories. For some clusters, pro-
duction rates stand out of the distribution, i.e. are greater or smaller than the average
plus or minus one standard deviation. In clusters 3, 4, 5 and 6, production is very25

high (about 0.4 ppbv h−1 for the enhanced NOx scenario). Trajectories belonging to
these clusters were exported toward the FT in the morning with high initial NOx and
moderate ozone concentrations, paving the way for high ozone production during free
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tropospheric transport. Such ozone production levels are comparable to those found
by Evans et al. (2000) and Methven et al. (2003) for polluted air masses associated to
recent export from the PBL. Low production rates (net destruction of ozone) are found
in clusters 12 and 18. These trajectories were exported from the PBL in areas of low
emissions according to CHIMERE (around Salamanca and North of Granada).5

On average for all the trajectories, the initial ozone concentration when air masses
left the Iberian PBL was 68.6 ppbv. The final average concentration above the ES-
COMPTE area is 74.7 ppbv according to the enhanced NOx run with a 2.5 day mixing
time. Consequently, 6.1 ppbv of ozone are produced in the free troposphere. If the
tropospheric ozone burden for this period is approximated as the average ozone con-10

centrations measured by lidar above 2000 m, we find a background level of 61.4 ppbv.
We can thus conclude that PBL venting is responsible for an increase of 13.3 ppbv of
free tropospheric ozone concentrations, about 45% of this increase being related to
photochemical production during the transport. Accounting for the 1 day uncertainty
on the optimum mixing time discussed above, we find the contribution of free tropo-15

spheric production of the order of 30% to 50% (38 to 45% for the reference run). Liang
et al. (1998) found that, on an annual basis, ozone production in the free troposphere
is twice as large as direct export for the American PBL. On the contrary we find that
free tropospheric ozone production is at most as important as direct PBL export, which
suggest ozone production inside the Iberian PBL is more efficient. However, our results20

are only valid for the specific conditions sampled during the ESCOMPTE campaign so
that our study does not have the same representativeness as that of Liang et al. (1998).

4 Conclusion

The free tropospheric ozone variability observed by lidar during the ESCOMPTE cam-
paign was investigated by means of a hybrid-Lagrangian modeling study. The purpose25

of this work was to document respective impact of transport and transformation on the
observed free tropospheric ozone variability.
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High-resolution backtrajectories were computed using a mesoscale model including
semi-Lagrangian tracking of air parcels. Ozone-rich layers are related to air masses
extracted recently from the Iberian PBL. A similar synoptic situation was discussed
by Millán et al. (1997) who reports that export from the Iberian PBL occurs through
local scale circulations (sea-breezes and orographic winds or a combination of both)5

or convective activity. The chemical composition of air masses when they left the PBL
was inferred from CTM simulations. Comparison with the observations shows that
photochemical transformation in the troposphere can not be neglected.

This transformation was modeled using a Lagrangian chemistry model which allowed
simulating successfully the large ozone rich anomalies measured by lidar. One of the10

remarkable features is the fact that the shape and the ozone content of the large ozone-
rich layer measured between the afternoon of 23 June and the morning of 25 June are
well reproduced. We found that this event was constituted of air masses coming from
widespread locations above Spain and their initial trace gases composition showed a
high variability. Nevertheless, when these air masses reach the ESCOMPTE area they15

appear (according to both the measurement and the Lagrangian reconstruction) as a
single layer with relatively homogeneous ozone content.

Different scenarios regarding initial NOx concentrations were investigated to achieve
a satisfactory comparison with ozone and NOx measurements performed during the
ESCOMPTE campaign. Modeled ozone concentrations are overestimated if mixing20

with background air is neglected. The optimum simulations are found for a character-
istic mixing time of the order of 5 and 2 days for the reference run and the enhanced
NOx scenario (initial NOx levels multiplied by a factor 3), respectively. The uncertainty
regarding these mixing times is about 1 day.

According to the simulation based on the optimum mixing time, ozone is produced25

during the transport for the majority of air masses. Ozone production efficiency is
highest for air masses that left the PBL in the morning (0.4 ppbv h−1), i.e. before photo-
chemical transformation began in the PBL. On average, ozone production rate during
the transport is of the order of 0.2 ppbv h−1; that is an 13.3 ppbv increase during the
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transport in the free troposphere.
We found that the contribution of ozone produced in the free troposphere is at most

as important as direct export of ozone in the PBL. These two processes are responsible
for about 45% and 55% of the ozone increase related to PBL venting, respectively.
During this event, we sampled air masses coming from widespread locations above5

Spain and at different times of the day. We can thus conclude that the Spanish PBL
was a net exporter of ozone and of its precursors to the free troposphere during that
period.
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N.: Comparison and evaluation of modelled and GOME measurement derived tropospheric
NO2 columns over Western and Eastern Europe, Atmos. Chem. Phys., 5, 169–190, 2005.

Lafore, J.-P., Stein, J., Asencio, N., Bougeault, P., Ducrocq, V., Duron, J., Fischer, C., Héreil,
P., Mascart, P., Masson, V., Pinty, J.-P., Redelsperger, J.-L., Richard, E., and Vilà-Guerau
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Université Paris 6, Paris, 1997.

Lawrence, M. G., Von Kuhlmann, R., Salzmann, M., and Rasch, P. J.: The balance of
effects of deep convective mixing on tropospheric ozone, Geophys. Res. Lett., 30(18),
doi:10.1029/2003GL017644, 2003.5

Lelieveld, J., Berresheim, H., Borrmann, S., Crutzen, P. J., Dentener, F. J., Fischer, H., Fe-
ichter, J., Flatau, P. J., Heland, J., Holzinger, R., Korrmann, R., Lawrence, M. G., Levin, Z.,
Markowicz, K. M., Mihalopoulos, N., Minikin, A., Ramanathan, V., de Reus, M., Roelofs, G. J.,
Scheeren, H. A., Sciare, J., Schlager, H., Schultz, M., Siegmund, P., Steil, B., Stephanou,
E. G., Stier, P., Traub, M., Warneke, C., Williams, J., and Ziereis, H.: Global Air Pollution10

Crossroads over the Mediterranean, Science, 298(5594), 794–799, 2002.
Liang, J., Horowitz, L. W., Jacob, D. J., Wang, Y., Fiore, A. M., Logan, J. A., Gardner, G. M.,

and Munger, J. W.: Seasonal budgets of reactive nitrogen species and ozone over the
United States, and export fluxes to the global atmosphere, J. Geophys. Res., 103(D11),
doi:10.1029/97JD03126, 1998.15

Logan, J. A.: An analysis of ozonesonde data for the troposphere: Recommendations for
testing 3-D models and development of a gridded climatology for tropospheric ozone, J.
Geophys. Res., 104(D13), doi:10.1029/1998JD100096, 1999.

MacQueen, J.: Some methods for classification and analysis multivariate observations, 5th
Berkeley Symposium of Mathematical Statistics and Probability 1, 281–297, 1967.20

Marion, T., Perros, P. E., Losno, R., and Steiner, E.: Ozone Production Efficiency in Sa-
vanna and Forested Areas during the EXPRESSO Experiment, J. Atmos. Chem., 38(1),
doi:10.1023/A:1026585603100, 2001.

Methven, J., Evans, M., Simmonds, P., and Spain, G.: Estimating relationships between air
mass origin and chemical composition, J. Geophys. Res., 106(D5), 5005–5020, 2001.25

Methven, J., Arnold, S. R., O’Connor, F. M., Barjat, H., Dewey, K., Kent, J., and Brough, N.:
Estimating photochemically produced ozone throughout a domain using flight data and a
Lagrangian model, J. Geophys. Res., 108(D9), doi:10.1029/2002JD002955, 2003.

Millán, M. M., Salvador, R., Mantilla, E., and Kallos, G.: Photooxidant dynamics in the Mediter-
ranean basin in summer: Results from European research projects, J. Geophys. Res.,30

102(D7), doi:10.1029/96JD03610, 1997.
Norton, W. A.: Breaking Rossby Waves in a Model Stratosphere Diagnosed by a Vortex-

Following Coordinate System and a Technique for Advecting Material Contours, J. Atmos.

1942

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/6/1915/acpd-6-1915_p.pdf
http://www.atmos-chem-phys-discuss.net/6/1915/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
6, 1915–1951, 2006

Impact of transport
and transformation
on ozone variability

A. Colette et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Sci., 51, 654–673, 1994.
Puygrenier, V., Lohou, F., Campistron, B., Saı̈d, F., Pigeon, G., Bénech, B., and Serça, D.:
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Table 1. Clusters of coherent mesoscale trajectories for air masses extracted from the Iberian
PBL and arriving above the ALTO lidar. Reference of the clusters (same as Fig. 4), day, time,
and location of extraction from the PBL, average RMS distance to the center of the cluster,
number of trajectories belonging to each cluster, detection of high MesoNH CAPE levels at the
date and location of extraction, and photochemical ozone production along the trajectory for the
CiTTyCAT simulations selected in Sect. 3.4. Clusters with outstanding high and low production
rates are highlighted in bold. The table is sorted depending on the date of extraction from the
PBL.

Cluster Left PBL on Left PBL from: Left PBL from: RMS N.traj CAPE P(O3) REF P(O3) 3NOx

DD HH (closest city) (lat,lon) (km) (ppbv h−1) (ppbv h−1)

7 22 18 Salamanca – Coimbra (−6.8 E, 40.4 N) 90 18 0.01 0.12
17 22 18 Cordoba – Badajoz (−5.3 E, 38.4 N) 124 11 0.00 0.11
3 23 08 Burgos – Pamplona (−1.8 E, 42.6 N) 61 24 0.31 0.40
6 23 08 Valadolid (−3.6 E, 41.9 N) 63 21 0.36 0.44
4 23 09 Burgos (−2.4 E, 42.5 N) 39 23 0.27 0.35

23 23 12 Zaragosa (−1.5 E, 41.2 N) 78 5 yes 0.18 0.13
16 23 14 Galician coast (−4.5 E, 42.7 N) 94 12 0.05 0.13
9 23 16 Zaragosa – Valencia (−1.4 E, 40.8 N) 99 15 yes 0.02 0.08

22 23 16 North Zaragosa (0.0 E, 42.4 N) 58 5 yes 0.03 0.11
18 23 17 Salamanca (−6.3 E, 41.1 N) 76 10 −0.05 0.05
20 23 17 North Zaragosa (−0.2 E, 42.4 N) 28 9 yes 0.04 0.12
11 23 18 Badajoz – Sevilla (−6.1 E, 39.0 N) 72 14 −0.01 0.09
21 23 18 Madrid (−3.0 E, 41.1 N) 78 8 0.07 0.18
5 24 08 Burgos – Pamplona (−1.4 E, 42.8 N) 76 21 0.24 0.41
1 24 11 SE Pyreneans (0.8 E, 42.8 N) 64 45 yes 0.10 0.22
2 24 15 Valadolid (−3.4 E, 41.5 N) 59 27 yes 0.09 0.21

15 24 15 Madrid – Valencia (−2.4 E, 39.8 N) 142 12 0.14 0.21
10 24 16 Zaragosa (−1.6 E, 40.8 N) 29 15 yes 0.03 0.21
8 24 17 S Madrid (−4.2 E, 40.1 N) 55 18 0.07 0.16

14 24 17 W Madrid (−4.5 E, 40.4 N) 76 12 0.05 0.23
13 24 18 Granada (−3.8 E, 37.3 N) 76 12 0.04 0.18
19 25 12 Zaragosa (−2.1 E, 41.4 N) 72 9 0.02 0.14
12 25 17 North Granada (−3.0 E, 38.8 N) 64 13 −0.03 0.07

Average 0.09±0.12 0.19±0.11
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Fig. 1. Meteorological analyses of the Deutscher Wetterdienst for 24 June 2001 12:00 UT,
geopotential at 500 hPa (a), and sea level pressure (b). METEOSAT infrared image for 24
June 12:00 UT (c). Mesoscale backtrajectories from the ALTO measurement site associated to
PBL-FT coupling (d).
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Fig. 2. Tropospheric ozone profiles measured by the ALTO (a) and EPFL (b) lidars between
23 and 25 June in the ESCOMPTE area. Color scales differ to account for the 10 ppbv offset
between the instruments.
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Fig. 3. Footprint of air masses with a PBL origin arriving above the ALTO measurement site
according to the mesoscale backtrajectories. A square is plotted for each trajectory coming
from the PBL. The color of the square corresponds to the time the air parcel spent in the free
troposphere before arriving in the ESCOMPTE area. Top panel: squares are plotted at the end-
ing point of the trajectory (time and altitude above the lidar); bottom panel: squares are plotted
at the location of extraction from the PBL. A red circle is plotted at the ALTO measurement site.
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Fig. 4. Same as Fig. 3a for air masses extracted from the PBL outside of the ESCOMPTE
region. Labels and color shading correspond to the references of the clusters of trajectories
(see Table 1).
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Fig. 5. Reverse domain filling of ozone (a) and NOx (b) concentrations for air masses arriving
above the ALTO lidar and coming from the Iberian PBL. Concentrations at the date and location
of export from the PBL are interpolated from the CHIMERE simulation.

1949

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/6/1915/acpd-6-1915_p.pdf
http://www.atmos-chem-phys-discuss.net/6/1915/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
6, 1915–1951, 2006

Impact of transport
and transformation
on ozone variability

A. Colette et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

06/23 06/24 06/25 06/26
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

A
lti

tu
de

 (
m

 a
sl

)

 

 

O
3
 (ppbv)

10

20

30

40

50

60

70

80

90

100

110

Fig. 6. Ozone concentrations simulated with the CiTTyCAT model for the reference run rep-
resented at the date and altitude of arrival of the air masses above the ALTO measurement
site.
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Fig. 7. Average and standard deviation of ozone concentrations (a, c) and average NOx (e)
modeled with the hybrid-Lagrangian model for different characteristic time of turbulent mixing.
For the reference run (blue) and the enhanced initial NOx scenario (red). Results of no-mixing
simulations are also displayed as well as observations (black, ALTO for ozone and MONA for
NOx). Panels (b) and (d) present statistical tests for the validity of the comparison with the
ALTO record with 95% confidence levels (dashed). The shaded areas correspond to optimum
mixing times for the reference (blue), the enhanced NOx simulations (red), or both (violet).
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