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Abstract

We investigated the size distribution, scattering and absorption properties of Amazo-
nian aerosols and the optical thickness of the aerosol layer under the pristine back-
ground conditions typical of the wet season, as well as during the biomass-burning-
influenced dry season. The measurements were made during two campaigns in 19995

as part of the European contribution to the Large-Scale Biosphere-Atmosphere Ex-
periment in Amazonia (LBA-EUSTACH). In moving from the wet to the dry season,
median particle numbers were observed to increase from values comparable to those
of the remote marine boundary layer (∼400 cm−3) to values more commonly associ-
ated with urban smog (∼4000 cm−3), due to a massive injection of submicron smoke10

particles. Aerosol optical depths at 500 nm increased from 0.05 to 0.8 on average,
reaching a value of 2 during the dry season. Scattering and absorption coefficients,
measured at 550 nm, showed a concomitant increase from average values of 6.8 and
0.4 Mm−1 to values of 91 and 10 Mm−1, respectively, corresponding to an estimated de-
crease in single-scattering albedo from ca. 0.97 to 0.91. The roughly tenfold increase15

in many of the measured parameters attests to the dramatic effect that extensive sea-
sonal biomass burning (deforestation, pasture cleaning) is having on the composition
and properties of aerosols over Amazonia. The potential exists for these changes to
impact on regional and global climate through changes to the extinction of solar radia-
tion as well as the alteration of cloud properties.20

1. Introduction

Solar radiation is modified when passing through the atmosphere by two main pro-
cesses: light scattering and light absorption. Light scattering is a redistribution of the
incident light in nonparallel directions, whilst light absorption consists of a conversion
of the incident light into thermal energy. The attenuation of light by these processes25

has important climatic consequences (Andreae and Crutzen, 1997; IPCC, 2001).
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Trace gases like CO2, H2O, NO2 and CH4 efficiently absorb radiation in the infrared
range, trapping the radiation reflected from the earth, causing the well-known “green-
house effect”. In contrast, aerosol particles are thought to have an overall cooling effect,
estimated to be of the same order of magnitude as the positive forcing of greenhouse
gases (IPCC, 2001). However, these estimates are still subject to wide uncertainties,5

mainly due to the fact that aerosol climate forcing depends on the optical properties
and spatial distribution of the aerosols, both of which vary greatly according to the
sources, location, and age of the aerosols. Aerosol particles both absorb and scatter
light, with the efficiency of the processes being highly dependent on their size distri-
bution, chemical composition and the wavelength of the incident radiation. Scattering10

efficiency is predominantly a function of particle size, morphology, and chemical com-
position, and is mainly due to aerosol particles in the accumulation range (0.1–1µm).
The light absorption by aerosols covers the whole spectrum, and is largely due to near-
graphitic carbon (also called elemental, or black carbon), whose unique known source
are combustion processes.15

Of the various major aerosol particle types, those emitted during biomass burning
are amongst the most optically active (Reid and Hobbs, 1998) due to the fact that
they are predominantly in the form of submicrometer, accumulation-mode particles,
and also contain a high content of light-absorbing components. This, coupled with
the fact that biomass burning has been estimated to be the second largest source20

of anthropogenic aerosols (IPCC, 2001), has led to extensive investigation of smoke
aerosols (both laboratory and field based), with a primary aim being to determine their
contribution to Earth’s radiation balance. Despite these efforts, however, the radiative
forcing due to aerosol particles is still subject to large uncertainties (at least a factor of
two), and the confidence level of global estimates is considered as “low” (Andreae and25

Crutzen, 1997; Shine and Forster, 1999; IPCC, 2001).
Biomass burning activities are most concentrated in the tropical areas of Africa, In-

donesia and South America (Andreae, 1991), where fire is routinely used for both de-
forestation and seasonal burning of secondary forests and pastures. Of these regions,
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the Amazon basin has perhaps been the focus of most international attention, due to
the fact that it contains the world’s largest tropical rainforest and continues to experi-
ence one of the highest rates of deforestation in the world. Measurement campaigns
like the Smoke, Cloud, Aerosol and Radiation-Brazil (SCAR-B) experiment (Kaufman
et al., 1998) and the dry and wet season Amazon Boundary Layer Experiments (ABLE5

2A and 2B) (Harriss et al., 1988; Harriss et al., 1990), have sought specifically to im-
prove our understanding of the environmental and climatic effects of biomass burning
and background aerosols in this region. As a result, it is now clear that smoke aerosols
emitted in Amazonia have a very strong local impact on incoming radiation (Ross et
al., 1998). Moreover, recent studies have shown that the smoke produced in the trop-10

ics may be subject to high altitude uplift and long-range transport due to the intense
convective activity (Andreae, 1991; Pickering et al., 1996; Andreae et al., 2001; Staudt
et al., 2001). The potential, therefore, exists for the extensive biomass burning in the
Amazon basin to have a global influence (Andreae et al., 2002). Ongoing studies of
the sources, properties and processes involving aerosols are therefore critical for this15

region.
The current study was carried out during the recent LBA-EUSTACH 1 and 2 cam-

paigns (LBA = Large-Scale Atmosphere-Biosphere Experiment in Amazonia; EU-
STACH = European Studies of Trace Gases and Atmospheric Chemistry) (Nobre et
al., 2001; Andreae et al., 2002), which formed part of the LBA project, a major inter-20

national initiative designed to investigate the Amazon rainforest ecosystem, its links
to the atmosphere and climate, as well as the significant impacts of human activities
in the region. We focus here on a comparison of the physical properties of aerosols
(number concentration, size distribution, scattering and absorption coefficients, single-
scattering albedo, and aerosol optical depth) representative for background conditions25

(LBA-EUSTACH 1) with those for fresh and aged smoke from anthropogenic biomass
burning (LBA-EUSTACH 2). This study contributes towards a more thorough under-
standing of the regional and global climatic effects of widespread biomass burning in
Amazonia and other tropical regions.
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2. Sampling location and methodology of measurements

2.1. Sampling location

Aerosols were sampled during two field campaigns on a 54 m tower situated in a pri-
mary rainforest (Reserva Biologica Jarú, Rondônia, Brazil, 10◦04′55′′ S, 61◦55′48′′ W,
110 m above sea level), in April–May 1999 (LBA-EUSTACH 1) and September–October5

1999 (LBA-EUSTACH 2). The LBA-EUSTACH 1 campaign covered the end of the wet
season period and the transition period toward the biomass-burning-influenced dry
season. LBA-EUSTACH 2 was conducted throughout the end of the dry season and
the transition period toward the wet season again. For a more complete description of
the site and overall sampling conditions, refer to Andreae et al. (2002).10

2.2. Particle concentrations

Aerosol particle concentrations in the size range 0.01–3µm diameter were measured
with a condensation particle counter (CPC 3010 or 3762, TSI, USA). The instruments
were fitted with a diffusion drier installed in front of the inlet, because direct sampling
of the extremely humid ambient air would have led to condensation of water within the15

instrument. The diffusion dryer consisted of a cylindrical metal mesh (length 0.59 m,
diameter ca. 13 mm) surrounded by a plastic tube filled with silicagel. The losses due
to the inlet tubing and the diffusion drier were determined to be ca. 19%, for which
the measurements were corrected. In addition, the raw data were adjusted for coinci-
dence losses by applying an algorithm recommended by the manufacturer. On a few20

occasions (<0.3% of total measurement time) during the LBA-EUSTACH 2 campaign
(always at night), the CPC instrument was saturated when smoke plumes passed over
the site.
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2.3. Size distributions

Continuous particle number/size distributions were measured using a passive cavity
aerosol spectrometer probe, the PCASP-100x (PCASP, DMT, USA, now owned by
Particle Metrics, Longmont, USA), with a one-minute time resolution. The PCASP
measured particle size distribution from diameters ranging 0.1–3µm in 18 channels,5

derived from the light scattering properties of the particles at a wavelength of 633 nm
between angles of 35◦ and 135◦. The instrument was calibrated by the manufacturer,
using polystyrene latex particles of known size. The refractive index of latex beads
(1.59 – 0i ) is different from that of atmospheric particles, resulting in a size distribution
that is “latex equivalent”. Guyon et al. (2003) have shown that the refractive index10

of ambient aerosol particles may be subject to large intra- and inter-day variations,
as a function of aerosol sources, age, and relative humidity (RH). Here, we are pre-
senting PCASP size distributions corrected for an average refractive index calculated
for three periods of interest. The three periods were designated as follows: (1) LBA-
EUSTACH 1, before the transition period (representative for background, wet season15

conditions), (2) LBA-EUSTACH 1, during the transition period toward the biomass-
burning-influenced, dry season period, and (3) LBA-EUSTACH 2, largely dominated
by biomass burning conditions. The average refractive indices associated with each
period were 1.42 (±0.04) – 0.006 (±0.003)i , 1.46 (±0.06) – 0.016 (±0.003)i , and 1.41
(±0.05) – 0.013 (±0.005)i , respectively. Refractive indices were obtained using Mie20

scattering theory in combination with a new iterative process, which utilizes the raw
PCASP-measured size distributions and independently measured scattering and ab-
sorption data as inputs (Guyon et al., 2003). To facilitate comparison of the size distri-
butions observed during the different periods studied, the distributions were normalized
by the concentration of the size bin of the PCASP showing the largest value in the ac-25

cumulation mode (0.1–1µm diameter).
Mass/size distributions were obtained from a microorifice uniform deposit impactor

(MOUDI, model 110, MSP corporation, Minneapolis, USA) (Marple et al., 1991). For a
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complete description of the instrument and the sampling procedure, refer to Guyon et
al. (2003). Mass concentrations were obtained by gravimetric analysis. The aluminum
substrates were weighed before and after sampling, with a Mettler microbalance (1µg
sensitivity), after having been left equilibrating under controlled conditions of RH (50%)
and temperature (20◦ C) for at least 24 h. The accuracy of the measurements is ca.5

±3µg. The MOUDI mass/size distributions were inverted following the work of Roberts
et al. (2002), which is an adaptation of the Twomey nonlinear iterative algorithm de-
scribed by Winklmayr et al. (1990). Collection efficiencies E (D) for our MOUDI were
obtained by calculating the steepness factor s associated with each MOUDI stage from
the collection efficiencies reported by Marple et al. (1991), using10

E (D) =

[
1 +

(
D50

D

)2s
]−1

(1)

with D the particle diameter, and D50 the 50% cutoff diameter, and fitting the E (D) s-
shaped function to the D50 characteristic for our instrument. This procedure allowed
us to retrieve continuous size distributions, which contain more information than the
histogram obtained from directly plotting the mass concentration measured for each15

MOUDI stage. Uni- and bimodal number, volume, and mass/size distribution were
parameterized by a lognormal equation:

dQ
d logD

=
2∑

i=1

Qi√
2πσ i

exp

[
−

(lnD − lnDQ, i )
2

2σ2
i

]
, (2)

where Q expresses the number, volume or mass quantity, DQ, i is the median particle
diameter of the mode i for the quantity Q, and σi is the standard deviation.20

2.4. Scattering coefficients

Light-scattering measurements were made with a single-wavelength (λ = 545 nm)
nephelometer (model M903, Radiance Research, Seattle, USA). Aerosols were sam-
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pled continuously and the data averaged and collected on a one-minute time resolution.
No attempt was made to dry the particles prior to sampling. Nevertheless, the internal
heat produced by the instrument itself may have partially dried out the sampled parti-
cles. On average, the RH inside the instrument was 15% (±6%) lower than ambient
RH.5

The Radiance Research nephelometer measures light scattering between 8.9◦ and
170◦ angles, so that the scattering coefficients retrieved from the instrument are trun-
cated for the very forward and backward scattering angles, and therefore are lower
than the effective total scattering from the sampled particle population. Anderson et
al. (1996) proposed a method for correcting scattering measurements obtained from10

a three-wavelength TSI 3563 nephelometer (an instrument with similar characteristics
to ours), based on the Ångström exponent derived from the scattering values obtained
at 450 and 700 nm. They found that this instrument underestimates the total scattering
coefficients by up to 10% for submicrometer particles, and 20–50% for supermicrome-
ter particles. This correction procedure could not be employed for our instrument, since15

it measures at only a single wavelength. However, such a correction factor could be
retrieved as a “by-product” of an iterative procedure we recently developed for estimat-
ing the refractive index of atmospheric aerosols (Guyon et al., 2003). In this procedure,
hourly averages of scattering coefficients, absorption coefficients and PCASP num-
ber size distributions from both measurement campaigns were used concomitantly in20

combination with a standard Mie scattering model, so that absorption and scattering
coefficients could be recalculated from the size distribution of the PCASP. The angu-
lar truncation of the nephelometer was taken into account in the Mie program, and
the corrected scattering coefficient (σs), as well as the truncated scattering coefficients
(σs, trunc) (identical to the one measured by the nephelometer), were retrieved. From25

these, a correction factor, Ftrunc(= σs/σs, trunc), could be extracted and applied to the
whole data set, as explained in detail in Sect. 3.4. The errors associated with the scat-
tering values presented herein are therefore considered to be due only to measurement
error of the instrument itself (ca. 5%).
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2.5. Absorption coefficients

Continuous absorption coefficient measurements were made using a Radiance Re-
search particle soot absorption photometer (PSAP). The PSAP operates using the
principle of an integrating plate, measuring transmittance through a glass fiber filter at
a wavelength of 565 nm. Values were collected every 5 min during the LBA-EUSTACH5

1 campaign and every minute during LBA-EUSTACH 2, due to high aerosol loading
resulting from local biomass burning. Absorption coefficients, σa, were retrieved ac-
cording to Bond et al. (1999) for PSAP filter transmittance >0.5. Uncertainties were
computed following the work of Anderson et al. (1999). For a complete description
of the data handling and uncertainties associated with the PSAP instrument, refer to10

Guyon et al. (2003).

2.6. Aerosol optical depth

Aerosol optical depth (AOD, τ) under cloud-free atmospheric conditions was mea-
sured during both measurement campaigns using a Yankee multifilter rotating shad-
owband radiometer (MFR) (MFRSR-7, Yankee Environmental Systems, Turner Falls,15

USA) (Harrison et al., 1994). In the present study, five wavelengths were used (415,
500, 615, 671, and 867 nm). First, the Langley technique was applied on morning and
afternoon data of air masses, m, ranging between 2 and 6, in order to acquire an es-
timate of the solar constant from the intercept of the regression line of the measured
irradiance on the air masses (Harrison and Michalsky, 1994). A set of clear days was20

chosen from each period to obtain the value of the solar constant for each wavelength
and then the Beer-Lambert-Bouguer law was applied to derive instantaneous mea-
surements of the total optical depth (one-minute time resolution). The AODs for the
five wavelengths were then obtained by subtracting the contribution of Rayleigh scat-
tering and ozone absorption from the total optical depth. A more detailed description25

of the instrumentation, methodology, and quality control can be found in Formenti et al.
(2000) and references therein.
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3. Results and discussion

3.1. Aerosol particle concentration

During both the LBA-EUSTACH 1 and the LBA-EUSTACH 2 campaigns, two CPC in-
struments were used to acquire total aerosol particle concentration data for particles in
the size range of 0.01–3.0µm diameter (Fig. 1).5

The low concentrations (median of ca. 400 cm−3) measured at the beginning of the
first campaign (April) compare to those found for marine air, which typically exhibits par-
ticle concentrations of 100–300 cm−3 (Fitzgerald, 1991; Finlayson-Pitts and Pitts, 2000;
Raes et al., 2000). Given that the removal of fine mode aerosols from the troposphere
is usually largely due to the incorporation of the aerosols into cloud droplets, followed10

by precipitation, as well as to scavenging below clouds during rain (Finlayson-Pitts and
Pitts, 2000), these remarkably low concentrations are undoubtedly associated with
the large amount of precipitation observed during the month of April (Andreae et al.,
2002), as well as with the weak sources of aerosol particles in the Amazon basin dur-
ing the non-burning season (Artaxo and Hansson, 1995). Similar concentrations were15

observed by (Roberts et al., 2001) and (Zhou et al., 2002) in the Amazonian site of
Balbina, north of Manaus, in 1998 (average particle concentrations of 460±320 cm−3),
suggesting that conditions encountered in the unpolluted Amazon basin resemble more
those observed from marine environments in contrast to what is typically reported for
continental environments (Williams et al., 2002).20

Precipitation decreased during the month of May, and particle concentrations conse-
quently increased (median of ca. 600 cm−3, Fig. 1), indicating a transition from the wet
season toward the dry season (Andreae et al., 2002). This increase in particle concen-
tration also coincided with the onset of fire activity in the states neighboring Rondônia
(RO), principally in the states of Mato Grosso do Sul (MS), Mato Grosso (MT), Goiás25

(GO), and Pará (PA), as detected by the NOAA-12 satellite (Fig. 2) (also available from
CPTEC at http://www.cptec.inpe.br/products/queimadas/).

It is noteworthy that there were actually no fire pixels detected in the state of Rond-
1376

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/3/1367/acpd-3-1367_p.pdf
http://www.atmos-chem-phys.org/acpd/3/1367/comments.php
http://www.copernicus.org/EGU/EGU.html
http://www.cptec.inpe.br/products/queimadas/


ACPD
3, 1367–1414, 2003

Physical properties
of Amazonian

aerosols

P. Guyon et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

c© EGU 2003

nia, where the measurements took place, and virtually none north of the tower (state
of Amazonas (AM)), over the two months covering the LBA-EUSTACH 1 campaign
(Fig. 2). However, five-day back trajectories calculated for a starting altitude of 500 m
using the NOAA/Air Resources Laboratory HYbrid Single-Particle Lagrangian Inte-
grated Trajectory (HYSPLIT-4) model (Draxler and Hess, 1998) clearly show that air5

masses passing over the sampling site during this period were all coming from those
areas that contributed to most of the fire activity in the region, namely MT, MS, and GO
states. According to the back trajectories (Fig. 3), these biomass-burning-influenced
air masses required some 2–3 days to reach the sampling site. In light of this, we
consider the beginning of the LBA-EUSTACH 1 campaign (8 April–12 May 1999) to10

be representative for background Amazonian conditions, whilst the second part of the
campaign (13–21 May 1999) was influenced by aged smoke from biomass burning.

The burning season in Rondônia reached its peak during the month of September,
when the LBA-EUSTACH 2 campaign started. This was a month later than for its
neighboring state to the East, MT, where the most intense biomass burning activity15

for the year 1999 occurred in Brazil (Fig. 2). During the burning season, most of the
biomass burning spots in Amazonia occur in the transition between savanna and forest,
mostly in the states of MT, MS, RO, GO, PA, and Tocantins. This burning activity had
a dramatic effect on the measured aerosol particle concentrations. The total amount
of particles increased by an order of magnitude compared to the LBA-EUSTACH 120

campaign, with the median number concentration exceeding 4000 cm−3. This is clear
evidence of the strong impact that human activities are having on the atmospheric
conditions over the Amazon region.

The measured aerosol concentrations in Rondônia decreased significantly in the
last week of October (median of ca. 1700 cm−3, compared to an overall median of25

ca. 4400 cm−3). During this week, rainfall frequency increased, signaling the transition
towards the next wet season.
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3.2. Aerosol optical depth (AOD)

Daily AOD (at 500 nm – unless otherwise stipulated, this wavelength will be henceforth
used as reference) and Ångström exponents (estimated from AOD values obtained
at 868 and 416 nm) derived from the 1-min time resolution MFR measurements are
presented for both field campaigns in Fig. 4. The number of data points retrieved5

was mainly restricted by the large number of cloudy days observed during both field
campaigns. For the same reason, some of the averages presented were obtained for
shorter periods than over the whole day (excluding values at high air masses, m > 6).

AOD showed very little diurnal variability, especially during the LBA-EUSTACH 1
campaign, so that even a few hours of measurements can be an acceptable estimate10

of the daily average. However, morning values were generally higher than the daily
average, as were the scattering coefficients (Sect. 3.4), which may be attributed to the
high relative humidity observed in the mornings.

The same overall temporal trend was observed in AOD values as for the other
aerosol data measured during the LBA-EUSTACH 1 campaign. Background AOD val-15

ues (period preceding 12 May 1999) were centered at 0.048 (first and third quartile of
0.040 and 0.056, respectively), which is only about twice the estimated detection limit
for the instrument (Formenti et al., 2000). These values are in the lower range (0.038–
1.41) of values given by Horvath (1998) for clean continental conditions at 500 nm, and
about half those measured by Formenti et al. (2001) in Balbina during non-dusty days.20

AOD then progressively increased, reaching a value of 0.12 on 22 May.
The biomass-burning season (LBA-EUSTACH 2) was characterized by large day-to-

day fluctuations in AOD, ranging from 0.1 to 2.0, with a median value (first; third quar-
tile) of 0.79 (0.53; 1.02). These values are in the range of what has been measured at
the pasture site during the same period by the AERONET (Holben et al., 1998) sun-25

photometer network (average of 0.91, standard deviation of 0.56, and maximum of 3.3,
at 500 nm) (Artaxo et al., 2002). This highlights the regional influence of biomass burn-
ing, since the results appear to show that the atmosphere above the remote forest site,
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at which we measured, was influenced by biomass burning aerosols to about the same
extent as that over the pasture site. Other authors, such as Dubovik et al. (2002), also
reported AOD values (at 440 nm) ranging from 0.1–3.0 (0.74 on average) for biomass
burning-influenced periods in 1993 and 1994 over the Brazilian Amazonian forest, and
in 1998 and 1999 over the Bolivian Amazonian forest. The range of AODs obtained for5

this season is of the same magnitude as those reported by Horvath (1998) for polluted
urban environments at 500 nm (0.4–4.36). The large range of values reported in these
data sets, however, indicates the danger associated with using a single average AOD
value to represent biomass burning haze in order to retrieve aerosol radiative forcing
estimates.10

AOD values at 550 nm were interpolated using the Ångström exponents obtained
from the values for the neighboring wavelengths (500 and 616 nm), and were regressed
against the corresponding extinction coefficients obtained at ambient RH<92% (the
sum of the scattering and absorption coefficients at 550 nm presented in Sect. 3.4 and
3.5, respectively). The slope of the fitting equation provides an estimate of the scale15

height of the optically-active aerosol layer if it is assumed that the aerosols are well-
mixed within the layer (assuming the pressure in this layer to be constant and equal
to the surface pressure). Regression of the 10 min-averaged values yielded a layer
height of ca. 4.5 km for the period preceding 12 May (r2 = 0.93, 51 observations). This
is much higher than the value of 1 km reported by Jacob and Wofsy (1988) and Fisch20

et al. (2003) for the convective boundary layer (CBL) height at this site, or the value
of ca. 2.0 km for the planetary boundary layer (PBL) given by Jacob and Wofsy (1990)
for late-morning hours in the Amazon basin during the wet season. These authors
found the PBL to be well mixed with the underlying sublayers, but fairly decoupled from
the layer above. This indicates that the aerosols measured in situ on the tower during25

this period were probably not characteristic of the whole column, and that there was a
significant contribution by free tropospheric aerosols to the (very low) AOD during this
period.

Regression of the data for the 12–21 May period suggested a much shallower
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optically-active aerosol layer, ca. 1.1 km in depth (r2 = 0.44, 154 observations). As
discussed in more detail in the single-scattering albedo section (Sect. 3.6), this reflects
how biomass burning aerosol particles, even in relatively low amounts, can dominate
the overall aerosol optical properties of the whole column when mixed in with back-
ground aerosol in remote areas.5

The overriding influence of the smoke aerosol is also seen in the Ångström ex-
ponent data retrieved for the LBA-EUSTACH 1 campaign (Fig. 4). Ångström expo-
nents showed a dramatic increase from the beginning to the end of the first campaign,
and then to the dry season campaign: values increased from below unity to over 2
(Fig. 4). Ångström exponent values of ca. 2 are typical for small smoke particles,10

whereas values tending toward zero are representative of large particles (e.g. dust)
(Dubovik et al., 2002). This attests to the growing contribution of fine particles to the
optically-active aerosol loading with increasing biomass burning activity, whereas back-
ground aerosols seem to be characterized by a prevailing coarse mode. The increase
in Ångström exponents is particularly noticeable between the beginning and the end15

of the LBA-EUSTACH 1 campaign, indicating a radical change in the make-up of the
optically-active aerosol layer. This is consistent with the shift from a prominent biogenic
coarse-mode aerosol prevailing over the unpolluted Amazon to conditions dominated
by biomass smoke during the dry season (Artaxo et al., 2002).

3.3. Number, volume, and mass size distributions20

The mean normalized number size distributions (∆N/∆ log10(D)) measured by the
PCASP for pristine background conditions (period preceding 12 May), background con-
ditions affected by aged biomass smoke (period 12–21 May), as well as for regional
biomass burning haze (LBA-EUSTACH 2 campaign), are presented in Figs. 5a–c. In
each case, the accumulation mode (particles of D < 1µm) of the size distribution could25

be fitted by a lognormal equation (r2 > 0.86), yielding the geometric mean diameter
and geometric standard deviation parameters summarized in the first column of Ta-
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ble 1.
The overall shape of the normalized number distributions did not vary significantly

from the beginning (Fig. 5a) to the end of the LBA-EUSTACH 1 (Fig. 5b) campaign, al-
though absolute concentrations increased significantly (Sect. 3.1). Both median num-
ber distributions show a similar bimodal profile with maxima at ca. 0.17 and 3–4µm for5

the accumulation and coarse modes, respectively. The standard deviations for the two
distributions are also quite similar, with a slightly broader distribution in the second pe-
riod (especially for particles with diameters of ca. 0.2–0.3µm). The coarse mode could
not be successfully fitted to a lognormal curve because of its relatively low abundance
and because of interference by a smaller intermediate mode at ca. 0.8–1.5µm. For the10

whole of the LBA-EUSTACH 1 campaign, the relative concentration ratios for the size
bins within the accumulation mode varied from the median values by less than a factor
of 1.5 for 75% of the time, whereas they varied by up to a factor of ca. 3 for the coarse
and intermediate modes. This higher variability for the larger particle sizes could be
due to the poorer counting statistics in this range (Le Canut et al., 1996).15

Compared to the distributions observed for the LBA-EUSTACH 1 campaign, the dry-
season number/size distribution (Fig. 5c) shows a broader accumulation mode and a
greater abundance of accumulation mode particles relative to coarse mode particles.
This is due to the fact that biomass burning contributes mostly to the release of ac-
cumulation mode particles into the atmosphere. This mode, which shows a number20

median diameter centered at ca. 0.19µm, is similar in shape to that measured by
Reid et al. (1998) for local haze in Cuiabá (using a PCASP instrument and assuming
a particle refractive index value of 1.50 – 0.02i ). The accumulation mode seems to
be composed of two sub-modes – a dominating mode at ca. 0.15µm (comparable to
the other distributions), and a second one at ca. 0.3µm. Similar to our observations,25

Reid et al. (1998) and Le Canut et al. (1996) also found two modes with maxima
at particle diameters of ca. 0.1–0.18µm and ca. 0.2–0.3µm in the number size dis-
tribution of “background aged biomass-burning smoke”. The second mode within the
accumulation mode could be attributed to condensational growth and/or coagulation
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as the particles aged. Radke et al. (1995) observed growth of forest fire particles
from the emitted Aitken mode (D < 0.2µm) to accumulation mode sizes (D=0.2–2µm)
within the first few hours after emission. Assuming, in our case, a mixture of aged and
younger smoke particles would be consistent with our observations of the presence
of concentrated regional haze disturbed occasionally by more local younger plumes.5

However, these two modes are typically observed from PCASP data as, for example,
Reid and Hobbs (1998) did not observe such a pattern in their differential mobility par-
ticle sizer data, and we cannot exclude that this could not be a product of some artifact
in the PCASP data.

It can be seen from Figs. 5a–c that the number size distributions obtained from the10

PCASP instrument are truncated for particles smaller than 0.1µm, and that this lower
cutoff diameter occurs near the maxima observed for the accumulation modes. A con-
sequence of this is that during the LBA-EUSTACH 2 campaign, the PCASP could
only account for ca. 60% of the total number of particles detected by the CPC. The
unaccounted-for fraction consists predominantly of particles of the Aitken mode emit-15

ted during the fires. Although very numerous, these fine particles contribute little to
the total aerosol mass and volume, and are characterized by very small scattering and
absorption cross sections due to their small size.

The normalized volume distributions (∆V/∆ log10(D)) for the three periods defined
above are shown in Figs. 5d–f. It can be seen that the PCASP accounts for most of20

the accumulation mode volume, but truncates the coarse mode. All three distributions
appear to have a bimodal accumulation mode, which could be due to an artifact of
the instrument, as described above. However, examination of the raw data showed
that the PCASP correction for the refractive index is not a primary source of error, but
emphasizes the irregularities already existing in the distribution. Therefore, and despite25

the resulting poor fit (r2 of 0.87 for the dry season data, but fitting poorly the central
size bins at D=0.2–0.6µm), we decided to apply a unique lognormal equation to the
accumulation mode of these curves, which has probably a more physical meaning.
We note here that it cannot be excluded that the accumulation mode might actually
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be bimodal in nature for the dry season distribution; however, the two peaks are too
sharp in shape, and overlap too much to be successfully fitted individually by lognormal
equations.

The parameters describing the best fit of lognormal equations to the volume distribu-
tions are summarized in the second column of Table 1. The standard errors associated5

with the lognormal parameterization of the coarse mode are large because of the up-
per truncation of this mode. Guyon et al. (2003) reported that the correction for the
refractive index applied to the PCASP data might overestimate the sizes of the par-
ticles in the coarse mode, because a constant refractive index is assumed over the
whole size distribution, and the absorption in this mode might be overestimated. The10

volume mean diameter for the accumulation mode increases with increasing amounts
of haze aerosols, from ca. 0.23µm during the wet season to ca. 0.36µm for the smoke
haze period. Reid et al. (1998) reported values in the range 0.25–0.30 (±0.02)µm for
regional haze using the same instrument (see above). The same authors also reported
a mean volume diameter of 0.28–0.35 (±0.05)µm, obtained using a differential mobility15

particle sizer. Dubovik et al. (2002) reported an AOD-dependent mean volume radius
of 0.14 + 0.013×AOD (at 440 nm), and a geometric standard deviation of 0.40±0.04
for aerosols emitted by biomass burning in the Amazon. Applying a central AOD of
ca. 0.9 at 440 nm (Sect. 3.2) to this equation would yield a mean volume diameter of
ca. 0.30µm. The latter value, derived from ground-base radiometer measurements, is20

slightly lower than those found in the current study, but confirms the observed trend of
increasing accumulation mode mean volume diameter with increasing burning activity.

Typical mass size distributions (obtained as described Sect. 2.3) for the three periods
are shown in Fig. 6, and the lognormal fit parameters associated with each distribution
are summarized in the third column of Table 1. The discrepancy in geometric standard25

deviation observed between the number, volume, and mass/size distributions of each
period is an indication of the overall uncertainty associated with these distributions, as
the standard deviation of a distribution should remain the same for all distribution types
(Hinds, 1999). In most cases, the lognormal fit of the regional haze coarse mode (5–6
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October 1999) was difficult, if not impossible to apply, due to the overlap of this mode
with the large accumulation mode. However, the profile of the coarse mode during
this period was generally similar to that found under background conditions, although
slightly higher concentrations were observed. As was the case for the PCASP data, a
second peak is noticeable within the regional haze accumulation mode at D ∼0.55µm.5

However, this peak is less pronounced in the MOUDI compared to the PCASP data,
and the MOUDI distribution is narrower than the PCASP volume distribution, which
could be due to overcorrection of the PCASP data or in inverting the MOUDI data. A
peak in fine particles could also be observed at 0.05–0.07µm.

We note here that on some occasions, MOUDI samples were obtained with the10

dominant fraction collected one stage lower than usual (stage 8, of aerodynamic
cutoff D50 = 0.200µm, instead of stage 7, D50 = 0.346µm). One of these sam-
ples (2–3 October 1999) was identified as a young biomass-burning plume (Guyon
et al., 2003), and the lognormal fit yielded mean diameters (standard deviations) of
0.31±0.01 (0.50±0.05) and 3.15±0.16 (0.46±0.01)µm for the fine and coarse mode,15

respectively. Characteristically, this sample did not exhibit a second peak within the
accumulation mode at larger diameter, suggesting that the presence of this peak in the
regional haze samples could be attributed to condensational growth.

Figure 7 shows a scatter plot of the MOUDI mass concentrations measured during
the LBA-EUSTACH 2 campaign against the corresponding integrated volume concen-20

trations, for particles with diameters of 0.1–1µm. Plotted are both volume concen-
trations derived directly from the “raw” PCASP size distributions, as well as the ones
derived after adjustment of the PCASP size bins for the refractive index of the sampled
aerosol. For this adjustment procedure we used the average refractive index value of
1.41 – 0.013i calculated by Guyon et al. (2003) for biomass burning aerosols during25

this campaign. The regression analysis (with intercept forced to zero – the intercept
being meaningless in our case, and insignificantly changing the r2 of the regression)
yielded an accumulation mode particle density of 1.38 g cm−3 (standard error of 0.03,
r2 = 0.95) using the uncorrected PCASP data, and 0.65 g cm−3 (standard error of
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0.01, r2 = 0.94) using the refractive index-adjusted PCASP data. The higher estimate
is probably an overestimation of the average density, as the PCASP size bins were not
corrected for the refractive index, and the particle volume increases with the third power
of this correction. On the other hand, the lower value could be an underestimation of
the particle density because the PCASP was measuring ambient aerosols, whilst the5

MOUDI substrates were left equilibrating under controlled conditions of RH (50%) and
temperature (20◦ C) for at least 24 h prior to weighing, and volatile and semi-volatile
constituents of the aerosol (including water) may have evaporated. These compounds
may also have evaporated during daytime sampling, when the MOUDI was exposed to
larger temperatures. However, it cannot be excluded that the correction for the refrac-10

tive index applied to the PCASP overcorrects the data, resulting in an underestimation
of the particle density.

Reid and Hobbs (1998) reported an average density for smoke particles (D < 4µm)
in Brazil of 1.35±0.15 g cm−3, with a technique similar to ours. However, their analy-
sis comprised data for particles in the size range of 1–4µm, and could therefore also15

include, for example, dust particles (uplifted by convection during a fire) whose spe-
cific density is larger than the biomass burning aerosols considered here. Martins et
al. (1998) reported density values ranging between 1.00 and 1.21 g cm−3 for different
types and ages of biomass burning aerosols in Brazil. Guyon et al. (2003) found a
value of ca. 1.5 g cm−3 from a mass closure analysis of the LBA-EUSTACH 2 aerosol20

data (D < 2µm). These authors noted, however, that this value might be an overes-
timation because voids and/or the water content of the aerosols were not taken into
account, which would have lowered the density. Their calculations are also based on
specific densities for organics and black carbon estimated from literature values, which
cover a broad range. A typical value often reported in the literature for the density25

of biomass burning aerosol particles is 1.0 g cm−3 (Radke et al., 1991), derived from
the work of Stith et al. (1981). The latter authors determined the density of particles
emitted from three prescribed burns of conifer slash by regressing a set of volume size
distributions (obtained from an optical inversion technique) against mass size distribu-
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tions. They retrieved values of 0.75, 0.94, and 1.34 g cm−3 for the three separate fires,
and noted that these values were positively correlated with the fuel moisture content.
Too little information on the density of this type of aerosol is available to date, resulting
in large uncertainties in aerosol model calculations.

The regression of the five MOUDI samples collected in parallel to the PCASP during5

the LBA-EUSTACH 1 campaign yielded a density of 3.23 g cm−3 (standard error of
0.08, r2 = 0.99) using the uncorrected PCASP data, and 1.89 g cm−3 (standard error
of 0.10, r2 = 0.99) using the refractive index-adjusted PCASP data, for background
aerosols of diameter 0.2–1µm, over the Amazon basin. The higher values compared
to the LBA-EUSTACH 2 campaign reflect the presence of particles such as dust grains,10

which form a proportionately greater fraction of the wet season aerosol (Artaxo et al.,
1990; Echalar et al., 1998), and which have an aerosol density much larger than that
of biomass burning particles.

3.4. Scattering coefficients

Figures 8a and 8b present daily averages of the scattering coefficients measured by the15

nephelometer for RH<92% and RH<80%, together with the scattering coefficients cor-
rected for truncation for the LBA-EUSTACH 1 and 2 campaigns, respectively. Scatter-
ing coefficients (σs) recorded at RH>92% were removed from the data set because an
ambient RH of 92% (equivalent to ca. 78% inside the instrument) was found to be the
threshold value above which most scattering coefficient data showed a large response20

to increasing RH due to particle growth, at least for the LBA-EUSTACH 1 campaign.
The presence of dense smoke plumes crossing the measurement site over almost the
whole LBA-EUSTACH 2 campaign caused large variations in the measurements and
made it more difficult to determine an upper RH limit for this season. Nevertheless,
the aerosols exhibited reasonable properties up to an ambient RH of 92%, and this25

value was therefore also chosen as the upper limit for this campaign. Because of the
consistently very high RH observed at night during both campaigns (typically between
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90 and 100%), nighttime data are not presented. Generally, it was observed that scat-
tering coefficients increased with increasing RH, beginning at values of ambient RH as
low as 60%, suggesting that the aerosols (especially during the first campaign) were
taking up water even at moderate RH. Overall, the scattering coefficients measured at
RH<80% were only ca. 3% lower than those measured at RH<92% for both the LBA-5

EUSTACH 1 and 2 campaigns. Daily averages of the corrected scattering coefficients
measured during the first campaign at RH<92% were found to range from 0.9±0.7 to
30.6±5.1 Mm−1 (Fig. 8a). The σs values increased sharply around 12 May 1999, at-
tributable to the increasing influence of biomass burning aerosols, together with the re-
duced precipitation rate toward the end of this campaign (see Sect. 3.1). The increase10

coincided with increased particle numbers measured by the CPC, with an overall cor-
relation of r2 = 0.82 between the truncation-corrected scattering coefficient and total
particle concentration for the LBA-EUSTACH 1 campaign.

The average value of σs for the period 8 April–12 May, which we consider to be
representative for pristine background conditions, was 6.8±4.3 Mm−1 (for ambient15

RH<92%). This is slightly lower than that measured by Formenti et al. (2001) (mean
background ambient σs of 10±1 Mm−1) for the central Amazonian site of Balbina, in
1998, without applying an upper RH limit. This difference is probably due to the fact
that the current study was performed at a more remote location. Our values are also
about half those measured for clean marine boundary layer during the ACE-2 experi-20

ment (Collins et al., 2000).
In contrast to LBA-EUSTACH 1, the LBA-EUSTACH 2 campaign showed highly vari-

able light scattering values (indicated in Fig. 8b by the large standard deviation as-
sociated with the measurements), due to the frequent passage of biomass burning
plumes over the measurement site. Daily averages of daytime values were found to25

vary between 16 and 654 Mm−1, with an overall median value (first; third quartile) of
91 Mm−1 (51; 201). These values fall within the lower range of scattering coefficients
measured by Reid and Hobbs (1998) for younger plumes, in the direct vicinity of the
fires. The data show a general increase in σs values around 9 October, followed by a
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decrease that coincided with an observable decline in fire activity. The lowest values
were mostly recorded after 23 October, which was a period characterized by increased
rainfall. The scattering coefficient data followed a similar temporal trend to the CPC
data, with an overall correlation of r2 = 0.53 between the hourly-averaged scattering
coefficient (truncation corrected) and total particle concentration for the LBA-EUSTACH5

2 campaign.
Figure 9 presents a scatter plot of the corrected scattering coefficients, as obtained

from the iteration calculation, against the truncated scattering coefficients for both LBA-
EUSTACH 1 and 2 (for hourly averaged data measured at an ambient RH lower than
80%). Linear regression yielded fitting equations of σs = 1.16σs, trunc + 0.05 (r2 =10

1.00, n = 64) and σs = 1.06σs, trunc + 2.03 (r2 = 1.00, n = 170) (scattering coefficients
in Mm−1) for LBA-EUSTACH 1 and 2, respectively (with n the total number of data
points considered for each season). This indicates that, within the range of σs, trunc
observed for each season, not correcting for truncation leads to an error of ca. 16%
for the LBA-EUSTACH 1 campaign, and ca. 6% for LBA-EUSTACH 2. We note here15

that inclusion of data collected between 80% and 92% RH did not produce a significant
change in the regression parameters obtained.

We have performed a sensitivity study for the truncation factor, Ftrunc, using the in-
dividual uncertainties associated with the measurements from the various instruments
(see Guyon et al. (2003) for a detailed description of the sensitivity test). We found the20

slope (Ftrunc) to be virtually insensitive to changes in any of the individual parameters.
We can conclude that Ftrunc is constant over the whole range of scattering coefficients
and particle number concentrations observed during both seasons, and is therefore
only dependent on particle type and size. Our method for calculating the truncated
part of the scattering coefficient obtained from an integrating nephelometer, therefore,25

appears very robust. Nevertheless, it should be noted that the lowest values measured
during the second measurement campaign (σs, trunc <ca. 30 Mm−1) do not lie on the lin-
ear fit obtained for this season, but tend to be closer to the one for the LBA-EUSTACH
1 data. The two equations found for the truncation factor agree well with those found by
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Anderson et al. (1996), if we consider that the LBA-EUSTACH 2 campaign was largely
dominated by submicron smoke particles, whereas the LBA-EUSTACH 1 campaign
included a large contribution of supermicrometer particles (Sect. 3.3).

3.5. Absorption coefficients

Daily averages of measured (σa,meas) and Bond-corrected absorption coefficients (σa)5

for the LBA-EUSTACH 1 and 2 campaigns are presented in Figs. 10a and 10b, re-
spectively. Because the Bond correction of the PSAP data requires the use of si-
multaneously measured scattering coefficients, the corrected σa were computed for
RH<92% only, in order to not overcorrect for the instrument response to scattering (see
Sect. 3.4). The missing σa values, comparing to σa,meas, are due to either the absence10

of scattering data or to extensive periods of RH>92%, in which cases the Bond cor-
rection could not be applied to the PSAP data. Overall, absorption coefficients showed
a similar temporal variation to the other aerosol properties that were measured. Daily
averages of the values recorded during the first part of the LBA-EUSTACH 1 campaign
were below 1.4±0.8 Mm−1 (average of 0.4±0.5 Mm−1 for the period 8 April–12 May15

1999), increasing to a value of 5.6±0.5 Mm−1 (on 21 May 1999) when aged biomass
burning smoke began reaching the site.

Our background values are lower than the ones reported by Artaxo et al. (2002)
for the same campaign. An aethalometer situated at a pasture site 80 km away from
the forest site measured 0.19±0.22µg m−3 of absorbing material on average, corre-20

sponding to a σa value of 1.9±2.2 Mm−1, assuming an absorption cross section of
10 m2 g−1. However, their measurements were more influenced by local anthropogenic
pollution. This is supported by higher particle concentrations measured with a CPC at
the pasture site (890±920 cm−3) compared to the tower site (median of ca. 400 cm−3),
indicating that the conditions encountered at the tower site during the LBA-EUSTACH25

1 campaign were closer to pristine background conditions.
During LBA-EUSTACH 2, absorption coefficients fluctuated, as all other aerosol

characteristics did, depending on local meteorology and biomass burning activity. A
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large day-to-day variation is noticeable from Fig. 10b, as well as a large within-day
variation, indicated by the large measurement standard deviations. We observed an
overall median (first; third quartile) σa value of ca. 4.8 Mm−1 (2.8; 8.6), peaking at ca.
70–90 Mm−1 for short periods of time on 6 October 1999.

3.6. Single-scattering albedo5

By combining measurements of scattering coefficients corrected for the truncation (σs),
and absorption coefficients (σa), an estimate of the single-scattering albedo, ω0, for a
wavelength of 550 m could be obtained according to:

ω0 =
σs

σs + σa
. (3)

Figure 11 presents a frequency plot of the single-scattering albedo measured over10

both field campaigns when ambient RH was below 80%, relative to the maximum fre-
quency value for each campaign. The errors associated with the single-scattering
albedo measurements were obtained by error propagation, using an error of 5% for
the nephelometer (Sect. 2.4) and 20% for the PSAP (the largest possible absolute er-
ror associated with this instrument) (Bond et al., 1999). Because the error in σa is15

larger than that in σs, the error in ω0 increases with decreasing values of ω0. We found
absolute errors ranging from ±0.01, for the beginning of the first campaign, to ±0.03
towards the end of this campaign. Errors in ω0 for the LBA-EUSTACH 2 campaign
ranged between these two values. Note should be taken that correcting the PSAP
data according to Bond et al. (1999) created ca. 3% of artifact negative σa values at20

RH<80% during LBA-EUSTACH 1, and, therefore corresponding ω0 values larger than
unity. This was already observed by Anderson et al. (1999), and could be an indica-
tion that the Bond correction may overcorrect the PSAP data in some cases. However,
this pattern was not observed during the LBA-EUSTACH 2 campaign, when absorption
coefficients were larger overall.25
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It is clear from Fig. 11 that the LBA-EUSTACH 1 campaign showed two distinct fre-
quency maxima. The first period of the campaign (9 April–12 May 1999), characteristic
of pristine background conditions, showed a maximum at ω0 = 0.97. For a comparison,
Carrico et al. (2000) found ω0 values centered around 0.95±0.04 at 550 nm for clean
marine air, at comparable ambient RH and using a similar instrumentation to ours.5

However, the whole campaign period exhibited a median ω0 value (first; third quartile)
of only 0.95 (0.90; 0.98) due to some biomass burning-influenced episodes occurring
throughout the campaign. The single-scattering albedo dropped dramatically from 13
May 1999 onwards, when aged biomass smoke reached the site, to values centered
at ω0 = 0.84 (0.83; 0.86). It is important to note that for Fig. 11 the apparent higher10

frequency of low ω0 values (observed predominantly during the second part of the LBA-
ESTACH 1 campaign) is an artifact arising from the large fraction of the background ω0
values that had to be discarded from the analysis because of the high ambient RH at
which they were measured.

Ackerman et al. (2000) found in a model study of similar absorbing aerosols (ω0 =15

0.88 at 500 nm) that a modest number concentration increase, comparable to the one
we observed, may result in a dramatic alteration of radiative forcing through cloud evap-
oration. Thus, even the modest increase in particle number concentration observed
between 13–21 May 1999, resulting from diluted plumes arriving from fire sources
some 2–3 days away from the sampling site (Fig. 1), may potentially have a significant20

bearing on climatic and water cycle processes occurring within the region.
It is interesting to note that for the biomass burning haze period (LBA-EUSTACH 2),

the median single-scattering albedo (ω0 = 0.91 (0.89; 0.93)) was found to be higher
than that observed at the end of the first campaign. This could be attributable to the for-
mation of a shell around a soot core for aged smoke plume particles, which would have25

enhanced the absorption properties of the aerosols sampled during the second part of
the LBA-EUSTACH 1 campaign relative to those sampled during LBA-EUSTACH 2
(Hallett et al., 1989; Horvath, 1993; Martins et al., 1998). It is also noted here that the
same central value of 0.91 (0.90; 0.93) was found for this season when using only the
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PSAP data obtained for filter transmittance >0.7, and that the lower sensitivity of the
instrument at lower transmittance was not responsible for significant differences in the
reported value.

The aerosol community has recently become aware of a possible systematic dis-
crepancy between values of ω0 measured in situ and those retrieved from remote5

sensing data. For example, in situ measurements performed by Reid et al. (1998) dur-
ing SCAR-B yielded average ω0 values of 0.79 for young plumes and regional haze,
and 0.83–0.86 for aged haze (at 550 nm). Somewhat controversially, Remer et al.
(1998) argued that such low values could not be reconciled with sky radiance data
obtained during the same experiment, and gave a ω0 estimate of 0.90 at 550 nm.10

Other sky radiance measurements of biomass burning haze during SCAR-B yielded
ω0 values ranging from approximately 0.82 to 0.94 (Eck et al., 1998). More recently,
Dubovik et al. (2002) used sky radiance data to estimate ω0 values of ca. 0.94±0.02
at 440 nm and 0.93±0.02 at 670 nm for biomass burning aerosols found over the Ama-
zonian rainforest, and ca. 0.90 for smoke aerosol produced by the burning of Brazilian15

cerrado. Remote sensing techniques based on upward radiance, usually involving
satellite sensors, show typically even higher ω0 values. Kaufman et al. (1990), for
instance, reported an average ω0 value of 0.98 for forest fire aerosol in Rondônia be-
tween mid-visible (630 nm) and near-infrared (840 nm) wavelengths. More recently, Li
et al. (2000) used in situ-measured ω0 values (e.g. ω0 = 0.88 for forest fire) from the20

SCAR-B experiment to retrieve aerosol optical depth from satellite data. Wong and
Li (2002), however, argued that the aerosol properties (single-scattering albedo and
asymmetry parameter) reported from various field experiments cannot be used to re-
trieve comparable aerosol optical depth. They found that in order to use a ω0 of ca.
0.87 for forest fire aerosols in their model, the asymmetry parameter would have to be25

substantially decreased to values <0.4 at 650 nm (a typical value is 0.57 at this wave-
length). Our in situ ω0 measurements for biomass burning haze are higher than those
reported by Reid et al. (1998), but are still in the lower range of most of those derived
from remote sensing measurements. Certainly our correction of the nephelometer data
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toward larger values, together with the Bond correction of the PSAP absorption coeffi-
cients, contributed toward reducing this discrepancy. Nevertheless, the disparity in ω0
estimates obtained from remote sensing and in situ methods remains unexplained and
requires further investigation, especially given that the derivation of accurate aerosol
radiative forcing estimates is dependent upon this parameter.5

Although an estimate of the aerosol layer radiative forcing is far beyond the scope
of this paper, the sign of the top-of-atmosphere (TOA) forcing can be estimated.
The boundary between cooling and heating can be given relative to a critical single-
scattering albedo, ωcrit, as a function of the surface albedo, Rs, and the upscatter
fraction, β (Seinfeld and Pandis, 1998):10

ωcrit =
2Rs

2Rs + β(1 − Rs)2
, (4)

where values of ω0 > ωcrit lead to a net cooling.
Ross et al. (1998) reported Rs values of 0.05 for tropical forest, and 0.06 for the

reflectance of the ocean, at wavelengths between 500 and 700 nm. We have de-
rived estimates of β from Mie scattering calculations, for a solar zenith angle θ0 = 0◦

15

(i.e. the backscattered fraction) (Guyon et al., 2003). Average β values of 0.12±0.01,
0.10±0.01, and 0.08±0.01 were found for the first and second periods of the LBA-
EUSTACH 1 campaign, and LBA-EUSTACH 2, respectively. Consequently, in our case
the value of ωcrit would be 0.46–0.61 over tropical forest and 0.51–0.66 over the ocean,
leading to a net cooling by the aerosols for both environments. We note here that at in-20

creasing solar zenith angle, β would increase, decreasing further ωcrit. Therefore, even
when biomass burning dominates the aerosol loading and ω0 decreases, the sign of
the TOA forcing remains negative, although its amplitude may vary. This effect is cer-
tainly due to the very low Rs values characteristic for evergreen forests and oceans.
Applying a typical global mean Rs of about 0.15 would lead to an almost negligible ef-25

fect at TOA for the aged haze at the end of the first campaign, and a net cooling for the
regional biomass burning haze (at a solar zenith angle of 0◦). Biomass burning aerosol
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over cerrado, with an Rs value of ca. 0.11, would lead to similar effects.

4. Conclusions

In this manuscript, we have described the main physical characteristics of Amazonian
aerosols and their abundance for both the wet and dry seasons, as well as during the
transition periods between the seasons. It is clearly evident from the data set that5

anthropogenic biomass burning activities have a dramatic impact on the total aerosol
loading, even above a remote site located within a primary rainforest reserve. Scatter-
ing and absorption by even relatively modest amounts of smoke aerosol overwhelms
the effects of the background aerosol, which is present at very low concentrations dur-
ing the wet season under unpolluted conditions. The potential certainly exists for these10

changes to alter the radiation balance, as well as cloud formation and rainout pro-
cesses, and thus the whole hydrological cycle in the Amazon basin. However, whilst
the data attest to the significant difference between biomass burning and background
atmospheric conditions, the actual climatic impacts of burning activities remain un-
certain. For instance, the values of ω0 for forest fires cover a wide range and could15

lead to a prediction of a considerable warming or cooling effect by biomass burning
aerosol, depending on which values are chosen. Thus, we consider it vital that in-
tensive research efforts continue to be directed toward more accurate measurements
of absorption and single-scattering albedo. Such studies are critical not only for the
Amazon region, but also from a global perspective, due to the fact that the large-scale20

atmospheric circulation in the tropics may mean that the products of burning activities
can be carried to higher latitudes, where their climatic effects may also be significant
(Andreae, 1991; Pickering et al., 1996; Andreae and Merlet, 2001; Andreae et al.,
2001).
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Table 1. Particle size parameters (mean ± standard error for the lognormal fitting equation) for
Amazonian aerosols observed during the LBA-EUSTACH 1 and 2 campaigns

Particle number distribution Particle volume distribution Particle mass distribution
Mean diameter Standard Mean diameter Standard Mean diameter Standard

(µm) deviation (µm) deviation (µm) deviation

6–12 May 19991 0.17±0.003 0.30±0.03 0.23±0.008 0.33±0.04 0.35±0.01 0.36±0.01
6.86±2.04 0.55±0.10 3.77±0.04 0.41±0.01

13–21 May 19992 0.17±0.004 0.34±003 0.24±0.008 0.37±0.03 0.34±0.01 0.32±0.01
9.39±1.68 0.55±0.07 2.78±0.10 0.87±0.04

Sept.–Oct. 19993 0.19±0.007 0.36±0.05 0.36±0.03 0.52±0.06 0.41±0.02 0.46±0.01
6.65±10.1 0.49±0.8

1 MOUDI samples taken from 6 April to 14 May 1999,
2 from 14 to 21 May 1999, and
3 on 5–6 October 1999.
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Fig. 1. Aerosol particle concentrations (diameter >10 nm) during the wet-to-dry season tran-
sition (LBA-EUSTACH 1, April–May) and the dry-to-wet season transition (LBA-EUSTACH 2,
September–October). The horizontal bars and the corresponding values inside the boxes rep-
resent the median concentrations, while the box defines the first and third quartiles, and the
vertical bars the 5th and 95th percentiles.
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for the states of Rondônia (RO), Mato Grosso (MT), Mato Grosso do Sul (MS), Goiás (GO), and
Amazonas (AM) in 1999. The data presented are the total number of fire pixels per 10 000 km2

detected over the Brazilian states.
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Fig. 4. Daily averages of the aerosol optical depth (AOD) observed at 500 nm (black squares),
and the Ångström exponents (open circles) estimated from AOD values obtained at 868 and
416 nm, with the MFR instrument. Data obtained for both the LBA-EUSTACH 1 and 2 cam-
paigns are presented.
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Fig. 5. Normalized number size distribution for (a) background aerosols, (b) background
aerosols altered by an aged biomass smoke, (c) and regional biomass burning haze mea-
sured over the Amazonian rain forest in Brazil during the LBA-EUSTACH campaigns. In each
case, the solid line represents the median size (diameter) distribution obtained over the consid-
ered period. The gray zone is the area between the first and the third quartile size distribution
for each period. (d)–(f) show the same as (a)–(c) but for normalized volume/size distributions.
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Fig. 7. Scatter plot of integrated volume concentrations obtained from a PCASP instrument
against the MOUDI mass concentrations within a size range of 0.1–1µm for the LBA-EUSTACH
2 campaign. The open squares were obtained using the volume concentrations derived directly
from the “raw” PCASP size distributions, the open diamonds using the volume concentrations
derived after adjustment of the PCASP size bins for the refractive index of the sampled aerosol
(1.41 – 0.013i ).
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Fig. 8. (a) Daily averages of the scattering coefficients measured by a Radiance Research
nephelometer (σs ,trunc), and of the scattering coefficients corrected for the truncation angles
(σs), during the LBA-EUSTACH 1 campaign. Values of σs recorded at RH lower than 92%
(crosses), σs, trunc measured at RH lower than 80% (open squares) and 92% (open circles) are
presented. The bars represent the standard deviation of the measurements.
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Fig. 8. (b) Daily averages of the scattering coefficients measured by a Radiance Research
nephelometer (σs, trunc), and of the scattering coefficients corrected for the truncation angles
(σs), during the LBA-EUSTACH 2 campaign. See caption to Fig. 8a for further details.
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Fig. 10. (a) Daily averages of the absorption coefficients measured by a Radiance Research
PSAP (σa) during the LBA-EUSTACH 1 campaign. The vertical bars represent the standard
deviation of the measurements.
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Fig. 10. (b) Daily averages of the absorption coefficients measured by a Radiance Research
PSAP (σa) during the LBA-EUSTACH 2 campaign. The vertical bars represent the standard
deviation of the measurements.
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y-axis scale is normalized to 100 at the highest frequency bin for each campaign. The symbols
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1999 (open triangles and light gray dashed line).
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