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Abstract

The fraction of aerosol particles activated to droplets (CCN) is often derived from semi-
empirical relationships that commonly tend to overestimate droplet number concen-
tration leading to major uncertainties in global climate models. One of the difficulties
in relating aerosol concentration to cloud microphysics and cloud albedo lies in the5

necessity of working at a constant liquid water path (LWP), which is very difficult to
control.

In this study we observed the relationships between aerosol number concentration
(NCN), cloud droplet concentration (Nd ) and effective radius (Reff), at the Puy de Dôme
(France). A total of 20 cloud events were sampled representing a period of more than10

250 h of cloud sampling. Samples are classified first according to air mass origins
(Modified Marine, Continental and Polluted) and then according to their liquid water
content (Thin, Medium and Thick clouds).

The CCN fraction of aerosols appears to vary significantly according to the air mass
origin. It is maximum for Continental air masses and minimum for Polluted air masses.15

Surprisingly, the CCN fraction of Modified Marine air masses fraction is lower than the
continental air mass and from expected from previous studies. The limited number
of activated particles in Modified Marine air masses is most likely the result of the
presence of hydrophobic organic compounds. The limited activation effect leads to a
0.5 to 1µm increase in Reff with respect to an ideal Marine case. This is significant and20

implies that the dReff/dNCN of low-continental clouds is higher than expected.

1. Introduction

Quantification of the indirect radiative forcing of aerosols on climate through a change
in cloud droplet number size distributions (better known as the Twomey effect; Twomey,
1991) is a major source of uncertainty in Global Climate Models (GCM) (Yao and Del25

Genio, 1999). The present uncertainty is in the range of 0 to −1.5 W m−2 and arises
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mostly from the poor representation of cloud scale processes in GCMs (Jones et al.,
1994). In particular, the fraction of aerosol particles activated to droplets (CCN) is often
derived from semi-empirical relationships between aerosol (or sulphate) mass or num-
ber and cloud droplet concentration (Boucher and Lohmann, 1995) or by prognostic
relationships between CCN and supersaturation of water vapour (Ji and Shaw, 1998).5

Both approaches commonly tend to overestimate droplet number concentration (Snider
and Brenguier, 2000) and do not consider possible artefacts such as the presence of
soluble gases or organic material on aerosol particles (Kulmala et al., 1993; Facchini
et al., 1999; Nenes et al., 2002).

The effect of increased aerosol concentration on cloud microphysics has been doc-10

umented in a number of studies (Twohy et al., 1995; Bréon et al., 2002; Leaitch et
al., 1992). However, one of the difficulties of relating observed changes in aerosol
properties to changes in cloud microphysics and albedo is the implicit assumption that
the liquid water path (cloud liquid water content) is constant. This assumption is very
difficult to control and is seldom verified due to feedback mechanisms affecting cloud15

height (Ackerman et al., 2000; Han et al., 1998). As a consequence, the ideal method-
ology to relate change in cloud microphysics to change in aerosol concentration implies
performing observations either at constant LWP (Feingold et al., 2003) or at constant
height within clouds.

2. Measurements20

In this study we observed the relationships between aerosol number concentration
(NCN) and cloud droplet effective radius (Reff), commonly used in the parameteriza-
tion of cloud optical characteristics, at the Puy de Dôme cloud station (Central France,
48◦ N, 2◦ E, 1465 m a.s.l.) during the winter and spring 2000 and 2001. A total of 20
cloud events were analyzed representing a period of more than 250 h of cloud sam-25

pling.
Measurements of total particle concentration (NCN ) were performed using a TSI 3010
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particle counter (CPC) sampling downstream a whole air inlet. The whole air inlet has
been specifically designed to allow, under cloudy conditions, the sampling of both par-
ticles and evaporated cloud droplets. The droplet number (Nd ) – corresponding to
the CCN number concentration NCCN for LWC<0,5 g m−3 (Flossmann et al., 1985) –
is derived from a PMS Forward Scattering Spectrometer Probe (FSSP) located inside5

a wind tunnel operating isocinetic conditions at 40 m s−1. The cloud droplet effective
radius (Reff), commonly used in the parameterization of cloud optical properties (Mar-
tin et al., 1994), is computed directly from the size distribution of droplets. In addition,
a particle volume monitor (PVM Gerber) provides the cloud LWC. An additional CPC
TSI-3010, connected to an interstitial inlet (50% cut-off=5µm), measures unactivated10

interstitial aerosol concentration (NINT). All measurements are performed using a time
resolution of 1 Hz. Whole air and RJI inlets as well as the wind tunnel have been de-
scribed previously (Schwarzenboeck et al., 2000; Sellegri et al., 2003a) and provide an
adequate sampling of clouds and aerosols. A complete description of the instrumental
deployment at the site is provided by Sellegri et al. (2003b). The fraction of aerosols15

activated to CCNs in clouds (FNp) is derived using Nd and NINT :

FNp=
Nd

Nd + NINT−∆N
=

Nd

NCN

where ∆N accounts for the fraction of droplets smaller than 5µm measured by FSSP
and sampled in the RJI.

The chemical properties of aerosol particles are measured with two low pressure20

impactors connected to the whole air inlet. The first impactor is used for the deter-
mination of the inorganic fraction of the aerosols, the second for gravimetry, organic
(OC) and elemental (EC) carbon. In order to accumulate enough material for chemical
analysis, an impactor run covers the entire duration of a cloud event. Description of the
analytical procedures and results from the chemical analyses are available in Sellegri25

et al. (2003a, b).
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3. Sample classification

Sellegri et al. (2003a) classified the air mass types at Puy de Dôme based on their
aerosol mass content and analysis, and computation of back-trajectories. Based on
the same cloud events than the ones studied in Sellegri et al. (2003a), and hence the
same air mass classification, we observed that aerosol number concentration followed5

this classification with Modified Marine (MM) type showing NCN<700 cm−3, Continental
(CL) showing 700 cm−3<NCN<2200 cm−3 and Polluted (PL) showing NCN>2200 cm−3.
Modified Marine air masses are advected to Puy de Dôme during westerly conditions
(distance to the Atlantic Ocean is 500 km) while continental air masses originate from
Northern Europe. In contrast, PL air masses correspond to specific conditions where10

CL air masses are mixed with urban plumes from the large industrial areas of Northern
France and Benelux.

The bulk chemical composition of the particles for each air mass type, derived from
the sum of cascade impactor stages (Sellegri et al., 2003a), is presented in Fig. 1.
As noticed by Sellegri et al. (2003a), the chemical composition differs according to the15

origin of the air masses. Modified Marine air masses are characterized by a high sea
salt content, but also by a high fraction of organic material (56%), as compared to the
other two air mass types (34% and 24% for CL and PL, respectively). Instead, polluted
air masses are characterized by a higher fraction of inorganic material, and in particular
NO−

3 (22% for PL as respect to 19% for CL and 7% for MM).20

The averaged microphysical properties of clouds (LWC and Reff) along with the av-
eraged NCN and FNp for each of the air mass type are shown in Table 1. The threshold

for LWC is set at 0.05 g m−3. This classification shows that FNp changes with the ori-
gin of the air mass, as expected from previous studies (Leaitch et al., 1992; Gillani
et al., 1995), with maximum scavenged fraction for CL air masses and minimum for25

PL air masses. As expected, FNp is the lowest for PL air masses (CCN accounts for
33±11% of all particles >10 nm). Surprisingly, FNp is larger during continental condi-
tions (48±16%) than during MM conditions (42±14%). These values are in the range
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of those measured in previous studies (Gillani et al., 1995; Martinsson et al., 2000;
Chuang et al., 2000) although direct comparison is rather difficult because very few
studies considered the large variety of clouds measured in this study.

However, changes in FNp are not only a result of particle properties because FNp
varies according to the supersaturation in cloud and therefore to the height from the5

cloud base. This appears in Fig. 2 where the relationship between FNp and LWC is
shown for the three air mass types. For clarity, an averaged FNp is calculated for

each 0.01 g m−3 interval of the LWC. This graph shows that FNp is higher for CL air
masses than for both PL and MM air masses regardless of the LWC. At low LWC, FNp
is rapidly changing with increasing LWC reaching a maximum for LWC ranging from10

0.2 to 0.5 g m−3. A second maximum is reached for high LWC values.
In a cloud, the adiabatic lifting of droplets leads to a linear relationship between LWC

and h (Pruppacher and Klett, 1997, and reference therein). To account for the changes
in FNp with LWP, we assumed no entrainment of dry air into the cloud. This hypothesis
is difficult to verify without continuous monitoring of the cloud base height. The process15

of entrainment, however, leads to a modified droplet size distribution as respect to that
produced by adiabatic lifting. The spectral shape parameter k can be used to assess
the variability of the droplet size distribution. This parameter is defined as (Martin et
al., 1994):

R3
eff = kR3

v (1)20

where Rv is the mean volume radius of the distribution. The spectral shape parameter
is equal to unity for a monodisperse distribution. The following expression of Reff can
be derived from Eq. (1) (Martin et al., 1994; McFarquhar and Heymsfield, 2001):

Reff =
(

3LWC
4πρwkNd

)1/3
(2)

If k is constant, then R3
eff is linearly correlated to LWC/Nd . This is confirmed in Fig. 325

where the variations of R3
eff and LWC/Nd are compared for the 3 air mass categories
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and fitted with a linear regression. The coefficient of determination (R2) is higher than
0.98 for all three categories. On average, the adiabatic assumption is therefore applica-
ble at Puy de Dôme, despite turbulences and entrainment produced by the orography.
The effect of entrainment is mostly seen near cloud base (i.e. at low LWC), when both
FNp and k show a high variability.5

Under the adiabatic assumption, LWC is indicative of height from the cloud base,
and we performed a second sample classification on the basis of the LWC. Three
LWC classes are considered: thin clouds – sampled near the cloud base – for
LWC<0.2 g m−3, medium clouds with LWC values in the range of 0.2<LWC<0.4 g m−3,
and thick clouds where LWC>0.4 g m−3. The two classifications with CN and LWC lead10

to 9 different categories. Thick clouds forming in MM air masses contain the lowest
number of samples, accounting for less than 1 h of sampling. All other categories are
represented by a sampling period of more than 2 h which reaches 32 h for the most
common category (medium CL).

4. Analysis15

A statistical analysis of the CCN fractions for all 9 categories is presented in Fig. 4
showing large variations among categories. The computed FNp values are statistically
different (at the 99% confidence level) for each one of the categories. The average
aerosol partitioning FNP is calculated for each category showing that the CCN fraction
varies significantly with respect to both LWC and NCN. As expected, the classification20

confirms that the CCN fraction is lower for PL air masses than for CL and MM air
masses regardless of LWC. This is primarily resulting from the presence of a higher
fraction of Aitken and ultrafine particles. Previous studies at Puy de Dôme showed
that the activation diameter ranges from 50 to 100 nm (Gérémy et al., 2000). A large
fraction of the PL particles are smaller than the activation diameter leading to a limited25

FNp.
Unexpectedly, the scavenged fraction is smaller for MM than for CL. This is not seen
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in any previous studies (Snider and Brenguier, 2000; Gillani et al., 1995; Martinsson et
al., 2000). Several hypotheses can be proposed to explain this finding: 1 – a higher ac-
tivation diameter in MM air masses compared to CL air masses due to higher number
of smaller particles in MM air masses compared to CL air masses, 2 – presence of ex-
ternally mixed particles, and 3 – limitation of the droplet activation due to the chemical5

composition of the particles.
We can exclude the first hypothesis: the particle size distribution as measured by

cascade impactors shows that the fraction of accumulation-mode particles for CL and
PL air masses is lower than for MM air masses, while the fraction of Aitken particles is
higher for CL and PL (Sellegri et al., 2003a). This is confirmed by more recent mon-10

itoring of the number size distribution of aerosols performed with Differential Mobility
analysers. This information coupled with the fact the particle number is lower for MM
than for CL and PL, leads to the conclusion that the lower scavenged fraction during
MM is not resulting from the aerosol size.

The second hypothesis (externally mixed particles) is more probable. This implies15

that hygroscopic marine particles are externally mixed with more hydrophobic particles.
The last hypothesis is similar to the previous one except for the fact that particles
are internally mixed: in both cases, hydrophobic matter would be mixed with the pure
marine particles. Given the fact that the mass fraction of organic matter increases
with remoteness of the air mass, it is likely that the hydrophobic particles (or their20

hydrophobic fraction) are (is) composed of organic material. This is consistent with
Sellegri et al. (2003b) showing that, at Puy de Dôme, the organic particles are poorly
scavenged in clouds.

However, the origin of the organic material during MM cases remains unclear. Re-
cent measurements performed on the marine atmosphere revealed the presence of a25

large fraction of organic material (O’Dowd et al., 2004) that could explain the limited
particle activation. Another hypothesis is that organic matter and/or particles are en-
hanced during the inland advection of marine air masses. This is consistent with the
fact that the area between Puy de Dôme and the Atlantic Ocean is mostly covered by
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forests and crops.
Biogenic material can either form primary particles or arise from deposition of low-

volatility organic compounds onto existing aerosol surfaces. For instance, it is known
that film-forming organic compounds can alter the activation process either reducing or
increasing the activation diameter (Feingold and Chuang, 2003). Additional measure-5

ments, not presented in this study, show that removal of the film-forming compounds
by thermo-desorption at moderate temperatures (50–70◦C) can either decrease or en-
hance the CCN fraction. However, additional studies are necessary to show the pres-
ence of an organic film onto marine particles, and identify the film-forming organic
species, their role in the process of particle activation and understand the mechanisms10

involved in the evolution of Marine aerosol inland.

5. Impact on cloud microphysics

The limitation of the number of particle activated during the advection of Marine air
masses has direct consequences for microphysics of clouds. We can make a very
crude estimate of the change in Reff resulting from the modification of the original ma-15

rine air mass. Investigations of the CCN fraction in Marine aerosols were performed
during ACE-2 (Snider and Brenguier, 2000; Bower et al., 2000; Martinsson et al., 2000).
Under similar conditions as for Puy de Dôme (droplet formation forced by orography
and similar supersaturation close to 1% as deduced from modelling studies at the 2
sites – Flynn et al., 2000; Gérémy et al., 2000), the CCN fraction during a cloud event20

corresponded to 60% of NCN. The difference in FNp between Marine (ACE-2) and
Modified Marine (PDD) air masses is significant, according to a Student T-test.

Such a change leads to significantly less droplets at PDD during MM air masses than
expected for purely Marine air masses, and therefore a higher cloud Reff. The variations
of Reff as a function of NCN concentration at constant LWC have been computed for the25

three LWC classes (Fig. 5). The relationship between Reff and Nd (Martin et al., 1994)
is also shown on the graph for different values of LWC. This graph provides a direct
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estimate of the sensitivity of continental clouds microphysical properties to changes
in aerosol number concentration. As expected, Reff decreases with increasing NCN at
a rate that is close to that derived using a parameterisation proposed by Raga and
Jones (1993) and corresponds, on average, to 2µm between MM and PL cases. Note
that the calculated dReff/dNCN would have appeared much lower without the sorting of5

samples according to their LWC. The sensitivity of Reff to change in NCN (dReff/dNCN)
appears to be higher at low NCN values. This is a direct consequence of the limited
fraction of particles activated in MM air masses, leading to higher Reff values.

In order to quantify the effect of activation limitation on cloud microphysics, we com-
pared Reff measured at Puy de Dôme to an estimated Reff for which about 60% of CNs10

are activated to droplets (FNp=0.6 at S=1%) as measured for a purely marine case
during the ACE-2 HILLCLOUD campaign (Bower et al., 2000). The measured and cal-
culated Reff are compared at constant LWC, i.e. on the same iso-LWC lines in Fig. 5.
Under this assumption, the change in Reff (∆Reff [Reff measured – Reff calculated])
ranges from 0.5 to 1µm (Fig. 5).15

6. Conclusions

CCN fractions have been measured at the puy de Dome cloud station for a high num-
ber of in-cloud samples, classified into three different air mass types (Marine, Conti-
nental and Polluted. Marine aerosols modified by transport over the continents appear
significantly less hygroscopic than in the marine atmosphere with a CCN fraction of20

42%±14% (at supersaturation close to 1%), to be compared with 60% for a pure Ma-
rine case, and surprisingly less than in the continental air masses (48±16%). The
limitation of the number of activated particles, and its subsequent impact on cloud mi-
crophysics, is significant. The processes leading to the hygroscopic modification of
the original marine aerosol are still uncertain but are likely linked to the presence of25

a significant fraction of organic material. One hypothesis is that the condensation of
semi-volatile organic species, possibly emitted by biogenic activity, onto the aerosol
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surface limits the activation of aerosol particles in clouds. Work is in progress to con-
firm, or not, this hypothesis.

Compared to the theoretical Marine case, the limitation of the number of particle
activated in an aged marine air mass produces an enhancement of Reff in clouds from
0.5 to 1µm involving, at the same time, a decrease in the cloud coverage compared5

to a pure marine ari mass. It is difficult to assess the regional extent of this effect until
the elucidation of the nature of the chemical species involved in hygroscopic growth
limitation.
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891

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/6/879/acpd-6-879_p.pdf
http://www.atmos-chem-phys.org/acpd/6/879/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
6, 879–898, 2006

Cn to ccn
relationships at free

tropospheric site

R. Dupuy et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

in winter, J. Geophys. Res., 108(D11), 4333, doi:10.1029/2002JD002747, 2003a.
Sellegri, K., Laj, P., Dupuy, R., Legrand, M., Preunkert, S., Putaud, J.-P., and Cachier, H.:

Size-dependent scavenging efficiencies of multi-component atmospheric aerosols in clouds.
J. Geophys. Res., 108(D11), 4334, doi:10.1029/2002JD002749, 2003b.

Snider, J. R. and Brenguier, J. L.: A comparison of cloud condensation nuclei and cloud droplet5

measurements obtained during ACE-2, Tellus, 52B, 827–841, 2000.
Twohy, C. H., Durkee, P. A., Huebert, R. J., and Charlson, R. J.: Effects of aerosols particles on

the microphysics of coastal stratiform clouds, J. climate, 8, 773–783, 1995.
Twomey, S.: Aerosol, clouds and radiation, Atmos. Envir., 24A(11), 2435–2442, 1991.
Yao, M. S. and DelGenio, A. D.: Effect of cloud parameterization on the simulation of climate10

changes in the GISS GCM, J. Climate, 12, 761–779, 1999.

892

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/6/879/acpd-6-879_p.pdf
http://www.atmos-chem-phys.org/acpd/6/879/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
6, 879–898, 2006

Cn to ccn
relationships at free

tropospheric site

R. Dupuy et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

Table 1. Averaged values of cloud liquid water content, particle concentration (NCN), scavenged
aerosol fraction (FNp) and Effective radius (Re) for the 3 air mass categories identified at Puy
de Dôme. The uncertainties correspond to one standard deviation of the mean.

Air mass category LWC (g m−3) NCN (cm−3) FNp Reff (µm)

Modified Marine 0.14±0.07 525±103 0.42±0.14 6.15±1.06
Continental 0.16±0.07 1264±374 0.48±0.16 4.61±0.80

Polluted 0.26±0.15 3094±916 0.33±0.11 4.41±1.01
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Fig. 1. Aerosol chemical composition for the 3 air masses MM, CL and PL. The composition is
deduced from the work of Sellegri et al. (2003a). In this figure, OM is corrected to account for
the total mass of organic matter. Other ions – Ot. Ions – is the total fraction of ions measured
by ion chromatography and non determined – nd – is the difference between gravimetry and
chemical analyses.

894

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/6/879/acpd-6-879_p.pdf
http://www.atmos-chem-phys.org/acpd/6/879/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
6, 879–898, 2006

Cn to ccn
relationships at free

tropospheric site

R. Dupuy et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

0 0.2 0.4 0.6 0.8 1
LWC (g m-3)

0.2

0.3

0.4

0.5

0.6

0.7

S
ca

ve
ng

ed
 F

ra
ct

io
n

THIN MEDIUM THICK

 

Fig. 2. Variations of the scavenged fraction of NCN as a function of cloud LWC for the 3 air
masses MM (cross), CL (triangle) and PL (circle) Each point represents the average NCN value
in a 0.01 g m−3 interval of the LWC. The uncertainty is the standard deviation of the mean.
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Fig. 3. Variations of R3
eff as a function of LWC/Nd for each of the three air mass type MM

(cross), CL (circle) and PL (triangle). Each population is fitted with a linear regression. Each
point represents the average NCN value in a 0.01 g m−3 interval of the LWC. The solid black line
shows 1:1 correspondence for monodisperse size distribution where Reff=Rv .
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Fig. 4. Statistical analysis of the CCN fraction for the 9 classes of samples showing mean of
the population, 1 standard deviation (box) and 1.96 standard deviations (whiskers), respectively.
Modified Marine (1), Continental (2) and Polluted (3) and thin (A), medium-thin (B), medium-
thick (C) and thick (D) clouds.
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Fig. 5. Variations of Reff as a function of NCN concentration for the 3 classes of air mass types
– Modified Marine (NCN<700), Continental (700<NCN<2200) and Polluted (NCN>2200) – and
at the 3 different range of LWC corresponding to thin (cross), medium-thin (circle), and thick
(triangle) clouds. Iso-LWCs are fitted with a spline function. Grey lines are the relationship
between Reff and Nd at constant LWC for LWC varying from 0.05 mg m−3 to 2 mg m−3. Grey
Stars on arrow start correspond to the number of droplets measured in the marine cases while
Black Stars on arrow end correspond to number of droplets calculated in the purely marine
cases assuming FNp=0.6. The DReff is the difference of Reff between measured Reff and a
theoretical purely marine case (see text for details).
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