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ABSTRACT

The concept of tensor rank, introduced in the twenties, has
been popularized at the beginning of the seventies. This has
allowed to carry out Factor Analysis on arrays with more than
two indices. The generic rank may be seen as an upper bound
to the number of factors that can be extracted from a given
tensor, with certain uniqueness conditions. We explain how
to obtain numerically the generic rank of tensors of arbitrary
dimensions, and compare it with the rare algebraic results al-
ready known at order three. In particular, we examine the
cases of symmetric tensors, tensors with symmetric matrix
slices, or tensors with free entries. Related applicationsin-
clude antenna array processing.

Index Terms— Tensor, Generic rank, Canonical Decom-
position, Factor Analysis, Parafac, Antenna arrays

1. INTRODUCTION

Generic ranks, defined in the complex fieldC, have been stud-
ied for several decades [8] [13]. However, the value of the
generic rank for arbitrary dimensions is not yet known in the
unsymmetric case, and has been known in the symmetric case
only recently [4] [3]. The typical rank of three-way arrays
over the real field has been relevant for psychological data
analysis since Carroll and Chang [1] and Harshman [7] in-
dependently proposed a method which they christened CAN-
DECOMP and PARAFAC, respectively. The rank of a three-
way array is the maximum number of components that CAND
can extract uniquely up to scale and permutation indetermi-
nacies. Thus, the study of typical rank of three-way arrays is
of great theoretical importance for CAND. Although CAND
was developed in a psychometric environment, its main area
of applications has been Chemometrics, e.g. [12]. Besides,
CAND has found important applications in signal processing,
especially in Independent Component Analysis [6] [2] and in
multi-user access in wireless communications [10] [11].

2. GENERIC AND TYPICAL RANKS

Let T be aL-way array of dimensionsNℓ, 1 ≤ ℓ ≤ L, with
values in a ringR. This array always admits a decomposition
into a sum of outer products as:

T =

R
∑

r=1

u
(1)
r ◦u

(2)
r ◦ . . .◦u

(L)
r (1)
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whereu(ℓ)
r is a vector of dimensionNℓ, ∀r, and◦ denotes the

tensor product.
Now consider an arrayT with values in a fieldK. Ar-

raysu
(ℓ)
r may be considered as vectors of the linear space

K
Nℓ . Thus, as a combination of tensor products of vectors,

T may be considered as a tensor. Under a linear change of
coordinate system in each spaceK

Nℓ , defined by a matrix
A

(ℓ), the tensor is represented by another array, obtained by
the multi-linear transform{A(1), A

(2), . . . , A(L)}. Since it
is legitimate once a basis has been defined in the space, no
distinction will be made in the remainder between the tensor
and its array representation.

The rank of a given tensorT (and by extension, of the
array defining its coordinates in a given basis) is the minimal
integerR such that the decomposition (1) is exactly satisfied.
Here this decomposition is referred to as the tensor Canonical
Decomposition (CAND).

A property is calledtypical if it holds true on a set of
nonzero volume [3] [4] [9] [15]. This supposes that some
topology has been defined onK

N1×N2×...NL ; this can be the
Zariski topology for instance, or an Euclidian topology. A
property is said to begeneric if it is true almost everywhere.
In other words, a generic property is typical, but the converse
is not true.

Let N1, . . . ,NL be given positive integers. Then the rank
of tensors of sizeN1 × N2 × · · · × NL is bounded, and one
can make a partition of the tensor space, according to the rank
values. One can definetypical ranks as the ranks that are as-
sociated with subsets of nonzero volume in the latter parti-
tion. If there is a single typical rank, then it may be called
thegeneric rank. For instance, there is a single generic rank
if the underlying fieldK is algebraically closed (as the field
of complex numbers,C) [13] [3]. But there may be several
typical ranks ifK is the real field,R.

3. COMPUTATION OF GENERIC RANKS

The algorithm proposed is directly inspired by [4]. Equation
(1) can be seen as a parametrization of tensorT . In fact,
given a set of vectors{u(ℓ)

r ∈ K
Nℓ , 1 ≤ ℓ ≤ L, 1 ≤ r},

consider the mappingϕ defined from a known subspaceTR

of (KN1 ×K
N2 × · · · ×K

NL)R ontoK
N1 N2... NL as:

{u(ℓ)
r ∈ TR, 1 ≤ r ≤ R} →

R
∑

r=1

u
(1)
r ◦u

(2)
r ◦ . . .◦u

(L)
r



DenoteZR = ϕ(TR) the image of this mapping. Then the
dimensionD of its closureZ̄R is given by the rank of the Ja-
cobian ofϕ, expressed in any fixed basis ofK

N1 N2... NL . If
the Jacobian is of maximal rank, that is, if its rank equals the
dimension of the image space (e.g.N1N2 . . . NL for uncon-
strained arrays), then it means thatR is a typical rank. Actu-
ally, R will be either the smallest typical rank, or the generic
rank. Note that it is always possible to reach the maximal Ja-
cobian rank by increasing the number of termsR, so that the
smallest typical rank is always found.

This result yields the following numerical algorithm:
• Express formally the parametrized rank-one tensor term in
a canonical basis
• Express formally the gradient of the latter in this basis
• Draw randomly the parameters according to an absolutely
continuous distribution, and initialize matrixJ with the nu-
merical value of the gradient, and setR = 1
•While rank(J) strictly increases, do:

- Draw randomly the parameters according to an abso-
lutely continuous distribution, and append this new numerical
value of the gradient as a new row block inJ

- Compute the new value ofD = rank(J)
- R← R + 1

• Compute the dimension of the fiber of solutions asF =
M − D, the difference between the number of parameters
and the dimension of the imagēZR.

In order to clarify the description of this algorithm, we
give now the exact expressions of the Jacobian in various
cases.

3.1. Jacobian for 3rd order asymmetric tensors with free
entries

The mapping takes the form below

{a(r), b(r), c(r)}
ϕ
−→ T =

R
∑

r=1

a(r)◦ b(r)◦ c(r)

Taking into account the presence of redundancies, the number
of parameters in this parametrization isM = R(N1 + N2 +
N3 − 2). In a canonical basis,T has the coordinate vector:

R
∑

r=1

a(r)⊗ b(r)⊗ c(r)

where we may decide thata(r), b(r), andc(r) are row arrays
of dimensionN1, N2, andN3, respectively, and⊗ denotes the
Kronecker product. Hence, afterR iterations, the Jacobian of
ϕ is theR(N1 + N2 + N3)×N1N2N3 matrixJ , whoserth
row block is:

[

IN1
⊗ b(r) ⊗ c(r)

a(r) ⊗ IN2
⊗ c(r)

a(r) ⊗ b(r) ⊗ IN3

]

(2)

The values of the generic rank obtained with this algorithm,
calledrangj3(N1,N2,N3), orrangj(N,L)1 for tensors
of arbitrary orderL and equal dimensions, are reported in ta-
bles 1, 2, and 3.

1Corresponding Matlab and Scilab codes can be downloaded from
www.i3s.unice.fr/∼pcomon.

3.2. Jacobian for 3rd order asymmetric tensors with sym-
metric matrix slices

In this section, we consider tensors of sizeN2 × N2 × N3,
having symmetricN2×N2 matrix slices, hence the mapping:

{b(r), c(r)} −→ T =

R
∑

r=1

b(r)◦ b(r)◦ c(r).

Our codergindscal3(N2,N3) implements the computa-
tion of the rank of the JacobianJ , whoserth row block is
given below, when its size increases according to the algo-
rithm described in section 3:

[

IN2
⊗ b(r) ⊗ c(r) + b(r) ⊗ IN2

⊗ c(r)
b(r)⊗ b(r) ⊗ IN3

]

(3)

After R iterations, this matrix is of sizeR(N2+N3)×N2
2 N3.

The number of parameters in this parametrization isM =
R(N2 + N3 − 1). Values of the generic rank are reported in
table 4.

3.3. Jacobian for 3rd order double centered tensors with
symmetric matrix slices

Now, take againN2×N2×N3 tensors with symmetricN2×
N2 matrix slices, but assume in addition that every row and
column in the latter matrix slices are zero-mean. In order to
achieve this, it is sufficient to generate vectorsb(r) with zero
mean [5]; in other words, onlyN2 − 1 random numbers need
to be drawn, the last entry of each vectorb(r) being obtained
via bN2

= −
∑N2−1

n2=1 bn2
. The Jacobian is then built fromR

row blocks of the form
[

[IN2−1, −1]⊗ b(r)⊗ c(r) + b(r) ⊗ [IN2−1, −1]⊗ c(r)
b(r) ⊗ b(r) ⊗ IN3

]

(4)
where1 denotes a column of ones of sizeN2 − 1. At theRth
iteration, this matrix is of sizeR(N2 + N3 − 1) × N2

2 N3.
The number of parameters in this parametrization isM =
R(N2 + N3 − 2). Table 5 reports some numerical values
obtained with the codergindscal2z.

3.4. Jacobian for 3rd order tensors with double centered
matrix slices

The previous reasoning can be applied toN1 ×N2 ×N3 ten-
sors with no symmetry constraint and whoseN1×N2 matrix
slices have zero-mean rows and column. As before, it is suf-
ficient to generate vectorsa(r) andb(r) with zero mean. The
Jacobian is then composed of row blocks of the form::

[

[IN1−1, −1]⊗ b(r) ⊗ c(r)
a(r) ⊗ [IN2−1, −1]⊗ c(r)

a(r) ⊗ b(r) ⊗ IN3

]

(5)

At the Rth iteration, this matrix is of sizeR(N1 + N2 +
N3 − 2) × N1N2N3. The number of parameters in this
parametrization isM = R(N1 + N2 + N3 − 3). The nu-
merical values obtained with the coderangj3z are not re-
ported, since we always have, for any triplet(N1, N2, N3):



rangj3z(N1,N2,N3)=rangj3(N1-1,N2-1,N3). In
other words, as far as the generic rank is concerned, centering
in a given mode of dimensionNi yields the same effect as
reducing the dimension toNi − 1, which makes sense.

3.5. Jacobian for symmetric tensors

In the case of symmetric tensors of dimensionN and orderL,
the mappingϕ is defined fromK

NR to the space of symmetric
tensors [4], or equivalently toKp with p =

(

N+L−1
L

)

, as:

{a(r) ∈ K
N , 1 ≤ r ≤ R}

ϕ
−→

R
∑

r=1

a(r)◦L

where◦ stands for the tensor (outer) product; once a basis is
chosen, the tensor product may be replaced by a Kronecker
product, yielding exactly the same expression. In the case of
order-3 tensors (L = 3) and afterR iterations, the Jacobian
of ϕ R blocks of the following form, somewhat simpler than
the previous cases:

IN⊗a(r)⊗a(r)+a(r)⊗IN⊗a(r)+a(r)⊗a(r)⊗IN (6)

This matrix is of sizeRN × N3, but we know that its rank
cannot exceed

(

N+2
3

)

= N(N +1)(N +2)/6. The number of
parameters in this parametrization isM = RN . Numerical
values of the generic rank obtained withrangjs(N,L) are
reported in table 6.

N3 2 3 4
N2 2 3 4 5 3 4 5 4 5
N1

2 2,3 3 4 4 3,4 4 5 4,5 5
3 3 3,4 4 5 5 5 5,6 6 6
4 4 4 4,5 5 5 6 6 7 8
5 4 5 5 5,6 5,6 6 8 8 9
6 4 6 6 6 6 7 8 8 10
7 4 6 7 7 7 7 9 9 10
8 4 6 8 8 8 8,9 9 10 11
9 4 6 8 9 9 9 9 10 12
10 4 6 8 10 9 10 10 10 12
11 4 6 8 10 9 11 11 11 13
12 4 6 8 10 9 12 12 12,13 13

Table 1. Typical ranks for 2-, 3- and 4-slice unconstrained
arrays.

4. NUMERICAL RESULTS

The available results on unconstrained, slicewise symmetric,
and double centered arrays can be compared with the numer-
ical values delivered by the computer codes.

Tensors with free entries. Table 1 reports typical ranks
for 2-slice, 3-slice, and 4-slice arrays. The smallest of the
known typical rank values [14, 17], in plain, coincides with
the generic rank computed withrangj3. For the yet un-
known entries, results fromrangj3 are inserted in bold.

We report values of the smallest typical/generic rank of
3-way arrays with equal dimensions in table 2. Kruskal [9,

p. 9] refers to a “much studied9 × 9 × 9 array whose rank
has been bounded between 18 and 23 but is still unknown”.
rgindscal(9,9) yields 19 as a typical rank value, which
is within the range{18, 23} given by Kruskal. From this it
may be conjectured that the array in question had symmetric
slices and either rank 19 or 20.

Now the algorithm can be run on tensors of order higher
than 3. For simplicity, table 3 reports values of the generic
rank obtained for asymmetric tensors with equal dimen-
sions, N , and orderL, with an algorithm referred to as
rangj(N,L). We also indicate the dimensionality of the
fiber of solutions. This number is simply defined as the dif-
ference:

F (N, L) = R̄(N, L) (LN − L + 1)−NL

For those values of dimension and order for whichF = 0,
only a finite number of different CAND are possible.

N 2 3 4 5 6 7 8 9
R̄ 2 5 7 10 14 19 24 30

Table 2. Smallest typical rank̄R of unconstrained arrays of
dimensionN ×N ×N .

L N 2 3 4 5 6 7 8
3 2 5 7 10 14 19 24
4 4 9 20 37 62 97
L N 2 3 4 5 6 7 8
3 0 8 6 5 8 18 16
4 4 0 4 4 6 24

Table 3. Top: smallest typical rank̄R of unconstrained ar-
rays of equal dimensions,N , and orderL. In C these values
are generic. Bottom: NumberF of remaining degrees of free-
dom; whenF = 0, there are only a finite number of CAND.

Tensors with symmetric matrix slices. We next turn to
the N1 × N2 × N2 arrays withN1 symmetric slices (Table
4). Again, known values coincide with numerical ones deliv-
ered by the codergindscal3. We inserted results obtained
from rgindscal3 alone in bold face. As far as can be de-
termined, all results are again in agreement with previously
known values [16].

Tensors with double centered symmetric matrix slices.
When the matrix slices are symmetric and also row-wise (or
column-wise, which is the same thing) zero-mean, the code
rgindscal2z yielded the values reported in table 5. Note
that the generic rank computed byrgindscal2z(N2,N1)
is the same as that computed byrgindscal3(N2-1,N1),
at least according to the values explored in table 4. This illus-
trates the point made earlier in this paper.

Tensors with double centered matrix slices without
symmetry constraint. A similar observation holds also true
when the centered matrix slices are not symmetric. We
do not separately report typical rank values for the case of
double-centered (non symmetric) slices. Instead, we verified
that the values obtained numerically with centering coincided



with the values obtained numerically for uncentered arrays:
rangj3z(N1,N2,N3)=rangj3(N1-1,N2-1,N3).

N1 N2 2 3 4 5
2 2,3 3,4 4,5 5,6
3 3 4 6 7
4 3 4,5 6 8
5 3 5,6 7 9
6 3 6 7 9
7 3 6 7 10
8 3 6 8 10
9 3 6 9,10 11
10 3 6 10 11

Table 4. Typical ranks forN1 ×N2 ×N2 arrays, withN2 ×
N2 symmetric slices. Bold: smallest typical ranks computed
numerically. Plain: known typical ranks; inC, the smallest
value is generic.

N1 N2 2 3 4 5
2 1 2 3 4
3 1 3 4 6
4 1 3 4 6
5 1 3 5 7
6 1 3 6 7
7 1 3 6 7
8 1 3 6 8
9 1 3 6 9
10 1 3 6 10

Table 5. Smallest typical rank̄R for N1 ×N2 ×N2 arrays,
with N2 × N2 symmetric slices having zero-mean columns.
In the complex field, these values are generic.

Symmetric tensors. In table 6, generic ranks obtained
with the coderangjs for 3-way or 4-way symmetric are re-
ported. They are the same as in [4]. The dimensionality of
the fiber of solutions isF (N, L) = R̄ N −

(

N+L−1
L

)

. It is in-
teresting to compare the ranks with those of the unsymmetric
case, obviously larger, reported in table 3. In particular,one
can observe that that the caseF = 0 is again rarely met with
generic arrays, but less rarely than in the non-symmetric case.

Conclusion. The values reported in table 1 demonstrate
that the bound given by Kruskal, which ensures uniqueness of
the CAND, is sufficient but not necessary. This motivates the
design of numerical algorithms, other than Kruskal’s ALS,
able to compute the CAND under assumptions less retrictive
than [7, 9, 11, 12], i.e. for any sub-generic rank.
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