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GENERIC AND TYPICAL RANKS OF THREE-WAY ARRAYS

Pierre Comon Jos M. F. ten Berge
University of Nice, CNRS University of Groningen
Sophia-Antipolis, France The Netherlands
ABSTRACT whereug.e) is a vector of dimensiofV,, Vr, ando denotes the

. . . tensor product.
The concept of tensor rank, introduced in the twenties, has Now consider an arraf’ with values in a field<. Ar-

been popularized at the beginning of the seventies. This has ©® ) i

allowed to carry out Factor Analysis on arrays with more thaf@ysu,* may be considered as vectors of the linear space
two indices. The generic rank may be seen as an upper boufid’. Thus, as a combination of tensor products of vectors,

to the number of factors that can be extracted from a gived” may be considered as a tensor. Under a linear change of
tensor, with certain uniqueness conditions. We explain howoordinate system in each spaké™, defined by a matrix

to obtain numerically the generic rank of tensors of arbjtra 4()| the tensor is represented by another array, obtained by
dimensions, and compare it with the rare algebraic reslilts 8he multi-linear transforn{A(l) A A(L)} Since it

ready known at order three. In particular, we examine th.(fs legitimate once a basis has been defined in the space, no
'Sistinction will be made in the remainder between the tensor
and its array representation.

The rank of a given tensofl’ (and by extension, of the
Index Terms— Tensor, Generic rank, Canonical Decom-array defining its coordinates in a given basis) is the mihima

slices, or tensors with free entries. Related applications
clude antenna array processing.

position, Factor Analysis, Parafac, Antenna arrays integerR such that the decompositioﬂ (1) is exactly satisfied.
Here this decomposition is referred to as the tensor Caabnic
1. INTRODUCTION Decomposition (GND).
Generic ranks, defined in the complex fi€lghave been stud- A property is_callediypical if it holds true on a set of

ied for several decadel [8] |13]. However, the value of thé*onzero volume[J3][[41[[9] [15]. J\'[I'h|s Supposes that some
generic rank for arbitrary dimensions is not yet known in thetopology has been defined @™ * 2> this can be the
unsymmetric case, and has been known in the symmetric cagériski topology for instance, or an Euclidian topology. A
only recently [p] [13]_ The typical rank of three-way arrays property is said to bgenerlc if itis true aI_most everywhere.
over the real field has been relevant for psychological dati other words, a generic property is typical, but the coseer
analysis since Carroll and Charlg [1] and Harshnféin [7] inis not true.

dependently proposed a method which they christened-C Let Vq, ..., Ny be given positive integers. Then the rank
DECOMP and RRAFAC, respectively. The rank of a three- of tensors of sizéV; x Ny x --- x N, is bounded, and one
way array is the maximum number of componentsthatD  can make a partition of the tensor space, according to the ran
can extract uniquely up to scale and permutation indetermMalues. One can defirtgpical ranks as the ranks that are as-
nacies. Thus, the study of typical rank of three-way arrays isociated with subsets of nonzero volume in the latter parti-
of great theoretical importance fora@D. Although CanD  tion. If there is a single typical rank, then it may be called
was developed in a psychometric environment, its main are@e generic rank. For instance, there is a single generic rank
of applications has been Chemometrics, e[g] [12]. Beside#,the underlying fieldK is algebraically closed (as the field
CAND has found important applications in signal processing®f complex numberst) [L3] [B]. But there may be several
especially in Independent Component Analy§js [6] [2] and intypical ranks ifK is the real fieldR.

multi-user access in wireless communicatigns [10] [11].

2 GENERIC AND TYPICAL RANKS 3. COMPUTATION OF GENERIC RANKS

Let T be aL-way array of dimensiond/,, 1 < ¢ < L, with The algorithm proposed is direct_ly inspired kﬂ/ [4]. Equatio
values in aringR. This array always admits a decomposition() can be seen as a parametrization of terBorin fact,

into a sum of outer products as: given a set of vector$u£‘}) ekM 1< <L1<r),
R consider the mapping defined from a known subspade,
T=> ulou@o.. oul @  Oof (KM x K™ s ... x KN:)R ontoK™ 2 e as:

r=1

R
This work has been partly supported by contract ANR-06-BLB0V4 {us,e) €Tr, 1<r< R} — Z ug.l) o) us.z) 0...0 uS.L)
r=1
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DenoteZr = ¢(7gr) the image of this mapping. Then the 3.2. Jacobian for 3rd order asymmetric tensors with sym-

dimensionD of its closureZy, is given by the rank of the Ja- metric matrix slices

cobian ofy, expressed in any fixed basis&f' V2Nt |f

the Jacobian is of maximal rank, that is, if its rank equads th

dimension of the image space (el N> ... N, for uncon- R

strained arrays), then it means thiats a typical rank. Actu-

ally, R will be either the smallest typical rank, or the generic {b(r),e(r)} — T =3 b(r)ob(r)oc(r).

rank. Note that it is always possible to reach the maximal Ja- r=1

cobian rank by increasing the number of terfisso that the  Our coder gi ndscal 3( N2, N3) implements the computa-

smallest typical rank is always found. tion of the rank of the Jacobia#, whoserth row block is
This result yields the following numerical algorithm: given below, when its size increases according to the algo-

« Express formally the parametrized rank-one tensor term ifithm described in sectidj 3:

a canonical basis

¢ Express formally the gradient of the latter in this basis { In, ®b(r)®c(r) + )b(r) ® In, ®c(r) 3)

In this section, we consider tensors of si¥e x No x N3,
having symmetriéVy x No matrix slices, hence the mapping:

C

e Draw randomly the parameters according to an absolutely b(r) @ b(r) ® Iy,
continuous distribution, and initialize matrik with the nu-
merical value of the gradient, and det= 1 After R iterations, this matrix is of siz& (N2 + N3) x N3 N3.
e While rank(J) strictly increases, do: The number of parameters in this parametrizatiodis=

- Draw randomly the parameters according to an absoR(N, + N3 — 1). Values of the generic rank are reported in
lutely continuous distribution, and append this new nuo@ri table[4.
value of the gradient as a new row blockJn

- Compute the new value db = rank(J)

-R—R+1
e Compute the dimension of the fiber of solutionsfs=
M — D, the difference between the number of parameterslow, take againV, x Ny x N3 tensors with symmetridy, x
and the dimension of the images. N> matrix slices, but assume in addition that every row and

In order to clarify the description of this algorithm, we column in the latter matrix slices are zero-mean. In order to
give now the exact expressions of the Jacobian in variouachieve this, it is sufficient to generate vectbfs) with zero
cases. mean HS]; in other words, onlV, — 1 random numbers need

to be drawn, the last entry of each vedhr) being obtained

3.3. Jacobian for 3rd order double centered tensors with
symmetric matrix slices

3.1. Jacobian for 3rd order asymmetric tensors with free  viaby, = — 2522:‘11 bn,. The Jacobian is then built frolR
entries row blocks of the form
The mapping takes the form below [Tn,—1, 1] @b(r) @ c(r) + b(r) ® [In,—1, —1] ® c(r)
. R b(r) @ b(r) @ I,
{a(r),b(r),e(r)} <> T =3 a(r)ob(r)oc(r) (4)
r=1 wherel denotes a column of ones of si2g — 1. At the Rth

iteration, this matrix is of size?(Ny + N3 — 1) x N3 Ns.

he number of parameters in this parametrizatiodis=
R(N3 4 N3 — 2). Table[b reports some numerical values
obtained with the codegi ndscal 2z.

Taking into account the presence of redundancies, the numb
of parameters in this parametrizationlit = R(Ny + No +
N3 —2). In a canonical basig has the coordinate vector:

Z a(r) @ b(r) ® c(r)

r=1

3.4. Jacobian for 3rd order tensors with double centered
matrix slices

where we may decide tha{r), b(r), andc(r) are row arrays
of dimensionVy, N, andN3, respectively, ane denotes the
Kronecker product. Hence, aft&iterations, the Jacobian of
pistheR(N, + N2 + N3) x Ny N2 N3 matrix J, whoserth
row block is:

The previous reasoning can be appliedpx N» x N3 ten-
sors with no symmetry constraint and wh@se x N, matrix
slices have zero-mean rows and column. As before, it is suf-
ficient to generate vectotgr) andb(r) with zero mean. The
Jacobian is then composed of row blocks of the form::

In, ® b(r) @ ecr)

a(r) ® In, ® c(r) (2) In,—1, 1] ®b(r) ® c(r)

a(r) ® b(r) ® In, a(r) ® [In,-1, —1]®c(r) (5)

. . o . a(r) @ b(r) @ I,
The values of the generic rank obtained with this algorithm,
calledr angj 3( N1, N2, N3) , orrangj (N, L) *fortensors At the Rth iteration, this matrix is of size?(N; + N +
of arbitrary orderl and equal dimensions, are reported in ta-, — 2) x N1N,Ns. The number of parameters in this
bles[}.[R, and]3. parametrization is\/ = R(N; + N, + N3 — 3). The nu-
1Corresponding Matlab and Scilab codes can be downloadem fro Merical values obtained with the codengj 3z are not re-

www. i 3s. uni ce. fr/ ~pconon. ported, since we always have, for any trip(@{;, N2, N3):




rangj 3z( N1, N2, N3) =rangj 3(N1-1, N2-1, N3) . In  p. 9] refers to a “much studie@l x 9 x 9 array whose rank
other words, as far as the generic rank is concerned, cegterihas been bounded between 18 and 23 but is still unknown”.
in a given mode of dimensiofV; yields the same effect as r gi ndscal (9, 9) yields 19 as a typical rank value, which
reducing the dimension t; — 1, which makes sense. is within the range{18, 23} given by Kruskal. From this it
may be conjectured that the array in question had symmetric
slices and either rank 19 or 20.

Now the algorithm can be run on tensors of order higher
In the case of symmetric tensors of dimensidand order,,  than 3. For simplicity, tablEl 3 reports values of the generic

the mapping is defined fronk ™" # to the space of symmetric rank obtained for asymmetric tensors with equal dimen-
tensorsmél], or equivalently t&” with p = (N+LL_1)’ as: sions, N, and orderL, with an algorithm referred to as

3.5. Jacobian for symmetric tensors

rangj (N, L) . We also indicate the dimensionality of the
N o R oL fiber of solutions. This number is simply defined as the dif-
{a(r) e KN, 1<r <R} % al(r) ference:

r=1
o F(N,L)=R(N,L)(LN — L+1) - Nt
whereo stands for the tensor (outer) product; once a basis is
chosen, the tensor product may be replaced by a Kroneckeor those values of dimension and order for which= 0,
product, yielding exactly the same expression. In the chse @nly a finite number of different & D are possible.
order-3 tensorsi{ = 3) and afterR iterations, the Jacobian

of ¢ 12 blocks of the following form, somewhat simpler than INJ]2 3 4 5 6 7 8 9]
the previous cases: |R ||2 5 7 10 14 19 24 3q

Inza(r)®a(r)+a(r)@In@a(r)+a(r)®@a(r)@In (6)  1ape2 Smallest typical rank of unconstrained arrays of

This matrix is of sizeRN x N3, but we know that its rank dimensionV x N x N.

cannot excee@" %) = N(N +1)(N +2)/6. The number of

parameters in this parametrization/is = R/N. Numerical [L N2 3 4 5 6 7 8]

values of the generic rank obtained witangj s( N, L) are

reported in tabl§]6 3 2 5 7 10 14 19 24

' 4 4 9 20 37 62 97

N > 3 2 L NJ2 3 4 5 6 7 8
Nl 2 3 4 5|3 4 5 4 5 3 0 8 6 5 8 18 16
N 4 4 0 4 4 6 24
2 23 3 4 4134 4 5] 45 5 _
3 3 34 4 5| 5 5 56 6 6 | Table 3. Top: smallest typical ran® of unconstrained ar-
4 4 4 45 5| 5 6 6 7 g | rays of equal dimensiongy, and orderL. In C these values
5 4 5 5 56|56 6 8 8 9 | are generic. Bottom: Numbét of remaining degrees of free-
6 4 6 6 61| 6 7 8 8 10 | dom; whenF' = 0, there are only a finite number ofa@D.
7 4 6 7 77 7 9 9 10
81 4 6 8 818 89 9 | 10 11 Tensors with symmetric matrix slices. We next turn to
9|14 6 8 919 9 9 10 12| the N; x Ny x N, arrays withN; symmetric slices (Table
10} 4 6 8 100 9 10 10| 10 12| @) Again, known values coincide with numerical ones deliv-
11,4 6 8 10} 9 11 11| 11 13| eredbythe codegi ndscal 3. We inserted results obtained
124 6 8 10] 9 12 12)|1213 13| fromrgi ndscal 3 alone in bold face. As far as can be de-

] ) _ termined, all results are again in agreement with prevjousl
Table 1. Typical ranks for 2-, 3- and 4-slice unconstrainedknown values@G].

arrays. Tensors with double centered symmetric matrix slices.
When the matrix slices are symmetric and also row-wise (or
4. NUMERICAL RESULTS column-wise, which is the same thing) zero-mean, the code
r gi ndscal 2z yielded the values reported in tatjje 5. Note
The available results on unconstrained, slicewise synicpetr that the generic rank computed bgi ndscal 2z( N2, N1)
and double centered arrays can be compared with the numes-the same as that computedryi ndscal 3( N2- 1, N1),
ical values delivered by the computer codes. at least according to the values explored in tfble 4. Thisill

Tensors with free entries. Table[} reports typical ranks trates the point made earlier in this paper.
for 2-slice, 3-slice, and 4-slice arrays. The smallest &f th  Tensors with double centered matrix slices without
known typical rank valueq [14, [L7], in plain, coincides with symmetry constraint. A similar observation holds also true
the generic rank computed withangj 3. For the yet un- when the centered matrix slices are not symmetric. We
known entries, results fromangj 3 are inserted in bold. do not separately report typical rank values for the case of
We report values of the smallest typical/generic rank ofdouble-centered (non symmetric) slices. Instead, we edrifi
3-way arrays with equal dimensions in taﬂe 2. Kruslﬂil [9,that the values obtained numerically with centering caladi



with the values obtained numerically for uncentered arrays L N2 3 4 5 6 7 8]
rangj 3z( N1, N2, N3) =rangj 3( N1- 1, N2-1, N3) . 3 2 4 5 8 10 12 15
4 3 6 10 15 21 30 42
(M No2 3 4 5] I N2 3 4 5 6 7 8
2 23 34 45 5,6 3 0 2 0 5 7 0 0
3 3 4 6 7 4 1 3 5 5 0 0 6
4 3 45 6 8
> 3 56 7 9 Table 6. (top) Smallest typical rank®B of symmetric arrays
6 3 6 7 9 of dimensionN and orderL. In the complex field, these val-
4 3 6 4 10 ues are generic. (bottom) Numbgrof remaining degrees
8 3 6 8 10 of freedom; whent' = 0, there are only a finite number of
9 3 6 910 11 CAND possibilities.
10 3 6 10 11

Table 4. Typical ranks forN; x N x Ny arrays, withNy x

N> symmetric slices. Bold: smallest typical ranks computed [3] P. COMON, G. GOLUB, L-H. LIM, B. MOURRAIN, “Sym-

numerically. Plain: known typical ranks; ii, the smallest metric tensors and symmetric tensor rank8AM J. matrix

value is generic. Ana. Appl., 2006, submitted.

[4] P. COMON, B. MOURRAIN, “Decomposition of quantics in
sums of powers of linear forms'Signal Processing, Elsevier,
vol. 53, no. 2, pp. 93-107, Sept. 1996.

[5] P. COMON, J. M. F. ten BERGE, “Generic and typical ranks
of three-way arrays”, Research Report ISRN I3S/RR-2006-
29-FR, I3S, Sophia-Antipolis, France, Sept. 4, 2006.

[6] L. DE LATHAUWER, J. CASTAING, “Blind identification
of underdetermined mixtures by simultaneous matrix diago-
nalization”, Research report, ETIS, Cergy-Pontoise, &&an
2006, submitted.

[7] R. A. HARSHMAN, “Foundations of the Parafac procedure:

Models and conditions for an explanatory multimodal factor

analysis”, UCLA Working Papers in Phonetics, vol. 16, pp.

1-84, 1970, http://publish.uwo.eaharshman.

T. D. HOWELL, “Global properties of tensor rankLin. Alg.

Appl., vol. 22, pp. 9-23, 1978.

[9] J. B. KRUSKAL, “Rank, decomposition, and uniqueness
for 3-way and n-way arrays”, iMultiway Data Analysis,
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Table 5. Smallest typical rankR for N; x Ny x N, arrays,
with No x Ny symmetric slices having zero-mean columns. [&]
In the complex field, these values are generic.

Symmetric tensors. In table[§, generic ranks obtained R. Coppi, S. Bolasco, Eds., pp. 7-18. Elsevier ScienceNort
with the code angj s for 3-way or 4-way symmetric are re- Holland, 1989.
ported. They are the same as fjh [4]. The dimensionality of10] N.D. SIDIROPOULOS, R. BRO, G.B. GIANNAKIS, “Paral-
the fiber of solutions ig"(N, L) = RN — (N+L—1)_ Itis in- lel factor analysis in sensor array processindEE Trans. on

Sgnal Processing, vol. 48, no. 8, pp. 2377—-2388, Aug. 2000.
N.D. SIDIROPOULOS, G.B. GIANNAKIS, R. BRO, “Blind
Parafac receivers for DS-CDMA systemsTEEE Trans. on
Sgnal Processing, vol. 48, no. 3, pp. 810-823, Mar. 2000.
[12] A. SMILDE, R. BRO, P. GELADI, Multi-Way Analysis, Wi-
Conclusion. The values reported in tabfg 1 demonstrate ley, 2004.
that the bound given by Kruskal, which ensures uniqueness dfi3] V. STRASSEN, “Rank and optimal computation of generic
the CaND, is sufficient but not necessary. This motivates the tensors”,Lin. Alg. Appl., vol. 52, pp. 645-685, July 1983.
design of numerical algorithms, other than Kruskal's ALS, [14] J. M. F. ten BERGE, “Partial uniqueness in CANDE-
able to compute the &ND under assumptions less retrictive COMP/PARAFAC”, Jour. Chemo., vol. 18, pp. 12-16, 2004.
than E’[PEEEIZ] i.e. for any sub-generic rank. [15] J. M. F. ten BERGE, H. A. L. KIERS, “Simplicity of core
arrays in 3-way principal component analysis and the typica
rank of pxqx 2 arrays”,Lin. Alg. Appl., pp. 169-179, 1999.
[16] J. M. F. ten BERGE, N. D. SIDIROPOULOS, R. ROCCI,
“Typical rank and INDSCAL dimensionality for symmetric
three-way arrays of ordexi2x 2 or Ix3x3", Lin. Alg. Appl.,
vol. 388, pp. 363-377, 2004.

teresting to compare the ranks with those o%the unsymmetrk[;
case, obviously larger, reported in taﬂe 3. In particudae 11]
can observe that that the caSe= 0 is again rarely met with

generic arrays, but less rarely than in the non-symmetsie.ca
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