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SURROUNDING GAS-PHASE DURING CVI

Gerard L. Vignoles, C�edric Descamps and Nicolas Reuge

August 31, 1999

Abstract

An integrated modelling approach of Chemical Vapour In�ltration of a �brous preform by methyltrichlorosi-
lane, featuring coupled reactor 
uid mechanics and porous medium gas transport has been developed. The coupling
between transport/reaction phenomena inside and outside the preform is rather strong, both physically and numer-
ically. An important counter-e�ect of the reactive preform on the surrounding gas-phase composition is evidenced;
also, an appreciable dissymmetry of the densi�cation rate inside the preform , even with negligible convective trans-
port inside it . Such an approach brings new informations for understanding the physico-chemical phenomena of
CVI and new guidelines for preform densi�cation optimisation.

1 Introduction.

Since many years, Chemical Vapour In�ltration (CVI) has been extensively studied, both theoretically and nu-
merically, in order to optimise densi�cation rates and deposit uniformity within the preform. Most of these studies
dealt with the interior of the porous preform, the physico-chemical parameters outside the preform being treated as
uniform and constant Dirichlet boundary conditions [1] [2] [3]. In this work, we try to address the impact of such a
simpli�cation. The �rst part of the present paper is a brief presentation of the whole physico-chemical problem. Then,
a consistent numerical strategy is presented for its resolution. The third part is devoted to the study of a model case,
where the interaction between free-medium gas transport and porous-medium reactivity is clearly illustrated.

2 Problem statement

2.1 Physico-chemical phenomena

The Chemical Vapour In�ltration process relies on the interplay between chemical species transport and chemistry,
inside and outside the porous medium. Accordingly, the physico-chemical phenomena that are to be taken into account
in a model are :

� Gas convection in the furnace cavity. This implies to solve also a thermal modeling problem as soon as the
system is not strictly isothermal.

� Gas di�usion in the furnace cavity

� Homogeneous gas reactions

� Gas transport in a porous medium, featuring di�usion, viscous transport and Knudsen (ballistic) di�usion

� Heterogeneous (gas-solid) reactions

� Porous medium structural evolution
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This last item usually displays a much slower evolution than the preceding ones. Accordingly, an usual assumption
is to treat all gas-related phenomena (transport and reactions) as in a quasi-steady state ; the porous mediumproperties
may be updated from the knowledge of this quasi-steady state.

In the following sections, we will recall brie
y the equations suited to describe all these phenomena. The porous
medium and the free medium will be presented separately ; the question of coupling them together will be then
addressed, and �nally the slower evolution of the porous medium properties.

2.2 Gas transport and reaction in the porous medium

The CVI equations, based on di�usion-reaction equations, have been well described in many past works. We may
refer e:g: to [1] and [4] for extended descriptions.

Each species satis�es a mass conservation equation, which is a local balance between convection, di�usion, and
reaction :
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The gas transport 
uxes, featuring ordinary di�usion, viscous 
ow (from Darcy's law), and Knudsen di�usion, are
evaluated using the Dusty-Gas Model [5]:
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The ordinary di�usion coe�cients are given as e�ective quantities in the porous medium[5] derived from the gas-pair
coe�cients [15]:
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The Knudsen di�usion coe�cients are computed the following way [5]:
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The permeability factor is :

B = ���1v
d2p
32

(6)

Here dp stands for the mean pore diameter, which may be approximated by 4�=�v. The three kinds of transport
coe�cients include speci�c geometric factors from the precise porous medium details, termed as tortuosities �b, �K,
and �v. There is no reason for them to be equal, except in trivial cases. Their usual range is between 1 and 10, growing
higher when close to percolation thresholds. If the medium is anisotropic, then their inverses have to be considered as
tensors.

The unknowns of eqs. (2,3) are the gas partial pressures since they arise quite naturally from linear thermodynamics.
Heat transfer is not treated since we are dealing with I-CVI, and thus consider the preform temperature to be

constant.
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2.3 Free Medium

We consider in this part a classical steady-state hot-wall CVD problem, where balance equations are set for mass,
momentum, heat, and species. These equations are listed below. Note that the species balance equation is formulated
with the partial pressures as unknowns, so as to be consistent with the porous medium formulation.

� Momentum conservation (Navier-Stokes)

r: (�~v~v) +r:� �r: (pI) =
nX
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� Mass conservation (Continuity)
r: (�~v) = 0 (9)

� Energy (Heat equation)
�Cp~vrT �r � (�rT ) (10)

� Species conservation
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The di�usive 
uxes JDi are calculated according to Stefan-Maxwell laws [16] :
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Since di�usive 
uxes are chosen such as they sum up to zero, and that all mole fractions sum up to one, this last
relation is non-invertible. However, an approximate expression yielding explicitly the 
uxes as functions of the mole
fractions and their gradients is available : it is the so-called \Bifurcation method" [14] which has been used in our
case.

2.4 Interface relationships

Coupling both media means to provide relationships for 
uxes, velocities and partial pressures from one side to
the other. First of all, the partial pressures have to be the same on both sides :

P porous
i = P free

i (13)

This is so because the porous medium partial pressures are de�ned as 
uid-phase average quantities and not global
average quantities.

Concerning 
uxes, some confusion should be avoided on Knudsen di�usion. Indeed, even if it has a formally
di�usive character (although having a microscopically radiative nature), this phenomenon also displaces the barycenter
of the 
uid, which is usually considered as convection, more precisely, as \separative convection" in this case. One
consequence of such a fact is that the Dusty-Gas Model 
uxes do not sum up to zero (however, there exists a relationship
between them, known as Graham's law), so they are not to be considered as \purely di�usive", while the viscous 
uxes
do not represent the whole of the convection. Consequently, it is not possible to equate separately the di�usive 
uxes
and the viscous 
uxes from both sides. The correct relations are equalities of the total 
uxes :

~Jporousi = ~Jfreei = Ci~v
free + ~JD;freei (14)
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Since the free-mediumvelocity appears directly here, we have then to write the following extra interface relationship
between the summed DGM mass 
uxes on one side and the barycentric velocity on the other :

NX
i=1

Mi
~Jporousi = �~vfree (15)

A heterogeneous deposition reaction may also occur at the interface, more precisely at its the solid fraction surface.
Accordingly, the free-medium 
uxes should be equated to the sum of the porous-medium 
uxes and of the chemical
interface deposition 
ux :
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However, this reactive 
ux is usually unimportant with respect to the porous medium 
ux.

2.5 Structural Evolution

Once a stationary state has been reached with the former procedure, time integration is performed, in order to
take into account the evolution of the structural parameters of the porous preform. For this, it is assumed that this
evolution is very slow compared to all other variables related to the gas. Accordingly, explicit integration may be
performed.

We follow only one parameter, that is, the porosity �, which is known to decrease continuously with time in such
a process. It is updated according to the following formula :
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This equation relies formally on two structural parameters, the porosity � and the volumic surface �v. However,
the latter may be considered as a function of the former. In classical cases of porous media geometries, analytical or
�tted laws do exist [6]. Otherwise, the dependence �v = f(�) is attainable through homogenization approaches [7]. In
both cases, it is then possible to treat eq. 17 as an ODE for � only, which may be solved using a classical Runge-Kutta
algorithm.

Before going back to the determination of a new 
uid mechanical steady state, all properties depending on � are
updated. These are : �v, dh =

4�
�v
, and the tortuosity factors for the three kinds of transport involved in the Dusty-Gas

Model, namely �v , �b, and �K . All these parameters may be made dependent on � alone as for �v.

3 Coupling Both Media : Numerical Procedure

3.1 Principle

At �rst sight, the free-medium and porous-medium formulations are very similar, since they are balance equations
featuring convective and di�usive 
uxes, as well as chemical sources or sinks. Indeed, in a preceding work [8], all of
them had been solved simultaneously inside and ouside the preform ; decoupling between heat, mass and momentum
balances on one part and species balances on the other part had been performed in order to reduce computational
e�ort. This approach failed indeed to converge numerically in cases of low permeability values. The reason for such a
problem lies in the fact that Knudsen di�usion has also a convective character which strongly couples the continuity
equation along with the species balance equations inside the porous preform only.

A �rst attempt to circumvent this drawback has been to remove all uncoupling, that is, to solve simultaneously all
equations on the whole domain. The results were not satisfactory : numerical oscillations arised close to the preform
surface. They were also due to the di�erence in balance equations couplings between the two kinds of medium.

To avoid such a numerical behaviour, some underrelaxation has to be introduced at the interface. Accordingly,
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a new decoupled scheme has been set up, where free-medium and porous medium problems are alternatively solved.
The chosen algorithm was the following one :

� 1. First, solve all balance equations in the free-medium, considering �xed-
ux B.C.'s at the preform surface.

� 2. Extract the computed partial pressures at the surface and consider them as �xed Dirichlet conditions for the
porous-medium resolution.

� 3. Extract the computed total 
uxes at the preform surface and treat them as non-homogeneous Neumann
B.C.'s for a new free-medium resolution.

� 4. Repeat steps 2 and 3 until convergence.

At each B.C. extraction (either Dirichlet or Neumann), underrelaxation is performed by blending together results
from steps n and n� 1.

The choice of a starting point as close as possible to the �nal solution accelerates appreciably the convergence. To
do so, we compute a �rst guess for the di�usive 
uxes from the solution of a 1D simpli�ed di�usion-reaction problem.
For example, in the case of a 1st-order consumption reaction of species i, we have :

JDi = ��Dpor� tanh(�)

L

Pi
RT

(18)

where � is the Thiele modulus :

� = L

s
k�v
�Dpor

(19)

The �rst step of this algorithm (free-medium balance equations) has been split into two substeps :

� Resolution of Navier-Stokes and continuity equations for a given mean molar mass ;

� Resolution of mass-balance equations for the n chemical species for a given velocity �eld.

The two substeps are iteratively performed until convergence, that is, until global mass and mole conservations
are e�ective.

The mass-balance equations had to be solved using an adaptation of a numerical procedure due to Giovangigli [13].
Indeed, the singular nature of the Stefan-Maxwell 
uxes, even partially removed by the \bifurcation" approximation
scheme, is a severe drawback for numerical convergence. An arti�cial extra term allowing each species to di�use down
the gradient of the total pressure (which has to be close to zero in laminar 
ows) ensures rapid and accurate results
because it prevents any total pressure gradient buildup to occur during resolution.

3.2 Underrelaxation

We show here from what the necessity of underrelaxation arises, using a very simpli�ed case [12]: 1D geometry,
symmetry axis inside the preform, di�usion of one single species.

Consider that di�usion and convection in the free-medium yield a di�usive boundary layer of thickness � around
the preform. Then a relation may be written between the interface concentration Ci, the bulk-gas concentration Cb,
and the interface 
ux J :

�Dfree

Cb � CI

�
= J (20)

In the porous medium of thickness 2L, eqns. 18 and 19 give another expression for the 
ux as a function of CI

as soon as Darcy 
ow is assumed negligible. Interchanging Neumann (�xed 
ux) and Dirichlet (�xed concentration)
B.C.'s is then equivalent to a dynamical iterative scheme :
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I = Cb � p �Cn
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From elementary theory of iterated suites, this scheme converges if and only if p =
���@Cn+1

I

@Cn
I

��� < 1. This is physically

achieved when :

� The Thiele modulus is low : slow kinetics, as compared to di�usion (usually at low temperatures)

� The ratio of convection to di�usion is high in the free medium.

� The Knudsen number Kn = Dfree

Dpor
is high, which means low pressure, high temperature, or small pore diameter.

By the way, these three cases correspond to highly une�cient CVI conditions. On a numerical point of view,
as soon as the estimated value of p approaches 1, then underrelaxation has to be performed, for instance on the
concentrations :

Cn+1
I = �Cn

I + (1� �)f (Cn
I ) (22)

An optimal lower bound for � would be then p�1
p+1 .

4 A Model Case Study

4.1 Case De�nition

In order to evaluate the procedure, we have chosen a rather simple and classical case [8]. From a chemical point
of view, only one heterogeneous reaction is involved, in which SiC is deposited from methyltrichlorosilane (MTS) :

CH3SiCl3 ! SiC(s) + 3HCl (23)

The main feature of such a reaction is that mass decrease and mole number increase occur simultaneously for the
gas phase. The reaction deposition constant has been taken from [9] :

kMTS

�
m:s�1

�
= 3:89:109exp

�
�296:103

RT

�
(24)

The considered chemical species are three : MTS,HCl, and a dilution agent,H2. Considering that no homogeneous
reaction occurs in the process is an oversimpli�cationwhich may lead to rather unphysical results ; however, it is enough
to reveal how porous medium and free medium interact.

The considered geometry is a cylindrical preform located inside a 5-cm radius tubular furnace. A thermal pro�le
inspired from [11] has been assigned to the walls and the preform (2cm radius and 4 cm height) is held at a constant
temperature of 1200 K.

A consistent set of structural parameters laws has been taken considering the case of an isotropic random packing
of fully overlapping capillaries: these laws have been reported in [10]. The porous medium properties were prior to
densi�cation : � = 0:8, rf = 7�m, �v = 91900m�1, which yields at 1200 K a Thiele modulus of about 2, and a
Knudsen number of 5. This situation is interesting in that all phenomena are in competition, except Darcy 
ow that
is small with respect to di�usion (the ratio is around 10�2). Isotropy in the transport properties is preserved when
this last condition is veri�ed.

4.2 Numerical convergence

A rapid evaluation of parameter p involved in the preceding section yields values ranging from 1 to 3, depending
on the inlet mass 
ow rate ; thus, underrelaxation has been performed with a factor � = 0:5. As a matter of fact,
underrelaxation had also to be made between the two free-medium substeps. The lengthiest part of the computation
is related to the determination of all �elds at the initial steady state, since it has to be reached through a double loop.
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4.3 Results and discussion

The MTS �eld exhibits four zones, as illustrated at �gure 1 :

� i) A convection-dominated zone at the inlet of the furnace,

� ii) a slightly marked di�usive boundary layer around the preform,

� iii) another convection-dominated zone at the outlet of the furnace, and

� iv) a depletion zone inside the preform.

Note that zone ii) has a smoother contour than the preform itself, resulting in a higher partial pressure at the
preform corners. The partial pressure drop inside zone ii) (which is here only due to di�usion) is appreciable. This
validates the pertinence of a coupled simulation as compared to a simple Dirichlet B.C. statement. Also, the depletion
zone iv) exhibits a maximal depletion point somewhat shifted towards the outlet of the preform, even if the 
uxes are
essentially di�usive inside the preform.

Figure 2 displays the partial pressure �elds in the whole resolution space at the initial time. HCl displays an
important counter
ow-di�usion e�ect towards the furnace inlet. On the other hand, PH2

decreases slightly towards
the outlet, essentially because of the gas acceleration. The alteration of PH2

around the preform relies only on
multicomponent di�usion.

Fig. 3 displays the evolution of the porosity �eld inside the preform as the process goes on ; it is easily seen how
the least-density point goes back towards the center of the preform.

5 Conclusion

A comprehensive numerical approach for the modelling of CVI has been developed, including porous-medium and
free-medium transport, as well as interface exchanges. The coupling between both media is strong, which implies that
underrelaxation is required in order to get a satisfactory numerical solution. Also, precursor depletion e�ects close to
the preform may be safely accounted for, instead of more traditional �xed-concentration B.C's. The study of a model
case where a cylindrical preform is held inside a tubular furnace showed that the spatial repartition of gases inside
the preform depends somewhat on the external gas 
ow pattern because of a downstream depletion e�ect, even if the
convective 
ux is negligible inside it.

With such a modelling tool in hand, many special e�ects may now be investigated, like the interaction between
adjacent preforms, the e�ect of preform anisotropy on free-medium gas circulation, etc...
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Figure 1 : Elevation view of the MTS Figure 2 : Partial pressure �elds for

partial pressure in the furnace the three gaseous species

and the preform at the beginning at initial densi�cation stage

of the process Left:MTS Middle:HCl Right:H2
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Direction of flow outside the preform

Figure 3 : Time evolution of the porosity in the preform along the symmetry axis.

The plain triangles mark the least-density points.
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