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Abstract

We present an extension of Bartlett’s bifurcation method (Bartlett et al. (1968)) for
the approximate computation of multicomponent diffusion coefficients in a gaseous
mixture to diffusion in porous media. On behalf of the remark that the bifurcation
coefficients F; are merely proportional to the square root of the molar masses M;,
we state that Knudsen diffusion may also be represented through some bifurcation
factor Fx. This approximation is tested in a variety of cases, displaying good results

except for very light gas species.

Extension de la méthode de bifurcation pour les coeffi-

cients de diffusion au transport en milieu poreux

Résumé — Nous présentons une extension de la méthode de bifurcation de Bartlett

et al. (1968) pour le calcul approché des coefficients de diffusion multicomposants
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dans un mélange gazeux a la diffusion en milieu poreux. Partant de la constatation
que les coefficients de bifurcation F; sont approximativement proportionnels a la
racine carrée des masses molaires M;, il est posé que la diffusion de Knudsen peut
aussi étre représentée par un facteur de bifurcation Fg. Cette approximation est
testée pour différents cas, et montre de bons résultats sauf pour des espéces tres
légeres.

Mots-clés: Diffusion multicomposants; Milieux poreux; Méthode d’approximation

Key words: Multicomponent diffusion; Porous Media; Approximation method

Version frangaise abrégée

Pour le traitement de la diffusion gazeuse multicomposants, qui requiert une
inversion des relations de Stefan-Maxwell (éq. 1), Bartlett et al. (1968) ont
proposé une méthode dite “de bifurcation”, basée sur la constatation que
chaque coefficient de diffusion binaire pouvait étre réécrit suivant 1’équation
(4). Ceci est justifié en fait par la corrélation assez étroite entre les facteurs de
bifurcation F; et 'inverse de la racine carrée des masses molaires Mi_l/ ?. Une
expression explicite pour les flux massiques est alors obtenue en fonction des
gradients (égs. 5,6). Les coefficients de bifurcation doivent étre pré-calculés
par une méthode de minimisation d’erreur, comme le simplexe.

Nous proposons d’étendre cette procédure aux équations de gaz poussiéreux
de Mason et Malinauskas (1983) (egs. 10), qui contiennent en particulier la
contribution supplémentaire de la diffusion de Knudsen (éq. 12). Comme celle-

e .. . . s oa—1/2 . .
ci fait aussi intervenir une proportionnalité a M; / , il est donc possible de



garder les mémes F; pour les gaz et d’introduire un facteur Fx pour le milieu
poreux (éq. 13). Des relations explicites sont alors obtenues pour les flux mas-
siques diffusifs des gaz (égs. 21,22), et en prenant correctement en compte les
dépendances différentes des diffusions binaire et de Knudsen a la température
et a la pression, on doit corriger Fi suivant I’expression (24).

La méthode originalement proposée présente une précision de I’ordre de quelques
pour-cents, sauf pour des especes tres légeres ou tres lourdes. C’est également

le cas de I’extension proposée ici.

1 Introduction

In many modeling problems involving gas mixtures (distillation, combustion,
catalysis, etc ...), an important question is how to treat multicomponent
diffusion. Conceptual difficulties have been overcome since a long time, but
numerical issues are still of actuality, because achieving simultaneously ac-
curacy, convergence and computational rapidity is not a simple task. In this
context, the bifurcation method appeared as a fairly good compromise. On
the other hand, a popular treatment of diffusive fluxes in porous media, fea-
turing Knudsen diffusion (also called effusion), is the Dusty-Gas Model, which
requires as much computational effort as for the determination of free-medium
diffusive fluxes. We address here an extension of the bifurcation principle to

gases in porous media. In a first part, the principle of the bifurcation method



will be recalled, as well as some results on its accuracy ; then, the extension

to the Dusty-Gas Model frame will be presented and tested.

2 The Bifurcation Method

Let us first recall briefly the context of Bartlett’s approximation.

2.1 Multicomponent diffusion relations

Molar diffusive fluxes J; are related to the respective forces VP;/RT through

Maxwell-Stefan relations :

(1)

In a mass balance equation, the divergence of the fluxes are needed : this
means that eq. (1) has to be solved for the fluxes. This system also presents
also a singularity because (i) all mass fluxes have to sum up to zero and (ii)
all gradients have to sum up to VP,,;/RT, which is determined elsewhere.
Removing these singularities and solving for the fluxes may lead to heavy
computations, so a direct, explicit formula would be of great practical interest
in the case of large systems e.g. combustion or pyrolysis problems (Giovangigli
(1996)).

From Chapman and Enskog’s theory of gases (Reid et al. (1987), Bird et al.



(1960)), the pair diffusion coefficients D;; read :

3 ATRT
Dij=o—F—>—> (2)

where M;; is the reduced mass of the pair (7, 7) :

_ 1 MM
Y2 M+ M;

2.2 Principle of the bifurcation method

The principle of the bifurcation method is to state that each multicomponent
diffusion coefficient may be expressed as :

Dref

where D"¢f is some reference diffusion coefficient and F; a bifurcation factor
proper to each species 7. If n species are present, then only n factors F; are
to be determined instead of n (n — 1) /2 coefficients D;;. In addition to this,
a direct, explicit expression for the diffusive mass fluxes as a function of the
gradients is obtained :

Ji=M;J; = — Z D;;VP; (5)

j=1



where the multicomponent diffusion coefficients read :

M; Dref
Dij = —Ww; J P S 7éj

RTF s 1,
=1

Mi Dref
RTF; &

S ook
-1

Dy = (1 —w;)

sii=j

The reader is referred to the original reference (Bartlett et al. (1968)) for
the detailed derivation of the latter expressions. Using this relation speeds up
strongly the resolution of mass transport problems, while keeping the main
physical constraint that the sum of the mass fluxes is zero.
Comparing (4) to the theoretical expression (2), one sees that this approxi-
mation will be valid as soon as :
W —
The quantity G in this relation has been computed for a set of 69 gas species,
that is, for 2346 species pairs. Fig. 1 is an histogram of G, showing that
this quantity possesses a modest standard deviation. The most important
deviations were observed for very heavy, poorly volatile species such as Hgls.
In order to determine the F; coefficient set, the simplex method is used. It is
chosen to minimize the following error function :
E=Y Y (RED, - D s)

n
i=1j=i+1



It has been checked that the results obtained in the case of a 3-species set are
exactly equal to the analytical prediction, since in this case the approximation
is indeed exact.

Bartlett et al. (1968) report from their tests a mean error of 5% on the mul-
ticomponent diffusion coefficients. We also performed a test on a set of 14
hydrocarbons plus molecular hydrogen. The mean error is 2.03%. The maxi-
mal deviation is 25.75% for the Hy — C'H, pair. This was to be expected since
they are the lightest species present in the system : their G' factor is well be-
low the mean G factor of all species pairs. For the 69-species system used to
check validity of relation (7), the mean error was 3.44%, showing reasonable

usefulness of the approximation scheme to large systems.

2.3 Influence of temperature

As the binary diffusion coefficients vary with temperature in a moderate but
complicated way (from T°%/% to T?), one should a priori take into account a
thermal variation of the F; factors. Fig. 2 shows that when T increases, the
F; concerning the lightest species tend to increase while the heaviest species
factors tend to decrease. However, one notices that the overall thermal varia-
tion in a broad temperature range (300-1500K) for the F; is small compared
to the initial errors due to the method. Accordingly, one may safely consider
that these factors do not vary independently with temperature, the global

dependence of diffusion on T being incorporated inside D¢/,



2.4 Correlations with molar masses

Bartlett et al. (1968) also has shown from experimental data of Svehla (1962)

that the F; may be estimated from the empirical correlation :

E o Mi0.461 (9)

This fact may be expected from formulas (2,3), where it is readily seen that

D;; is proportional to (MiMj)_1/2

if the G factor in eq. (1) does not vary
appreciably. Fig. 4 shows a plot of the F; computed in the 69-species test

case versus M[l/ 2, in which direct proportionality appears as a fairly good

approximation.

3 Application to diffusion in porous media

3.1 The Dusty-Gas Model equations

A popular extension of the Stefan-Maxwell relations to porous media is the
Dusty-Gas Model (Mason and Malinauskas (1983)). Knudsen diffusion is viewed
as the diffusion of a special gas pair, namely a true gas and the solid phase
described as a collection of giant gas molecules (“dust”) which are held fixed

with respect to the laboratory referential. This “dust” plays the role of an



)th

(n 4+ 1)™ species. Relations (1) become then :

n VP,

-1 7D 7D -1 D __ v
;Dij,eff <$i‘]i - 25; ) ~Diget)i” = RT (10)
FE=

where the gas pair diffusion coefficients have been replaced by effective quan-

tities Di]. off Which take into account the influence of the porous medium :

Dijeft = €y ‘D (11)

and where the Knudsen diffusion coefficients Di Keff read :

. 11 |8kpT —
DiK,eﬁ' = anlDiK = 6771(15 M dp, (12)

The quantities € , dj, 75, and nx refer respectively to the porosity, mean pore
diameter, binary diffusion tortuosity, and Knudsen diffusion tortuosity for the
considered porous medium. All of them may be coordinate-dependent if the
medium is non-homogeneous, and the last two are second-order symmetric
tensors in the case of an anisotropic medium (Ofori and Sotirchos (1997)).

/2 i preserved for the

In eq. 12 we see clearly that the proportionality to Mi_1
true gas i. Accordingly, the same kind of F; that is used for multicomponent

diffusion may be used for the approximation of Knudsen diffusion.



3.2 Applying the bifurcation method

Relation (12) may be rewritten :

DTef
FiFk

Dix =

(13)

where F; et D"¢/ are the diffusion factors and the reference diffusivity com-

puted from the binary(ordinary) diffusion data. F incorporates a contribution

arising from the solid phase. As a matter of fact, Fx should be considered as

a field when it is non-homogeneous.

Now direct explicit relations for the fluxes may be attained, as in the case of

standard multicomponent diffusion. Summing up egs. (10) on all gas species

1, one has :

=1

n n ~ n VP
Z (sz],eff mjjzb) - DzK%sz) = Z RT

and, after simplification :

~p1p_ VP
ZDJ 7

(14)

(15)

This relation is known as Graham’s law of effusion. Introducing the bifurca-

tion, egs. (10) and (15) are rewritten :

S (w072 — 2,7P) FiF; — i JPFiFye = D™/ Y0

il RT

lDref VP

JPFFy = —

10

(16)

(17)



Then the following null term is introduced in (16) :

m (w: ] FiFy — o JP FiF,) (18)

Eq. (16) now reads :

VP,

_T (19)

UL (mZFle;DF] — J_DEZJ,']F]) —T]KleEFK ZGDT'ef

Combining this last equation with eq. (17) yields :

eDre f
RT

IlFl T
(VR' — NN - VP) = (7717 > xiFj+ TIKFK) JPF; (20
K j=1

Using mass fluxes instead of mole fluxes, one obtains finally a Fickian form :

i¥ ==Y D;yVP (21)

i=1

where the porous-medium multicomponent diffusion coefficients D;; read :

(22)

—1
GDrefMi " _ ep - .
Dij = RTFK (J; nbl'ij + nKFK) nanl,Z‘i if 7 75 J
Drefpr (o -
_ D™ M, o 1. e
Dii = PP (; mo; Fy + nKFK) (o' @i Fy + FiId) if i = j

3.3 Determination of the Knudsen diffusion factor

The Knudsen diffusion factor Fx may be directly determined from the inver-
sion of (13) :

Dref
— 7F’£DK

7

(23)
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Whatever the species ¢, the result for Fx should be the same. This is only
approximately the case, since the F; factors are only approximately propor-
tional to Mil/ ?. Fig. 5 is a plot of Fi from eq. (23) for the preceding 15-species
set. It is clearly seen from this figure that the discrepancy from the average is
larger for the lightest gaseous species, and mainly for hydrogen. Alternatively
to the choice of a simple average , the Fi factor may be determined by the
aforementioned simplex method, altogether with the F; factors.

Knudsen diffusion depends on temperature and pressure in a distinct way than
ordinary diffusion : the former varies as T''/? while the latter varies as 7°%/2P 1
or more (actually, as 71" P~! according to Fuller’s model for binary diffusion
coefficients (Reid et al. (1987))). A consequence of this is that if D™/ carries
the usual 7% P~! dependence, then the Knudsen bifurcation factor Fx has

to be an explicit function of temperature and pressure , while the F; are not :
T 1.25 PO
_ 0
Fy = FS <ﬁ) (?) (24)

3.4 Computational accuracy

The multicomponent diffusion matrices obtained through this bifurcation method
have been compared to the standard Dusty-Gas Model values in the 15-species
test case. Very acceptable mean errors are obtained (about 1%), but the max-
imal error is important for the lightest species (up to 30%). This could be

expected from the results of the preceding section ; however, since one extra

12



hypothesis is made with regard to Bartlett’s original model, an interesting fact
is that the mean error is lower in the porous medium case.

Figs. 7 and 6 are plots of the mean error as a function of temperature and
pore diameter. Again, it appears that the temperature has only a small effect
on the results. On the other hand, the pore diameter has a stronger influence
: the larger the pores, the larger the mean error, but the smaller the maximal
error. To interpret this fact, recall that the maximal error is due to the light-
est gas species, for which an a prior: evaluation of Fx would be substantially
larger than the average (fig. 5). Hence, this error (due to the extra hypothesis)

becomes more and more visible as the pore radius decreases.

4 Conclusion

An extension of the bifurcation method presented by Bartlett et al. (1968)
to the Dusty-Gas Model (Mason and Malinauskas (1983)) has been presented
and tested. It provides an explicit expression for the diffusive multicomponent
fluxes in porous media which retains Graham’s law of effusion as a constraint.
The approximated coefficients exhibit the same degree of precision than when

no porous medium is present, that is :

e The mean error is of the same order of magnitude, and even somewhat
lower.

e The most important errors also concern the lightest gas species ; they are

13



a little more important.
e Tests performed in the absence of very light gas species have proved very

satisfactory accuracy on all species.

The limits of combining the bifurcation method and the Dusty-Gas Model are
only the independent limits of both models ; so, inside them, it appears as
a valuable computational speed-up for problems dealing with mass transport
of large chemical systems in porous media like char combustion, pyrocarbon

infiltration, etc ...

5 Acknowledgements

The authors are indebted to SEP, divison de SNECMA, for a Ph.D. grant to
C.D.. They also wish to thank Ph. Le Helley (SEP-SNECMA) and G. Duffa

(CEA) for helpful discussions.

14



References

BARTLETT, E. P., KENDALL, R. M., and RINDAL, R., An analysis of the
coupled chemically reacting boundary layer and charring ablator. Part IV
: A unified approximation for mixture transport properties for multicom-
ponent boundary layer applications, Technical Report CR-1063, NASA,
(1968).

BirD, R. B., STEwWART, W. E., and LicHTFOOT, E. N., Transport Phe-
nomena, John Wiley, New York City, NY, USA, 1960.

GI10VANGIGLI, V., Modélisation de la Combustion, CNRS, Paris, France, Im-
ages des Mathématiques, 1996.

MAsoON, E. A. and MALINAUSKAS, A. P., Gas transport in porous media:
the Dusty-Gas model, Chemical engineering monographs, Elsevier, Amster-
dam, The Netherlands, 1983.

OFoORI, J. Y. and SOTIRCHOS, S. V., Multidimensional modeling of chemical
vapor infiltration: Application to isobaric CVI, Ind. Eng. Chem. Res. 36
(1997), 357-367.

REeD, R. C., PrausniTZ, J. M., and PoLING, B. E., The properties of
gases and liquids, Mc Graw Hill Book Company, New York City, NY, USA,
4% edition, 1987.

SvEHLA, R. A., Estimated viscosities and thermal conductivities of gases at

high temperatures, Technical Report R-132, NASA, 1962.

15



6 Figures and tables

%
8 FrrTTIT T T T T T
7 el ;
I |[[[) SRR R E NN
s E
4 ;
1| Timic
0 :\HHI I HHHHHHHWH i I L—u!ﬁﬂi—w—‘i \ﬁi L i L i \ﬁ
0.315 0.615 0.915 1.215 1.515
Function G
Fig. 1. Histogram of G (see eq. (7) in text)
Fi
H
2
=— CH
4
1 © C3H8
1 ”xHCeHe
N 7CGH12

0 LJ,,1,,L,,‘\,,L,J,,L,‘L,J,,L,L,,J,,L,J,,\,,L,_,,L,L,,j,,L,J,,L,L,J,,L,L;

200 400 600 800 1000 1200 1400 1600
T(K)

Fig. 2. Bifurcation coefficients F; vs. temperature. Chemical system of 5 C- and

H-containing gaseous species.
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Fig. 3. Mean error on the diffusion coefficients vs. temperature. Chemical system

of 5 C- and H-containing gaseous species.
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Fig. 5. Plot of the Knudsen diffusion factor from eq. (23) vs. the square root of the

molar mass.
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Fig. 6. Maximal error in % on the multicomponent diffusion matrix with respect to

the largest diffusion coefficient.

Fig. 7. Mean error in % on the multicomponent diffusion matrix with respect to the

largest diffusion coefficient.
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