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POWERS OF SEQUENCES AND CONVERGENCE OF ERGODIC

AVERAGES

N. FRANTZIKINAKIS, M. JOHNSON, E. LESIGNE, AND M. WIERDL

Abstract. A sequence (sn) of integers is good for the mean ergodic theorem
if for each invertible measure preserving system (X,B, µ, T ) and any bounded

measurable function f , the averages 1

N

P

N

n=1
f(T sn x) converge in the L2(µ)

norm. We construct a sequence (sn) that is good for the mean ergodic theorem,
but the sequence (s2

n) is not. Furthermore, we show that for any set of bad
exponents B, there is a sequence (sn) where (sk

n) is good for the mean ergodic
theorem exactly when k is not in B. We then extend this result to multiple

ergodic averages of the form 1

N

P

N

n=1
f1(T sn x)f2(T 2sn x) . . . fℓ(T

ℓsnx). We

also prove a similar result for pointwise convergence of single ergodic averages.

Contents

1. Introduction 1
2. Single mean convergence 5
3. Multiple mean convergence 10
4. Pointwise convergence 12
5. Appendix 17
References 23

1. Introduction

1.1. Main result. It is well known that for any fixed positive integer k the sequence
1k, 2k, 3k . . . is good for the mean ergodic theorem. This means that for every
measure preserving system and function f in L2(µ), the averages

(1.1)
1

N

N
∑

n=1

f(T nk

x)

converge in the L2(µ) norm as N → ∞. Using the spectral theorem for unitary
operators, this is equivalent to the convergence of the averages

(1.2)
1

N

N
∑

n=1

e2πinkα

as N → ∞ for any real number α.
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An illustrative question for our paper is the following. Is there a sequence
s1, s2, s3 . . . of positive integers so that the averages

(1.3)
1

N

N
∑

n=1

e2πisnα

converge for any real number α, but for some α, the averages

(1.4)
1

N

N
∑

n=1

e2πis2
nα

do not converge as N → ∞? In other words, we ask if there is a sequence
s1, s2, s3 . . . of positive integers which is good for the mean ergodic theorem, but the
sequence of squares s21, s

2
2, s

2
3 . . . of the sequence is not good for the mean ergodic

theorem?
Similarly, we can ask: is there a sequence s1, s2, s3 . . . of positive integers which

is not good for the mean ergodic theorem, but the sequence of squares s21, s
2
2, s

2
3 . . .

of the sequence is good for the mean ergodic theorem?
Perhaps surprisingly, the answer to both questions is yes, indicating that the

convergence properties of positive powers of a sequence are independent of those of
the original sequence. In fact, in this paper we prove the following result showing
the total independence of powers of a sequence for the mean ergodic theorem.

Theorem A. Let B be an arbitrary set of positive integers. Then there exists an
increasing sequence s1, s2, s3 . . . of positive integers such that

• The sequence sg
1, s

g
2, s

g
3 . . . is good for the mean ergodic theorem for any

“good” exponent g ∈ N \B.
• The sequence sb

1, s
b
2, s

b
3 . . . is not good for the mean ergodic theorem for any

“bad” exponent b ∈ B.

Using the spectral theorem for unitary operators, we get the following equivalent
formulation of our theorem:

Theorem A′. Let B be an arbitrary set of positive integers. Then there exists an
increasing sequence s1, s2, s3 . . . of positive integers such that

• For g ∈ N \B, the averages

(1.5)
1

N

N
∑

n=1

e2πisg
nα

converge as N → ∞ for any real number α.
• For b ∈ B, there exists a real number α such that the averages

(1.6)
1

N

N
∑

n=1

e2πisb
nα

do not converge as N → ∞.

Similar results related to issues of recurrence were proved in [FrLW2]. The
original motivation to search for results which express the independence of powers
of a sequence for various properties, comes from the papers of Deshouillers, Erdős,
Sárközy ([DES]) and Deshouillers, Fouvry ([DFo]). In these papers, the authors
prove results analogous to ours but for bases of the positive integers.



POWERS OF SEQUENCES AND CONVERGENCE OF ERGODIC AVERAGES 3

In our paper, we generalize Theorem A to multiple ergodic averages and prove
a version for pointwise convergence of single ergodic averages. We state these
generalizations in the next subsection, where we also give precise definitions of the
concepts used throughout the paper.

1.2. Definitions and generalizations. All along the article we shall use the
word system, or the term measure preserving system, to designate a quadruple
(X,B, µ, T ), where T is an invertible measure preserving transformation of a prob-
ability space (X,B, µ). By insisting that our system is invertible, we make sure
that T k is well defined for negative integers k.

Definition 1.1. Let ℓ be a positive integer, (sn) be a sequence of integers, and
(X,B, µ, T ) be a system.

We say that the sequence of integers (sn) is good for ℓ-convergence for the system
(X,B, µ, T ) if for any bounded, measurable functions f1, f2, . . . , fℓ, the averages

1

N

N
∑

n=1

f1(T
snx) · f2(T 2snx) · . . . · fℓ(T

ℓsnx)

converge in the L2(µ) norm as N → ∞.
We say the sequence (sn) is universally good for ℓ-convergence if it is good

for ℓ-convergence for any system (X,B, µ, T ). We often abbreviate this by saying
that “(sn) is good for ℓ-convergence” and refer to the case ℓ = 1 as single mean
convergence.

We refer the reader to [RW] for examples of sequences that are good for single
mean convergence. Examples of sequences that are good for ℓ-convergence for every
ℓ ∈ N, include sn = n, shown by Host and Kra ([HKr1]) and later by Ziegler ([Z]),
as well as sn = p(n) where p(n) is an integer polynomial, as shown by Host and
Kra ([HKr2]) and Leibman ([Lei]).

We give a strengthening of Theorem A that related to problems of ℓ-convergence:

Theorem 1.2. Let B be an arbitrary set of positive integers and ℓ ∈ N. Then there
exists an increasing sequence (sn) of positive integers such that

• For every g ∈ N \B, the sequence (sg
n) is good for ℓ-convergence.

• For every b ∈ B, the sequence (sb
n) is not good for ℓ-convergence.

Next we introduce a notion related to pointwise convergence of ergodic averages.

Definition 1.3. Let (sn) be a sequence of integers, and let (X,B, µ, T ) be a system.
We say that the sequence (sn) is good for the pointwise ergodic theorem for the

system (X,B, µ, T ) if for any f ∈ L2(µ), the averages

1

N

N
∑

n=1

f(T snx)

converge as N → ∞ for almost every x.
We say the sequence (sn) is universally good for the pointwise ergodic theorem if

it is good for the pointwise ergodic theorem for any system (X,B, µ, T ). We often
abbreviate this by saying that “(sn) is good for the pointwise ergodic theorem.”

Remark. The preceding definition is given for the class of functions in L2(µ). It
is known that similar definitions for the class of functions in Lp(µ) gives rise to
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different notions for different values of p ∈ [1,+∞] (see [RW, Chapter VII]). How-
ever, for the sequences that we construct in the present paper (and which have
positive density) the properties of being good for the class of functions in Lp(µ) are
equivalent for all p > 1. For p = 1, our arguments do not apply, the reason being
that there is no strong maximal inequality along the sequence (nk) in L1(µ).

Notice that any sequence that is good for the pointwise ergodic theorem is also
good for the mean ergodic theorem. Various examples of sequences that are good
for the pointwise ergodic theorem are known (see e.g. [RW]). A particular example
that will be used later is the case of a sequence (p(n)) where p is any polynomial
with integer coefficients. This case was treated by Bourgain in [Bou].

We give a strengthening of Theorem A related to problems of pointwise conver-
gence:

Theorem 1.4. Let B be an arbitrary set of positive integers. Then there exists an
increasing sequence (sn) of positive integers such that

• For every g ∈ N \ B, the sequence (sg
n) is good for the pointwise ergodic

theorem.
• For every b ∈ B, the sequence (sb

n) is not good for the mean ergodic theorem.

1.3. Further remarks and conjectures. If for a given ℓ ∈ N, the sequence (sn)
is good for ℓ-convergence, then, as Theorem 1.2 shows, we cannot assert in general
that any of its powers (sk

n), where k ≥ 2, is good for ℓ-convergence. In contrast
with this, we expect the following result to be true:

Conjecture 1. Suppose that the sequence of integers (sn) is good for ℓ-convergence
for every ℓ ∈ N. Then for every k ∈ N, the sequence (sk

n) is good for ℓ-convergence
for every ℓ ∈ N.

To support this conjecture, let us mention that if the sequence (sn) is good
for 2-convergence then the sequence (s2n) is good for single mean convergence (see
Lemma 3.1 below). In fact, Conjecture 1 would be true if the following more general
statement holds:

Conjecture 2. Suppose that the sequence of integers (sn) is good for mean (kℓ)-
convergence. Then the sequence (sk

n) is good for ℓ-convergence.

The conjecture holds for ℓ = 1. This is shown in [FrLW1] and a key ingredient
of the proof is the spectral theorem for unitary operators which gives convenient
necessary and sufficient conditions for single mean convergence. We currently do
not have such a convenient characterization for ℓ-convergence when ℓ ≥ 2. The
following conjecture would fill this gap if true:

Conjecture 3. Let (sn) be a sequence of integers. The following three statements
are equivalent:

• The sequence (sn) is good for ℓ-convergence.
• The sequence (sn) is good for ℓ-convergence for every ℓ-step nilsystem.1

• For every ℓ-step nilmanifold X = G/Γ, every a ∈ G, and f ∈ C(X), the

sequence
(

1
N

∑N
n=1 f(asnΓ)

)

converges as N → +∞.

1If G is an ℓ-step nilpotent Lie group and Γ is a discrete cocompact subgroup, then the
homogeneous space X = G/Γ is called an ℓ-step nilmanifold. If Ta(gΓ) = (ag)Γ for some a ∈ G,
X is the Borel σ-algebra of X, and m is the Haar measure on X, then the system (X,X , m, Ta)
is called an ℓ-step nilsystem.



POWERS OF SEQUENCES AND CONVERGENCE OF ERGODIC AVERAGES 5

We are mainly interested in knowing if the third (or second) condition implies
the first. In the case that the set S = {sn, n ∈ N} has positive upper density,
this implication follows immediately from the nilsequence decomposition result of
Bergelson, Host, and Kra (Theorem 1.9 in [BeHKr]).

For general sequences (sn), using the spectral theorem for unitary operators, we
can verify Conjecture 3 for ℓ = 1. It is possible to see that if Conjecture 3 is true
then Conjecture 2 is also true (and hence Conjecture 1).

Notation: The following notation will be used throughout the article: Tf =
f ◦ T , e(t) = e2πit.

Acknowledgment. The authors wish to thank the Mathematical Sciences Re-
search Institute in Berkeley for providing partial support to complete work on the
present article during its special semester program on Ergodic Theory and Additive
Combinatorics.

2. Single mean convergence

In this section we shall prove Theorem A. This will help us illustrate the main
ideas behind the more complicated arguments we shall use in the proof of Theo-
rem 1.2 and of Theorem 1.4 (which both extend Theorem A).

We shall prove our theorem in its equivalent formulation of Theorem A′.
Let B be a fixed set of positive integers (possibly empty), and let α be a fixed

irrational number. It is sufficient to find a sequence (sn) satisfying the following
two conditions:

(s1) For every b ∈ B, the sequence
(

1
N

∑N
n=1 e(s

b
nα)

)

diverges.

(s2) For every g ∈ N \ B and every β ∈ R, the sequence
(

1
N

∑N
n=1 e(s

g
nβ)

)

converges.

The rest of this section will be devoted to the construction of a sequence (sn) that
satisfies conditions (s1) and (s2).

2.1. Definition of the sequence (sn). We denote
(2.1)

I+ =
{

x ∈ T | cos(2πx) ≥
√

2/2
}

and I− =
{

x ∈ T | cos(2πx) ≤ −
√

2/2
}

.

These are intervals of length 1/4 on the torus. The sequence (sn) consists of the
elements of a set S, taken in increasing order, that is defined as follows:
(2.2)

S =
⋃

j≥1

{

n ∈ N | [22j−1 ≤ n < 22j, nbjα ∈ I+] or [22j ≤ n < 22j+1, nbjα ∈ I−]
}

for some appropriately chosen sequence (bj) of elements of B. We shall construct
a sequence (bj) so that:

• Every element of B appears infinitely often in the sequence (bj). This guaran-
tees that condition (s1) holds.

• The first appearance of elements of B in the sequence (bj) happens late enough
(with respect to j) to guarantee that certain equidistribution properties are satis-
fied. All unspecified elements bj will be set to be equal to some fixed element of B.
This will enable us to verify condition (s2).
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Let us now state explicitly the properties that the sequence (bj) is going to
satisfy:

(b1) bj ∈ B, and all elements of B appear infinitely often in the sequence (bj).
(b2) We have

lim
j→∞

sup
N>22j−1

∣

∣

∣

∣

∣

1

N

N
∑

n=1

1I±(nbjα) − 1

4

∣

∣

∣

∣

∣

= 0.

(b3) For every nonzero l ∈ Z, β ∈ R, and g ∈ G, we have

lim
j→∞

sup
N≥22j−1

∣

∣

∣

∣

∣

1

N

N
∑

n=1

e(lnbjα+ ngβ)

∣

∣

∣

∣

∣

= 0.

In the next subsection we construct such a sequence (bj).

2.2. Construction of the sequence (bj). The following lemma will be essential
for our construction:

Lemma 2.1. Let b, g ∈ N with b > g and α ∈ R \ Q. Then

lim
N→∞

1

N

N
∑

n=1

1I±(nbα) =
1

4
, and

lim
N→∞

sup
β∈R

∣

∣

∣

1

N

N
∑

n=1

e(nbα+ ngβ)
∣

∣

∣
= 0.

Proof. The first part follows from Weyl’s equidistribution theorem. The second
part is a direct consequence of van der Corput’s classical inequality (see e.g. [KN]).
Applying it g times, we can estimate the trigonometric sums by a quantity that
converges to 0 as N → ∞ uniformly in β. This completes the proof. �

Note that, for each fixed b only finitely many g’s are involved in the lemma.
Therefore, the convergence is also uniform in g.

Proposition 2.2. There exists a sequence (bj) that satisfies conditions (b1), (b2),
and (b3) of Section 2.1.

Proof. Using Lemma 2.1, we get that for every b ∈ N, l ∈ N, and ε > 0, there exists
J = J(b, l, ε) ≥ 1 that satisfies

(2.3) sup
N≥22J−1

∣

∣

∣

∣

∣

1

N

N
∑

n=1

1I±(nbα) − 1

4

∣

∣

∣

∣

∣

≤ ε;

and such that

(2.4) sup
N≥22J−1

sup
β∈R

sup
g∈N, g<b

∣

∣

∣

∣

∣

1

N

N
∑

n=1

e(lnbα+ ngβ)

∣

∣

∣

∣

∣

≤ ε.

Furthermore, we can assume that J = J(b, l, ε) is increasing with respect to the
variables b, l, and decreasing with respect to the variable ε.

We write B = {at, t ∈ N} where a1 < a2 < . . .. We construct a sequence (bj)
that satisfies the following conditions: (i) every integer at appears infinitely often in
the range of (bj), (ii) for t ≥ 2, the first appearance of at in (bj) happens at a time
j that is greater than J(at, t, 1/t), and (iii) all values of bj that are left unspecified
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are set to be equal to a1. Notice that condition (ii) guarantees that (2.3) and (2.4)
hold for b = bj and J = j.

The explicit construction goes as follows:
Define J1 = J(a1, 1, 1) and bJ1

= a1.
Define J2 = max{J(a2, 2, 1/2), J1 + 2} and bJ2

= a2, bJ2+1 = a1.
Inductively, we define Jt = max{J(at, t, 1/t), Jt−1 + t}

and bJt
= at, bJt+1 = at−1, . . . , bJt+t−1 = a1.

We claim that this sequence (bj) has the advertised properties. First, we note
that every integer at appears infinitely many times in the range of (bj), so condition
(b1) holds. Now let β ∈ R, g ∈ G, and l ∈ N. Choose j large enough so that
Jt ≤ j < Jt+1 for some t ≥ l. Then, by construction, we have bj ∈ {a1, a2, . . . , at}.
If N ≥ 22j−1 then N ≥ 22Jt−1, and Jt ≥ J(ak, l, 1/t) for all k between 1 and t. It
follows from (2.3) that

sup
N≥22j−1

∣

∣

∣

∣

∣

1

N

N
∑

n=1

1I±(nbjα) − 1

4

∣

∣

∣

∣

∣

≤ 1

t
,

and so condition (b2) holds. Furthermore, it follows from (2.4) that for every bj
greater than g we have

(2.5) sup
N≥22j−1

∣

∣

∣

∣

∣

1

N

N
∑

n=1

e(lnbjα+ ngβ)

∣

∣

∣

∣

∣

≤ 1

t
.

It remains to deal with those bj that are less than g. Since there are only finitely
many values of the sequence (bj) that are less than g, by Weyl’s equidistribution
theorem we have

lim
N→∞

sup
j∈N,bj<g

∣

∣

∣

∣

∣

1

N

N
∑

n=1

e(lnbjα+ ngβ)

∣

∣

∣

∣

∣

= 0.

Combining this with (2.5) gives that condition (b3) also holds, completing the
proof. �

2.3. The sequence (sn) satisfies conditions (s1) and (s2). The goal of this
section is to complete the proof of Theorem A′ by proving the following proposition:

Proposition 2.3. Suppose that the sequence (bj) satisfies conditions (b1),(b2), and
(b3) of Section 2.2. Then the sequence (sn) defined by (2.2) satisfies conditions (s1)
and (s2).

First we show that the set S in (2.2) has positive density.

Lemma 2.4. Suppose that the sequence (bj) satisfies condition (b2) of Section 2.1.
Then the set S in (2.2) has density 1/4.

Proof. This is a direct consequence of Lemma 5.3 in the Appendix. �

Since S has positive density, condition (s1) is equivalent to

(2.6) For every b ∈ B, the sequence
( 1

N

N
∑

n=1

1S(n)e(nbα)
)

diverges,
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and condition (s2) is equivalent to
(2.7)

For every g ∈ N \B and β ∈ R, the sequence
( 1

N

N
∑

n=1

1S(n)e(ngβ)
)

converges.

We first show that the conditions imposed on the sequence (bj) guarantee that
condition (2.6) (and as a result condition (s1)) is satisfied by the set S.

Proposition 2.5. Suppose that the sequence (bj) satisfies conditions (b1) and (b2)
of Section 2.1. Then the sequence (sn) defined by (2.2) satisfies condition (s1).

Proof. Fix b ∈ B. By condition (b1) there are arbitrarily large values of j for which
bj = b. For any such j we have

1

22j

22j

∑

n=1

1S(n) cos(2πnbα) − 1

22j+1

22j+1

∑

n=1

1S(n) cos(2πnbα) =

1

22j+1

22j

∑

n=1

1S(n) cos(2πnbα) − 1

22j+1

22j+1

∑

n=22j+1

1S(n) cos(2πnbα) ≥

1

22j+1

22j−1

∑

n=1

1S(n)(−1) +
1

22j+1

22j

∑

n=22j−1+1

1S(n)(
√

2/2) − 1

22j+1

22j+1

∑

n=22j+1

1S(n)(−
√

2/2).

Using condition (b2) and Lemma 2.4, we see that, for large j, the last quantity is

near − 1
16 +

√
2

32 +
√

2
16 , which is positive. This shows that (2.6) holds. Since the set

S has positive density (Lemma 2.4), condition (s1) is also satisfied. �

Next we show that the conditions imposed on the sequence (bj) guarantee that
condition (2.7) (and hence condition (s2)) is satisfied. We first need two lemmas.

Lemma 2.6. Let l,m be two nonzero integers, α ∈ R \ Q, and suppose that the
sequence (bj) satisfies condition (b3) of Section 2.1. Let us define a sequence (en)
by

en =

{

e(lnbjα), n ∈ [22j−1, 22j);

e(mnbjα), n ∈ [22j , 22j+1).

Then for every β ∈ R and g ∈ N \B, we have

lim
N→∞

1

N

N
∑

n=1

en e(n
gβ) = 0.

Proof. Fix β ∈ R and g ∈ N \ B. By condition (b3) we have for every nonzero
integer k that

lim
j→∞

sup
N>22j−1

∣

∣

∣

∣

∣

1

N

N
∑

n=1

e(knbjα+ ngβ)

∣

∣

∣

∣

∣

= 0.

Applying this for k = l, and k = m, and using Lemma 5.3 in the Appendix we get
the advertised result. �
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Given a sequence (bj) of positive integers and functions φ, ψ : T → C, define the
sequence

(2.8) fn(φ, ψ) =

{

φ(nbjα), n ∈ [22j−1, 22j);

ψ(nbjα), n ∈ [22j , 22j+1).

Lemma 2.7. Let φ0 = 1I+ − 1/4, ψ0 = 1I− − 1/4, α ∈ R \ Q, and suppose that
the sequence (bj) satisfies condition (b3) of Section 2.1. Then for every β ∈ R and
g ∈ N \B, we have

lim
N→∞

1

N

N
∑

n=1

fn(φ0, ψ0) e(n
gβ) = 0.

Proof. By Lemma 2.6, the result is true if in place of φ0 and ψ0 we use trigonometric
polynomials. To complete the proof, we use a standard approximation argument.
We give the details for the convenience of the reader.

It suffices to show that for every ε > 0 there exist trigonometric polynomials φ
and ψ with zero integral such that

(2.9) lim sup
N→∞

1

N

N
∑

n=1

|fn (φ0, ψ0) − fn(φ, ψ)| ≤ ε.

We can approximate in L1(T) the function φ0 by a trigonometric polynomial. After
composing with a translation this trigonometric polynomial will approximate the
function ψ0 as well. So there exist two trigonometric polynomials φ and ψ, with
zero integral, such that

∫

T
|φ− φ0| =

∫

T
|ψ − ψ0| = θ ≤ ε. Notice that

(2.10) |fn (φ0, ψ0) − fn(φ, ψ)| = fn (|φ− φ0| , |ψ − ψ0|) .
So in order to establish (2.9) it suffices to show that

(2.11) lim sup
N→∞

1

N

N
∑

n=1

fn(|φ− φ0|, |ψ − ψ0|) ≤ ε.

Let Φ0 = |φ−φ0| and Ψ0 = |ψ−ψ0|. Since both Φ0 and Ψ0 are Riemann integrable
and have integral θ, the following holds: For every δ > 0 there exist four continuous
functions φ1, φ2, ψ1, ψ2, with zero integral, such that

φ1 + θ − δ ≤ Φ0 ≤ φ2 + θ + δ and ψ1 + θ − δ ≤ Ψ0 ≤ ψ2 + θ + δ.

It follows that

(2.12) fn(φ1, ψ1) + θ − δ ≤ fn(Φ0,Ψ0) ≤ fn(φ2, ψ2) + θ + δ.

Moreover, since

(2.13) lim
N→∞

1

N

N
∑

n=1

fn(φ, ψ) = 0

for every trigonometric polynomials φ and ψ with zero integral, by uniform approx-
imation, this remains true if φ and ψ are continuous functions on the torus, with
zero integral. Thus, we deduce from (2.12) and (2.13) (applied to φ = φi, ψ = ψi

for i = 1, 2), and the fact that δ was arbitrary, that

lim
N→∞

1

N

N
∑

n=1

fn(Φ0,Ψ0) = θ ≤ ε.
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Hence, (2.11) is established, completing the proof. �

Proposition 2.8. Suppose that the sequence (bj) satisfies conditions (b2) and (b3)
of Section 2.1. Then the sequence (sn) defined by (2.2) satisfies condition (s2).

Proof. We apply Lemma 2.7. We get for every β ∈ R and g ∈ N \B that

lim
N→∞

1

N

N
∑

n=1

(1S(n) − 1/4) e(ngβ) = 0.

Hence, condition (2.7) is satisfied. Since the set S has positive density (Lemma 2.4),
condition (s2) is also satisfied. �

Combining Propositions 2.5 and 2.8 we deduce Proposition 2.3, completing the
proof of Theorem A’.

3. Multiple mean convergence

In this section we shall prove Theorem 1.2. The argument is similar to the one
used to prove Theorem A, but there are some extra complications since our analysis
relies on some more intricate multiple convergence results. To avoid repetition, we
do not give details of proofs that can be immediately extracted using arguments of
the previous section.

3.1. A reduction. We need one preliminary result that was proved in [FrLW1] in
the special case where the polynomial p is a monomial. A very similar argument
gives the following more general result:

Lemma 3.1. Suppose that the sequence (sn) is good for ℓ-convergence. Then for

every polynomial p ∈ R[t] with deg p ≤ ℓ, the sequence
(

1
N

∑N
n=1 e(p(sn))

)

con-
verges.

Example 1. Let us illustrate how one proves Lemma 3.1 in the case where ℓ = 2.
Suppose that the sequence (sn) is good for 2-convergence. Let p(t) = 2αt2 +βt+ γ
for some α, β, γ ∈ R. We define the transformation R : T3 → T3 by

R(t1, t2, t3) = (t1 + α, t2 + 2t1 + α, t3 + β),

and for k ∈ Z the functions

f1(t1, t2, t3) = e(k(−2t2 + t3)), f2(t1, t2, t3) = e(kt2).

Then
Rn(t1, t2, t3) = (t1 + nα, t2 + 2nt1 + n2α, t3 + nβ).

As a consequence, the averages

1

N

N
∑

n=1

Rsnf1 · R2snf2 = e(k(t3 − t2)) ·
1

N

N
∑

n=1

e(k(2αs2n + βsn))

converge as N → ∞.

Using the previous lemma, we can deduce Theorem 1.2 from the following result
that we shall prove next:

Proposition 3.2. Let B be an arbitrary set of positive integers, ℓ ∈ N, and α ∈
R \ Q. Then there exists an increasing sequence (sn) of integers such that

(s1) For every b ∈ B, the sequence
(

1
N

∑N
n=1 e((s

ℓb
n + sb

n)α)
)

diverges.
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(s2) For every g ∈ N\B, system (X,B, µ, T ), and functions f1, . . . , fℓ ∈ L∞(µ),

the sequence
(

1
N

∑N
n=1 T

sg
nf1 · T 2sg

nf2 · . . . · T ℓsg
nfℓ

)

converges in L2(µ).

The rest of this section will be devoted to the construction of a sequence (sn)
that satisfies conditions (s1) and (s2).

3.2. Definition of the sequence (sn). Let α be any irrational number and I+
and I− be the intervals defined in (2.1). The sequence (sn) consists of the elements
of a set S, taken in increasing order, that is defined as follows:

S =
⋃

j≥1

{

n ∈ N | [22j−1 ≤ n < 22j , (nℓbj + nbj )α ∈ I+] or(3.1)

[22j ≤ n < 22j+1, (nℓbj + nbj )α ∈ I−]
}

where the sequence (bj) satisfies the following conditions:

(b1) bj ∈ B, and all elements of B appear infinitely often in the sequence (bj).
(b2) We have

lim
j→∞

sup
N>22j−1

∣

∣

∣

∣

∣

1

N

N
∑

n=1

1I±(nbjα) − 1

4

∣

∣

∣

∣

∣

= 0.

(b3) For every system (X,B, µ, T ), functions f1, . . . , fℓ ∈ L∞(µ), and nonzero
k ∈ Z, we have

lim
j→∞

sup
N≥22j−1

∥

∥

∥

∥

∥

1

N

N
∑

n=1

e(k(nℓbj + nbj )α) · T ng

f1 · T 2ng

f2 · . . . · T ℓng

fℓ

∥

∥

∥

∥

∥

L2(µ)

= 0.

In the next subsection we construct such a sequence (bj).

3.3. Construction of the sequence (bj). We need two preliminary results. The
first was proved in [FrLW2] using the machinery of nil-factors:

Lemma 3.3. Let (X,B, µ, T ) be a system, f1, . . . , fℓ ∈ L∞(µ) and α ∈ R \ Q. If
b, g are distinct positive integers then

lim
N→∞

1

N

N
∑

n=1

e
(

(nℓb + nb)α
)

· T ng

f1 · T 2ng

f2 · . . . · T ℓng

fℓ = 0(3.2)

where the convergence takes place in L2(µ).

The second is the following result:

Lemma 3.4. Let ℓ, g ∈ N. Then there exists d(ℓ, g) ∈ N such that for every
d ≥ d(ℓ, g) and α ∈ R \ Q, we have

lim
N→∞

sup
S1

∥

∥

∥

∥

∥

1

N

N
∑

n=1

e
(

(nℓd + nd)α
)

· T ng

f1 · T 2ng

f2 · . . . · T ℓng

fℓ

∥

∥

∥

∥

∥

L2(µ)

= 0,

where S1 is the collection of all systems (X,B, µ, T ) and functions f1, . . . , fℓ ∈
L∞(µ) with ‖fi‖L∞(µ) ≤ 1 for i = 1, . . . , ℓ.
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Proof. The main idea is to apply a Hilbert space version of van der Corput’s classical
inequality (see Section 5.1) several times in order to get an upper bound for the
expression

(3.3)

∥

∥

∥

∥

∥

1

N

N
∑

n=1

e
(

(nℓd + nd)α
)

· T ng

f1 · T 2ng

f2 · . . . · T ℓng

fℓ

∥

∥

∥

∥

∥

2ℓd−1

L2(µ)

that does not depend on the transformation T or the functions f1, . . . , fℓ. Such an
estimate can be obtained using a rather standard argument, very much along the
lines of the polynomial exhaustion technique introduced by Bergelson in [Be1]. To
do this we shall use Lemma 5.6 and Proposition 5.7 in the Appendix. We get that
for d large enough (depending on ℓ and g only), the quantity in (3.3) is bounded
by a constant multiple of

(3.4)
1

H1 · · ·Hℓd−1

∑

1≤hi≤Hi

∣

∣

∣

1

N

N
∑

n=1

e
(

∆h1,...,hℓd−1
(nℓd + nd)α

)

∣

∣

∣
+ oN,Hi,Hi≺N (1),

where ∆h(an) = an+h−an, ∆h1,...,hr
(an) = ∆h1

∆h2
· · ·∆hr

(an), and oN,Hi,Hi≺N (1)
denotes a quantity that goes to zero as N,Hi → ∞ in a way that Hi/N → 0. Notice
that the sequence ∆h1,...,hℓd−1

(nℓd + nd) is linear in n. Since α is irrational, letting
N → +∞ and then Hi → +∞, we get that the quantity (3.4) converges to 0. This
completes the proof. �

Using that 1
N

∑N
n=1 1I±((nℓb + nb)α) → 1

4 for b ∈ N, and Lemmas 3.3 and 3.4,
the next result is proved in a similar fashion as Proposition 2.2.

Proposition 3.5. There exists a sequence (bj) that satisfies conditions (b1), (b2),
and (b3) of Section 3.2.

3.4. The sequence (sn) satisfies (s1) and (s2). The next result is proved in
essentially the same way as Proposition 2.3 and allows us to immediately deduce
Theorem 1.2.

Proposition 3.6. Suppose that the sequence (bj) satisfies conditions (b1), (b2),
and (b3) of Section 3.2. Then the sequence (sn) defined by (3.1) satisfies conditions
(s1) and (s2) of Proposition 3.2.

4. Pointwise convergence

We shall prove Theorem 1.4. The argument is similar to the one used to prove
Theorem A. However, extra complications arise since, as is typical for pointwise
results, we need to establish quantitative estimates for some trigonometric sums.

Throughout this section we shall assume that the irrational α is badly approx-
imable, that means, there exists a positive real number c such that for every p ∈ Z

and q ∈ N we have |α−p/q| ≥ c/q2. In fact, for convenience, we shall fix α to be the

golden mean (
√

5 + 1)/2, in which case the previous estimate holds with c = 1/3.

4.1. A reduction. Theorem 1.4 is a direct consequence of the following result:

Theorem 4.1. Let B be an arbitrary set of positive integers and α be the golden
mean. Then, there exists an increasing sequence (sn) of integers such that

(s1) For every b ∈ B the sequence
(

1
N

∑N
n=1 e(s

b
nα)

)

diverges.
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(s2) For every g ∈ N \ B the sequence (sg
n) is good for the pointwise ergodic

theorem.

Our first goal is to find a more convenient condition to replace (s2). To do this
we are going to use the following lemma:

Lemma 4.2. Let (wn)n∈N be a bounded sequence of complex numbers, and (an)n∈N

be a sequence of positive integers, such that for all γ > 1 we have

∞
∑

k=1

sup
β∈R

∣

∣

∣

∣

∣

∣

∣

1

[γk]

[γk]
∑

n=1

wn e(anβ)

∣

∣

∣

∣

∣

∣

∣

2

< +∞.

Then for every system (X,B, µ, T ) and f ∈ L2(µ), we have

lim
N→∞

1

N

N
∑

n=1

wn · T anf = 0 µ-almost everywhere.

Proof. Using the spectral theorem for unitary operators we get that

∥

∥

∥

1

N

N
∑

n=1

wn · T anf
∥

∥

∥

2

2
=

∫

∣

∣

∣

1

N

N
∑

n=1

wn e(ant)
∣

∣

∣

2

dσf (t)

holds for every N ∈ N, where σf denotes the spectral measure of the function f .
As a consequence

∥

∥

∥

1

N

N
∑

n=1

wn · T anf
∥

∥

∥

2

2
≤ ‖f‖2

2 · sup
t∈R

∣

∣

∣

1

N

N
∑

n=1

wn e(ant)
∣

∣

∣

2

.

Combining this with our hypothesis, we get that if γ > 1, then

lim
k→+∞

1

[γk]

[γk]
∑

n=1

wn · T anf = 0 µ-almost everywhere for f ∈ L2(µ).

(We used that
∑∞

k=1 ‖fk‖2 <∞ implies fk → 0 pointwise.) The announced result
now follows from Lemma 1.5 in [RW]. �

Let I+, I− be the intervals defined by (2.1). Given a sequence of positive integers
(bj) and functions φ, ψ : T → T let (fn(φ, ψ)) be the sequence defined by (2.8). As
in Section 2, we define a sequence (sn) by taking the elements of the set S given by1S(n) = fn(1I+ ,1I−)

in increasing order.

Proposition 4.3. Let B be an arbitrary set of positive integers, α ∈ R, and let the
sequences (fn(φ, ψ)) and (sn) be as above. Suppose that

(s1’) For every b ∈ B, the sequence
(

1
N

∑N
n=1 e(s

b
nα)

)

diverges.

(s2’) For all trigonometric polynomials φ and ψ with zero integral, γ > 1, and
g ∈ N \B, we have

∑

k≥0

sup
β∈R

∣

∣

∣

∣

∣

∣

∣

1

[γk]

[γk]
∑

n=1

fn(φ, ψ) e(ngβ)

∣

∣

∣

∣

∣

∣

∣

< +∞.
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Then the sequence (sn) satisfies conditions (s1) and (s2) of Theorem 4.1.

Proof. It is clear that if (s1’) holds then also (s1) holds.
It remains to show that condition (s2’) implies that for g ∈ N \B the sequence

(sg
n) is good for the pointwise ergodic theorem. We start by observing that condition

(s2’), combined with Lemma 4.2, guarantees that for every system (X,B, µ, T ) we
have

(4.1) lim
N→∞

1

N

N
∑

n=1

fn(φ, ψ) · T ng

f = 0 µ-almost everywhere for f ∈ L∞(µ).

Using the approximation argument of Lemma 2.7 and the fact 1
N

∑N
n=1 fn(φ, ψ) →

0 (this follows from (4.1)), we conclude that (4.1) remains true if we replace fn(φ, ψ)
by fn(1I+ ,1I−) − 1/4 = 1S(n) − 1/4. As a consequence, we have

(4.2) lim
N→∞

1

N

N
∑

n=1

(1S(n)−1/4) ·T ng

f = 0 µ-almost everywhere for f ∈ L∞(µ).

Using Bourgain’s maximal inequality ([Bou]) for the ergodic averages 1
N

∑N
n=1 T

ng

f ,

we can to replace L∞(µ) by L2(µ) in the preceding statement. Finally, using Bour-
gain’s pointwise ergodic theorem ([Bou], or see the Appendix B of [Be2] for a simpler
proof) for the ergodic averages along g-th powers, we get that

lim
N→∞

1

N

N
∑

n=1

1S(n) · T ng

f exists µ-almost everywhere for f ∈ L∞(µ).

Since the set S has positive density (this follows by setting f = 1 in (4.2)), we
conclude that

lim
N→∞

1

N

N
∑

n=1

T sg
nf exists µ-almost everywhere for f ∈ L2(µ).

Therefore, the sequence (sg
n) is good for the pointwise ergodic theorem. This com-

pletes the proof. �

The rest of this section will be devoted to the construction of a sequence (sn)
that satisfies conditions (s1’) and (s2’).

4.2. Definition of the sequence (sn). We remind the reader the set of integers
B is given and the irrational number α is the golden mean. Let I+ and I− be the
intervals defined in (2.1). The sequence (sn) consists of the elements of a set S,
taken in increasing order, that is defined as follows:
(4.3)

S =
⋃

j≥1

{

n ∈ N | [22j−1 ≤ n < 22j, nbjα ∈ I+] or [22j ≤ n < 22j+1, nbjα ∈ I−]
}

where the sequence of integers (bj) satisfies the following conditions:

(b1) bj ∈ B, and all elements of B appear infinitely often in the sequence (bj).
(b2) We have

lim
j→∞

sup
N>22j−1

∣

∣

∣

∣

∣

1

N

N
∑

n=1

1I±(nbjα) − 1

4

∣

∣

∣

∣

∣

= 0.
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(b3) For every nonzero m ∈ Z, and g ∈ N \B, we have

lim
j→∞

sup
N≥22j−1

sup
β∈R

∣

∣

∣

∣

∣

1

N1−η(N)

N
∑

n=1

e(mnbjα+ ngβ)

∣

∣

∣

∣

∣

< +∞

where η(N) = (log2(N))−1/2.

In the next subsection we construct such a sequence (bj).

4.3. Construction of the sequence (bj). The key ingredient in the construction
is the following exponential sum estimate:

Proposition 4.4. Let α be the golden mean, and (η(N)) be a sequence of real
numbers which tends to zero at infinity. For every b, g ∈ N with b 6= g, and nonzero
m ∈ Z, there exists N0 = N0(b, g,m), such that if N > N0 then

sup
β∈R

∣

∣

∣

∣

∣

N
∑

n=1

e(mnbα+ ngβ)

∣

∣

∣

∣

∣

≤ N1−η(N).

Proof. This is an immediate consequence of Lemmas 5.4 and 5.5 in the Appendix.
�

Using that 1
N

∑N
n=1 1I±(nbα) → 1

4 for b ∈ N, and Proposition 4.4, the next result
is proved in essentially the same way as Proposition 2.2 (the argument is actually
somewhat simpler in this case, since we have already combined the estimates dealing
with b < g and b > g into a single estimate).

Proposition 4.5. There exists a sequence (bj) that satisfies conditions (b1), (b2),
and (b3) of Section 4.2.

4.4. The sequence (sn) satisfies conditions (s1) and (s2). The goal of this
section is to prove the following proposition, that allows us to immediately deduce
Theorem 1.4.

Proposition 4.6. Suppose that the sequence (bj) satisfies conditions (b1), (b2),
and (b3) of Section 4.2. Then the sequence (sn) defined by (4.3) satisfies conditions
(s1) and (s2) of Theorem 4.1.

Before starting the proof of Proposition 4.6, let us gather some useful properties
that the sequence η(N) = (log2(N))−1/2 satisfies:

(η1) The sequence
(

N−η(N)
)

is decreasing.

(η2) For every γ > 1, we have
∑

k≥0

[

γk
]−η([γk])

< +∞.

(η3) If we define

ρ(N) =
1

N

[log2 N ]
∑

i=1

2i(1−η(2i)),

then for every γ > 1, we have
∑

k

ρ
([

γk
])

< +∞.

The first property is obvious.

To check the second property notice that η
([

γk
])

∼ c/
√
k, so

[

γk
]−η([γk])

=

O
(

γ−c
√

k
)

for some constant c > 0.
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To check the third property notice that

l
∑

i=1

2i(1−η(2i)) =

l
∑

i=1

2i−
√

i =

[l/2]−1
∑

i=1

2i−
√

i +

l
∑

i=[l/2]

2i−
√

i ≤ 2l/2 + 2−
√

l/22l+1,

hence
l

∑

i=1

2i(1−η(2i)) ≤ 2l−
√

l/2+2.

It follows that

ρ
([

γk
])

≤ 1

[γk]
2log2([γk])−

√
log2([γ

k])/2+2 = O
(

2−
√

k(log2 γ)/2
)

,

which implies (η3).

Lemma 4.7. Suppose that the sequence (bj) satisfies condition (b3) of Section 4.2.
If φ and ψ are two trigonometric polynomials with zero integral, let (fn(φ, ψ)) be
the sequence defined by (2.8). Then for every γ > 1 and for every g ∈ N \ B, we
have

∑

k≥0

sup
β∈R

∣

∣

∣

∣

∣

∣

∣

1

[γk]

[γk]
∑

n=1

fn(φ, ψ) e(ngβ)

∣

∣

∣

∣

∣

∣

∣

< +∞.

Proof. For brevity we shall write fn instead of fn(φ, ψ). Since (bj) satisfies condition
(b3), there exists a positive constantC = C(φ, ψ, g) such that for every large enough
j and N ≥ 22j−1, we have

(4.4) sup
β∈R

∣

∣

∣

∣

∣

N
∑

n=1

ξ(nbjα) e (ngβ)

∣

∣

∣

∣

∣

≤ CN1−η(N),

where ξ is either φ or ψ. We shall use this estimate to find an upper bound for the
averages

1

N

N
∑

n=1

fn e(n
gβ).

We start by noticing that

1

22j

22j+1

∑

n=22j+1

fn e(n
gβ) = 2

1

22j+1

22j+1

∑

n=1

ψ(nbjα) e(ngβ) − 1

22j

22j

∑

n=1

ψ(nbjα) e(ngβ).

We also get a similar estimate with 2j + 1 is in place of 2j and φ in place of ψ. It
follows from (4.4) that there exists j0 ≥ 0 (depending on φ, ψ and g), such that for
every j ≥ j0, we have

(4.5) sup
β∈R

∣

∣

∣

∣

∣

∣

1

2j

2j+1

∑

n=2j+1

fn e(n
gβ)

∣

∣

∣

∣

∣

∣

≤ C (2j)−η(2j).

Now consider a large enough integer N , then N ∈ (2j , 2j+1] for some j ≥ j0. We
split the sum between 1 and N into several pieces

N
∑

n=1

· =

2j0
∑

n=1

· +
j−1
∑

i=j0

2i+1

∑

n=2i+1

· +
N

∑

n=2j+1

·,
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and we get the following estimate
(4.6)

∣

∣

∣

∣

∣

1

N

N
∑

n=1

fn e(n
gβ)

∣

∣

∣

∣

∣

≤ C
22j0

N
+

1

N

j−1
∑

i=j0

∣

∣

∣

∣

∣

∣

2i+1

∑

n=2i+1

fn e(n
gβ)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

1

N

N
∑

n=2j+1

fn e(n
gβ)

∣

∣

∣

∣

∣

∣

.

By (4.5) we have

(4.7)
1

N

j−1
∑

i=j0

∣

∣

∣

∣

∣

∣

2i+1

∑

n=2i+1

fn e(n
gβ)

∣

∣

∣

∣

∣

∣

≤ C
1

N

[log2 N ]
∑

i=1

2i(1−η(2i)).

Moreover, since
∣

∣

∣

∣

∣

∣

1

N

N
∑

n=2j+1

fn e(n
gβ)

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

1

N

N
∑

n=1

ξ(nbjα) e(ngβ)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

1

2j

2j

∑

n=1

ξ(nbjα) e(ngβ)

∣

∣

∣

∣

∣

∣

,

where ξ is either φ or ψ, we get using (4.4) and property (η1) that

(4.8)

∣

∣

∣

∣

∣

∣

1

N

N
∑

n=2j+1

fn e(n
gβ)

∣

∣

∣

∣

∣

∣

≤ C
(

N−η(N) + (2j)−η(2j)
)

≤ 2C (N/2)−η(N/2).

Combining equations (4.6), (4.7), and (4.8), and using properties (η1), (η2), and
(η3), we get the advertised result. �

Proof of Proposition 4.6. Let (sn) be the sequence defined by (4.3). By Propo-
sition 4.3, it suffices to verify properties (s1’) and (s2’) mentioned there. Using
Proposition 2.5, we see that properties (b1) and (b2) give property (s1’). Also,
using Lemma 4.7, we see that property (b3) gives property (s2’). This completes
the proof. �

5. Appendix

We prove some results that were used in the main part of the article.

5.1. Van der Corput’s lemma. The following is a Hilbert space version of a
classical elementary estimate of van der Corput. It appears in a form similar to the
one stated below in [Be1].

Lemma 5.1. Let v1, . . . , vN be vectors of a Hilbert space with ‖vi‖ ≤ 1 for i =
1, . . . , N . Then for every integer H between 1 and N we have

∥

∥

∥

∥

∥

1

N

N
∑

n=1

vn

∥

∥

∥

∥

∥

2

≤ 2

H
+

4

H

H−1
∑

h=1

∣

∣

∣

1

N

N−h
∑

n=1

〈vn+h, vn〉
∣

∣

∣
.

An immediate corollary of the preceding lemma is the following:

Corollary 5.2. Let v1, . . . , vN be vectors of a Hilbert space with ‖vi‖ ≤ 1 for
i = 1, . . . , N . Then for every integer H between 1 and N we have

∥

∥

∥

∥

∥

1

N

N
∑

n=1

vn

∥

∥

∥

∥

∥

2

≤ 4

H

H
∑

h=1

∣

∣

∣

1

N

N
∑

n=1

〈vn+h, vn〉
∣

∣

∣
+ oN,H,H≺N (1),

where oN,HH≺N (1) denotes a quantity that goes to zero as N,H → ∞ in a way that
H/N → 0.
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5.2. Dyadic intervals. The next lemma allows us, under suitable assumptions,
to concatenate dyadic pieces of sequences and create a new sequence with average
zero.

Lemma 5.3. Let (un,j)n,j∈N be a family of complex numbers that satisfy

lim
j→∞

sup
N>2j

∣

∣

∣

∣

∣

1

N

N
∑

n=1

un,j

∣

∣

∣

∣

∣

= 0.

Define the sequence (un) by

un = un,j if 2j ≤ n < 2j+1.

Then

lim
N→∞

1

N

N
∑

n=1

un = 0.

Proof. Let ε > 0. We define

ε(j) = sup
N>2j

∣

∣

∣

∣

∣

1

N

N
∑

n=1

un,j

∣

∣

∣

∣

∣

and

ε′(j) = sup
k≥j

ε(k).

By our assumption, there exists j0 such that ε′(j) < ε for every j ≥ j0.
We start by noticing that

1

2j

2j+1

∑

n=2j+1

un = 2
1

2j+1

2j+1

∑

n=1

un,j −
1

2j

2j

∑

n=1

un,j.

Therefore, for every j ∈ N we have

(5.1)

∣

∣

∣

∣

∣

∣

1

2j

2j+1

∑

n=2j+1

un

∣

∣

∣

∣

∣

∣

≤ 3 ε(j).

Now suppose that N > 2j0 , then N ∈ (2j , 2j+1] for some j ≥ j0. We split the sum
between 1 and N into several pieces

N
∑

n=1

· =

2j0
∑

n=1

· +
j−1
∑

i=j0

2i+1

∑

n=2i+1

· +
N

∑

n=2j+1

·,

in order to get the following upper bound
∣

∣

∣

∣

∣

1

N

N
∑

n=1

un

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

1

N

2j0
∑

n=1

un

∣

∣

∣

∣

∣

∣

+
1

N

j−1
∑

i=j0

∣

∣

∣

∣

∣

∣

2i+1

∑

n=2i+1

un

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

1

N

N
∑

n=2j+1

un

∣

∣

∣

∣

∣

∣

.

Using (5.1), we get

1

N

j−1
∑

i=j0

∣

∣

∣

∣

∣

∣

2i+1

∑

n=2i+1

un

∣

∣

∣

∣

∣

∣

≤ 1

N

j−1
∑

i=j0

3 ε(i) 2i ≤ 3 ε′(j0)
1

N

j−1
∑

i=j0

2i ≤ 3ε′(j0).
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We also have

1

N

N
∑

n=2j+1

un =
1

N

N
∑

n=1

un,j −
1

N

2j

∑

n=1

un,j,

which gives
∣

∣

∣

∣

∣

∣

1

N

N
∑

n=2j+1

un

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

1

N

N
∑

n=1

un,j

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

1

2j

2j

∑

n=1

un,j

∣

∣

∣

∣

∣

∣

≤ 2 ε′(j).

Putting these estimates together we get
∣

∣

∣

∣

∣

1

N

N
∑

n=1

un

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

1

N

2j0
∑

n=1

un

∣

∣

∣

∣

∣

∣

+ 5ε′(j0).

By taking N large enough we can make sure that the right hand side becomes less
than 6 ε. This completes the proof. �

5.3. Exponential sum estimates. We shall establish two exponential sum esti-
mates. The first gives non-trivial power type savings when one deals with exponen-
tial sums involving polynomials with leading coefficient an integer multiple of the
golden mean. Let us recall the “bad approximation property” of the golden mean
α

(5.2) For all non-zero integers q we have d(qα,Z) ≥ 1/(3q).

Lemma 5.4. Let α be the golden mean and b ∈ N. There exists C = C(b) > 0
such that for every m,N ∈ N we have

(5.3) sup
P∈R[X],deg(P )<b

∣

∣

∣

∣

∣

N
∑

n=1

e(mnbα+ P (n))

∣

∣

∣

∣

∣

≤ Cm21−b

N1−41−b

.

Proof. We use an induction on b . For b = 1, we have
∣

∣

∣

∣

∣

N
∑

n=1

e(mnα)

∣

∣

∣

∣

∣

≤ 2

|e(mα) − 1| =
1

| sin(πmα)| ≤
1

2d(mα,Z)
≤ 3m

2
,

by the bad approximation property (5.2).
Suppose that the estimate (5.3) holds for the integer b. We are going to show

that it also holds for the integer b+ 1. Let us define

S(m,N, b) = sup
P∈R[X],deg(P )<b

∣

∣

∣

∣

∣

N
∑

n=1

e(mnbα+ P (n))

∣

∣

∣

∣

∣

.

From van der Corput’s inequality (Lemma 5.1), we deduce that for every integer
H between 1 and N , we have

(5.4) S(m,N, b+ 1)2 ≤ 2N2

H
+

4N

H

H−1
∑

h=1

S(mh(b+ 1), N − h, b).

The induction hypothesis gives that for some constant C = Cb we have

S(mh(b+ 1), N − h, b) ≤ C (mh)2
1−b

(N − h)1−41−b

,

and so for h between 1 and H − 1 we have

(5.5) S(mh(b+ 1), N − h, b) ≤ Cm21−b

(H − 1)2
1−b

N1−41−b

.
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Combining (5.4) and (5.5) we get

(5.6) S(m,N, b+ 1)2 ≤ 4Cm21−b
(

N2H−1 +N2−41−b

(H − 1)2
1−b

)

.

Choosing H =
[

N21−2b
]

+ 1 gives

N2H−1 ≤ N2(1−4−b), N2−41−b

(H − 1)2
1−b ≤ N2(1−2·4−b+2·8−b) ≤ N2(1−4−b).

Using this together with (5.6) we find that

S(m,N, b+ 1)2 ≤ 4Cm21−b

N2(1−4−b).

Taking square roots establishes (5.3) for b+ 1 . This completes the induction and
the proof. �

The second lemma gives non-trivial power type savings for exponential sums
involving polynomials that have an integer multiple of the golden mean as a non-
leading (non-constant) coefficient. Its proof is a simplification of an argument that
appears in [BosKoQW].

Lemma 5.5. Let α be the golden mean and g ∈ N. For every ε > 0, there exists
C = C(ε, g) < +∞ such that, for every β ∈ R, b ∈ N with b < g, N ∈ N, and

nonzero m ∈ Z with |m| ≤ N2−g−2

, we have

(5.7)

∣

∣

∣

∣

∣

N
∑

n=1

e(mnbα+ ngβ)

∣

∣

∣

∣

∣

≤ C N1+ε−2−2g−1

.

Proof. The proof proceeds as follows: If β is not well approximable by rationals
in a way to be made precise below, then classical estimates of Weyl immediately
give the advertised estimate. If β is well approximated by rationals, using partial
summation we can replace β by a rational (up to a small error), and reduce the
problem to studying an exponential sum involving a polynomial that has an integer
multiple of α as leading coefficient. In this case, again the classical estimates of
Weyl give the advertised result.

So let us first recall Weyl’s classical estimate (see e.g. [V]). For every k ∈ N

and ε > 0, there exists a constant C satisfying the following property: for every
N ∈ N, β ∈ R, and relatively prime r, s ∈ N with |β − r/s| < 1/s2, and for every
real polynomial P (x) with leading coefficient βxk, we have

∣

∣

∣

∣

∣

N
∑

n=1

e(P (n))

∣

∣

∣

∣

∣

≤ CN1+ε

(

1

s
+

1

N
+

s

Nk

)1/2k−1

.

We fix β ∈ R, b ∈ N with b < g, N ∈ N, nonzero m ∈ Z with |m| ≤ N2−g−2

, and
we define γ = 2−g−2.

By Dirichlet’s principle, there exist r, s ∈ N, relatively prime, such that s ≤ Ng−γ

and
∣

∣

∣
β − r

s

∣

∣

∣
≤ 1

Ng−γs
.

We distinguish two cases: either s > Nγ (bad approximation) or s ≤ Nγ (good
approximation).

Case 1. Suppose that s > Nγ . By Weyl’s estimate, we have
∣

∣

∣

∣

∣

N
∑

n=1

e(mnbα+ ngβ)

∣

∣

∣

∣

∣

≤ C(ε, g)N1+ε(N−γ +N−1 +N−γ)2
1−g

,
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which implies the estimate (5.7), since γ = 2−g−2.
Case 2. Suppose now that s ≤ Nγ . By Dirichlet’s principle, there exist t, u ∈ N,

relatively prime, such that u ≤ N b−1/2 and

(5.8)

∣

∣

∣

∣

msbα− t

u

∣

∣

∣

∣

≤ 1

N b−1/2u
.

The bad approximation property of αmentioned in (5.2) gives thatmusb ≥ 1
3N

b−1/2.

Since s ≤ Nγ and |m| ≤ Nγ we have u ≥ 1
3N

b−1/2−γb−γ .

Consider now an integer M between N1−γ and N . We are going to compare the
sums

∑

n≤M e(mnbα + ngβ) with the sums
∑

n≤M e(mnbα+ r
sn

g) that are easier
to estimate. Let us first estimate the second sum. We have

∑

n≤M

e
(

mnbα+
r

s
ng

)

=

s
∑

j=1

∑

i≥0, si+j≤M

e
(

m(si+ j)bα+
r

s
jg

)

,

hence

(5.9)

∣

∣

∣

∣

∣

∣

∑

n≤M

e
(

mnbα+
r

s
ng

)

∣

∣

∣

∣

∣

∣

≤
s

∑

j=1

∣

∣

∣

∣

∣

∣

∑

i≥0, si+j≤M

e
(

m(si+ j)bα
)

∣

∣

∣

∣

∣

∣

.

By Weyl’s estimate and (5.8), we have
∣

∣

∣

∣

∣

∣

∑

i≥0, si+j≤M

e
(

m(si+ j)bα
)

∣

∣

∣

∣

∣

∣

≤ C(ε, b)

(

M

s

)1+ǫ (

1

u
+

s

M
+ u

( s

M

)b
)21−b

.

Using that

N1−γ ≤M ≤ N , 1 ≤ s ≤ Nγ , and
1

3
N b−1/2−γb−γ ≤ u ≤ N b−1/2,

we obtain
∣

∣

∣

∣

∣

∣

∑

i≥0, si+j≤M

e
(

m(si+ j)bα
)

∣

∣

∣

∣

∣

∣

≤

C(ε, b)
N1+ε

s

(

N−b+1/2+γb+γ +N−1+2γ +N−1/2+2γb
)21−b

.

The term N−1/2+2γb is dominant, and is bounded by N−1/4. It follows that
∣

∣

∣

∣

∣

∣

∑

i≥0, si+j≤M

e
(

m(si+ j)bα
)

∣

∣

∣

∣

∣

∣

≤ C(ε, b)
N1+ε−2−b−1

s
.

Since the integer g is fixed and b < g we have
∣

∣

∣

∣

∣

∣

∑

i≥0, si+j≤M

e
(

m(si+ j)bα
)

∣

∣

∣

∣

∣

∣

≤ C(ε, g)
N1+ε−2−g−1

s
.

In conjunction with (5.9) this gives

(5.10)

∣

∣

∣

∣

∣

∣

∑

n≤M

e
(

mnbα+
r

s
ng

)

∣

∣

∣

∣

∣

∣

≤ C(ε, g)N1+ε−2−g−1

.
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We come back to our main goal of estimating the sums
∑

n≤M e(mnbα + ngβ).

We are going to use summation by parts. We set S(M) =
∑

n≤M e
(

mnbα+ r
sn

g
)

and notice that
∣

∣

∣

∣

∣

∣

∑

n≤N

e(mnbα+ ngβ)

∣

∣

∣

∣

∣

∣

≤ N1−γ +

∣

∣

∣

∣

∣

∣

∑

N1−γ<n≤N

e(mnbα+ ngβ)

∣

∣

∣

∣

∣

∣

≤ N1−γ +

∣

∣

∣

∣

∣

∣

∑

N1−γ<n≤N

(S(n) − S(n− 1)) e
(

ng(β − r

s
)
)

∣

∣

∣

∣

∣

∣

.

We have
∣

∣

∣
e
(

ng(β − r

s
)
)

− e
(

(n+ 1)g(β − r

s
)
)∣

∣

∣
≤ Cng−1

∣

∣

∣
β − r

s

∣

∣

∣
,

where the constant C does not depend on β because β− r/s is uniformly bounded.
We know that for n ≤ N we have ng−1 |β − r/s| ≤ N−1+γ . So using partial
summation, we obtain

∣

∣

∣

∣

∣

∣

∑

n≤N

e(mnbα+ ngβ)

∣

∣

∣

∣

∣

∣

≤

N1−γ +
∣

∣S
(

[N1−γ ] + 1
)∣

∣ + |S(N)| + C
∑

N1−γ<n≤N

|S(n)|N−1+γ .

Using (5.10) we conclude that
∣

∣

∣

∣

∣

∣

∑

n≤N

e(mnbα+ ngβ)

∣

∣

∣

∣

∣

∣

≤ C(ε, g)N1+ε−2−g−1+γ .

Recalling that γ = 2−g−2, we derive an estimate stronger than (5.7). This completes
the proof. �

5.4. The PET induction argument. We give the details needed to complete the
proof of Lemma 3.4. The next result follows immediately from Corollary 5.2:

Lemma 5.6. Consider a family of integer polynomials {p1, . . . , pk} and an integer
polynomial p, all of them having zero constant term. Let {q1, . . . , qk′} be the family
of distinct integer polynomials that is defined using the following operation: we start
with the family of polynomials

p1(n+h)−p1(h)−p(n), . . . , pk(n+h)−pk(h)−p(n), p1(n)−p(n), . . . , pk(n)−p(n),

and we remove polynomials that are identically zero and repetitions of polynomials.
Then for every system (X,B, µ, T ), and sequence of complex numbers (un) with
‖un‖∞ ≤ 1, we have

sup
f1,...,fk

∥

∥

∥

∥

∥

1

N

N
∑

n=1

un T
p1(n)f1 · . . . · T pk(n)fk

∥

∥

∥

∥

∥

2

2

≤

4

H

H
∑

h=1

sup
f1,...,fk′

∥

∥

∥

∥

∥

1

N

N
∑

n=1

un+hūn T
q1(n)f1 · . . . · T qk′ (n)fk′

∥

∥

∥

∥

∥

2

+ oN,H,H≺N (1),

where the supremums are taken over families of functions in L∞(µ) bounded by 1.
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Let P be a family of non-constant integer polynomials with zero constant term.
The maximum degree of the polynomials is called the degree of the polynomial
family and we denote it by d. Let Pi be the subfamily of polynomials of degree
i in P . We let wi denote the number of distinct leading coefficients that appear
in the family Pi. The vector (d, wd, . . . , w1) is called the type of the polynomial
family P . We use an induction scheme, often called PET induction (Polynomial
Exhaustion Technique), on types of polynomial families that was introduced by
Bergelson in [Be1]. We order the set of all possible types lexicographically, this
means, (d, wd, . . . , w1) > (d′, w′

d′ , . . . , w′
1) if and only if in the first instance where

the two vectors disagree the coordinate of the first vector is greater than the coor-
dinate of the second vector.

Proposition 5.7 (Bergelson’s PET [Be1]). Let {p1, . . . , pk} be a family of non-
constant integer polynomials with zero constant term. After applying finitely many
times the operation defined in Lemma 5.6 (for good choices of the auxiliary polyno-
mial p at each step) it is possible to obtain the empty family of polynomials.

Proof. Let pmin be any member of the family {p1, . . . , pk} that has minimal degree.
Notice that after applying the operation defined in Lemma 5.6 for p = pmin, we
obtain a new family of polynomials that has type strictly less than the type of
the family {p1, . . . , pk}. The result now follows using induction on the type of the
polynomial family. �

The following two examples illustrate how a typical PET induction argument
works:

Example 2. Suppose that we start with the family of polynomials P0 = {n, 2n}
that has type (1, 2). Applying the operation defined in Lemma 5.6 with p(n) = n
we obtain the family P1 = {n} that has type (1, 1). After one more application of
the operation we obtain an empty family of polynomials.

Example 3. Suppose that we start with the family of polynomials P0 = {n2, 2n2}
that has type (2, 2, 0). Applying successively the operation defined in Lemma 5.6
we obtain the following families of polynomials: Using p(n) = n2 we get the family

P1 = {2nh1, n
2 + 4nh1, n

2}
that has type (2, 1, 1). Using p(n) = 2nh1 we get the family

P2 = {n2 + 2n(h1 + h2), n
2 + 2n(h2 − h1), n

2 + 2nh1, n
2 − 2nh1}

that has type (2, 1, 0). Using p(n) = n2 we get the family

P3 = {2n(h1 + h2 + h3), 2n(h3 + h2 − h1), 2n(h1 + h3),

2n(h3 − h1), 2n(h1 + h2), 2n(h2 − h1), 2nh1,−2nh1}
that has type at most (1, 8) (actually equal to (1, 8) for most values of h1, h2, h3).
The last family consists of linear polynomials and can be dealt as in Example 2.
After 8 more operations we arrive to an empty family of polynomials.
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