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Abstract

The step size leading to the absolute minimum of the constantmodulus (CM) criterion along

the search direction can be obtained algebraically at each iteration among the roots of a third-degree

polynomial. The resulting optimal step-size CMA (OS-CMA) is compared with other CM-based

iterative techniques in terms of performance-versus-complexity trade-off.

Index Terms

Adaption coefficient, blind equalization, CMA, exact line search, SISO and SIMO channels.

I. INTRODUCTION

An important problem in digital communications is the recovery of the data symbols transmitted

through a distorting medium. The constant modulus (CM) criterion is arguably the most widespread

blind channel equalization principle [1], [2]. The CM criterion generally presents local extrema —

often associated with different equalization delays — in the equalizer parameter space [3]. This

shortcoming renders the performance of gradient-based implementations, such as the well-known

constant modulus algorithm (CMA), very dependent on the equalizer impulse response initialization.

Even when the absolute minimum is found, convergence can be severely slowed down for initial

equalizer settings with trajectories in the vicinity of saddle points [4], [5]. The constant value of the

step-size parameter (or adaption coefficient) must be carefully selected to ensure a stable operation

while balancing convergence rate and final accuracy (misadjustment or excess mean square error).

The stochastic gradient CMA drops the expectation operatorand approximates the gradient of the

criterion by a one-sample estimate, as in LMS-based algorithms. This rough approximation generally

leads to slow convergence and poor misadjustment, even if the step size is carefully chosen.
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As opposed to recursive (or sample-by-sample) algorithms,block (or fixed-window) methods obtain

a more precise gradient estimate from a batch of channel output samples, improving convergence

speed and accuracy [6]. Tracking capabilities are preserved as long as the channel remains stationary

over the observation window. Moreover, sample-by-sample versions are easily obtained from block

implementations by considering signal blocks of one data vector and iterating over consecutive

received vectors. The block-gradient CMA (simply denoted as CMA hereafter) is particularly suited to

burst-mode transmission systems. Unfortunately, the multimodal nature of the CM criterion sustains

the negative impact of local extrema on block implementations. Asymptotically (for sufficient block

size), the least-squares CMA (LSCMA) [7] guarantees globalconvergence to a cost function stationary

point, for any initial weight setting, with a cost per iteration similar to CMA’s. This is achieved

at the expense of an increased computational overhead due tothe calculation of the data matrix

pseudoinverse or its QR factorization, needed to solve the LS step at each iteration. In the QR-

CMA method of [6], data prewhitening through the QR decomposition of the sensor-output matrix

simplifies the block-CMA iteration, so that bounds on its step size can be found to ensure monotonic

convergence. The recently proposed recursive least squares CMA (RLS-CMA) [8], which operates

on a sample-by-sample basis, also proves notably faster andmore robust than the classical CMA.

The derivation of the RLS-CMA relies on an approximation to the CM cost function in stationary

or slowly varying environments, where block implementations may actually prove more efficient in

exploiting the available information (the received signalburst). Interestingly, the RLS-CMA turns out

to be equivalent to the recursive CMA (RCMA), put forward over a decade earlier in [9]; it also

bears close resemblance to the orthogonalized CMA (O-CMA) of [10].

Analytical solutions to the minimization of the CM criterion are developed in [11], [12]. After

solving a linearized LS problem, these methods require to recover the right structure of the solution

space when multiple equalization solutions exist. In the general case, this can be achieved through

a costly QZ matrix iteration. In addition, special modifications are required for input signals with a

one-dimensional (i.e., binary) alphabet [11]–[13]. More importantly, these analytic methods aim at

exact solutions to the CM criterion, which may yield suboptimal equalizers in the presence of noise.

A judicious alternative to existing techniques consists ofperforming consecutive one-dimensional

absolute minimizations of the CM cost function. This technique, known as exact line search, is

generally considered computationally inefficient [14]. However, it was first observed in [15] that the

value of the adaption coefficient that leads to the absolute minimum of most blind cost functions

along a given search direction can be computed algebraically. It was conjectured that the use of this

algebraic optimal step size could not only accelerate convergence but also avoid local extrema in

some cases. The present Letter carries out a more detailed (yet concise) theoretical development and
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experimental evaluation of the optimal step-size CMA (OS-CMA) derived from this idea, which was

briefly presented in [16] under a different name.

II. CONSTANT MODULUS EQUALIZATION

Zero-mean data symbols{sn} are transmitted at a known baud-rate1/T through a time dispersive

channel with impulse responseh(t). The channel is assumed linear and time-invariant (at leastover

the observation window), with a stable, causal and possiblynon-minimum phase transfer function,

and comprises the transmitter pulse-shaping and receiver front-end filters. The channel order isM

baud periods. Assuming perfect synchronization and carrier-residual elimination, fractionally-spaced

sampling by a factor ofP yields the discrete-time channel output

xn =

M
∑

k=0

hksn−k + vn (1)

in which xn = [x(nT ), x(nT + T/P ), . . . , x(nT + T (P − 1)/P )]T ∈ C
P , x(t) denoting the

continuous-time baseband received signal. Similar definitions hold forhk and the additive noisevn.

Eqn. (1) represents the so-called single-input multiple-output (SIMO) signal model, and reduces to

the single-input single-output (SISO) model forP = 1. The SIMO model is also obtained if spatial

diversity (e.g., an antenna array) is available at the receiver end, with or without time oversampling,

and can easily be extended to the multiple-input (MIMO) case.

To recover the original data symbols from the received signal, a linear equalizer is employed with

finite impulse response spanningL baud periodsf = [fT
1 , fT

2 , . . . , fT
L ]T ∈ C

D, D = PL, fl =

[fl,1, fl,2, . . . , fl,P ]T ∈ C
P , l = 1, . . . , L. This filter produces the output signalyn = fHx̃n, where

x̃n = [xT
n , xT

n−1, . . . , xT
n−L+1]

T ∈ C
D. In these conditions, the channel effects can be represented

by a block Toeplitz convolution matrix with dimensionsD × (L + M) [3], [17].

The equalizer vector can be blindly estimated by minimizingthe CM cost function [1], [2]:

JCM(f) = E
{(

|yn|
2 − γ

)2}
(2)

whereγ = E{|sn|
4}/E{|sn|

2} is a constellation-dependent parameter. The CMA is a gradient-descent

iterative procedure to minimize the CM cost. Its update rulereads

f(k + 1) = f(k) − µg(k) (3)

whereg
def
= ∇JCM(f) = 4E

{

(|yn|
2 − γ)y∗nx̃n} is the gradient vector atf , symbolµ represents the

step-size parameter andk denotes the iteration number. In the sequel, we assume that ablock of

lengthNd baud periodsxn is observed at the channel output, from whichN = (Nd−L+1) received

data vectors̃xn can be constructed.
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III. O PTIMAL STEP-SIZE CMA

A. Exact Line Search

Exact line search consists of finding the absolute minimum ofthe cost function along the line

defined by the search direction (typically the gradient) [14]:

µopt = arg min
µ

JCM(f − µg). (4)

In general, exact line search algorithms are unattractive because of their relatively high complexity.

Even in the one-dimensional case, function minimization must usually be performed using costly

numerical methods. However, as originally observed in [15]and later also remarked in [16], the CM

costJCM(f − µg) is a polynomial in the step sizeµ. Consequently, it is possible to find the optimal

step sizeµopt in closed form among the roots of a polynomial inµ. Exact line minimization of

function (2) can thus be performed at relatively low complexity.

B. Algebraic Optimal Step Size: the OS-CMA

In effect, some algebraic manipulations show that the derivative of JCM(f − µg) with respect to

µ is the 3rd-degree polynomial with real-valued coefficients:

p(µ) = d3µ
3 + d2µ

2 + d1µ + d0

d3 = 2E{a2
n}, d2 = 3E{anbn}, d1 = E{2ancn + b2

n}, d0 = E{bncn} (5)

wherean = |gn|
2, bn = −2IRe(yng∗n), and cn = (|yn|

2 − γ), with gn = gHx̃n. Alternatively, the

coefficients of the OS-CMA polynomial can be obtained as a function of the sensor-output statistics,

calculated before starting the iterative search. These twoequivalent forms of the OS-CMA coefficients

are derived in [18], [19].

Having obtained its coefficients, the roots of 3rd-degree polynomial (5) can be extracted with any

standard algebraic procedures such as Cardano’s formula, or more efficient iterative methods [20],

[21].1 The optimal step size corresponds to the root attaining the lowest value of the cost function, thus

accomplishing theglobal minimization of JCM in the gradient direction. When complex conjugate

roots appear, the real root typically provides the lowest equalizer output mean square error (MSE).

Onceµopt has been determined, the filter taps are updated as in (3), andthe process is repeated

with the new filter and gradient vectors, until convergence.This algorithm is referred to asoptimal

step-size CMA (OS-CMA).

1The MATLAB code of a general algorithm for extracting the roots of a 3rd-degree polynomial is given in [18] (see also

[14]).
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To improve numerical conditioning in the determination ofµopt, gradient vectorg should be

normalized. This normalization does not cause any adverse effects since the relevant parameter in the

optimal step-size technique is the search directiong̃ = g/‖g‖.

C. Computational Complexity

Table I summarizes the OS-CMA’s computational cost in termsof the number of real-valued floating

point operations orflops (a flop represents a multiplication followed by an addition;multiplies and

divisions are counted as flops as well). Also shown is the costfor other CM-based algorithms such as

the CMA, the LSCMA [7], the QR-CMA [6] and the RLS-CMA [8], [9]. Complex-valued signals and

filters are assumed; rough estimates of complexity for the real-valued signal scenario can be obtained

by dividing the flop figures by 4. For typical values of(D,N), the OS-CMA is more costly per

iteration over the observed signal block than the other CM-based algorithms except the RLS-CMA.

The initial cost and the cost per iteration are of orderO(D4N) and O(D4), respectively, with the

second form of the OS-CMA polynomial [18], [19].

IV. EXPERIMENTAL RESULTS

We evaluate and compare the equalization quality as a function of computational cost (performance

vs. complexity trade-off) achieved by the CM-based methodsconsidered in this Letter. Bursts of

Nd = 200 baud periods are observed at the output of aT/2-spaced channel (P = 2) excited by

a QPSK source (γ = 1) and corrupted by complex circular additive white Gaussiannoise with

20-dB SNR. ForL = 2, these parameters result in an equalizer vectorf composed ofD = 4

taps. The channel impulse response coefficients are randomly drawn from a normalized complex

Gaussian distribution. After a given number of iterations,performance is measured as the MSE

between the equalizer output and the original channel input. Results are averaged over 1000 channel,

source and noise realizations. For each plot in the figures, markers are placed at block iterations

[1, 2, 3, 5, 8, 14, 24, 41, 69, 118, 200]. We setµ = 10−3 for the conventional fixed step-size CMA

(a value found empirically to provide fastest performance while trying to avoid divergence in our

simulation set-up), and the typical forgetting factorλ = 0.99 and inverse covariance matrix initialized

at the identity for the RLS-CMA [8]. Double first-tap initializations are chosen for the equalizer

vectors. Two scenarios are considered, depending on the linear invertibility of the channel matrix.

Scenario 1: linearly invertible channel.A channel orderM = 2 yields an equivalent (4×4) channel

convolution matrix that can be perfectly inverted in the absence of noise, thus guaranteeing the global

convergence of the fractionally-spaced CMA [17]. Fig. 1(a)shows that the OS-CMA dramatically
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outperforms the conventional fixed step-size CMA and slightly improves on the other CM-based

methods at low complexity.

Scenario 2: lack of linear invertibility.A channel orderM = 4 results in a (4 × 6) channel

convolution matrix. Despite the lack of linear invertibility of the channel, a linear equalizer may still

attempt to estimate the channel input at an extraction delaywith reasonably low MSE. As shown in

Fig. 1(b), the OS-CMA’s quality-cost trade-off is only surpassed by the RLS-CMA’s for sufficient

complexity. In both scenarios, results at the reported 20-dB SNR level are quite representative of the

methods’ relative performance under the same fixed complexity over a wider[0, 40]-dB SNR range.

Optimal step-size trajectory.The average evolution of the OS-CMA’s optimal step size in the above

experiments is represented in Fig. 2. Depending on the cost function shape (which is determined by

the actual channel, source and noise realizations), the optimal step size may take negative values at

a given iteration. This fact may explain the peaks observed in the curves. Nevertheless, the optimal

step size shows a monotonically decreasing trend.

V. CONCLUSIONS

Global line minimization of the CM cost function can be carried out algebraically by finding the

roots of a 3rd-degree polynomial with real coefficients. Theresulting OS-CMA presents a performance

versus complexity trade-off similar to the LSCMA [7], the QR-CMA [6] and the RLS-CMA [8], [9],

slightly improving on those methods when perfect equalization conditions are not met. Due to space

constraints, the numerical study presented in this Letter is of rather limited scope, and thus needs to

be completed with a more thorough theoretical and experimental analysis of the OS-CMA technique

evaluating its performance against a variety of system parameters such as block size, SNR, equalizer

length, channel conditioning, etc. Indeed, additional experimental results reported in [18], [19] seem

to point out that the optimal step-size strategy arises as a promising practical approach to improving

the performance of blind equalizers in burst-mode transmission systems. The continuation of this

work should also include the incorporation of the optimum step-size scheme in alternative blind and

semi-blind criteria for equalization and beamforming. A first step in this direction has already been

taken in [22], [23].
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TABLE I

COMPUTATIONAL COST IN NUMBER OF REAL-VALUED FLOPS FOR SEVERALCM-BASED ALGORITHMS. D: NUMBER OF

TAPS IN EQUALIZER VECTOR; N : NUMBER OF DATA VECTORS IN OBSERVED SIGNAL BURST. THE BOTTOM HALF OF

THE TABLE CORRESPONDS TO THE EXPERIMENTAL SET-UP OF SEC. IV AND FIGS. 1–2.

Flops CMA LSCMA QR-CMA RLS-CMA OS-CMA

(D, N ) initialization — 4D2N 4D2N — —

per block iteration 4(2D + 1)N (8D + 5)N (8D + 5)N 2D(7D + 10)N 2(6D + 7)N

(4, 199) initialization 0 12736 12736 0 0

per block iteration 7164 7363 7363 60496 12338
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Fig. 1. Performance vs. complexity trade-off of CM-based algorithms with QPSK source, signal bursts ofNd = 200

symbols, equalizer lengthL = 2 baud periods, oversampling factorP = 2, SNR = 20 dB, 1000 Monte Carlo runs.

(a) Linearly invertible (4 × 4) channel convolution matrix (channel orderM = 2). (b) Lack of linear invertibility of the

channel, with a (4 × 6) channel convolution matrix (channel orderM = 4).
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Fig. 2. Optimal step-size average trajectory in the simulation scenarios of Fig. 1(a) (dashed line) and Fig. 1(b) (solidline).


