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Abstract

The step size leading to the absolute minimum of the constendulus (CM) criterion along
the search direction can be obtained algebraically at dacdtion among the roots of a third-degree
polynomial. The resulting optimal step-size CMA (OS-CM&A) ¢ompared with other CM-based

iterative techniques in terms of performance-versus-dexity trade-off.

Index Terms

Adaption coefficient, blind equalization, CMA, exact lineasch, SISO and SIMO channels.

I. INTRODUCTION

An important problem in digital communications is the reegvof the data symbols transmitted
through a distorting medium. The constant modulus (CMedon is arguably the most widespread
blind channel equalization principle [1], [2]. The CM crien generally presents local extrema —
often associated with different equalization delays — im #yualizer parameter space [3]. This
shortcoming renders the performance of gradient-basedemenmtations, such as the well-known
constant modulus algorithm (CMA), very dependent on theabrger impulse response initialization.
Even when the absolute minimum is found, convergence careberely slowed down for initial
equalizer settings with trajectories in the vicinity of didpoints [4], [5]. The constant value of the
step-size parameter (or adaption coefficient) must be whrefelected to ensure a stable operation
while balancing convergence rate and final accuracy (misament or excess mean square error).
The stochastic gradient CMA drops the expectation operator approximates the gradient of the
criterion by a one-sample estimate, as in LMS-based algost This rough approximation generally

leads to slow convergence and poor misadjustment, evem istdp size is carefully chosen.
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As opposed to recursive (or sample-by-sample) algorithogk (or fixed-window) methods obtain
a more precise gradient estimate from a batch of channeubgimples, improving convergence
speed and accuracy [6]. Tracking capabilities are predemgdong as the channel remains stationary
over the observation window. Moreover, sample-by-samplsions are easily obtained from block
implementations by considering signal blocks of one datetoreand iterating over consecutive
received vectors. The block-gradient CMA (simply denoteMA hereafter) is particularly suited to
burst-mode transmission systems. Unfortunately, theimattal nature of the CM criterion sustains
the negative impact of local extrema on block implementeticAsymptotically (for sufficient block
size), the least-squares CMA (LSCMA) [7] guarantees glabalergence to a cost function stationary
point, for any initial weight setting, with a cost per itdoat similar to CMA's. This is achieved
at the expense of an increased computational overhead dthee toalculation of the data matrix
pseudoinverse or its QR factorization, needed to solve tBestep at each iteration. In the QR-
CMA method of [6], data prewhitening through the QR deconitims of the sensor-output matrix
simplifies the block-CMA iteration, so that bounds on itgpssé&ze can be found to ensure monotonic
convergence. The recently proposed recursive least ssj@vRA (RLS-CMA) [8], which operates
on a sample-by-sample basis, also proves notably fastememd robust than the classical CMA.
The derivation of the RLS-CMA relies on an approximation bhe ICM cost function in stationary
or slowly varying environments, where block implementasionay actually prove more efficient in
exploiting the available information (the received sighaist). Interestingly, the RLS-CMA turns out
to be equivalent to the recursive CMA (RCMA), put forward oeedecade earlier in [9]; it also
bears close resemblance to the orthogonalized CMA (O-CMAL@).

Analytical solutions to the minimization of the CM critericare developed in [11], [12]. After
solving a linearized LS problem, these methods require cover the right structure of the solution
space when multiple equalization solutions exist. In theegal case, this can be achieved through
a costly QZ matrix iteration. In addition, special modificats are required for input signals with a
one-dimensional (i.e., binary) alphabet [11]-[13]. Monepbrtantly, these analytic methods aim at
exact solutions to the CM criterion, which may yield suboyati equalizers in the presence of noise.

A judicious alternative to existing techniques consistpefforming consecutive one-dimensional
absolute minimizations of the CM cost function. This tecfud, known as exact line search, is
generally considered computationally inefficient [14].vitwer, it was first observed in [15] that the
value of the adaption coefficient that leads to the absolutermam of most blind cost functions
along a given search direction can be computed algebnaittlvas conjectured that the use of this
algebraic optimal step size could not only accelerate ageree but also avoid local extrema in

some cases. The present Letter carries out a more detadeddycise) theoretical development and



experimental evaluation of the optimal step-size CMA (O8A} derived from this idea, which was

briefly presented in [16] under a different name.

[I. CONSTANT MODULUS EQUALIZATION

Zero-mean data symbo{s;,, } are transmitted at a known baud-ratél’ through a time dispersive
channel with impulse respong€t). The channel is assumed linear and time-invariant (at least
the observation window), with a stable, causal and possibly-minimum phase transfer function,
and comprises the transmitter pulse-shaping and recaiwet-énd filters. The channel order id
baud periods. Assuming perfect synchronization and cameidual elimination, fractionally-spaced

sampling by a factor o yields the discrete-time channel output

M

Xn = Z hksnfk + v (1)
k=0

in which x,, = [2(nT), x(nT + T/P), ..., z(nT + T(P — 1)/P)]Y € CF, z(t) denoting the
continuous-time baseband received signal. Similar defiréthold forh; and the additive noise,,.
Eqn. [1) represents the so-called single-input multiplgeot (SIMO) signal model, and reduces to
the single-input single-output (SISO) model fBr= 1. The SIMO model is also obtained if spatial
diversity (e.g., an antenna array) is available at the veceaind, with or without time oversampling,
and can easily be extended to the multiple-input (MIMO) case

To recover the original data symbols from the received djgnéinear equalizer is employed with
finite impulse response spannirg baud periodsf = [ff, ff, ..., ff]T € CP, D = PL, f, =
(fi1, fi2, .-, fip)t € CP, 1 =1,..., L. This filter produces the output signg| = f!'%,,, where
Xn = [xp, X0 1, ..., %p_; 4|7 € CP. In these conditions, the channel effects can be repredente
by a block Toeplitz convolution matrix with dimensiod® x (L + M) [3], [17].

The equalizer vector can be blindly estimated by minimizing CM cost function [1], [2]:

Jom(£) = B{(lynl* — )"} 2)

wherey = E{|s,|*}/E{|s,|?} is a constellation-dependent parameter. The CMA is a gnadiescent

iterative procedure to minimize the CM cost. Its update releds
f(k+1) = (k) — pg(k) 3)

whereg L Vdem(f) = 4E{(Jyn|* — 7)y; X, } is the gradient vector o, symbol. represents the
step-size parameter ariddenotes the iteration number. In the sequel, we assume thhick of
length N, baud periods,, is observed at the channel output, from whi¥h= (N; — L+ 1) received

data vectorsz,, can be constructed.



I1l. OPTIMAL STEP-SIZE CMA
A. Exact Line Search

Exact line search consists of finding the absolute minimunthef cost function along the line

defined by the search direction (typically the gradient)][14

Hopt = arg mﬂin JCM(f - ,Ufg) (4)

In general, exact line search algorithms are unattractaa@abse of their relatively high complexity.
Even in the one-dimensional case, function minimizationrstrusually be performed using costly
numerical methods. However, as originally observed in @i later also remarked in [16], the CM
costJom (f — pg) is a polynomial in the step size. Consequently, it is possible to find the optimal
step sizepqp in closed form among the roots of a polynomial in Exact line minimization of

function (2) can thus be performed at relatively low comfijex

B. Algebraic Optimal Step Size: the OS-CMA

In effect, some algebraic manipulations show that the déwe of Jon (f — pg) with respect to

1 is the 3rd-degree polynomial with real-valued coefficients

p(p) = dsp® + dop® + dyp + do

ds = 2E{a2}, dy = 3E{anby, }, d1 = E{2a,c, + b2}, do = E{bnc,} (5)

wherea, = |gu|?, b, = —2Re(y,g;), ande, = (jyn|> — 7), with g, = g!'%,. Alternatively, the
coefficients of the OS-CMA polynomial can be obtained as &tion of the sensor-output statistics,
calculated before starting the iterative search. Thesestyuivalent forms of the OS-CMA coefficients
are derived in [18], [19].

Having obtained its coefficients, the roots of 3rd-degrelgmmmial () can be extracted with any
standard algebraic procedures such as Cardano’s formulapre efficient iterative methods [20],
[21].1 The optimal step size corresponds to the root attainingaivesdt value of the cost function, thus
accomplishing theglobal minimization of J-\; in the gradient direction. When complex conjugate
roots appear, the real root typically provides the lowestadiger output mean square error (MSE).
once uopt has been determined, the filter taps are updated af in (3)thendrocess is repeated
with the new filter and gradient vectors, until convergenidas algorithm is referred to agptimal
step-size CMA (OS-CMA)

1The MATLAB code of a general algorithm for extracting the t®of a 3rd-degree polynomial is given in [18] (see also
[14]).



To improve numerical conditioning in the determination f,., gradient vectorg should be
normalized. This normalization does not cause any advdiset® since the relevant parameter in the

optimal step-size technique is the search direcioa g/||g||.

C. Computational Complexity

Table | summarizes the OS-CMA's computational cost in tesfrthe number of real-valued floating
point operations oflops (a flop represents a multiplication followed by an additiomjltiplies and
divisions are counted as flops as well). Also shown is the foogither CM-based algorithms such as
the CMA, the LSCMA [7], the QR-CMA [6] and the RLS-CMA [8], [9FF omplex-valued signals and
filters are assumed; rough estimates of complexity for thévalued signal scenario can be obtained
by dividing the flop figures by 4. For typical values @b, NV), the OS-CMA is more costly per
iteration over the observed signal block than the other Gideld algorithms except the RLS-CMA.
The initial cost and the cost per iteration are of or@gD*N) and O(D*), respectively, with the
second form of the OS-CMA polynomial [18], [19].

IV. EXPERIMENTAL RESULTS

We evaluate and compare the equalization quality as a fimoti computational cost (performance
vs. complexity trade-off) achieved by the CM-based methoaissidered in this Letter. Bursts of
N4 = 200 baud periods are observed at the output df /@-spaced channelR = 2) excited by
a QPSK source+( = 1) and corrupted by complex circular additive white Gaussiaise with
20-dB SNR. ForL = 2, these parameters result in an equalizer ve€t@momposed ofD = 4
taps. The channel impulse response coefficients are ragddralvn from a normalized complex
Gaussian distribution. After a given number of iteratiopsrformance is measured as the MSE
between the equalizer output and the original channel iripesults are averaged over 1000 channel,
source and noise realizations. For each plot in the figureskens are placed at block iterations
[1,2,3,5,8,14,24,41,69,118,200]. We sety = 1073 for the conventional fixed step-size CMA
(a value found empirically to provide fastest performanddalevtrying to avoid divergence in our
simulation set-up), and the typical forgetting factor= 0.99 and inverse covariance matrix initialized
at the identity for the RLS-CMA [8]. Double first-tap initiadtions are chosen for the equalizer
vectors. Two scenarios are considered, depending on tearlinvertibility of the channel matrix.

Scenario 1: linearly invertible channeA channel ordef\/ = 2 yields an equivalent(x 4) channel
convolution matrix that can be perfectly inverted in theett® of noise, thus guaranteeing the global

convergence of the fractionally-spaced CMA [17]. Fig. 1¢apws that the OS-CMA dramatically



outperforms the conventional fixed step-size CMA and digithproves on the other CM-based
methods at low complexity.

Scenario 2: lack of linear invertibilityA channel orderM = 4 results in a 4 x 6) channel
convolution matrix. Despite the lack of linear invertibjliof the channel, a linear equalizer may still
attempt to estimate the channel input at an extraction delttyreasonably low MSE. As shown in
Fig. 1(b), the OS-CMA’s quality-cost trade-off is only sagsed by the RLS-CMA's for sufficient
complexity. In both scenarios, results at the reported RBHIR level are quite representative of the
methods’ relative performance under the same fixed contplexier a wider|0, 40]-dB SNR range.

Optimal step-size trajectori.he average evolution of the OS-CMA's optimal step size ;ndbove
experiments is represented in Fig. 2. Depending on the costibn shape (which is determined by
the actual channel, source and noise realizations), tHealpstep size may take negative values at
a given iteration. This fact may explain the peaks obseruetthé curves. Nevertheless, the optimal

step size shows a monotonically decreasing trend.

V. CONCLUSIONS

Global line minimization of the CM cost function can be cadiout algebraically by finding the
roots of a 3rd-degree polynomial with real coefficients. Témulting OS-CMA presents a performance
versus complexity trade-off similar to the LSCMA [7], the €BMA [6] and the RLS-CMA [8], [9],
slightly improving on those methods when perfect equatrmatonditions are not met. Due to space
constraints, the numerical study presented in this Lestef irather limited scope, and thus needs to
be completed with a more thorough theoretical and expeliahamalysis of the OS-CMA technique
evaluating its performance against a variety of systemrpatars such as block size, SNR, equalizer
length, channel conditioning, etc. Indeed, additionalezkpental results reported in [18], [19] seem
to point out that the optimal step-size strategy arises a®miping practical approach to improving
the performance of blind equalizers in burst-mode transimns systems. The continuation of this
work should also include the incorporation of the optimuepssize scheme in alternative blind and
semi-blind criteria for equalization and beamforming. Asfiistep in this direction has already been
taken in [22], [23].
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TABLE |

COMPUTATIONAL COST IN NUMBER OF REAL-VALUED FLOPS FOR SEVERALCM-BASED ALGORITHMS. D: NUMBER OF

TAPS IN EQUALIZER VECTOR N: NUMBER OF DATA VECTORS IN OBSERVED SIGNAL BURSTTHE BOTTOM HALF OF

THE TABLE CORRESPONDS TO THE EXPERIMENTAL SEUP OF SEC. IV AND FIGS. 1-2.

Flops | cma LSCMA | QR-CMA RLS-CMA 0S-CMA
(D,N) | initialization — 4D?*N 4D?N — —

per block iteration|| 4(2D +1)N | (8D +5)N | (8D +5)N | 2D(7D +10)N | 2(6D + 7)N
(4,199) | initialization 0 12736 12736 0 0

per block iteration 7164 7363 7363 60496 12338
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Fig. 1. Performance vs. complexity trade-off of CM-basegodathms with QPSK source, signal bursts 8f; = 200
symbols, equalizer lengtlh. = 2 baud periods, oversampling factét = 2, SNR = 20 dB, 1000 Monte Carlo runs.
(a) Linearly invertible 4 x 4) channel convolution matrix (channel ordg&f = 2). (b) Lack of linear invertibility of the

channel, with a4 x 6) channel convolution matrix (channel ord&f = 4).
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Fig. 2. Optimal step-size average trajectory in the sinmascenarios of Fig. 1(a) (dashed line) and Fig. 1(b) (skiriel).



