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The step size leading to the absolute minimum of the constant modulus (CM) criterion along the search direction can be obtained algebraically at each iteration among the roots of a third-degree polynomial. The resulting optimal step-size CMA (OS-CMA) is compared with other CM-based iterative techniques in terms of performance-versus-complexity trade-off.

I. INTRODUCTION

An important problem in digital communications is the recovery of the data symbols transmitted through a distorting medium. The constant modulus (CM) criterion is arguably the most widespread blind channel equalization principle [START_REF] Godard | Self-recovering equalization and carrier tracking in two-dimensional data communication systems[END_REF], [START_REF] Treichler | A new approach to multipath correction of constant modulus signals[END_REF]. The CM criterion generally presents local extremaoften associated with different equalization delays -in the equalizer parameter space [START_REF] Ding | On the (non)existence of undesirable equilibria of Godard blind equalizers[END_REF]. This shortcoming renders the performance of gradient-based implementations, such as the well-known constant modulus algorithm (CMA), very dependent on the equalizer impulse response initialization.

Even when the absolute minimum is found, convergence can be severely slowed down for initial equalizer settings with trajectories in the vicinity of saddle points [START_REF] Lambotharan | Attraction of saddles and slow convergence in CMA adaptation[END_REF], [START_REF] Johnson | The core of FSE-CMA behavior theory[END_REF]. The constant value of the step-size parameter (or adaption coefficient) must be carefully selected to ensure a stable operation while balancing convergence rate and final accuracy (misadjustment or excess mean square error).

The stochastic gradient CMA drops the expectation operator and approximates the gradient of the criterion by a one-sample estimate, as in LMS-based algorithms. This rough approximation generally leads to slow convergence and poor misadjustment, even if the step size is carefully chosen. As opposed to recursive (or sample-by-sample) algorithms, block (or fixed-window) methods obtain a more precise gradient estimate from a batch of channel output samples, improving convergence speed and accuracy [START_REF] Regalia | A finite-interval constant modulus algorithm[END_REF]. Tracking capabilities are preserved as long as the channel remains stationary over the observation window. Moreover, sample-by-sample versions are easily obtained from block implementations by considering signal blocks of one data vector and iterating over consecutive received vectors. The block-gradient CMA (simply denoted as CMA hereafter) is particularly suited to burst-mode transmission systems. Unfortunately, the multimodal nature of the CM criterion sustains the negative impact of local extrema on block implementations. Asymptotically (for sufficient block size), the least-squares CMA (LSCMA) [START_REF] Agee | The least-squares CMA: a new technique for rapid correction of constant modulus signals[END_REF] guarantees global convergence to a cost function stationary point, for any initial weight setting, with a cost per iteration similar to CMA's. This is achieved at the expense of an increased computational overhead due to the calculation of the data matrix pseudoinverse or its QR factorization, needed to solve the LS step at each iteration. In the QR-CMA method of [START_REF] Regalia | A finite-interval constant modulus algorithm[END_REF], data prewhitening through the QR decomposition of the sensor-output matrix simplifies the block-CMA iteration, so that bounds on its step size can be found to ensure monotonic convergence. The recently proposed recursive least squares CMA (RLS-CMA) [START_REF] Chen | Recursive least squares constant modulus algorithm for blind adaptive array[END_REF], which operates on a sample-by-sample basis, also proves notably faster and more robust than the classical CMA.

The derivation of the RLS-CMA relies on an approximation to the CM cost function in stationary or slowly varying environments, where block implementations may actually prove more efficient in exploiting the available information (the received signal burst). Interestingly, the RLS-CMA turns out to be equivalent to the recursive CMA (RCMA), put forward over a decade earlier in [START_REF] Pickholtz | The recursive constant modulus algorithm: a new approach for real-time array processing[END_REF]; it also bears close resemblance to the orthogonalized CMA (O-CMA) of [START_REF] Gooch | The CM array: an adaptive beamformer for constant modulus signals[END_REF].

Analytical solutions to the minimization of the CM criterion are developed in [START_REF] Van Der Veen | An analytical constant modulus algorithm[END_REF], [START_REF] Doganc | Least squares approach to blind channel equalization[END_REF]. After solving a linearized LS problem, these methods require to recover the right structure of the solution space when multiple equalization solutions exist. In the general case, this can be achieved through a costly QZ matrix iteration. In addition, special modifications are required for input signals with a one-dimensional (i.e., binary) alphabet [START_REF] Van Der Veen | An analytical constant modulus algorithm[END_REF]- [START_REF] Van Der Veen | Analytical method for blind binary signal separation[END_REF]. More importantly, these analytic methods aim at exact solutions to the CM criterion, which may yield suboptimal equalizers in the presence of noise.

A judicious alternative to existing techniques consists of performing consecutive one-dimensional absolute minimizations of the CM cost function. This technique, known as exact line search, is generally considered computationally inefficient [START_REF] Press | Numerical Recipes in C. The Art of Scientific Computing[END_REF]. However, it was first observed in [START_REF] Comon | Blind equalization with discrete inputs in the presence of carrier residual[END_REF] that the value of the adaption coefficient that leads to the absolute minimum of most blind cost functions along a given search direction can be computed algebraically. It was conjectured that the use of this algebraic optimal step size could not only accelerate convergence but also avoid local extrema in some cases. The present Letter carries out a more detailed (yet concise) theoretical development and experimental evaluation of the optimal step-size CMA (OS-CMA) derived from this idea, which was briefly presented in [START_REF] Xu | A batch processing constant modulus algorithm[END_REF] under a different name.

II. CONSTANT MODULUS EQUALIZATION

Zero-mean data symbols {s n } are transmitted at a known baud-rate 1/T through a time dispersive channel with impulse response h(t). The channel is assumed linear and time-invariant (at least over the observation window), with a stable, causal and possibly non-minimum phase transfer function, and comprises the transmitter pulse-shaping and receiver front-end filters. The channel order is M baud periods. Assuming perfect synchronization and carrier-residual elimination, fractionally-spaced sampling by a factor of P yields the discrete-time channel output

x n = M k=0 h k s n-k + v n (1)
in which x n = [x(nT ), x(nT + T /P ), . . . , x(nT + T (P -1)/P )] T ∈ C P , x(t) denoting the continuous-time baseband received signal. Similar definitions hold for h k and the additive noise v n .

Eqn. ( 1) represents the so-called single-input multiple-output (SIMO) signal model, and reduces to the single-input single-output (SISO) model for P = 1. The SIMO model is also obtained if spatial diversity (e.g., an antenna array) is available at the receiver end, with or without time oversampling, and can easily be extended to the multiple-input (MIMO) case.

To recover the original data symbols from the received signal, a linear equalizer is employed with finite impulse response spanning

L baud periods f = [f T 1 , f T 2 , . . . , f T L ] T ∈ C D , D = P L, f l = [f l,1
, f l,2 , . . . , f l,P ] T ∈ C P , l = 1, . . . , L. This filter produces the output signal y n = f H xn , where

xn = [x T n , x T n-1 , . . . , x T n-L+1 ] T ∈ C D .
In these conditions, the channel effects can be represented by a block Toeplitz convolution matrix with dimensions D × (L + M ) [START_REF] Ding | On the (non)existence of undesirable equilibria of Godard blind equalizers[END_REF], [START_REF] Li | Global convergence of fractionally spaced Godard (CMA) adaptive equalizers[END_REF].

The equalizer vector can be blindly estimated by minimizing the CM cost function [START_REF] Godard | Self-recovering equalization and carrier tracking in two-dimensional data communication systems[END_REF], [START_REF] Treichler | A new approach to multipath correction of constant modulus signals[END_REF]:

J CM (f ) = E |y n | 2 -γ 2 (2) where γ = E{|s n | 4 }/E{|s n | 2 } is a constellation-dependent parameter.
The CMA is a gradient-descent iterative procedure to minimize the CM cost. Its update rule reads

f (k + 1) = f (k) -µg(k) (3) 
where

g def = ∇J CM (f ) = 4E (|y n | 2 -γ)y * n
xn } is the gradient vector at f , symbol µ represents the step-size parameter and k denotes the iteration number. In the sequel, we assume that a block of length N d baud periods x n is observed at the channel output, from which N = (N d -L + 1) received data vectors xn can be constructed.

To improve numerical conditioning in the determination of µ opt , gradient vector g should be normalized. This normalization does not cause any adverse effects since the relevant parameter in the optimal step-size technique is the search direction g = g/ g .

C. Computational Complexity

Table I summarizes the OS-CMA's computational cost in terms of the number of real-valued floating point operations or flops (a flop represents a multiplication followed by an addition; multiplies and divisions are counted as flops as well). Also shown is the cost for other CM-based algorithms such as the CMA, the LSCMA [START_REF] Agee | The least-squares CMA: a new technique for rapid correction of constant modulus signals[END_REF], the QR-CMA [START_REF] Regalia | A finite-interval constant modulus algorithm[END_REF] and the RLS-CMA [START_REF] Chen | Recursive least squares constant modulus algorithm for blind adaptive array[END_REF], [START_REF] Pickholtz | The recursive constant modulus algorithm: a new approach for real-time array processing[END_REF]. Complex-valued signals and filters are assumed; rough estimates of complexity for the real-valued signal scenario can be obtained by dividing the flop figures by 4. For typical values of (D, N ), the OS-CMA is more costly per iteration over the observed signal block than the other CM-based algorithms except the RLS-CMA.

The initial cost and the cost per iteration are of order O(D 4 N ) and O(D 4 ), respectively, with the second form of the OS-CMA polynomial [START_REF] Zarzoso | Optimal step-size constant modulus algorithm[END_REF], [START_REF]Blind channel equalization with algebraic optimal step size[END_REF].

IV. EXPERIMENTAL RESULTS

We evaluate and compare the equalization quality as a function of computational cost (performance vs. complexity trade-off) achieved by the CM-based methods considered in this Letter. Bursts of N d = 200 baud periods are observed at the output of a T /2-spaced channel (P = 2) excited by a QPSK source (γ = 1) and corrupted by complex circular additive white Gaussian noise with 20-dB SNR. For L = 2, these parameters result in an equalizer vector f composed of D = 4 taps. The channel impulse response coefficients are randomly drawn from a normalized complex Gaussian distribution. After a given number of iterations, performance is measured as the MSE between the equalizer output and the original channel input. Results are averaged over 1000 channel, source and noise realizations. For each plot in the figures, markers are placed at block iterations [START_REF] Godard | Self-recovering equalization and carrier tracking in two-dimensional data communication systems[END_REF][START_REF] Treichler | A new approach to multipath correction of constant modulus signals[END_REF][START_REF] Ding | On the (non)existence of undesirable equilibria of Godard blind equalizers[END_REF][START_REF] Johnson | The core of FSE-CMA behavior theory[END_REF][START_REF] Chen | Recursive least squares constant modulus algorithm for blind adaptive array[END_REF][START_REF] Press | Numerical Recipes in C. The Art of Scientific Computing[END_REF]24,41,69,118,200]. We set µ = 10 -3 for the conventional fixed step-size CMA (a value found empirically to provide fastest performance while trying to avoid divergence in our simulation set-up), and the typical forgetting factor λ = 0.99 and inverse covariance matrix initialized at the identity for the RLS-CMA [START_REF] Chen | Recursive least squares constant modulus algorithm for blind adaptive array[END_REF]. Double first-tap initializations are chosen for the equalizer vectors. Two scenarios are considered, depending on the linear invertibility of the channel matrix.

Scenario 1: linearly invertible channel.

A channel order M = 2 yields an equivalent (4×4) channel convolution matrix that can be perfectly inverted in the absence of noise, thus guaranteeing the global convergence of the fractionally-spaced CMA [START_REF] Li | Global convergence of fractionally spaced Godard (CMA) adaptive equalizers[END_REF]. Fig. 1(a Optimal step-size trajectory. The average evolution of the OS-CMA's optimal step size in the above experiments is represented in Fig. 2. Depending on the cost function shape (which is determined by the actual channel, source and noise realizations), the optimal step size may take negative values at a given iteration. This fact may explain the peaks observed in the curves. Nevertheless, the optimal step size shows a monotonically decreasing trend.

V. CONCLUSIONS

Global line minimization of the CM cost function can be carried out algebraically by finding the roots of a 3rd-degree polynomial with real coefficients. The resulting OS-CMA presents a performance versus complexity trade-off similar to the LSCMA [START_REF] Agee | The least-squares CMA: a new technique for rapid correction of constant modulus signals[END_REF], the QR-CMA [START_REF] Regalia | A finite-interval constant modulus algorithm[END_REF] and the RLS-CMA [START_REF] Chen | Recursive least squares constant modulus algorithm for blind adaptive array[END_REF], [START_REF] Pickholtz | The recursive constant modulus algorithm: a new approach for real-time array processing[END_REF], slightly improving on those methods when perfect equalization conditions are not met. Due to space constraints, the numerical study presented in this Letter is of rather limited scope, and thus needs to be completed with a more thorough theoretical and experimental analysis of the OS-CMA technique evaluating its performance against a variety of system parameters such as block size, SNR, equalizer length, channel conditioning, etc. Indeed, additional experimental results reported in [START_REF] Zarzoso | Optimal step-size constant modulus algorithm[END_REF], [START_REF]Blind channel equalization with algebraic optimal step size[END_REF] seem to point out that the optimal step-size strategy arises as a promising practical approach to improving the performance of blind equalizers in burst-mode transmission systems. The continuation of this work should also include the incorporation of the optimum step-size scheme in alternative blind and semi-blind criteria for equalization and beamforming. A first step in this direction has already been taken in [START_REF] Zarzoso | Semi-blind constant modulus equalization with optimal step size[END_REF], [23]. 

  Fig. 1(b), the OS-CMA's quality-cost trade-off is only surpassed by the RLS-CMA's for sufficient complexity. In both scenarios, results at the reported 20-dB SNR level are quite representative of the methods' relative performance under the same fixed complexity over a wider [0, 40]-dB SNR range.
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 12 Fig. 1. Performance vs. complexity trade-off of CM-based algorithms with QPSK source, signal bursts of N d = 200 symbols, equalizer length L = 2 baud periods, oversampling factor P = 2, SNR = 20 dB, 1000 Monte Carlo runs. (a) Linearly invertible (4 × 4) channel convolution matrix (channel order M = 2). (b) Lack of linear invertibility of the channel, with a (4 × 6) channel convolution matrix (channel order M = 4).

TABLE I COMPUTATIONAL

 I COST IN NUMBER OF REAL-VALUED FLOPS FOR SEVERAL CM-BASED ALGORITHMS. D: NUMBER OF TAPS IN EQUALIZER VECTOR; N : NUMBER OF DATA VECTORS IN OBSERVED SIGNAL BURST. THE BOTTOM HALF OF THE TABLE CORRESPONDS TO THE EXPERIMENTAL SET-UP OF SEC. IV AND FIGS. 1-2.

III. OPTIMAL STEP-SIZE CMA

A. Exact Line Search

Exact line search consists of finding the absolute minimum of the cost function along the line defined by the search direction (typically the gradient) [START_REF] Press | Numerical Recipes in C. The Art of Scientific Computing[END_REF]:

In general, exact line search algorithms are unattractive because of their relatively high complexity.

Even in the one-dimensional case, function minimization must usually be performed using costly numerical methods. However, as originally observed in [START_REF] Comon | Blind equalization with discrete inputs in the presence of carrier residual[END_REF] and later also remarked in [START_REF] Xu | A batch processing constant modulus algorithm[END_REF], the CM cost J CM (f -µg) is a polynomial in the step size µ. Consequently, it is possible to find the optimal step size µ opt in closed form among the roots of a polynomial in µ. Exact line minimization of function ( 2) can thus be performed at relatively low complexity.

B. Algebraic Optimal Step Size: the OS-CMA

In effect, some algebraic manipulations show that the derivative of J CM (f -µg) with respect to µ is the 3rd-degree polynomial with real-valued coefficients:

where

, and c n = (|y n | 2 -γ), with g n = g H xn . Alternatively, the coefficients of the OS-CMA polynomial can be obtained as a function of the sensor-output statistics, calculated before starting the iterative search. These two equivalent forms of the OS-CMA coefficients are derived in [START_REF] Zarzoso | Optimal step-size constant modulus algorithm[END_REF], [START_REF]Blind channel equalization with algebraic optimal step size[END_REF].

Having obtained its coefficients, the roots of 3rd-degree polynomial (5) can be extracted with any standard algebraic procedures such as Cardano's formula, or more efficient iterative methods [START_REF] Durand | Solutions numériques des équations algébriques[END_REF], [START_REF] Lanczos | Applied Analysis[END_REF]. 1 The optimal step size corresponds to the root attaining the lowest value of the cost function, thus accomplishing the global minimization of J CM in the gradient direction. When complex conjugate roots appear, the real root typically provides the lowest equalizer output mean square error (MSE).

Once µ opt has been determined, the filter taps are updated as in (3), and the process is repeated with the new filter and gradient vectors, until convergence. This algorithm is referred to as optimal step-size CMA (OS-CMA). 1 The MATLAB code of a general algorithm for extracting the roots of a 3rd-degree polynomial is given in [START_REF] Zarzoso | Optimal step-size constant modulus algorithm[END_REF] (see also [START_REF] Press | Numerical Recipes in C. The Art of Scientific Computing[END_REF]).