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Abstract—In this letter, we address the theoretical limitations
in estimating the mixing matrix in noisy sparse component anal-
ysis (SCA) for the two-sensor case. We obtain the Cramér–Rao
lower bound (CRLB) error estimation of the mixing matrix. Using
the Bernouli–Gaussian (BG) sparse distribution, and some simple
assumptions, an approximation of the Fisher information matrix
(FIM) is calculated. Moreover, this CRLB is compared to some of
the main methods of mixing matrix estimation in the literature.

Index Terms—Blind source separation, Cramér–Rao bound,
mixing matrix estimation, sparse component analysis.

I. INTRODUCTION

S PARSE component analysis (SCA) [1] is a semi-blind
source separation approach, in which the prior information

about the sources is their sparsity. A sparse signal is a signal
whose most samples are nearly zero (say they are “inactive”),
and just a few percent take significant values (say they are
“active”). This prior information enables us to separate sources
with less sensors than sources [2]–[8]. The mathematical model
of the instantaneous underdetermined blind source separation
(BSS) in the noisy case is

(1)

where is the mixing matrix, and and are the
observation and source vectors, respectively. In the underdeter-
mined case, the number of observations is less than the number
of sources . Therefore, estimating the mixing matrix is
not sufficient to recover the sources, since the mixing matrix is
not invertible. Therefore, underdetermined SCA consists of two
steps: first, estimating the mixing matrix and then estimating the
sparse sources. In this letter, we focus on the first step.

Several approaches have been proposed to address the mixing
matrix estimation in SCA in the underdetermined case. The po-
tential-function-based method is proposed in [2]. A similar ap-
proach is described in [9], using a histogram rather than a po-
tential function. In [10], the Laplacian mixture model (LMM) is
assumed for the distribution of in the case
of a two-sensor set up where and are the two observa-
tions. Then, an EM algorithm finds the ML estimation of the pa-
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rameters of this LMM. So, this method is called the EM-LMM
method. A geometrical approach was proposed in [11] for es-
timating the mixing matrix. Recently, [12] proposed a poten-
tial-function-based clustering method constructed by a Lapla-
cian-like window function.

In most of the previously mentioned approaches (namely,
[9]–[12]), the ratio of the two observations or the polar angle is
used for estimating the mixing matrix in the two-sensor case.
In this letter, we present a minimum error bound for estimating
the mixing matrix based on this ratio of observations. The
Cramér–Rao lower bound (CRLB), which is the inverse of
the Fisher information matrix (FIM), bounds the performance
of any unbiased parametric estimator in terms of the mean
square estimation error [18]. The CRLB is calculated in this
letter assuming a Bernoulli–Gaussian (BG) sparse distribution
for sources and assuming a high signal-to-noise ratio (SNR).
Moreover, it is assumed that the columns of the mixing matrix
are not too close to each other. In the context of BSS, in [13],
the asymptotic Cramér–Rao bound has been calculated in the
case of instantaneous mixture of nonstationary source signals
when the source distributions are known. In [14], the CRLB
for the estimation of the unmixing parameters has been eval-
uated for the case of Gaussian auto-regressive (AR) sources
in the determined case. Reference [15] derives a closed-form
expression for the Cramér–Rao bound in estimating the source
signals in the linear independent component analysis (ICA).
Moreover, [16] derives the Cramér–Rao-induced bound for
blind separation of stationary parametric Gaussian sources. All
of these papers calculate CRLB in the determined case of BSS,
but we calculate the CRLB in estimating the mixing matrix in
underdetermined SCA.

II. SYSTEM MODEL AND PRELIMINARIES

Consider the problem of estimating the mixing matrix in the
two-sensor case. We use the polar model

(2)
where and are the two sensor outputs, and and
are two independent Gaussian noises with variance . Using
this model, the estimation of the mixing matrix reduces to the
estimation of the parameter vector .

We assume a BG distribution to model the sparsity. This
model, which has also been used in [7] and [8], can model
the sparsity in a simple manner and has simple computational
properties. Therefore, the probability density function (PDF)
of the sources is assumed to be

(3)

where is the probability of inactivity of the sources and is
near one (by the sparsity assumption), and is the variance of
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the active samples of the th sources. We also define the source
activity vector as an -tuple vector ,
where the th component shows the activity of the th source

if is active
if is inactive.

As stated in the introduction, in most algorithms of mixing
matrix estimation in the two-dimensional space, and for sparse
sources, the ratio of the two observations is used for the esti-
mation. The ratio is equal to when only one source (the
th source) is active and the noise terms are negligible. There-

fore, in this work, we deduce the CRLB from the ratio of the
observations . Using the total probability theorem,
the likelihood can be written as

(4)

where is the probability of , in which
is the number of active sources, and the summation is taken

over the possible values for the source activity vector. Since
, the terms with can be neglected. Therefore,

the sparse approximation of the distribution is

(5)

where is the hypothesis that all sources are inactive (all
sources are zero) and is the hypothesis that only the th
source is active (all other sources are zero). These hypotheses
can be written as

In both hypotheses, the variable is obtained from division of
the two normal random variables. It is well known that the quo-
tient of two jointly normal random variables is a
Cauchy random variable with the following distribution [17]:

(6)

where the two Caushy parameters are
and , in which and are the variance of
and , and is their correlation coefficient. Therefore, each
of the probability distributions , is a
Cauchy distribution. So, is a mixture of Cauchy (MoC)
distributions. Simple computations show that the parameters of
these Cauchy distributions assuming are

(7)

where . In the computation of , we have neglected
the term in comparison with . In other words,
the case of high SNR is assumed. For hypothesis , we have

and . In this case, the ratio of observations has
a Cauchy distribution around zero. In this case, it is well known
[17] that , the polar phase, has a uniform distribution
in . So, there are no informative points in the
scatter plot. This provides a mathematical argument to methods
such as [3] and [10], which throw away the observation points

near the origin. Finally, using the above discussions, the proba-
bility density (5) is

(8)

where for and for .

III. CRAMÉR–RAO LOWER BOUND

The CRLB of a vector of parameters estimated from data
is the inverse of the FIM and bounds the performance of any

unbiased estimator. The FIM is [18]

(9)

Then, the covariance of the estimated parameters are bounded
as1

(10)

In our case, we want to compute the FIM from the observation
ratio . Therefore, the elements of the FIM should be
calculated as

(11)

To compute , we use (7) and (8). After some
straightforward manipulations,2 this term can be written as

(12)

where .
To compute from (11), the expectation is replaced with an

integral on the pdf . So, we have

(13)

Therefore, we must multiply the expressions in (12) by a similar
expression and by the likelihood and then integrate them
with respect to . This is equivalent to compute the sum of the
four integrals due to each of the multiplication terms.

Now, to obtain an approximate closed-form relation for (13),
we assume that any pair of Cauchy distributions,
and , , whose densities are proportional to

and , are far from
each other. In other words, the angles are assumed to be far
from each other, and hence, the centers of these Caushy distri-
butions, which are approximately to are far from
each other.3 Moreover, the parameter , which determines
the width of the Cauchy distribution, is assumed to be small
enough compared to the distance between the centers of the

1where� � � means that ����� is positive semidefinite.
2By neglecting the terms of orders higher than 2 in �� �� � .
3This can be seen by assuming � ��� � � � in (7), which is approxi-

mately equivalent to ��� � � � �� . It also means that we assume that there
is no angle near ��	. However, this restriction is only due to the parametriza-
tion. For example, if there is any angle there, you can rotate the angles by a
proper angle to solve the problem.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 8, 2008 at 11:04 from IEEE Xplore.  Restrictions apply.



ZAYYANI et al.: CRAMÉR–RAO BOUND FOR ESTIMATING THE MIXING MATRIX 611

Fig. 1. Typical display of two Cauchy distribution. The parameters are � �
��������	, � � �������
	, � � ��, � � � for � � �, 2 and � � ��

Cauchy distributions.4 A typical figure of these two Cauchy
distributions is depicted in Fig. 1. Therefore, in the case of

, the four terms of the integrand of the integral (13) are
small enough, and so the nondiagonal elements of the FIM
are approximately zero. This theoretical result will also be
experimentally verified in Section IV.

To compute the diagonal elements, , among the four pre-
viously mentioned terms, the two cross terms are odd functions
around , and so these two integrals have zero values. There-
fore, we only should compute the two following integrals:

(14)

(15)

Now, we use the approximation
around , . It means that the mixture

of Cauchy distributions is approximately equal to one of the
Cauchy distributions around . Using this approximation and
some manipulations and computations of the above integrals,
we finally obtain

(16)

where . After simplifica-
tions, the value of the integral will be computed. In summary,
the FIM is a diagonal matrix , and hence, the
CRLB matrix is easily found by inverting the diagonal elements,
CRB . Therefore, (10) gives the lower bound on

4It is equivalent to � � � �� ��� ��� � 	� � ��� � � ��� � �. Some
manipulations result in � ������ 	� � �� ��� � � ��� � �	� �� , where
�� � � � � .

Fig. 2. Typical scatter plot of observation points. The angle parameter vector
is ��� � ������		 �����		 ����		 ����	� , and other parameters are � � ��,
� � � for all � and � � ���.

the error estimation of any angle of the mixing matrix. This
lower bound using samples of will be [18]

(17)

where is a measure of the SNR of the th source

and . The above Cramér–Rao bound shows
that the estimation error increases when the absolute value of

increases. In fact, if the SNR is high and the angles are
not near , we can neglect small terms in (17) and obtain a
simple formula for CRLB equal to . Note that
the assumption of avoiding angles near is only due to the
parametrization. Moreover, (17) shows that in the higher SNRs,
the CRLB becomes smaller.

IV. SIMULATION RESULTS

In this section, the performance of a few methods of mixing
matrix estimation is compared to the calculated CRLB. In this
simulation, we chose the mixing matrix as in (2) with parameter
vector . Therefore, we
have sources and observations. The sparse sources
are generated artificially using the model (3), with parameters

, for all and . The scatter plot of the
observation points are shown in Fig. 2.

To verify the approximations assumed in obtaining the
closed-form CRLB in (17), we compute all the entries (13) of
the FIM by numerical integration, which results in

while the diagonal approximation derived from (16) gives
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Fig. 3. MSE of the first mixing matrix angle � � ������ versus
common SNR of all sources for various methods and their compar-
ison with new calculated CRLB. The angle parameter vector is ��� �
�������� ������� ������ ������ , and other parameters are � � �	,
� � 
 for all �.

which is close to the actual matrix.
The results of four different methods of mixing matrix es-

timation are now compared with each other and also with the
CRLB(17). These four methods are potential-based clustering
[3], histogram method [9], Laplacian-window potential-func-
tion-based clustering [12], and EM-LMM method [2]. In po-
tential-based clustering [10], the parameters are chosen as

(adjusting the angular width), (number of
angle bins), and (the threshold) [2], where is the
total number of observations and is equal to 1000 in our simu-
lations.

To evaluate and compare the accuracy of the algorithms in
estimating the mixing matrix, we define the mean-square error
(MSE) of the th mixing matrix angle as

(18)

The simulations are then repeated 100 times with new random
sparse sources and the MSEs were averaged over all experi-
ments. For the EM-LMM method, because of its iterative nature
and its sensitivity to the initialization, it may not converge to the
true mixing matrix angle. Therefore, to investigate the success
of this algorithm, the resulting errors were averaged only over
the successful experiments, where by a successful experiment,
we mean an experiment in which . Fig. 3 shows
the results of simulation for the first angle of the mixing matrix

. The results show a minimum of 4-dB gap in
MSE for the CRLB and the various methods. This shows that
there could be better methods for estimating the mixing matrix
especially in the two-sensor case.

V. CONCLUSIONS

In this letter, the CRLB on the estimation error of the mixing
matrix in the two-sensor case are computed for the ratio of the

observations. To do that, a few assumptions and approximations
were made which seem reasonable in a typical application. This
lower bound shows the theoretical dependence of the error vari-
ance of the estimated mixing matrix on the model parameters
which is basically the sparsity parameters, noise power, and the
number of samples of the observations. This CRLB is compared
to the performance of some of the previous methods, showing a
gap between the previous methods and this CRLB. Further in-
vestigations include a parametrization which provides angle-in-
variant bound and computation of CRLB for higher (than 2) di-
mension source separation problem.
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