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Introduction

Context

Increasingly stringent standards are being imposed to reduce fuel consumption and pollutant emissions for Spark Ignition (SI) engines. Modern automobile engines must therefore satisfy the challenging, and often conflicting, goals of minimizing pollutant emissions and fuel consumption while satisfying driving performance over a wide range of operating conditions. To achieve these goals, downsizing appears as a major way for reducing fuel consumption while maintaining the advantage of low emission capability of three-way catalytic systems and combining several well known technologies [START_REF] Lecointe | Downsizing a Gasoline Engine Using Turbocharging with Direct Injection[END_REF]. Downsizing is the use of a smaller capacity engine operating at higher specific engine loads, i.e. at better efficiency points. In order to feed the engine, turbocharging seems to be the best solution. Unfortunately, the turbocharger inertia involves long torque transient responses [START_REF] Lecointe | Downsizing a Gasoline Engine Using Turbocharging with Direct Injection[END_REF][START_REF] Frei | Improved dynamic performance of turbocharged SI engine power trains using clutch actuation[END_REF]. This problem can be partially solved by combining turbocharging and Variable Camshaft Timing (VCT) which allows air scavenging from the intake to the exhaust. Moreover, VCT decreases pollutants emission, especially nitrogen oxides (N O x ).

System description

The air intake of a turbocharged SI Engine with VCT, represented in Fig. 1, can be described as follows. The compressor (pressure p int ) produces a flow from the ambient air (pressure p amb and temperature T amb ). This air flow Q th is adjusted by the intake throttle (section S th ) and enters the intake manifold (pressure p man and temperature T man ). The flow entering the cylinders Q cyl passes through the intake valves, whose timing is controlled by the intake Variable Camshaft Timing V CT in actuator. After combustion, the gases are expelled into the exhaust manifold through the exhaust valve, controlled by the exhaust Variable Camshaft Timing V CT exh actuator. The exhaust flow is split in two parts: the turbine and wastegate flows. The turbine flow powers up the turbine and drives the compressor through a shaft. Thus, the supercharged pressure p int is adjusted by the turbine flow which is controlled by the wastegate W G. The effects of VCT are twofold. Firstly, acting on cam timing can inhibit the production of nitrogen oxides (N O x ) since combustion products which would otherwise be expelled during the exhaust stroke are retained in the cylinder during the subsequent intake stroke. This dilution of the mixture in It is therefore important to control the back-flow of burned gases in the cylinder. Secondly, with camshaft timing, air scavenging can occur, that is air passing directly from the intake to the exhaust through the cylinder. For this to happen, the intake manifold pressure must be greater than the exhaust pressure when the exhaust and intake valves are opened together. Even if air scavenging impacts the air fuel ratio, it is advantageous because it improves the engine torque dynamic behavior, i.e. decreases the settling times. The flow which passes through the turbine is increased and the corresponding energy is transmitted to the compressor. Therefore, in transient, it is very important to control this scavenging.

Control and observation structure

For an SI engine, the torque is directly linked to the air mass trapped in the cylinder m air for a given engine speed N e . For this reason, an efficient control of this air mass is required to obtain the desired torque. As the engine must pollute as little as possible, it is also necessary to control the recirculated gas mass in the cylinder RGM , which renders both air scavenging and burned gas back-flow and influences pollutant emissions and combustion stability. The work presented here is based on the control structure of the airpath described in Fig. 2. From set points given by a supervisor, this structure makes it possible to control the two air variables m air and RGM and manipulates the four air actuators, the throttle section S th , the wastegate W G and the intake V CT in and exhaust V CT exh twin independent Variable Camshaft Timing actuators. The control algorithms are detailed in [START_REF] Colin | Neural Control of Fast Nonlinear Systems -Application to a Turbocharged SI Engine with VCT[END_REF] and combine separate, but coordinated, modules based on different control strategies: Internal Model Control (IMC), Model Predictive Control (MPC), and optimal control. This paper details the air mass observation part, which is used both for control and determination of optimal set points, and focuses on two non-linear estimators of the air variables: recirculated gas mass RGM (section 2) and in-cylinder air mass m air (section 3). Because these variables are not directly measured, data provided by a complex but accurate high frequency engine simulator (Le [START_REF] Berr | Modelling of a Turbocharged SI Engine with Variable Camshaft Timing for Engine Control Purposes[END_REF] are used to build the corresponding models. The recirculated gas mass RGM estimator is a neural model entirely obtained from the simulated data. The in-cylinder air mass m air estimator combines feedforward neural static models and a polytopic observer built from the Linear Parameter Varying model of the intake manifold. In the last part (section 4), a static test on an engine test bench demonstrates the possible improvement of the engine supervisor. Indeed, by using the observer based control structure, optimal set points in terms of fuel consumption and pollutant emissions can be determined.

The simulated data used to build the models are divided in two sets. The first one is used to estimate the model parameters and is called training data in the sequel. These data are representative of all engine operating points (engine speed, manifold pressure and variable cam timing). The second one, called validation data, is used to determine the optimal internal structure of the models, but also to evaluate their performances when no additional information is available. Finally, test data are also available for the in-cylinder air mass, obtained from the measured air flow through the throttle Q th . However, these rather sparse test bench data are not fully representative (do not contain all the engine operating points in terms of variable cam timing) and are valid only in steady state. They are only used, therefore, to evaluate the final performances of the observers in which the models are included. The test engine is a 1.8 liter turbocharged 4 cylinder engine with Variable Camshaft Timing.

Recirculated Gas Mass model

Because scavenging and burned gas back-flow correspond to associated flow phenomena, only one variable, the Recirculated Gas Mass (RGM ), is defined:

RGM = m bg if m bg > m sc -m sc else, (1) 
where m bg is the in-cylinder burned gas mass and m sc is the scavenged air mass (positive value). As RGM represents only the most important phenomenon (air scavenging or burned gases), a tiny discontinuity between burned gas back flow m bg and air scavenging m sc can appear. Note that, when there is scavenging from the intake to the exhaust, the burned gases are insignificant. Fig. 3 shows the simulated behavior of the Recirculated Gas Mass RGM w.r.t. the VCT actuators for an operating point, i.e. at a fixed engine speed (N e =2000 rpm) and a fixed manifold pressure (p man =140 kPa). Studying this variable is complex because it cannot be measured on-line.

Consequently, a static model was built from data provided by the engine simulator. As a parsimonious and flexible universal approximator, the perceptron with one hidden layer and with a linear output unit was chosen for this model. For a single output, the output f nn of such a model is given by:

f nn = n k=1 w 2 k g p j=1 w 1 kj ϕ j + b 1 k + b 2 , (2) 
where the ϕ j are the p regressors, the w 1 kj , b 1 k are the parameters of the n hidden neurons, the activation function g is the hyperbolic tangent, and the w 2 k , b 2 are the weights and bias of the output neuron. The choice of regressors is based on physical considerations and the estimated Recirculated Gas Mass RGM is given by:

RGM = f nn (p man , N e , V CT in , V CT exh ), (3) 
where p man is the intake manifold pressure, N e the engine speed, V CT in the intake camshaft timing, and V CT exh the exhaust camshaft timing. Training was performed by minimizing the mean squared error, with the Levenberg-Marquardt algorithm. In order to determine the optimal internal structure of the model, two criteria, the Bayesian Information Criterion (BIC) and the Final Prediction Error (FPE) criterion, are examined from the validation data, when varying the number n of hidden neurons [START_REF] Nelles | Nonlinear System Identification[END_REF]. The optimal number of hidden neurons corresponds to the minimum of the criteria and is found to be equal to 12. Fig. 4 shows the recirculated gas mass estimation and its absolute error on the validation data. The neural model gives satisfactory results with a Root Mean Squared Error (RMSE) of about 4.8 mg and a mean absolute error of 9.6%.

Neural model Simulator

Air mass observer

Extensive research has been carried out on in-cylinder air mass observation, especially for air-fuel ratio (AFR) control. For air mass flow observation in a Port Fuel Injection (PFI) SI engine, [START_REF] Hendricks | Nonlinear, Closed Loop, SI Engine Control Observers[END_REF] and [START_REF] Chang | Engine Air-Fuel Ratio Control Using an Event-Based Observer[END_REF] use an Extended Kalman Filter and [START_REF] Corde | Air mass flow rate observer applied to SI AFR control[END_REF] use a flow Luenberger observer. [START_REF] Chevalier | Predicting the Port Air Mass Flow of SI Engines in Air/Fuel Ratio Control Applications[END_REF] predict the port air mass flow of SI engines in AFR control, with experimental results. [START_REF] Hendricks | Isothermal vs. Adiabatic Mean Value SI Engine Models[END_REF] compares adiabatic and isothermal mean value engine models, and shows that for SI engines with Exhaust Gas Recirculation (EGR), adiabatic models are necessary. [START_REF] Hendricks | Model and observer based control of internal combustion engines[END_REF] make a critical review of existing air mass observers. [START_REF] Stotsky | Application of input estimation techniques to charge estimation and control in automotive engines[END_REF] use an "input observer" to determine the engine cylinder flow, which is extended in [START_REF] Stotsky | Composite adaptive and input observer-based approches to the cylinder flow estimation in spark ignition automotive engines[END_REF] with a composite adaptation. Finally, [START_REF] Andersson | Mean-Value Observer for a Turbocharged SI-Engine[END_REF] use a Kalman filter to reconstruct the air mass for a turbocharged SI engine. A novel observer for the in-cylinder air mass m air is presented below. Unlike the preceding references, it takes into account a non-measured phenomenon (scavenging), and can thus be applied with advanced engine technology (turbocharged VCT engine). Moreover, its on-line computational load is low. As presented in Fig. 5 estimators of RGM (section 2) and m air OL (section 3.1), and a closed loop dynamic polytopic observer, described in section 3.2, which dynamically com-pensates for the residual error ∆Q cyl committed by one of the estimators, with a principle close to [START_REF] Andersson | Intake Air Dynamics on a Turbocharged SI-Engine with Wastegate[END_REF].

Open loop air mass estimator

The open loop (feedforward) model of the in-cylinder air mass m air OL is based on the volumetric efficiency equation:

m air OL = η vol p amb V cyl rT man , (4) 
where T man is the manifold temperature, p amb the ambient pressure, V cyl the displacement volume, r the ideal gas constant, and where the volumetric efficiency η vol is described by the static non-linear function f :

η vol = f (p man , N e , V CT in , V CT exh ). ( 5 
)
The rest of this subsection is devoted to the approximation of the volumetric efficiency (5) by polynomial or neural models, and to the choice of the model finally selected. In [START_REF] De Nicolao | Modelling the volumetric efficiency of IC engines: parametric, non-parametric and neural techniques[END_REF], various black box models, such as polynomial, spline, MLP and RBFN models, are compared for the static prediction of the volumetric efficiency.

Polynomial model linear in manifold pressure. [START_REF] Jankovic | Variable Cam Timing : Consequences to Automotive Engine Control Design[END_REF] proposed the model, linear in manifold pressure, where f 1 and f 2 are 4 th order polynomials:

η vol = f 1 (N e , V CT in , V CT exh )p man + f 2 (N e , V CT in , V CT exh ). (6) 
This model involves 69 parameters, but this number can be reduced to 43 by stepwise regression [START_REF] Draper | Applied Regression Analysis[END_REF].

Polynomial model. The volumetric efficiency can be also represented by a 4 th order polynomial model:

η vol = f 3 (p man , N e , V CT in , V CT exh ). ( 7 
)
The complete model involves 70 parameters, and the reduced model obtained by stepwise regression 58 parameters.

Neural model. The volumetric efficiency (5) estimated by a neural model ( 2) is written as:

η vol = f nn (p man , N e , V CT in , V CT exh ). ( 8 
)
As in section 2, training was performed by minimizing the mean squared error, with the Levenberg-Marquardt algorithm. Moreover, the Bayesian Information Criterion (BIC) and the Final Prediction Error (FPE) criterion are examined from the validation data when varying the number n of hidden neurons. The optimal number, 6, corresponds to the minimum of the criteria as shown in Fig. 6, giving 37 parameters for the neural model. For 
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Figure 7: Air mass comparison between neural model, simulator and test bench data for static operating points: air mass (up, in mg) and its error (down, in mg) normalized between 0 and 1, the neural model errors mainly follow the simulator errors, because the neural model has been trained on the simulation data.

Comparison of the models. Table 1 compares the Root Mean Squared Error (RMSE) for m air OL of the presented models: the polynomial model linear in manifold pressure (6) proposed by [START_REF] Jankovic | Variable Cam Timing : Consequences to Automotive Engine Control Design[END_REF], complete with 69 parameters, then reduced to 43 parameters; the polynomial model (7), complete with 70 parameters then reduced to 58 parameters; the neural model ( 8) with 6 hidden neurons and 37 parameters. The behavior of these models is similar, and the most important errors are committed at the same operating points. In the following, the neural model, involving fewer 

Air mass observer 3.2.1. Principle

The air mass observer is based on the flow balance in the intake manifold. As shown in Fig. 8, a flow Q th enters the manifold and two flows leave it: the flow that is captured in the cylinder Q cyl and the flow scavenged from the intake to the exhaust Q sc . As introduced in Fig. 5, the flow balance in the manifold can thus be written:

ṗman (t) = rT man (t) V man (Q th (t) -Q cyl (t) -∆Q cyl (t) -Q sc (t)) , (9) 
where, for the intake manifold, p man is the pressure to be estimated (in Pa), T man the temperature (K), V man the volume (m 3 ), assumed to be constant, and r is the ideal gas constant. Q th (t) is measured by an air flow meter (kg/s). Q sc (t) (kg/s) can be obtained by differentiating the Recirculated Gas Mass RGM (3): Finally, in (9), ∆Q cyl (t) is the error made by the model ( 11), which has to be dynamically compensated.

Qsc (t) = min(-RGM (t), 0)/t tdc (t), ( 10 
)
p man p int Q th Q Q cyl Q sc
To this end, considering slow variations of ∆Q cyl (t), i.e. ∆Q cyl (t) = 0, the following state space representation can be written:

Ẋ(t) = A X(t) + B U (t) y(t) = C X(t) (12) 
with:

X(t) = p man (t) ∆Q cyl (t) , U (t) =   Q th (t) Q cyl (t) Q sc (t)   , y(t) = p man (t), (13) 
and, noting a(t) = -rTman(t) Vman , with:

A = 0 a(t) 0 0 , B = -a(t) a(t) a(t) 0 0 0 , C = 1 0 . ( 14 
)
Note that system (12), with ( 14), is Linear Parameter Varying (LPV), because the matrices A and B depend linearly on the (measured) parameter a(t). Next, this system is discretized at each top dead center (TDC) to give:

X k+1 = A d X k + B d U k y k = C X k ( 15 
)
where:

A d = t tdc A + I = 1 ρ k 0 1 , B d = t tdc B = -ρ k ρ k ρ k 0 0 0 , ( 16 
)
with ρ k = -r Tman(k) Vman t tdc (k), where t tdc (k) = 2×60 Ne(k) n cyl is the variable sampling period between two intake TDC. In turn, ρ k is a time varying parameter, which depends now on the manifold temperature T man (k) and engine speed N e (k), and the discrete time system (15), with

A d = A d (ρ k ), is still a LPV system.
The state reconstruction for system (15) can be achieved by resorting to a so-called polytopic observer with a constant gain K, of the form:

Xk+1 = A d (ρ k ) Xk + B d (ρ k )U k + K(y k -ŷk ) ŷk = C Xk (17)
Some details on the design of polytopic observers, for the general case where the time varying parameter ρ k is a vector, are presented below. If ρ k is bounded, it evolves in a compact set and thereby can always be included in a convex polytope D ρ . Hence, ρ k admits a polytopic decomposition, expressed as:

ρ k = N i=1 ξ (i) k θ i , (18) 
where the vector ξ k belongs to the convex set

S = {µ k ∈ R N , µ k = [µ (1) k . . . µ (N ) k ] T , µ (i) k ≥ 0 ∀i, N i=1 µ (i) k = 1}.
The constant vectors θ i , . . . , θ N are the N vertices of the convex polytope D ρ . Since A d depends linearly on ρ k , it is shown in [START_REF] Millérioux | Considering the attractor structure of chaotic maps for observer-based synchronization problems[END_REF] that A d (ρ k ) can always be decomposed in a polytopic form as:

A d (ρ k ) = N i=1 ξ (i) k A (i) d . (19) 
The vector ξ k coincides with the one involved in (18). The constant matrices A 15), ( 17) and ( 19), is thus governed by:

k+1 = A d (ρ k ) -KC k = N i=1 ξ (i) k (A (i) d -KC) k . ( 20 
)
The dynamics of the state reconstruction is time-varying since A d depends on ρ k . Thus, ( 20) is an LPV system. The conditions of global convergence toward zero of the state reconstruction are ensured from the following theorem [START_REF] Millérioux | Bounded state reconstruction error for LPV systems with estimated parameters[END_REF].

Theorem 1. Global convergence of ( 20) is achieved whenever the following set of Linear Matrix Inequalities

P i A (i)T d G T -C T F T GA (i) d -F C G + G T -P j > 0 (21) 
is feasible for all (i, j) ∈ {1, . . . , N } × {1, . . . , N }.

Matrix G, matrix F and matrices P i 's are unknown. The gain K is given by:

K = G -1 F. (22) 
It can be shown that (21) ensures the existence of a so-called poly-quadratic Lyapunov function V : R n → R + , defined by

V ( k ) = T k P k k , with P k = N i=1 ξ (i) k P i , ξ k ∈ S, fulfilling V ( k+1 ) -V ( k ) < 0. ( 23 
)
The existence of such a Lyapunov function guarantees the polyquadratic stability of the state reconstruction error [START_REF] Daafouz | Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties[END_REF].

In the case of system (15), the time varying parameter ρ k is scalar, and the polytopic decomposition reduces to elementary computations. Indeed, ρ k evolves between a minimum value ρ min and a maximum value ρ max . The convex polytope D ρ has N = 2 vertices, θ (1) = ρ min and θ (2) = ρ max . Thus, (18) turns into ρ k = ξ

(1)

k ρ min + ξ (2) k ρ max . Since N i=1 ξ (i) k = 1, ρ k = ξ (1) k ρ min + (1 -ξ (1)
k )ρ max . And ( 19) is reduced to:

A d (ρ k ) = ξ (1) k A (1) d + (1 -ξ (1) k )A (2) d , (24) with: 
A

(1)

d = 1 ρ min 0 1 , A (2) 
d = 1 ρ max 0 1 . ( 25 
)
ρ min = -401.44 corresponds to an engine speed of N e = 50 rpm and a manifold temperature of T man = 373 K, and ρ max = -2.0897 to N e = 6000 rpm and T man = 233 K. The software Yalmip, available free of charge at http://control.ee.ethz.ch/∼joloef/yalmip.php, solves the LMI ( 21), with N = 2 and the matrices A

(1) d and A

(2) d of ( 25). It turns out that these LMI are feasible. From the resulting matrices G and F , the constant gain K is computed by ( 22), giving K = (1.3217 -0.0022).

The state ∆Q cyl is then integrated (i.e. multiplied by t tdc ) to give the air mass bias ∆m air : ∆m air = t tdc ∆Q cyl .

Finally, the in-cylinder air mass can be estimated by correcting the open loop estimator (4) with this bias: mair cyl = m air OL + ∆m air .

(27)

Results

Some experimental results obtained on the 1.8 liter turbocharged 4 cylinder engine with VCT are given in Fig. 9 and 10. Fig. 9 shows an example of the good dynamic reconstruction of the manifold pressure p man by the first state of the observer (17).

Fig. 10 illustrates the observer of the in-cylinder air mass, normalized between 0 and 1. A measurement of this mass, only valid in steady state, can be obtained by integrating, i.e. multiplying by t tdc , the flow that passes through the throttle Q th . In steady state with no scavenging, the air flow that enters the cylinder Q cyl is equal to Q th (see Fig. 8). Fig. 10 the open loop neural estimator (4), with (8) and the polytopic observer (17) based on model ( 9) with Q cyl given by ( 11) from (4), with (8), and Q sc given by (10) using (3). For steps of air flow, the open loop neural estimator tracks very quickly the measurement changes, but a small steady state error can be observed (see for example between 32 s and 34 s). Conversely, the closed loop observer which does not take this feedforward estimator into account involves a long transient error while guaranteeing convergence in steady state. Finally, the proposed estimator including feedforward static estimators and polytopic observer combines both advantages: very fast tracking, and no steady state error. 

Set point optimization

The two non-linear estimators of the recirculated gas mass (section 2) and of the air mass trapped in the cylinder (section 3) have now been validated. The control scheme (Fig. 2) based on these estimators can control the incylinder air mass for different recirculated gas mass values (by manipulating the cam timing). Thus, tests can be performed in order to optimize the set points provided by the supervisor level to the control. An example of preliminary static results obtained on the test bench is shown in Figs. 11 and12. The test consists in increasing the residual burned gas fraction with a constant in-cylinder air mass and observing the pollutant emissions, fuel consumption, and exhaust temperature. The increase in the in-cylinder burned gas fraction (and thus in the manifold pressure) is achieved by acting on valve overlapping. This test was carried out at 1000 rpm with a fixed Air-Fuel Ratio (1 at the lambda sensor, i.e. at stoechimetry).

In the figures, the operating point number 2 corresponding to 26.5% of residual gas rate was chosen initially by an engine bench operator as the best compromise. The operating point number 5 with 38% of residual gas rate involves unstable combustion and must be rejected. The point number 4 with 35% of residual gas rate is the one producing the maximum torque (IM EP ), by reducing pumping losses, without unstable combustion (see Fig. 11). A margin on residual gases set point can be added for stable combustion. This point corresponds to minimum fuel consumption (BSF C) (see Fig. pollutant emissions (N O x , CO and HC) (see Fig. 12). Moreover, it involves a maximum exhaust temperature that is useful for catalyst heating. This point therefore seems to be the best option. That calls into question the initial choice of the point corresponding to 26.5% of residual gas rate given by a static map of the "reference" points.

Conclusion

The inclusion of neural models in several estimators for automotive engines has been presented. These neural models permit extending two-dimensional static maps by taking into account, for example, the variable valve timing for the volumetric efficiency. The intrinsic bias of the open loop model is corrected by a polytopic observer built from the Linear Parameter Varying model of the system. The proposed approach has been tested on a non-linear fast coupled system, the air intake control of a turbocharged SI engine with VCT, with the aim of downsizing. The proposed observers, included in the air actuators control scheme, permit to make tests with a constant in-cylinder air mass while increasing in-cylinder burned gases. These static tests show that new possibilities are offered in order to decrease pollutant emissions and optimize engine efficiency. Further research will thus deal with the complete supervisor synthesis.
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 1 Figure 1: Airpath of a Turbocharged SI Engine with VCT
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 3 Figure 3: Recirculated Gas Mass (mg) at constant engine speed and manifold pressure
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 4 Figure 4: RGM model (up, in mg) and its absolute errors (down, in mg) on validation data
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 5 Figure 5: Air mass observer scheme
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 6 Figure 6: Bayesian Information Criterion (BIC, up) and Final Prediction Error criterion (FPE, down) w.r.t. the number of hidden neurons on the validation data for the volumetric efficiency neural model
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 8 Figure 8: Separation of the fresh air flows from the manifold
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 9 Figure 9: Manifold pressure measurement p man and estimation pman (up, in Pa) and the estimation error (down, in Pa) vs. time (s) on the engine test bench

Figure 10 :

 10 Figure 10: Air mass observer results vs. time (s) on the engine test bench: air mass obtained from the measurement of Q th (blue dash dot), open loop neural estimator (red dash), observer without neural estimators (green dot), observer including neural models (light blue solid)
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 11 Figure 11: Variation of Brake Specific Fuel Consumption (BSF C, %, blue dashed line) and Indicated Mean Effective Pressure (IM EP , %, red solid line) w.r.t. residual gas fraction (%)
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 12 Figure 12: Pollutant emissions (%) : N O x (black dash-dotted line), HC (blue dashed line), CO (red solid line) w.r.t. residual gas fraction (%)

Table 1 :

 1 Static models comparison: RMSE for m air OL (mg) the smallest RMSE for validation and test data, is chosen as the static model of the volumetric efficiency. The results illustrate the parsimony of neural models.

		Test	Valid. Learning	
	Models	(bench) (simu.) (simu.) # coef.
	Jankovic	30.67	15.66	15.73	69
	(complete)				
	Jankovic	30.84	15.49	15.86	43
	(reduced)				
	Polynomial	28.87	9.88	9.6	70
	(complete)				
	Polynomial	28.79	9.92	9.61	58
	(reduced)				
	Neural	28.49	9.36	10.39	37
	model				
	parameters and yielding				
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