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Abstract

Nowadays, downsizing is a major way to reduce fuel consumption and pol-
lutant emissions of Spark Ignition (SI) engines. In downsized engines, new
air path management systems such as turbocharging or Variable Camshaft
Timing (VCT) are including, and an efficient control of the air actuators is
required for engine torque control. Two non-linear estimators are proposed
to estimate non-measured variables of the air path. The first one is an in-
cylinder air mass observer that combines feedforward neural static models
and a Linear Parameter Varying (LPV) polytopic observer. The second one
is a neural estimator of the burned gas and the air scavenged masses. Test
bench results on a turbocharged SI engine with VCT show the real time
applicability and good performance of the proposed estimators. Finally, a
strategy for developing the engine supervisor is presented.
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1. Introduction

1.1. Context

Increasingly stringent standards are being imposed to reduce fuel con-
sumption and pollutant emissions for Spark Ignition (SI) engines. Modern
automobile engines must therefore satisfy the challenging, and often con-
flicting, goals of minimizing pollutant emissions and fuel consumption while
satisfying driving performance over a wide range of operating conditions.
To achieve these goals, downsizing appears as a major way for reducing fuel
consumption while maintaining the advantage of low emission capability of
three-way catalytic systems and combining several well known technologies
(Lecointe and Monnier, 2003). Downsizing is the use of a smaller capacity en-
gine operating at higher specific engine loads, i.e. at better efficiency points.
In order to feed the engine, turbocharging seems to be the best solution. Un-
fortunately, the turbocharger inertia involves long torque transient responses
(Lecointe and Monnier, 2003; Frei et al., 2006). This problem can be partially
solved by combining turbocharging and Variable Camshaft Timing (VCT)
which allows air scavenging from the intake to the exhaust. Moreover, VCT
decreases pollutants emission, especially nitrogen oxides (NOx).

1.2. System description

The air intake of a turbocharged SI Engine with VCT, represented in Fig.
1, can be described as follows. The compressor (pressure pint) produces a flow
from the ambient air (pressure pamb and temperature Tamb). This air flow Qth

is adjusted by the intake throttle (section Sth) and enters the intake manifold
(pressure pman and temperature Tman). The flow entering the cylinders Qcyl

passes through the intake valves, whose timing is controlled by the intake
Variable Camshaft Timing V CTin actuator. After combustion, the gases are
expelled into the exhaust manifold through the exhaust valve, controlled by
the exhaust Variable Camshaft Timing V CTexh actuator. The exhaust flow
is split in two parts: the turbine and wastegate flows. The turbine flow
powers up the turbine and drives the compressor through a shaft. Thus, the
supercharged pressure pint is adjusted by the turbine flow which is controlled
by the wastegate WG.
The effects of VCT are twofold. Firstly, acting on cam timing can inhibit
the production of nitrogen oxides (NOx) since combustion products which
would otherwise be expelled during the exhaust stroke are retained in the
cylinder during the subsequent intake stroke. This dilution of the mixture in
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Figure 1: Airpath of a Turbocharged SI Engine with VCT

the cylinder reduces the combustion temperature and limits NOx formation.
It is therefore important to control the back-flow of burned gases in the
cylinder. Secondly, with camshaft timing, air scavenging can occur, that is
air passing directly from the intake to the exhaust through the cylinder. For
this to happen, the intake manifold pressure must be greater than the exhaust
pressure when the exhaust and intake valves are opened together. Even if air
scavenging impacts the air fuel ratio, it is advantageous because it improves
the engine torque dynamic behavior, i.e. decreases the settling times. The
flow which passes through the turbine is increased and the corresponding
energy is transmitted to the compressor. Therefore, in transient, it is very
important to control this scavenging.

1.3. Control and observation structure

For an SI engine, the torque is directly linked to the air mass trapped in
the cylinder mair for a given engine speed Ne. For this reason, an efficient
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control of this air mass is required to obtain the desired torque. As the engine
must pollute as little as possible, it is also necessary to control the recirculated
gas mass in the cylinder RGM , which renders both air scavenging and burned
gas back-flow and influences pollutant emissions and combustion stability.
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Figure 2: General Control Structure

The work presented here is based on the control structure of the airpath
described in Fig. 2. From set points given by a supervisor, this structure
makes it possible to control the two air variables mair and RGM and manip-
ulates the four air actuators, the throttle section Sth, the wastegate WG and
the intake V CTin and exhaust V CTexh twin independent Variable Camshaft
Timing actuators. The control algorithms are detailed in (Colin et al., 2007)
and combine separate, but coordinated, modules based on different control
strategies: Internal Model Control (IMC), Model Predictive Control (MPC),
and optimal control.
This paper details the air mass observation part, which is used both for con-
trol and determination of optimal set points, and focuses on two non-linear
estimators of the air variables: recirculated gas mass RGM (section 2) and
in-cylinder air mass mair (section 3). Because these variables are not directly
measured, data provided by a complex but accurate high frequency engine
simulator (Le Berr et al., 2006) are used to build the corresponding mod-
els. The recirculated gas mass RGM estimator is a neural model entirely
obtained from the simulated data. The in-cylinder air mass mair estimator
combines feedforward neural static models and a polytopic observer built
from the Linear Parameter Varying model of the intake manifold. In the
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last part (section 4), a static test on an engine test bench demonstrates the
possible improvement of the engine supervisor. Indeed, by using the observer
based control structure, optimal set points in terms of fuel consumption and
pollutant emissions can be determined.

The simulated data used to build the models are divided in two sets. The
first one is used to estimate the model parameters and is called training data
in the sequel. These data are representative of all engine operating points
(engine speed, manifold pressure and variable cam timing). The second one,
called validation data, is used to determine the optimal internal structure of
the models, but also to evaluate their performances when no additional infor-
mation is available. Finally, test data are also available for the in-cylinder air
mass, obtained from the measured air flow through the throttle Qth. How-
ever, these rather sparse test bench data are not fully representative (do not
contain all the engine operating points in terms of variable cam timing) and
are valid only in steady state. They are only used, therefore, to evaluate
the final performances of the observers in which the models are included.
The test engine is a 1.8 liter turbocharged 4 cylinder engine with Variable
Camshaft Timing.

2. Recirculated Gas Mass model

Because scavenging and burned gas back-flow correspond to associated
flow phenomena, only one variable, the Recirculated Gas Mass (RGM), is
defined:

RGM =

{
mbg if mbg > msc

−msc else,
(1)

where mbg is the in-cylinder burned gas mass and msc is the scavenged air
mass (positive value). As RGM represents only the most important phe-
nomenon (air scavenging or burned gases), a tiny discontinuity between
burned gas back flow mbg and air scavenging msc can appear. Note that,
when there is scavenging from the intake to the exhaust, the burned gases
are insignificant. Fig. 3 shows the simulated behavior of the Recirculated
Gas Mass RGM w.r.t. the VCT actuators for an operating point, i.e. at a
fixed engine speed (Ne=2000 rpm) and a fixed manifold pressure (pman=140
kPa).
Studying this variable is complex because it cannot be measured on-line.
Consequently, a static model was built from data provided by the engine
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Figure 3: Recirculated Gas Mass (mg) at constant engine speed and manifold pressure

simulator. As a parsimonious and flexible universal approximator, the per-
ceptron with one hidden layer and with a linear output unit was chosen for
this model. For a single output, the output fnn of such a model is given by:

fnn =
n∑
k=1

w2
k g

(
p∑
j=1

w1
kjϕj + b1k

)
+ b2, (2)

where the ϕj are the p regressors, the w1
kj, b

1
k are the parameters of the n

hidden neurons, the activation function g is the hyperbolic tangent, and the
w2
k, b

2 are the weights and bias of the output neuron.
The choice of regressors is based on physical considerations and the estimated

Recirculated Gas Mass R̂GM is given by:

R̂GM = fnn(pman, Ne, V CTin, V CTexh), (3)

where pman is the intake manifold pressure, Ne the engine speed, V CTin the
intake camshaft timing, and V CTexh the exhaust camshaft timing.
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Figure 4: RGM model (up, in mg) and its absolute errors (down, in mg) on validation
data

Training was performed by minimizing the mean squared error, with the
Levenberg-Marquardt algorithm. In order to determine the optimal inter-
nal structure of the model, two criteria, the Bayesian Information Criterion
(BIC) and the Final Prediction Error (FPE) criterion, are examined from
the validation data, when varying the number n of hidden neurons (Nelles,
2000). The optimal number of hidden neurons corresponds to the minimum
of the criteria and is found to be equal to 12. Fig. 4 shows the recirculated
gas mass estimation and its absolute error on the validation data. The neural
model gives satisfactory results with a Root Mean Squared Error (RMSE) of
about 4.8 mg and a mean absolute error of 9.6%.
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3. Air mass observer

Extensive research has been carried out on in-cylinder air mass observa-
tion, especially for air-fuel ratio (AFR) control. For air mass flow observation
in a Port Fuel Injection (PFI) SI engine, Hendricks et al. (1992) and Chang
et al. (1993) use an Extended Kalman Filter and Corde et al. (1995) use a
flow Luenberger observer. Chevalier et al. (2000) predict the port air mass
flow of SI engines in AFR control, with experimental results. Hendricks
(2001) compares adiabatic and isothermal mean value engine models, and
shows that for SI engines with Exhaust Gas Recirculation (EGR), adiabatic
models are necessary. Hendricks and Luther (2001) make a critical review of
existing air mass observers. Stotsky and Kolmanovsky (2002) use an ”input
observer” to determine the engine cylinder flow, which is extended in Stotsky
et al. (2004) with a composite adaptation. Finally, Andersson and Eriksson
(2004) use a Kalman filter to reconstruct the air mass for a turbocharged SI
engine.
A novel observer for the in-cylinder air mass mair is presented below. Unlike
the preceding references, it takes into account a non-measured phenomenon
(scavenging), and can thus be applied with advanced engine technology (tur-
bocharged VCT engine). Moreover, its on-line computational load is low.
As presented in Fig. 5, this observer combines open loop non-linear static
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Figure 5: Air mass observer scheme

estimators of RGM (section 2) and mair OL (section 3.1), and a closed loop
dynamic polytopic observer, described in section 3.2, which dynamically com-
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pensates for the residual error ∆Qcyl committed by one of the estimators,
with a principle close to (Andersson, 2002).

3.1. Open loop air mass estimator

The open loop (feedforward) model of the in-cylinder air mass mair OL is
based on the volumetric efficiency equation:

mair OL = ηvol
pambVcyl
rTman

, (4)

where Tman is the manifold temperature, pamb the ambient pressure, Vcyl the
displacement volume, r the ideal gas constant, and where the volumetric
efficiency ηvol is described by the static non-linear function f :

ηvol = f(pman, Ne, V CTin, V CTexh). (5)

The rest of this subsection is devoted to the approximation of the volumetric
efficiency (5) by polynomial or neural models, and to the choice of the model
finally selected. In (De Nicolao et al., 1996), various black box models, such
as polynomial, spline, MLP and RBFN models, are compared for the static
prediction of the volumetric efficiency.

Polynomial model linear in manifold pressure. Jankovic and Magner
(2002) proposed the model, linear in manifold pressure, where f1 and f2 are
4th order polynomials:

ηvol = f1(Ne, V CTin, V CTexh)pman + f2(Ne, V CTin, V CTexh). (6)

This model involves 69 parameters, but this number can be reduced to 43 by
stepwise regression (Draper and Smith, 1998).

Polynomial model. The volumetric efficiency can be also represented by a
4th order polynomial model:

ηvol = f3(pman, Ne, V CTin, V CTexh). (7)

The complete model involves 70 parameters, and the reduced model obtained
by stepwise regression 58 parameters.
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Neural model. The volumetric efficiency (5) estimated by a neural model
(2) is written as:

ηvol = fnn(pman, Ne, V CTin, V CTexh). (8)

As in section 2, training was performed by minimizing the mean squared
error, with the Levenberg-Marquardt algorithm. Moreover, the Bayesian In-
formation Criterion (BIC) and the Final Prediction Error (FPE) criterion
are examined from the validation data when varying the number n of hid-
den neurons. The optimal number, 6, corresponds to the minimum of the
criteria as shown in Fig. 6, giving 37 parameters for the neural model. For

5 10 15 20 25 30
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−400

−300

−200
Bayesian information criterion (BIC)

5 10 15 20 25 30
−700

−600

−500

−400

−300

Number of neurons

Final prediction error criterion (FPE)

Figure 6: Bayesian Information Criterion (BIC, up) and Final Prediction Error criterion
(FPE, down) w.r.t. the number of hidden neurons on the validation data for the volumetric
efficiency neural model

validation data, the mean absolute error for mair OL is 2.3 %. The maximum
absolute errors (12 mg, 12 %) are obtained at low load and low engine speed
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(Ne=700 rpm and pman=25 kPa), where the physical phenomenon is the most
non-linear. For test data, the estimator (8) makes larger errors than for the
validation data, as shown in Fig. 7. On this figure, where the air mass is

10 20 30 40 50 60 70 80
0   

0.5

1

Normalized air mass

 

 

10 20 30 40 50 60 70 80

−0.05

0  

0.05

0.1

Normalized error

Point number

 

 

Neural Model Simulator

Bench Neural Model Simulator

Figure 7: Air mass comparison between neural model, simulator and test bench data for
static operating points: air mass (up, in mg) and its error (down, in mg)

normalized between 0 and 1, the neural model errors mainly follow the sim-
ulator errors, because the neural model has been trained on the simulation
data.

Comparison of the models. Table 1 compares the Root Mean Squared
Error (RMSE) for mair OL of the presented models: the polynomial model
linear in manifold pressure (6) proposed by Jankovic and Magner (2002),
complete with 69 parameters, then reduced to 43 parameters; the polynomial
model (7), complete with 70 parameters then reduced to 58 parameters; the
neural model (8) with 6 hidden neurons and 37 parameters. The behavior of
these models is similar, and the most important errors are committed at the
same operating points. In the following, the neural model, involving fewer
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Table 1: Static models comparison: RMSE for mair OL (mg)
Test Valid. Learning

Models (bench) (simu.) (simu.) # coef.

Jankovic 30.67 15.66 15.73 69
(complete)
Jankovic 30.84 15.49 15.86 43
(reduced)
Polynomial 28.87 9.88 9.6 70
(complete)
Polynomial 28.79 9.92 9.61 58
(reduced)
Neural 28.49 9.36 10.39 37
model

parameters and yielding the smallest RMSE for validation and test data, is
chosen as the static model of the volumetric efficiency. The results illustrate
the parsimony of neural models.

3.2. Air mass observer

3.2.1. Principle

The air mass observer is based on the flow balance in the intake manifold.
As shown in Fig. 8, a flow Qth enters the manifold and two flows leave it:
the flow that is captured in the cylinder Qcyl and the flow scavenged from
the intake to the exhaust Qsc. As introduced in Fig. 5, the flow balance in
the manifold can thus be written:

ṗman(t) =
rTman(t)

Vman
(Qth(t)−Qcyl(t)−∆Qcyl(t)−Qsc(t)) , (9)

where, for the intake manifold, pman is the pressure to be estimated (in Pa),
Tman the temperature (K), Vman the volume (m3), assumed to be constant,
and r is the ideal gas constant. Qth(t) is measured by an air flow meter
(kg/s). Qsc(t) (kg/s) can be obtained by differentiating the Recirculated

Gas Mass R̂GM (3):

Q̂sc(t) = min(−R̂GM(t), 0)/ttdc(t), (10)
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where ttdc(t) = 2×60
Ne(t) ncyl

, with the engine speed Ne (rpm) and the number of

cylinders ncyl, is the variable sampling period between two intake Top Dead
Centers (TDC). Qcyl(t) (kg/s) is determined from the open loop model of the
in-cylinder air mass (4) with the neural model (8):

Q̂cyl(t) = mair OL(t)/ttdc(t) (11)

Finally, in (9), ∆Qcyl(t) is the error made by the model (11), which has to
be dynamically compensated.

To this end, considering slow variations of ∆Qcyl(t), i.e. ∆̇Qcyl(t) = 0,
the following state space representation can be written:{

Ẋ(t) = A X(t) +B U(t)
y(t) = C X(t)

(12)

with:

X(t) =

(
pman(t)

∆Qcyl(t)

)
, U(t) =

Qth(t)
Qcyl(t)
Qsc(t)

 , y(t) = pman(t), (13)

and, noting a(t) = − rTman(t)
Vman

, with:

A =

(
0 a(t)
0 0

)
, B =

(
−a(t) a(t) a(t)

0 0 0

)
, C =

(
1 0

)
. (14)
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Note that system (12), with (14), is Linear Parameter Varying (LPV), be-
cause the matrices A and B depend linearly on the (measured) parameter
a(t). Next, this system is discretized at each top dead center (TDC) to give:{

Xk+1 = Ad Xk +Bd Uk
yk = C Xk

(15)

where:

Ad = ttdcA+ I =

(
1 ρk
0 1

)
, Bd = ttdcB =

(
−ρk ρk ρk

0 0 0

)
, (16)

with ρk = − r Tman(k)
Vman

ttdc(k), where ttdc(k) = 2×60
Ne(k) ncyl

is the variable sampling

period between two intake TDC. In turn, ρk is a time varying parameter,
which depends now on the manifold temperature Tman(k) and engine speed
Ne(k), and the discrete time system (15), with Ad = Ad(ρk), is still a LPV
system.

The state reconstruction for system (15) can be achieved by resorting to
a so-called polytopic observer with a constant gain K, of the form:{

X̂k+1 = Ad(ρk)X̂k +Bd(ρk)Uk +K(yk − ŷk)
ŷk = CX̂k

(17)

Some details on the design of polytopic observers, for the general case where
the time varying parameter ρk is a vector, are presented below. If ρk is
bounded, it evolves in a compact set and thereby can always be included in a
convex polytope Dρ. Hence, ρk admits a polytopic decomposition, expressed
as:

ρk =
N∑
i=1

ξ
(i)
k θi, (18)

where the vector ξk belongs to the convex set S = {µk ∈ RN , µk = [µ
(1)
k . . . µ

(N)
k ]T ,

µ
(i)
k ≥ 0 ∀i,

N∑
i=1

µ
(i)
k = 1}. The constant vectors θi, . . . , θN are the N vertices

of the convex polytope Dρ. Since Ad depends linearly on ρk, it is shown in
(Millérioux et al., 2005) that Ad(ρk) can always be decomposed in a polytopic
form as:

Ad(ρk) =
N∑
i=1

ξ
(i)
k A

(i)
d . (19)
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The vector ξk coincides with the one involved in (18). The constant matrices

A(1)
d , . . . ,A(N)

d are the N vertices of the convex polytope DAd
including the

compact set where Ad(ρk) evolves.
The state reconstruction error εk = Xk − X̂k, obtained from (15), (17) and
(19), is thus governed by:

εk+1 =
(
Ad(ρk)−KC

)
εk =

N∑
i=1

ξ
(i)
k (A(i)

d −KC)εk. (20)

The dynamics of the state reconstruction is time-varying since Ad depends on
ρk. Thus, (20) is an LPV system. The conditions of global convergence to-
ward zero of the state reconstruction are ensured from the following theorem
(Millérioux et al., 2004).

Theorem 1. Global convergence of (20) is achieved whenever the following
set of Linear Matrix Inequalities[

Pi A(i)T
d GT − CTF T

GA(i)
d − FC G+GT − Pj

]
> 0 (21)

is feasible for all (i, j) ∈ {1, . . . , N} × {1, . . . , N}.

Matrix G, matrix F and matrices Pi’s are unknown. The gain K is given by:

K = G−1F. (22)

It can be shown that (21) ensures the existence of a so-called poly-quadratic
Lyapunov function V : Rn → R+, defined by V (εk) = εTkPkεk, with Pk =
N∑
i=1

ξ
(i)
k Pi, ξk ∈ S, fulfilling

V (εk+1)− V (εk) < 0. (23)

The existence of such a Lyapunov function guarantees the polyquadratic
stability of the state reconstruction error (Daafouz and Bernussou, 2001).

In the case of system (15), the time varying parameter ρk is scalar, and
the polytopic decomposition reduces to elementary computations. Indeed,
ρk evolves between a minimum value ρmin and a maximum value ρmax. The
convex polytope Dρ has N = 2 vertices, θ(1) = ρmin and θ(2) = ρmax. Thus,
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(18) turns into ρk = ξ
(1)
k ρmin + ξ

(2)
k ρmax. Since

N∑
i=1

ξ
(i)
k = 1, ρk = ξ

(1)
k ρmin +

(1− ξ(1)
k )ρmax. And (19) is reduced to:

Ad(ρk) = ξ
(1)
k A

(1)
d + (1− ξ(1)

k )A(2)
d , (24)

with:

A(1)
d =

(
1 ρmin
0 1

)
, A(2)

d =

(
1 ρmax
0 1

)
. (25)

ρmin = −401.44 corresponds to an engine speed of Ne = 50 rpm and a
manifold temperature of Tman = 373 K, and ρmax = −2.0897 to Ne = 6000
rpm and Tman = 233 K. The software Yalmip, available free of charge at
http://control.ee.ethz.ch/∼joloef/yalmip.php, solves the LMI (21),

with N = 2 and the matrices A(1)
d and A(2)

d of (25). It turns out that these
LMI are feasible. From the resulting matrices G and F , the constant gain K
is computed by (22), giving K = (1.3217− 0.0022).

The state ∆Qcyl is then integrated (i.e. multiplied by ttdc) to give the air
mass bias ∆mair:

∆mair = ttdc ∆Qcyl. (26)

Finally, the in-cylinder air mass can be estimated by correcting the open loop
estimator (4) with this bias:

m̂air cyl = mair OL + ∆mair. (27)

3.2.2. Results

Some experimental results obtained on the 1.8 liter turbocharged 4 cylin-
der engine with VCT are given in Fig. 9 and 10. Fig. 9 shows an example of
the good dynamic reconstruction of the manifold pressure pman by the first
state of the observer (17).

Fig. 10 illustrates the observer of the in-cylinder air mass, normalized
between 0 and 1. A measurement of this mass, only valid in steady state,
can be obtained by integrating, i.e. multiplying by ttdc, the flow that passes
through the throttle Qth. In steady state with no scavenging, the air flow
that enters the cylinder Qcyl is equal to Qth (see Fig. 8). Fig. 10 compares
the following: this measurement; the open loop neural estimator: (4) with
(8); an estimation not based on this neural model: observer (17) based on
model (9) but with Qcyl = Qsc = 0; the proposed estimation: (27) combining
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Figure 9: Manifold pressure measurement pman and estimation p̂man (up, in Pa) and the
estimation error (down, in Pa) vs. time (s) on the engine test bench

the open loop neural estimator (4), with (8) and the polytopic observer (17)
based on model (9) with Qcyl given by (11) from (4), with (8), and Qsc given
by (10) using (3). For steps of air flow, the open loop neural estimator tracks
very quickly the measurement changes, but a small steady state error can
be observed (see for example between 32 s and 34 s). Conversely, the closed
loop observer which does not take this feedforward estimator into account
involves a long transient error while guaranteeing convergence in steady state.
Finally, the proposed estimator including feedforward static estimators and
polytopic observer combines both advantages: very fast tracking, and no
steady state error.
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Figure 10: Air mass observer results vs. time (s) on the engine test bench: air mass
obtained from the measurement of Qth (blue dash dot), open loop neural estimator (red
dash), observer without neural estimators (green dot), observer including neural models
(light blue solid)

4. Set point optimization

The two non-linear estimators of the recirculated gas mass (section 2) and
of the air mass trapped in the cylinder (section 3) have now been validated.
The control scheme (Fig. 2) based on these estimators can control the in-
cylinder air mass for different recirculated gas mass values (by manipulating
the cam timing). Thus, tests can be performed in order to optimize the set
points provided by the supervisor level to the control.
An example of preliminary static results obtained on the test bench is shown
in Figs. 11 and 12. The test consists in increasing the residual burned gas
fraction with a constant in-cylinder air mass and observing the pollutant
emissions, fuel consumption, and exhaust temperature. The increase in the
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in-cylinder burned gas fraction (and thus in the manifold pressure) is achieved
by acting on valve overlapping. This test was carried out at 1000 rpm with
a fixed Air-Fuel Ratio (1 at the lambda sensor, i.e. at stoechimetry).

In the figures, the operating point number 2 corresponding to 26.5% of
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Figure 11: Variation of Brake Specific Fuel Consumption (BSFC, %, blue dashed line)
and Indicated Mean Effective Pressure (IMEP , %, red solid line) w.r.t. residual gas
fraction (%)

residual gas rate was chosen initially by an engine bench operator as the best
compromise. The operating point number 5 with 38% of residual gas rate
involves unstable combustion and must be rejected. The point number 4 with
35% of residual gas rate is the one producing the maximum torque (IMEP ),
by reducing pumping losses, without unstable combustion (see Fig. 11). A
margin on residual gases set point can be added for stable combustion. This
point corresponds to minimum fuel consumption (BSFC) (see Fig. 11) and
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Figure 12: Pollutant emissions (%) : NOx (black dash-dotted line), HC (blue dashed
line), CO (red solid line) w.r.t. residual gas fraction (%)

pollutant emissions (NOx, CO and HC) (see Fig. 12). Moreover, it involves
a maximum exhaust temperature that is useful for catalyst heating. This
point therefore seems to be the best option. That calls into question the
initial choice of the point corresponding to 26.5% of residual gas rate given
by a static map of the ”reference” points.

5. Conclusion

The inclusion of neural models in several estimators for automotive en-
gines has been presented. These neural models permit extending two-dimen-
sional static maps by taking into account, for example, the variable valve
timing for the volumetric efficiency. The intrinsic bias of the open loop model
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is corrected by a polytopic observer built from the Linear Parameter Varying
model of the system. The proposed approach has been tested on a non-linear
fast coupled system, the air intake control of a turbocharged SI engine with
VCT, with the aim of downsizing. The proposed observers, included in the
air actuators control scheme, permit to make tests with a constant in-cylinder
air mass while increasing in-cylinder burned gases. These static tests show
that new possibilities are offered in order to decrease pollutant emissions and
optimize engine efficiency. Further research will thus deal with the complete
supervisor synthesis.
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