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Abstract: this paper deals with continuous-time system identification using fractional
differentiation models in a noisy output context. The simplified refined instrumental variable
for continuous-time systems (srivc) is extended to fractional models. Monte Carlo simulation
analysis are used to demonstrate the performance of the proposed optimal instrumental variable
scheme.
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1. INTRODUCTION

Instrumental Variable (IV) approaches to system iden-
tification and parameter estimation have been developed
since 1960s and 1970s as detailed in the survey paper by
Young (1981) and all references therein. Recently, Refined
Instrumental Variables for Continuous-system (Young
and Jakeman (1980)) has been developed for identifying
hybrid continuous-time Box-Jenkins models, where the
system model is continuous-time and the noise model is
discrete-time (Young et al. (2006)). rivc algorithms are
implemented in both Captain (Young (2006)) and Contsid
(Garnier et al. (2008)) toolboxes.

The last two decades have witnessed considerable devel-
opment in the use of fractional operators in various fields.
Fractional differentiation is now an important tool for the
international scientific and industrial communities espe-
cially in modeling viscoelastic materials and some diffusive
phenomena (thermal diffusion, electrochemical diffusion).
Time-domain system identification using fractional models
was initiated in the late nineties and in the beginning of
this century in the Ph.D. theses of Le Lay (1998); Lin
(2001); Cois (2002); Aoun (2005). For an overview of dif-
ferent identification methods based on fractional models,
refer to Malti et al. (2006).

The objective of this paper is to extend the Simpli-
fied Refined Instrumental Variable for Continuous-time
systems (Young and Jakeman (1980)), denoted by srivc
from hereon, to the identification of fractional models.
This optimal IV method presents the advantage of yield-
ing asymptotically efficient estimates in the presence of
white measurement noise. The algorithm is initialized by
a transfer function obtained from the least squares state
variable filter estimates. Cois et al. (2001) are the first to

extend the use of state variable filters to fractional systems.
The authors suggest to use Instrumental Variables (IV) to
eliminate bias. However, their instruments are not selected
in an optimal way. An improvement of their method is
proposed in this paper by choosing rivc algorithm. This
approach involves a method of iterative-adaptive prefilter-
ing based on a quasi-optimal 1 statistical solution. The
proposed method is independent from the way fractional
differentiation and integration are simulated in the time-
domain.

1.1 Mathematical background

A fractional mathematical model is based on a fractional
differential equation:

y (t) + a1D
α1y (t) + · · · + amA

DαmA y (t) =

b0D
β0u (t) + b1D

β1u (t) + · · · + bmB
DβmB u (t) , (1)

where (aj , bi) ∈ R
2, differentiation orders α1 < α2 <

. . . < αmA
, β0 < β1 < . . . < βmB

are allowed to be non-
integer positive numbers. The concept of differentiation to
an arbitrary order (non-integer),

Dγ ∆
=

(

d

dt

)γ

∀γ ∈ R
∗
+,

was defined in the 19th century by Riemann and Liouville.
The γ-order fractional derivative of x(t) is defined as being
an integer derivative of order ⌊γ⌋ + 1 (⌊.⌋ stands for the
floor operator) of a non-integer integral of order γ − ⌊γ⌋
Samko et al. (1993):

1 As stated in Young et al. (2006), in the rational case, the method
is quasi-optimal because true optimality would require optimal
interpolation of the input signal u(t) over the sampling interval,
whereas only simple interpolation is used here.



Dγx(t)=D⌊γ⌋+1
(

I⌊γ⌋+1−γx(t)
)

∆
=

(

d

dt

)⌊γ⌋+1




1

Γ (⌊γ⌋ + 1 − γ)

t
∫

0

x (τ) dτ

(t − τ )γ−⌊γ⌋



 , (2)

where t > 0, ∀γ ∈ R
∗
+, and the Euler’s Γ function is defined

as:

Γ(x) =

∞
∫

0

e−ttx−1dt ∀x ∈ R
∗ \

{

N
−

}

. (3)

The Laplace transform is a more concise algebraic tool
generally used to represent fractional systems, see Oldham
and Spanier (1974):

L {Dγx (t)} = sγX (s) if x(t) = 0 ∀t ≤ 0. (4)

This property allows to write the fractional differential
equation (1), provided u(t) and y(t) equal 0 for all t < 0,
in a transfer function form:

F (s) =
B(s)

A(s)
=

mB
∑

i=0

bis
βi

1 +
mA
∑

j=1

ajsαj

. (5)

Moreover if F (s) is commensurable of order γ, i.e. all
differentiation orders are exactly divisible by the same
number, an integral number of times (the biggest number
is always chosen), then F (s) can be rewritten as:

F (s) =

n
∑

i=0

b̃is
iγ

1 +
m
∑

j=1

ãjsjγ

, (6)

where n =
βmB

γ
and m =

αmA

γ
are integers and:

{

b̃i = bi if iγ = βi and b̃i = 0 if iγ 6= βi

ãj = aj if jγ = αj and ãj = 0 if jγ 6= αj .
(7)

In rational transfer functions γ equals 1 and usually
numerator αmA

and denominator βmB
orders are both

fixed, then all coefficients bi, i = 1, . . . , βmB
and aj , j =

1, . . . , αmA
are estimated. Generally, no care is taken to

check whether any intermediate coefficient, as in (7) equals
zero.

Exactly the same principle will be applied here for frac-
tional models: the commensurable order γ together with
the αmA

and βmB
are fixed, and then all the b̃i and ãj

coefficients are estimated.

1.2 Time-domain simulation of fractional models

The main objective of this paper is to develop a method
for time-domain system identification able to work with
any fractional-model-time-domain simulation algorithm.
Hence, only the simulation algorithm used in the example
of this paper is explained here, as the objective is not
to discuss different simulation algorithms. Refer to Aoun
et al. (2004), for an extended discussion on this topic.

Due to the consideration that real physical systems gener-
ally have bandlimited fractional behavior and due to the
practical limitations of input and output signals (Shan-
non’s cut-off frequency for the upper band and the spec-
trum of the input signal for the lower band), fractional
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Fig. 1. Recursive approximation of a fractional differentia-
tor with poles and zeroes

operators are usually approximated by high order rational
models. As a result, a fractional model and its rational
approximation have the same dynamics within a limited
frequency band. The most commonly used approximation
of sν in the frequency band [ωA, ωB] is the recursive dis-
tribution of zeros and poles proposed by Oustaloup (1995)
(see Fig. 1):

sγ → s
γ

[ωA,ωB ]
= C0

(

1 + s
ωA

1 + s
ωB

)γ

≈ C0

N
∏

k=1

1 + s
ω′

k

1 + s
ωk

(8)

where ωi = αω′
i, ω′

i+1 = ηω′
i and

γ = 1 −
log α

log αη
, (9)

α and η define the differentiation order γ. The bigger N
the better the approximation of the differentiator sν .

2. SYSTEM IDENTIFICATION

The Refined Instrumental Variables for Continuous sys-
tem (Young and Jakeman (1980)) (rivc) method and its
simplified version srivc (when the additive measurement
noise is assumed to be white) are the only IV methods
that can be interpreted in optimal statistical terms, so
providing an estimate of the parametric error covariance
matrix and, therefore, estimates of the confidence bounds
on the parameter estimates. Optimal instrumental vari-
ables are obtained from an auxiliary model which is itera-
tively updated. At the first iteration, the auxiliary model
is initialized using a least squares estimate applied on state
variable filters (SVF). The identification problem is first
stated, then SVF method is briefly recalled and finally the
srivc algorithm is extended to fractional models.

2.1 Problem formulation

Consider input u(t) and output y∗(t) data collected at
regular samples Ts, 2Ts, . . . , KTs from t = 0 to t = T .
The measured output is supposed to be corrupted by an
additive measurement noise p(t):

y∗(t) = y(t) + p(t), (10)

where y(t) is the hypothetical noise-free deterministic
system output. The input u(t) and the output y(t) signals
are supposed to be related by the fractional differential
equation (1).



Equation error can be formulated as:

ε(t) = y∗(t) − ϕ∗(t)T θ, (11)

where

ϕ∗(t)T =

[

Dβ0u (t) · · ·DβmB u (t)
−Dα1y∗ (t) · · · − DαmA y∗ (t)

]

(12)

and
θT = [ b0 b1 . . . bmB

a1 . . . amA ] . (13)

Minimizing the L2 norm of ε(t):

J =

T
∫

0

(ε(t))2 dt, (14)

with respect to θ, leads to the following least squares
estimates:

θ̂LS =





T
∫

0

ϕ∗(t)T ϕ∗(t)dt





−1
T

∫

0

ϕ∗(t)T y∗ (t) dt. (15)

Or, after a numerical discretization, by defining Y as a
column vector of the system output and Φ as a regression
matrix where the columns are fractional derivatives of the
input and the output signals:

Φ∗ =
[

ϕ∗(Ts) ϕ∗ (2Ts) . . . ϕ∗ (KTs)
]T

, (16)

θ̂LS can be approximated by:

θ̂LS =
(

Φ∗T
Φ∗

)−1

Φ∗T
Y∗. (17)

Direct fractional differentiations of noisy output lead how-
ever to inaccurate results. Consequently, state variable
filters are preferred to the direct least squares estimates.

2.2 Least Squares-based SVF method (lssvf)

As in the integer case, fractional differentiation of noisy
signals amplifies the noise. Hence, a linear transformation
(low-pass filter) is applied to input and output signals
(Cois et al. (2001)). Poisson’s filters can, for example, be
chosen such as:

Fγ (s) =
sγ

(

( s
ωc

)γ + 1
)N

. (18)

The order N is usually chosen such that γN > αmA
.

The basic idea in using Poisson’s filter is to obtain the
behavior of a differentiator in low frequencies and to filter
noise in high frequencies as shown in the Bode diagram
of Fig. 2. However, this filter introduces a phase shift
near the cut-off frequency. The approximation is usually
good enough to initialize the srivcf algorithm. Hence,
differentiated filtered input Dβiuf and output Dαj yf

signals are obtained at the output of the filters (18):
{

Dβiuf (t) = u(t) ∗ L
−1{Fβi

(s)}

Dαj y∗
f(t) = y∗(t) ∗ L

−1{Fαj
(s)},

(19)

where ∗ and L −1 stand respectively for the convolution
operator and the inverse Laplace transform.

Instead of minimizing the L2 norm of ε(t) as in (11), the
L2 norm of εf (t) is now minimized:

εf (t) = y∗
f (t) − ϕ∗

f (t)T θ, (20)

where

ϕ∗
f (t)T =

[

Dβ0uf (t) · · ·DβmB uf (t)
−Dα1y∗

f (t) · · · − DαmA y∗
f (t)

]

. (21)
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Fig. 2. Bode diagram of the fractional state variable filters

The solution is approximated (due to the integral) by the
classical least squares-based SVF as in (17):

θ̂LSSVF =
(

Φ∗
f
T
Φ∗

f

)−1

Φ∗
f
T
Y∗

f , (22)

where

Φ∗
f =

[

ϕ∗
f (Ts) ϕ∗

f (2Ts) . . . ϕ∗
f (KTs)

]T
. (23)

As in the integer case, Cois et al. (2001) showed that the
least squares estimator (22) is biased in presence of noisy
output due to the correlation between ϕ∗

f (t) and y∗(t).

2.3 Instrumental Variable-based SVF method (ivsvf)

The estimator of the instrumental variable is a traditional
variant of the least squares method. It presents the ad-
vantage of relying on linear regression techniques. The
principle of the instrumental variable method relies on the
so called instruments generally obtained from a parallel
model yIV

f . Hence, an instrumental variable regression
vector is built:

ϕIV
f (t)T =

[

Dβ0uf (t) · · ·DβmB uf (t)
−Dα1yIV

f (t) · · · − DαmA yIV
f (t)

]

. (24)

The conditions that the instrumental variable vector
should satisfy, are the following (see e.g. Ljung (1999))
(E[.] stands for the mathematical expectation):

{

E
[

ϕIV
f (t)ϕ∗

f
T (t)

]

is non singular

E
[

ϕIV
f (t)p(t)

]

= 0.
(25)

Hence, the instruments, gathered in ϕIV
f , need to be

sufficiently correlated to all components of the regression
vector ϕ∗

f , and totally uncorrelated to the output noise

p(t).

The IV-based solution is now approximated by:

θ̂IVSVF =
(

ΦIV
f

T
Φ∗

f

)−1

ΦIV
f

T
Y∗

f , (26)

where

ΦIV
f =

[

ϕIV
f (Ts) ϕIV

f (2Ts) . . . ϕIV
f (KTs)

]T
. (27)



2.4 Simplified refined instrumental variable for
continuous-time fractional models (srivcf)

As shown by Young (1981), the optimal estimator (asymp-
totically without bias and of minimal variance) is obtained
when the SVF filters Fγ(s) in (18) are replaced by:

F opt
γ (s) =

sγ

H(s)A(s)
, (28)

where H(s) is the real noise model, A(s) the denomina-
tor of the transfer function of the real system; and the
hypothetical noise free deterministic output y(t) is used
when evaluating the derivatives of the output in (19). As
a result, the optimal regression vector is obtained:

ϕ
opt
f (t)T =

[

Dβ0uf (t) · · ·DβmB uf (t)
−Dα1yf (t) · · · − DαmA yf (t)

]

. (29)

The optimal estimator necessitates to know many charac-
teristics of the system to be identified. It will be obtained
only if the real system and noise models are known; how-
ever the optimality is not achievable in practical cases.

A stochastic approach proposed by Young (1981) and
Young (2002) is the Simplified Refined Instrumental
Variable for Continuous systems (srivc). This approach
includes an adaptive pre-filtering based on the optimal so-
lution when the noise p is a white gaussian one (H(s) = 1).
This method is a logical extension of the instrumental
variable estimator with SVF. This estimator is extended to
fractional models and is named srivcf (srivc for fractional
models).

To optimize the instruments, it is required to implement
an iterative algorithm. This algorithm can be initialized by

the θ̂LSSVF or θ̂IV SV F estimates (22). Once the first esti-
mation of the denominator is available, the new derivatives
of input and output signals are computed by replacing
Fγ(s) in (18) by:

F (iter)
γ (s, θ̂) =

sγ

Â(s)
=

sγ

1 +
mA
∑

j=1

âjsαj

, (30)

with âj the estimated aj coefficient and (iter) = 1, 2, . . .
stands for the iteration number.

The instruments, the derivatives of the input and of the
output, are computed at each iteration by:











Dβiuf (t) = u(t) ∗ L
−1{F

(iter)
βi

(s)}

Dαj y∗
f (t) = y∗(t) ∗ L

−1{F (iter)
αj

(s)}

Dαj yIV
f (t) = yIV (t) ∗ L

−1{F (iter)
αj

(s)}.

(31)

The regression vectors ϕ∗
f (t) and ϕIV

f (t) are formed as

in (21) and (24). Finally, the parameter vector θ̂(iter)srivcf is
computed at each iteration as:

θ̂(iter)srivcf =
(

ΦIV
f

T
Φ∗

f

)−1

ΦIV
f

T
Y∗

f . (32)

As in the rational case, the srivcf estimator is asymp-
totically unbiased whatever additive zero-mean noise is
present. When the additive noise is white, srivcf has
minimum variance and the asymptotic covariance matrix
of the estimation errors associated with the estimate of
θ̂srvicf is given by:

P
θ̂

= σ̂2(ΦIV T
ΦIV )−1, (33)

+

+

u(t)

u(t) B(s)
A(s)

y∗(t)

y∗(t)y(t)

ŷ(t)

p(t)

[

sα1

E(s)
· · ·

sαi

E(s)
· · ·

sαmA

E(s)

]

[

sβ0

E(s)
· · ·

sβi

E(s)
· · ·

sβmB

E(s)

]

[

Dβ0uf (t) · · ·DβmB uf (t)
]

[

Dβ0uf (t) · · ·DβmB uf (t)
]

[

−Dα1y∗
f (t) · · · − DαmA y∗

f (t)
]

[

−Dα1y∗
f (t) · · · − DαmA y∗

f (t)
]

LS algorithm

θ̂LSSV F

B̂(s,θ)

Â,θ(s)

[

1

Â(s)
· · ·

siγ

Â(s)
· · ·

snγ

Â(s)

]
[

1

Â(s)
· · ·

siγ

Â(s)
· · ·

snγ

Â(s)

][

1

Â(s)
· · ·

siγ

Â(s)
· · ·

snγ

Â(s)

]

[−Dα1 ŷf (t) · · · − DαmA ŷf (t) ]

Refined IV algorithm

θ̂SRIV CF

Fig. 3. Iterative optimal srivcf

where σ̂2 is the empirical estimation of the noise variance.

2.5 Summary of the srivcf algorithm

The overall srivcf algorithm is summarized in this section
and sketched in Fig. 3.

Step 1 use the fractional state variable filter estimates
(22) to generate an initial (iter = 1) estimate of the
transfer function model parameter vector θ(1).

Step 2 iterative instrumental variable estimation with
prefilters.
for iter = 2 to convergence

(i) Generate the instrumental variables yIV from the
auxiliary model with the estimated polynomials based
on the estimated parameter vector θ(iter−1).

(ii) Update the filter F
(iter)
γ (s, θ̂) in (30) with the new

estimated parameters. Then, evaluate the prefiltered
derivatives of u(t), y(t) and yIV (t) as in (31).

(iii) Based on these prefiltered data, compute the new
estimates θ(iter) as in (32).
end for

Step 3 compute the estimated parametric error covari-
ance matrix associated with the parameter estimates
with (33).

It may happen, when the bias is important, that the
estimated parameters from Step 1 lead to unstable models.
In this case, an empirical method can be used to stabilize
unstable poles.

3. NUMERICAL EXAMPLE

3.1 System specifications

To illustrate the efficiency of this algorithm in system
identification using rational and/or fractional models, the
following system is simulated:
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Fig. 4. Input and noisy output signals used for identifica-
tion.

G0(s) =
K (−Tsν + 1)

(

( s
ω1

)2ν + 2ζ1( s
ω1

)ν + 1
) ((

( s
ω2

)2ν + 2ζ2( s
ω2

)ν + 1
)) ,

(34)

with ν = 0.5, K = −1, T = 0.5, ω1 = 0.2 rad/s,
ζ1 = −0.4, ω2 = 1 rad/s and ζ2 = −0.65.

This fractional system has two resonant modes: one at
ω1 = 0.2 rad/s with ζ1 = −0.4 and another one at ω2 = 1
rad/s with ζ2 = −0.65 (for stable fractional systems, a
resonant peak may occur for negative pseudo-damping
factors ζ1,2

2 ). Furthermore, the system has a positive sν-
zero at sν = 2.

The input signal u(t), a pseudo random binary sequence
(prbs), is applied to the system (34). The prbs amplitude
is intentionally chosen between 0 to 10 in order to be
able to capture the rapid dynamics and the long memory
behaviour (slow dynamics) typically present in fractional
differentiation systems. The output, y(t), is corrupted by
an additive Gaussian white noise p(t) with zero mean and
a signal to noise ratio (S/N) of 20dB as shown in Fig. 4.
The sampling period is fixed to Ts = 10−2s.

The instrumental variables are computed according to the
iterative algorithm described in §2.5 in order to rippen the
parametric estimation. The model, which parameters are
to be estimated, is set to:

G(s) =
b1s

ν + b0

a4s4ν + a3s3ν + a1s2ν + a1sν + 1
. (35)

To be in the same class as the true system, the commen-
surable order must be set to 0.5. However, the commen-
surable order is not always known; when unknown, the
optimal commensurable order can be estimated.

3.2 The choice of commensurable order

At the first stage, srivcf is applied with commensurable
orders varying from ν = 0.1 to ν = 1.9 with a step of 0.05.
The log-normalized cost function

JdB = 10 log10











K
∑

k=1

(ym(kTs) − y∗(kTs))
2

K
∑

k=1

ym(kTs)2











, (36)

where ym stands for the model output, is plotted versus
the commensurable order in the region of interest, i.e.
ν ∈ [0.3, 1], in Fig. 5. As expected, the best commensurable

2 When ν 6= 1, ζ cannot be considered as a damping factor.
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Fig. 5. Cost function in dB vs the commensurable order.

true srivcf ivsvf
(ν = 0.5)

E(θ̂) σ(θ̂) E(θ̂) σ(θ̂)

a4 25 25.037 0.026 25.149 0.165

a3 -36.5 -36.546 0.029 -36.671 0.106

a2 31.2 31.235 0.015 31.252 0.034

a1 -5.3 -5.302 0.004 -5.311 0.006

b1 0.5 0.500 0.002 0.502 0.015

b0 -1 -1.002 0.001 -0.999 0.002

Table 1. Comparison between srivcf and ivsvf

methods, E(θ̂) being the mean and σ(θ̂) the
standard deviation

order is at ν = 0.5, accordingly to the true system (34).

3.3 Comparison between ivsvf and srivcf methods

This comparison will be done when the model (35) is in the
same class as the true system, with ν = 0.5. The objective
here is to study the performance of the srivcf method as
compared to the ivsvf method (Cois et al. (2001)). With
different noise realizations with a S/N = 20dB, a Monte
Carlo simulation of 200 runs has been performed. For each
realization of noise, two models were evaluated: one with
ivsvf, and another with srivcf. The Monte Carlo simulation
results are displayed in Table 1.

Even though ivsvf and srivcf methods are both asymp-
totically unbiased (Young (2002)), srivcf significantly im-

proves the parameter variance, as displayed in the σ(θ̂)
columns (standard deviation) of Table 1.

The frequency responses of the whole set of models ob-
tained with srivcf and ivsvf methods are plotted in Fig.
(6-a) and (6-b) respectively. As expected the 200 models
obtained with srivcf fit exactly the Bode diagram of the
simulated system (34) as compared to the ivsvf ones which
have a larger dispersion.

3.4 Comparison between a fractional model and a rational
one both evaluated with srivcf method

Considering srivcf, rational models are compared to frac-
tional ones using a Monte Carlo simulation of 200 runs
with S/N = 20dB. For each realization of noise, two mod-
els are evaluated: one for the best commensurable order
ν = 0.5, and the other for a rational model with ν = 1.
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Fig. 6. Magnitude Bode diagrams of the models estimated
for the 200 Monte Carlo simulation runs – Figure a:
the true system (−), the fractional models (ν = 0.5)
obtained with srivcf (−− lines) – Figure b: the true
system (−), the fractional models (ν = 0.5) obtained
with ivsvf (−− lines) – Figure c: the true system
(−), and the rational models (ν = 1) obtained with
srivcf (−.− lines).

For ν = 0.5, the model coefficients bi and aj in (35)
converged to the exact values (34) for all 200 Monte Carlo
runs. However, for ν = 1, unstable and inappropriate
models are obtained. The frequency responses of the
whole set of 200 rational models obtained for ν = 1 are
plotted in Fig. (6-c). As expected, the rational models
give less satisfactory results as the asymptotic slops of
rational systems are multiples of 20dB per decade in the
magnitude Bode diagram, compared to fractional models
which can have any asymptotic slope (Oustaloup (1995)).
If a rational model equivalent to a fractional model in a
desired frequency range were to be obtained, then a much
higher order model would be required.

4. CONCLUSION AND OUTLOOKS

In this paper, the simplified refined instrumental variable
for continuous-time systems has been extended to frac-
tional models (srivcf ). The srivcf iterative algorithm is
initialized from the traditional least squares-based SVF
estimates. Numerical simulations have illustrated the per-
formance of the proposed method.

The proposed approach can be seen to have a single
tuning parameter: the commensurable order. As shown
in the example, the cost function is tightly linked to the
commensurable order. More studies are yet to be done
on fractional models. Here, only the coefficients were esti-
mated; the parametric estimation could be extended to the
commensurable order. An interesting perspective would
be to evaluate the procedure based on the properties of
the instrumental product matrix (see Young and Jakeman
(1980) or Young et al. (2006)) for identifying the com-
mensurable model prior to parameter estimation. Another

interesting perspective is to develop a rivcf algorithm for
hybrid Box-Jenkins models as in rational systems (Young
et al. (2006)) in order to obtain minimum variance param-
eters in presence of colored noise.
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