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Introduction

We consider a zero-sum differential game G T (t 0 , x 0 , p, q) with finite horizon T and dynamics :

x (t) = f (x(t), u(t), v(t)) t ∈ [t 0 , T ] u(t) ∈ U v(t) ∈ V x(t 0 ) = x 0 x 0 ∈ IR n (1) 
where U and V are compact subsets of some finite dimensional spaces and f : IR n × U × V → IR n is Lipschitz continuous. We introduce asymmetric information on the payoff the following way cf. [START_REF] Cardaliaguet | Differential games with asymmetric information[END_REF] :

• there exists a finite number of possible types for player I indexed by i ∈ I and for player II indexed by j ∈ J ;

• to each pair of types (i, j) we associate a final payoff function g ij : IR n → IR and a running payoff function l ij : IR n × U × V → IR;

• each pair of types (i, j) is selected at random with the probability distribution p ⊗ q ∈ ∆(I) × ∆(J) and the distribution on types is supposed common knowledge.

At the beginning of the game, Nature chooses at random a pair (i, j) with probability p ⊗ q. Each player is informed only of his true type and has therefore partial information on the true payoff function of the game he's playing.

During the game, player I chooses u i (s), s ∈ [t 0 , T ], in order to control the state of the system (1) and minimize the total payoff (s), u i (s), v j (s)]ds, whereas player II chooses control v j to maximize the payoff. We will always assume that the players observe the controls played so far.

g ij (x ij (T )) + T t 0 l ij [x ij
The final payoff of this differential game with asymmetric information is the expected value of the payoffs associated to (i, j) under the product probability p ⊗ q : (s), u i (s), v j (s)]ds] These kinds of games, inspired by [START_REF] Aumann | Repeated games with incomplete information[END_REF], have been studied by Cardaliaguet [START_REF] Cardaliaguet | Differential games with asymmetric information[END_REF] for games without running payoff and Cardaliaguet and Rainer [START_REF] Cardaliaguet | Stochastic differential games with asymmetric information[END_REF] for stochastic games with final and running payoff. Using these results, we recall in the first section that under usual regularity assumptions on the dynamics and the payoff functions, and assuming Isaacs'condition on the Hamiltonian, namely for all (x, ξ, p, q) ∈ IR n × IR n × ∆(I) × ∆(J) :

E p⊗q [g ij (x ij (T )) + T t 0 l ij [x ij
H(x, ξ, p, q) = inf u∈U sup v∈V [ f (x, u, v), ξ + i,j p i q j l ij (x, u, v)] = sup v∈V inf u∈U [ f (x, u, v), ξ + i,j p i q j l ij (x, u, v)] (2)
the game has a value characterized as the unique dual viscosity solution of the following Hamilton-Jacobi equation :

∂φ ∂t + H(x, Dφ, p, q) = 0 (t, x, p, q) ∈ [t 0 , T ] × IR n × ∆(I) × ∆(J)
In section 2, we investigate a special class of differential games with asymmetric information with dynamics and running payoff functions independent of the state of the system and linear final payoff functions g ij (x) = a ij , x . This game is interesting because it is closely related to repeated games with lack of information on both sides studied by Mertens and Zamir [START_REF] Mertens | The value of two person zero sum repeated games with lack of information on both sides[END_REF]. Indeed, the operator Φ which associates to any Lipschitz continuous function W : ∆(I) × ∆(J) → IR the unique solution of the following system of functional equations :

ΦW = Cav q min(ΦW, W ) ΦW = V ex p max(ΦW, W )
allows us to link the value V of the game with imperfect information to the value W of another game with perfect information leading to the representation formula for the value :

V (t, x, p, q) = (T -t)Φ[H( i,j p i q j a ij , p, q)] + i,j p i q j a ij , x
This representation formula cannot be generalized to generic differential games with imperfect information, as shown in [START_REF] Cardaliaguet | Representations formulas for some differential games with asymetric information[END_REF]. This leads to the approximation introduced in section 3, where we build a sequence of functions V τ converging as τ → 0 to the value of the game for the topology of the uniform convergence on compacts as in [START_REF] Cardaliaguet | Numerical approximation and optimal strategies for differential games with lack of information on one side[END_REF].

We define the function V τ only at discrete times of the form t k := kτ where τ is a small time step. For the final time T , we set

V τ (T, x, p, q) := i,j p i q j g ij (x).
Then using backward induction and assuming V τ (t k+1 , •, •, •) is already built, we set

V τ (t k , x, p, q) := Φ{min u∈U max v∈V [V τ (t k+1 , x + τ f (x, u, v), p, q) + τ i,j p i q j l ij (x, u, v)]}
We prove that V τ → V locally uniformly as τ → 0 + . This is a generalization of the result stated in [START_REF] Cardaliaguet | Numerical approximation and optimal strategies for differential games with lack of information on one side[END_REF] that dealt with differential game with imperfect information on one side.

Definitions and characterization of the value

We denote by U(t 0 ) (resp. V(t 0 )) the set of measurable controls of player I (resp. player II) :

U(t 0 ) := {u(•) : [t 0 , T ] → U, u measurable} V(t 0 ) := {v(•) : [t 0 , T ] → V, v measurable} Definition 1. Strategies 1.
A pure strategy for player I at time t 0 is a map α : V(t 0 ) → U(t 0 ) which satisfies the following conditions :

• α is a measurable map from V(t 0 ) to U(t 0 ) where V(t 0 ) and U(t 0 ) are endowed with the Borel σ-field associated with the L 1 distance,

• α is non anticipative with delay, i.e. there is some delay τ > 0 such that for any

v 1 , v 2 ∈ V(t 0 ), if v 1 ≡ v 2 a.e. on [t 0 , t] for some t ∈ [t 0 , T ], then α(v 1 ) ≡ α(v 2 ) a.e. on [t 0 , (t + τ ) ∧ T ]
We denote by A(t 0 ) (resp. B(t 0 )) the set of pure strategies for player I (resp. player II).

2. A mixed strategy for player I at time t 0 is a pair ((Ω α , F α , P α ), α) where (Ω α , F α , P α ) is a probability space and α : Ω α × V(t 0 ) → U(t 0 ) satisfies :

• α is a measurable map from Ω α × V(t 0 ) to U(t 0 )
where Ω α is endowed with the σ-field F α and V(t 0 ) and U(t 0 ) with the Borel σ-field associated with the L 1 distance,

• α is non anticipative with delay, i.e. there is some delay τ > 0 such that for any ω α ∈ Ω α , the pure strategy α(ω α , •) is non anticipative with delay τ

From now on, mixed strategies ((Ω α , F α , P α ), α) will be simply denoted by α. We denote by A r (t 0 ) (resp. B r (t 0 )) the set of mixed strategies for player I (resp. player II).

Note that any pure strategy can be considered as a mixed strategy whose underlying probability space is trivial, namely A(t 0 ) ⊂ A r (t 0 ) and B(t 0 ) ⊂ B r (t 0 ).

Remark that these definitions allow us, due to the delay, to associate to any pair of pure strategies (α, β) ∈ A(t 0 ) × B(t 0 ) a unique pair of controls (u αβ , v αβ ) ∈ U(t 0 ) × V(t 0 ) such that α(v αβ ) = u αβ and β(u αβ ) = v αβ as shown in [START_REF] Cardaliaguet | Deterministic differential games under probability knowledge of initial condition[END_REF].

Given any pair of pure strategies (α, β) ∈ A(t 0 ) × B(t 0 ), we denote by

(X t 0 ,x 0 ,α,β t ) the map t → X t 0 ,x 0 ,u αβ ,v αβ t defined on [t 0 , T ] where X t 0 ,x 0 ,u αβ ,v αβ •
is the unique solution of the dynamics [START_REF] Aumann | Repeated games with incomplete information[END_REF].

Using the results of [START_REF] Cardaliaguet | Differential games with asymmetric information[END_REF]

, if (α, β) ∈ A r (t 0 ) × B r (t 0 ), for all ω = (ω α , ω β ) ∈ Ω α × Ω β , there is a unique pair of controls (u ω , v ω ) ∈ U(t 0 ) × V(t 0 ) such that α(ω α , v ω ) = u ω and β(ω β , u ω ) = v ω . The map ω → (u ω , v ω ) is measurable from Ω α × Ω β endowed with F α ⊗ F β into U(t 0 ) × V(t 0 ) endowed with the Borel σ-field associated with the L 1 distance.
This property allows to compute the payoff of the game with types (i, j) if player I plays α ∈ A r (t 0 ) and player II plays β ∈ B r (t 0 ) :

J ij (t 0 , x 0 , α, β) : = E αβ [g ij (X t 0 ,x 0 ,α,β T ) + T t 0 l ij (X t 0 ,x 0 ,α,β s , u αβ (s), v αβ (s))ds] = Ωα×Ω β [g ij (X t 0 ,x 0 ,uω,vω T ) + T t 0 l ij (X t 0 ,x 0 ,uω,vω s , u ω (s), v ω (s))ds]dP α ⊗ dP β (ω)
Note that in order to take into account his information, in G T (t 0 , x 0 , p, q), player I has to choose a strategy vector α = (α i ) ∈ A r (t 0 ) I and player II picks a strategy β = (β j ) ∈ B r (t 0 ) J . The final payoff in G T (t 0 , x 0 , p, q) in this case becomes :

J(t 0 , x 0 , p, q, α, β) = E p⊗q [J ij (t 0 , x 0 , α i , β j )] = ij p i q j J ij (t 0 , x 0 , α i , β j ) Definition 2.

Dual Hamilton-Jacobi equation

We define the dual Hamilton-Jacobi equation by

∂φ ∂t + H * (x, Dφ, p, q) = 0 (t, x, p, q) ∈ (t 0 , T ) × IR n × ∆(I) × ∆(J)
and H * (x, ξ, p, q) := -H(x, -ξ, p, q), or

H * (x, ξ, p, q) = sup u∈U inf v∈V [ f (x, u, v), ξ - i,j p i q j l ij (x, u, v)] = inf v∈V sup u∈U [ f (x, u, v), ξ - i,j p i q j l ij (x, u, v)]

Definition 3. Dual viscosity solution

The dual viscosity solution of the Hamilton-Jacobi equation :

∂φ ∂t + H(x, Dφ, p, q) = 0 (t, x, p, q) ∈ [t 0 , T ] × IR n × ∆(I) × ∆(J)
is a Lipschitz continuous function w(t, x, p, q), convex in p, concave in q and such that

• if we design by w * the convex Fenchel conjugate of w, namely w * (t, x, p, q) = sup p∈∆(I) { p, p -w(t, x, p, q)}, for any test function

φ ∈ C 1 ((t 0 , T ) × IR n ) such that (t, x) → w * (t, x, p, q) -φ(t, x
) has a maximum at some point ( t, x) for some ( p, q) ∈ IR I × ∆(J) such that ∂w * ∂ p ( t, x, p, q) exists, we have:

φ t ( t, x) + H * (x, Dφ( t, x), p, q) ≥ 0 where p = ∂w * ∂ p ( t, x, p, q)
• if we design by w # the concave Fenchel conjugate of w, namely w # (t, x, p, q) = inf q∈∆(J) { q, q -w(t, x, p, q)}, for any test function

φ ∈ C 1 ((t 0 , T ) × IR n ) such that (t, x) → w # (t,
x, p, q) -φ(t, x) has a minimum at some point ( t, x) for some (p, q) ∈ IR I × ∆(J) such that ∂w # ∂ q ( t, x, p, q) exists, we have:

φ t ( t, x) + H * (x, Dφ( t, x), p, q) ≤ 0 where q = ∂w # ∂ q ( t, x, p, q)
A Lipschitz continuous function w(t, x, p, q), convex in p, concave in q, satisfying only the first item of the definition will be called a dual super-solution of the Hamilton-Jacobi equation, and a dual sub-solution if it satisfies only the second item of the definition.

We assume usual regularity assumptions [START_REF] Cardaliaguet | Stochastic differential games with asymmetric information[END_REF] :

          
U and V are compact subsets of some finite dimensional spaces, We recall a result stated in [START_REF] Cardaliaguet | Stochastic differential games with asymmetric information[END_REF] : Proposition 1.1. Characterization of the value Under regularity assumptions (3) and Isaacs'condition (2), the game with imperfect information and running and final payoff G T (t 0 , x 0 , p, q) has a value V , namely :

f : IR n × U × V → IR n is
V (t 0 , x 0 , p, q) = inf b α∈Ar(t 0 ) I sup b β∈Br(t 0 ) J J(t 0 , x 0 , p, q, α, β) = sup b β∈Br(t 0 ) J inf b α∈Ar(t 0 ) I J(t 0 , x 0 , p, q, α, β)
Furthermore, the value V is characterized as the only dual viscosity solution of the Hamilton-Jacobi equation

φ t + H(x, Dφ, p, q) = 0 (4)
with terminal condition

V (T, x, p, q) = i,j p i q j g ij (x) (5) 
The following Lemma gives a more convenient characterization of dual solutions.

Lemma 1.2. For all function w : [t 0 , T ] × IR n × ∆(I) × ∆(J) → IR Lipschitz continuous, convex in p and concave in q, 1. there is equivalence between :

• w is a dual super-solution of φ t + H(x, Dφ, p, q) = 0

• for all fixed q ∈ ∆(J), for all test function φ = φ(t, x, p) C 1 convex in p and such that (t, x, p) → w(t, x, p, q) -φ(t, x, p) has a strict global minimum at ( t, x, p) ∈ (t 0 , T ) × IR n × ∆(I) :

φ t ( t, x, p) + H(x, Dφ( t, x, p), p, q) ≤ 0 2.
there is equivalence between :

• w is a dual sub-solutions of φ t + H(x, Dφ, p, q) = 0

• for all fixed p ∈ ∆(I), for all test function φ = φ(t, x, q) C 1 concave in q and such that (t, x, q) → w(t, x, p, q) -φ(t, x, q) has a strict global maximum at ( t, x, q) ∈ [t 0 , T ) × IR n × ∆(J):

φ t ( t, x, q) + H(x, Dφ( t, x, q)) ≥ 0
2 Representation formula for a specific class of differential games

In this section, we consider a very special class of games for which :

• the dynamics f and the running payoffs l ij do not depend on the state of the system x

• the final payoffs g ij (x) are linear of the form g ij (x) := a ij , x , for fixed a ij ∈ IR n

We will assume that regularity assumptions (3) and Isaacs'condition (2) are fulfilled.

The dynamics is now :

x (t) = f (u(t), v(t)) t ∈ [t 0 , T ] x(t 0 ) = x 0
Note that in this game the Hamiltonian H(x, ξ, p, q) does not depend on x any more and will be denoted by :

H(ξ, p, q) = inf u sup v [ f (u, v), ξ + i,j p i q j l ij (u, v)] = sup v inf u [ f (u, v), ξ + i,j p i q j l ij (u, v)]
These games have been introduced by Cardaliaguet [START_REF] Cardaliaguet | Representations formulas for some differential games with asymetric information[END_REF] and have the same kind of properties as repeated games studied by Aumann and Maschler [START_REF] Aumann | Repeated games with incomplete information[END_REF]. Indeed, in case player I only is informed of the true state of nature (namely I > 1 and J = 1), the value V of the game is linked to the value W of a game with perfect information that can be derived from the original game (the non-revealing game) through the formula

V (t, x, p) = V ex p (W )(t, x, p)
We extend this formula to games with lack of information on both sides.

The non-revealing game

We introduce now the so-called "non-revealing game", which is the game where none of the player is using his private information, or equivalently no one is informed of the true state of nature. The non-revealing game may be defined as the game with final payoff function i,j p i q j g ij and running payoff i,j p i q j l ij . It is well known that this differential game with perfect information has a value which will be designed by W (t, x, p, q). The value of the non-revealing game is the only viscosity solution of :

∂φ ∂t + H(Dφ, p, q) = 0 (t, x, p, q) ∈ [t 0 , T ] × IR n × ∆(I) × ∆(J) φ(T, x) = i,j p i q j a ij , x x ∈ IR n
Following Hopf formula, we can check that the following function

W (t, x, p, q) = (T -t)H( i,j p i q j a ij , p, q) + i,j p i q j a ij , x (6) 
which is C 1 w.r.t. (t, x) and Lipschitz continuous w.r.t. (p, q) is a classical solution of the previous Hamilton-Jacobi equation.

Representation formula for the value of the game

In case of games with imperfect information on both sides, the operator V ex p has to be replaced with the operator Φ introduced in [START_REF] Mertens | The value of two person zero sum repeated games with lack of information on both sides[END_REF].

We now recall the exact definition and some properties of this operator Φ.

We denote by F the set of all Lipschitz continuous functions : ∆(I) × ∆(J) → IR. We denote by Φ : F → F the operator associating to any ϕ the unique Lipschitz continuous function Φϕ solution of the system : Φϕ(p, q) = V ex p {max(ϕ, Φϕ)}(p, q) Φϕ(p, q) = Cav q {min(ϕ, Φϕ)}(p, q)

Existence and uniqueness of Φϕ is established in this case in [START_REF] Laraki | Variational inequalities, system of functional equations, and incomplete information repeated games[END_REF]. Monotonicity and homogeneity are well known [START_REF] Sorin | A First Course on Zero-Sum Repeated Games[END_REF].

To prove the third property, we fix ϕ ∈ F and L ∈ L(IR I × IR J , IR). By definition of Φϕ = V ex p max(ϕ, Φϕ) :

V ex p max(ϕ + L, Φϕ + L) = V ex p (max(ϕ, Φϕ) + L) = V ex p max(ϕ, Φϕ) + L = Φϕ + L and Φϕ + L is Lipschitz continuous.
We prove the same way that Cav q min(ϕ+L, Φϕ+L) = Φϕ+L, implying Φ (ϕ + L) = Φϕ + L.

Theorem 2.2. The value V (t, x, p, q) of the game with imperfect information where the dynamics and running payoff do not depend on the state of the system and with linear final payoffs is the unique Lispschitz continuous function solving the system :

V = V ex p max(V, W ) V = Cav q min(V, W )
denoting by W the value of the non revealing game. The representation formula for V is given by :

V (t, x, p, q) = (T -t)Φ(H( i,j p i q j a ij , p, q)) + i,j p i q j a ij , x
and V satisfies for all (t, x, p, q) ∈ [t 0 , T ] × IR n × ∆(I) × ∆(J) :

∂φ ∂t + Φ(H(Dφ, p, q)) = 0 Proof of Theorem 2.2 :
The idea is to prove that V and ΦW are dual viscosity solutions of the same Hamilton-Jacobi equation. Using uniqueness of dual solutions satisfying the same terminal condition, we will have at the same time V = ΦW and the representation formula.

If we apply the properties of Φ to the value function of the non-revealing game W (t, x, p, q) defined by ( 6) for any fixed (t, x), we get a representation formula for ΦW :

ΦW (t, x, p, q) = (T -t)Φ(H( i,j p i q j a ij , p, q)) + i,j p i q j a ij , x = (T -t) h(p, q) + i,j p i q j a ij , x
denoting by h(p, q) := Φ(H( i,j p i q j a ij , p, q)).

In order to prove that V = ΦW , we use the characterization of the value as the unique dual solution of the Hamilton-Jacobi equation :

φ t + H(Dφ, p, q) = 0 (7) 
We will prove that ΦW is a dual super-solution of [START_REF] Laraki | Variational inequalities, system of functional equations, and incomplete information repeated games[END_REF]. Indeed, ΦW is Lipschitz continuous, convex in p and concave in q. We use the characterization of dual super-solution with test functions. For a fixed q ∈ ∆(J), we choose a test function φ = φ(t, x, p) C 1 convex in p and such that (t, x, p) → ΦW (t, x, p, q) -φ(t, x, p) has a strict global minimum at (t 0 , x 0 , p 0 ) ∈ (t 0 , T ) × IR n × ∆(I), and we seek to prove that : φ t (t 0 , x 0 , p 0 ) + H(Dφ(t 0 , x 0 , p 0 ), p 0 , q) ≤ 0

The test function φ is convex, and the global minimum is strict, so that p 0 is an extreme point of the epigraph of p → ΦW (t 0 , x 0 , p, q). By definition of ΦW , p 0 is an extreme point of the epigraph of p → h(p, q).

We use now the characterization of the operator Φ due to Laraki [START_REF] Laraki | Variational inequalities, system of functional equations, and incomplete information repeated games[END_REF]: For all ϕ ∈ F, Φϕ is the unique Lipschitz continuous function such that

       ∀q ∈ ∆(J), p 0 is an extreme point of the epigraph of Φϕ(•, q) ⇒ Φϕ(p 0 , q) ≥ ϕ(p 0 , q) ∀p ∈ ∆(I), q 0 is an extreme point of the hypograph of Φϕ(p, •) ⇒ Φϕ(p, q 0 ) ≤ ϕ(p, q 0 ) (8)
The point p 0 is an extreme point of the epigraph of h(•, q) implies : h(p 0 , q) ≥ H( i,j p 0 i q j a ij , p 0 , q)

Since ΦW and φ are C 1 w.r.t. (t, x) and (t 0 , x 0 , p 0 ) is a minimum point of ΦW -φ, the first order optimality condition is : φ t (t 0 , x 0 , p 0 ) = ∂ΦW ∂t (t 0 , x 0 , p 0 , q) = -h(p 0 , q) Dφ(t 0 , x 0 , p 0 ) = DΦW (t 0 , x 0 , p 0 , q) = i,j p 0 i q j a ij and we get φ t (t 0 , x 0 , p 0 )+H(Dφ(t 0 , x 0 , p 0 ), p 0 , q) = -h(p 0 , q)+H( i,j p 0 i q j a ij , p 0 , q) ≤ 0.

We have just proven that ΦW is a dual super-solution of the Hamilton-Jacobi equation [START_REF] Laraki | Variational inequalities, system of functional equations, and incomplete information repeated games[END_REF]. We could prove using the same kind of arguments that ΦW is a dual sub-solution. The terminal condition for ΦW is computed from the terminal condition for W :

ΦW (T, x, p, q) = Φ( i,j p i q j a ij , x ) = i,j p i q j a ij , x .
This implies ΦW is a dual solution of the Hamilton-Jacobi equation [START_REF] Laraki | Variational inequalities, system of functional equations, and incomplete information repeated games[END_REF]. Uniqueness of the dual solution implies the value of the game is related to the value of the non-revealing game through V (t, x, p, q) = ΦW (t, x, p, q)

Approximation of the value

In this section, we consider a zero-sum differential game with imperfect information on both sides, with payoff functions non necessarily linear and taking into accounts running payoffs and a dynamics that may depend on the state of the system. Cardaliaguet proved in [START_REF] Cardaliaguet | Representations formulas for some differential games with asymetric information[END_REF] that for general differential games, there is no way to extend the previous connection between the value of the game and the value of the non-revealing game, so that we seek to build an approximation of the value function V (t, x, p, q) for discrete values of time. Such an approximation was proposed in [START_REF] Cardaliaguet | Numerical approximation and optimal strategies for differential games with lack of information on one side[END_REF] for differential games with imperfect information on one side and final payoff functions. We build an approximation for games with imperfect information on both sides with running payoff.

We will always assume that the regularity assumptions (3) are fulfilled and assume Isaacs'condition, in order to ensure that the game has a value.

We set for large L ∈ IN, τ = T L the time step and we denote by t k := kτ for k ∈ {0, . . . L}.

We define the function V

τ : {0, . . . t L } × IR n × ∆(I) × ∆(J) → IR using backward induction on k by for k = L, V τ (T, x, p, q) := i,j p i q j g ij (x) (9) 
and assuming V τ (t k+1 , •, •, •) is already built

V τ (t k , x, p, q) := Φ(min u∈U max v∈V [V τ (t k+1 , x + τ f (x, u, v), p, q) + τ i,j p i q j l ij (x, u, v)])
Theorem 3.1. The sequence of functions V τ converge to the value function V for the topology of uniform convergence on compacts of [0, T ] × IR n × ∆(I) × ∆(J).

In order to prove the theorem, we will need the following Lemma :

Lemma 3.2. The functions V τ (t k , x, p, q) are Lipschitz continuous with a Lipschitz constant independent of τ .

Proof of Lemma 3.2 :

The Lipschitz continuity of V τ w.r.t. x is clear for t L = T because the g ij are Lipschitz continuous. We assume first that V τ (t k+1 , x, p, q) is Lipschitz continuous w.r.t. x with Lipschitz constant M k+1 . Denoting by M f an upper-bound of the Lipschitz constants of f and the l ij , we prove that

x → min u max v [V τ (t k+1 , x + τ f (x, u, v), p, q) + τ i,j p i q j l ij (x, u, v)]
is Lipschitz continuous. Fix (u, v) ∈ U × V . For all (x, x ) ∈ IR n × IR n , we have :

V τ (t k+1 , x + τ f (x, u, v), p, q) + τ i,j p i q j l ij (x, u, v) -V τ (t k+1 , x + τ f (x , u, v), p, q) -τ i,j p i q j l ij (x , u, v) ≤ M k+1 x -x + τ (f (x, u, v) -f (x , u, v)) +τ i,j p i q j |l ij (x, u, v) -l ij (x , u, v)| ≤ (M k+1 + (1 + M k+1 )τ M f ) x -x
We now take the minimum on U and the maximum on V :

min u max v [V τ (t k+1 , x + τ f (x, u, v), p, q) + τ i,j p i q j l ij (x, u, v)] ≤ min u max v [V τ (t k+1 , x + τ f (x , u, v), p, q) + τ i,j p i q j l ij (x , u, v)] +(M k+1 + (1 + M k+1 )τ M f ) x -x
We deduce from the monotonicity of the operator Φ that V τ (t k , x, p, q) is Lipschitz continuous w.r.t. x with Lipschitz constant (M k+1 + (1 + M k+1 )τ M f ). The function V τ is then globally Lipschitz continuous w.r.t. x with Lipschitz constant

M x V := M L e T M f + T M f independent of τ recalling τ = T L .
The Lipschitz continuity of V τ w.r.t. p and q can be proved the same way. At time T , it comes from the fact that the functions g ij are bounded. Assuming V τ (t k+1 , •, •, •) is Lipschitz continuous w.r.t. p with Lipschitz constant M p k+1 for the L 1 -norm on ∆(I), we have, using the same arguments, for all (p, p ) ∈ ∆(I) 2 :

min u max v [V τ (t k+1 , x + τ f (x, u, v), p, q) + τ i,j p i q j l ij (x, u, v)] ≤ min u max v [V τ (t k+1 , x + τ f (x, u, v), p , q) + τ i,j p i q j l ij (x, u, v)] +(M p k+1 + τ l ∞ ) p -p 1
As before, we deduce V τ (t k , x, p, q) is Lipschitz continuous w.r.t. p with Lipschitz constant (M p k+1 + τ l ∞ ) and V τ is globally Lipschitz continuous w.r.t. p with Lipschitz constant (M L + T l ∞ ), independent of τ . The proof is the same for Lipschitz continuity w.r.t. q.

In order to prove Lipschitz continuity w.r.t. t k , we fix (x, p, q). We use the fact that V τ is convex in p and concave in q for any fixed (t k , x) and Lipschitz continuous w.r.t. x with Lipschitz constant M x V independent of τ :

|V τ (t k+1 , x, p, q) -V τ (t k , x, p, q)| = |V τ (t k+1 , x, p, q) -Φ(min u max v [V τ (t k+1 , x + τ f (x, u, v), p, q) + τ i,j p i q j l ij (x, u, v)])| ≤ |V τ (t k+1 , x, p, q) -Φ(V τ (t k+1 , x, p, q))| + τ (M x V f ∞ + l ∞ ) ≤ (M x V f ∞ + l ∞ )|t k+1 -t k |
because we assumed f and l ij are bounded. By induction on k, we deduce that V τ is Lipschitz continuous w.r.t. t on {0, . . . , t L = T } with Lipschitz constant (M x V f ∞ + l ∞ ) independent of τ . As a conclusion, (t k , x, p, q) → V τ (t k , x, p, q) is Lipschitz continuous with Lipschitz constant independent of τ .

Proof of theorem 3.1 :

We now prove that the sequence of Lipschitz continuous functions V τ converges to V for the topology of uniform convergence on the compact subsets of [0, T ] × IR n × ∆(I) × ∆(J).

The set of functions {V τ } τ >0 is equicontinuous, so that using Arzel-Ascoli theorem, {V τ , τ > 0} is relatively compact for the topology of uniform convergence. Let w be a cluster point of the V τ as τ → 0 + . Then w is Lipschitz continuous, convex in p, concave in q. It remains to prove that w is a dual solution of equation ( 4) : we already know thatw satisfies the terminal condition because of (9).

We will prove w is a dual super-solution of (4). We fix q ∈ ∆(J). Let φ = φ(t, x, p) a test function C 1 convex in p such that (t, x, p) → w(t, x, p, q) -φ(t, x, p) has a strict global minimum at (t 0 , x 0 , p 0 ). There exists a sequence (t τ , x τ , p τ ) converging to (t 0 , x 0 , p 0 ) and such that (t, x, p) → V τ (t, x, p, q) -φ(t, x, p) has a global minimum at (t τ , x τ , p τ ). In order to get a strict minimum, we introduce some perturbation on φ. We design by :

φ γ (t, x, p) := φ -γ x -x 0 2 φ γ (t, x, p) := φ γ (t, x, p) + p 2 = φ + p 2 -γ x -x 0 2
with > 0 and γ > 0. This way, V τ (t, x, p, q) -φ γ (t, x, p) admits a global minimum denoted by (t γ , x γ , p γ ) as continuous and coercive in x.

We introduce now

ψ γ (t, x, p) := φ γ (t, x, p) -p -p γ 2 -(t, x) -(t γ , x γ ) 2
The function ψ γ is convex in p and V τ (t, x, p, q) -ψ γ (t, x, p) has a strict global minimum at (t γ , x γ , p γ ). Notice that the sequence (t γ , x γ , p γ ) is bounded for γ strictly positive. We consider a subsequence converging to a point (t γ , x γ , p γ ) as , τ → 0 with fixed γ. This limit is a global minimum of w(•, •, •, q) -φ γ . We know that w(•, •, •, q) -φ admits (t 0 , x 0 , p 0 ) as strict global minimum so that w(t, x, p, q) -φ γ (t, x, p) = w(t, x, p, q) -φ(t, x, p) + γ x -x 0 2 admits the same strict global minimum and finally (t γ , x γ , p γ ) = (t 0 , x 0 , p 0 ).

The condition of strict global minimum is : for all (τ, X, p) = (0, x γ , p γ ) V τ (t γ , x γ , p γ , q) -ψ γ (t γ , x γ , p γ ) < V τ (t γ + τ, X, p, q) -ψ ,γ (t γ + τ, X, p)

The function ψ γ being convex in p, and the minimum being strict, remark that p γ is an extreme point of p → V τ (t γ , x γ , p, q). Using the characterization of the operator Φ (cf. ( 8)) we have : min u∈U max v∈V [V τ (t γ + τ, x γ + τ f (x γ , u, v), p γ , q) + τ i,j p γi q j l ij (x γ , u, v)] ≤ V τ (t γ , x γ , p γ , q). Writing the strict global minimum condition at (t γ , x γ , p γ ) gives : min u∈U max v∈V {ψ γ (t γ + τ, x γ + τ f (x γ , u, v), p γ ) + τ i,j p γi q j l ij (x γ , u, v)} -ψ γ (t γ , x γ , p γ ) ≤ 0 so that by definition of ψ γ and dividing by τ : min u∈U max v∈V { 1 τ (φ γ (t γ + τ, x γ + τ f (x γ , u, v), p γ ) -φ γ (t γ , x γ , p γ )) + i,j p γi q j l ij (x γ , u, v)} -τ (1 + f 2 ∞ ) ≤ 0

The function φ γ being C 1 , as , τ → 0, the limit of the previous inequality is :

∂ ∂t φ γ (t 0 , x 0 , p 0 ) + min u∈U max v∈V [ f (x 0 , u, v), Dφ γ (t 0 , x 0 , p 0 ) + i,j p 0 i q j l ij (x 0 , u, v)] ≤ 0, Then, because of the definition of φ γ : ∂ ∂t φ(t 0 , x 0 , p 0 ) + min u∈U max v∈V [ f (x 0 , u, v), Dφ(t 0 , x 0 , p 0 ) + i,j p 0 i q j l ij (x 0 , u, v)] ≤ 0, and finally w is a dual super-solution of the Hamilton-Jacobi equation(4). We would prove symmetrically, using the same kind of arguments, that w is a dual sub-solution of the Hamilton-Jacobi equation. The terminal condition being fulfilled, the uniqueness of the dual solution of (4) implies w = V , and the functions V τ uniformly converge to the value of the game on compacts.

Lemma 2 . 1 .

 21 The operator Φ is monotonic :∀ϕ, ψ ∈ F, ϕ ≤ ψ ⇒ Φϕ ≤ Φψ ; homogeneous : ∀λ ∈ IR, ∀ϕ ∈ F, Φ(λϕ) = λΦϕand for all bilinear function L : IR I × IR J → IR :∀ϕ ∈ F, Φ (ϕ + L) = Φ(ϕ) + LProof of Lemma 2.1 :