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Abstract

We consider differential games with imperfect information. For
special games with dynamics independent of the state of the system
and linear payoffs, we give a representation formula for the value sim-
ilar to the value of repeated games with lack of information on both
sides. For general games, this representation formula does not hold
and we introduce an approximation of the value : we build a sequence
of functions converging to the value function.
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Introduction

We consider a zero-sum differential game GT (t0, x0, p, q) with finite horizon
T and dynamics :{

x′(t) = f(x(t), u(t), v(t)) t ∈ [t0, T ] u(t) ∈ U v(t) ∈ V
x(t0) = x0 x0 ∈ IRn (1)

where U and V are compact subsets of some finite dimensional spaces and
f : IRn × U × V → IRn is Lipschitz continuous. We introduce asymmetric
information on the payoff the following way cf. [4] :

• there exists a finite number of possible types for player I indexed by
i ∈ I and for player II indexed by j ∈ J ;
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• to each pair of types (i, j) we associate a final payoff function gij :
IRn → IR and a running payoff function lij : IRn × U × V → IR;

• each pair of types (i, j) is selected at random with the probability
distribution p ⊗ q ∈ ∆(I) × ∆(J) and the distribution on types is
supposed common knowledge.

At the beginning of the game, Nature chooses at random a pair (i, j) with
probability p ⊗ q. Each player is informed only of his true type and has
therefore partial information on the true payoff function of the game he’s
playing.

During the game, player I chooses ui(s), s ∈ [t0, T ], in order to control
the state of the system (1) and minimize the total payoff

gij(xij(T )) +
∫ T

t0

lij [xij(s), ui(s), vj(s)]ds,

whereas player II chooses control vj to maximize the payoff. We will always
assume that the players observe the controls played so far.

The final payoff of this differential game with asymmetric information
is the expected value of the payoffs associated to (i, j) under the product
probability p⊗ q :

Ep⊗q[gij(xij(T )) +
∫ T

t0

lij [xij(s), ui(s), vj(s)]ds]

These kinds of games, inspired by [1], have been studied by Cardaliaguet
[4] for games without running payoff and Cardaliaguet and Rainer [3] for
stochastic games with final and running payoff. Using these results, we recall
in the first section that under usual regularity assumptions on the dynamics
and the payoff functions, and assuming Isaacs’condition on the Hamiltonian,
namely for all (x, ξ, p, q) ∈ IRn × IRn ×∆(I)×∆(J) :

H(x, ξ, p, q) = inf
u∈U

sup
v∈V

[〈f(x, u, v), ξ〉+
∑
i,j

piqjlij(x, u, v)]

= sup
v∈V

inf
u∈U

[〈f(x, u, v), ξ〉+
∑
i,j

piqjlij(x, u, v)]
(2)

the game has a value characterized as the unique dual viscosity solution of
the following Hamilton-Jacobi equation :

∂φ

∂t
+H(x,Dφ, p, q) = 0 (t, x, p, q) ∈ [t0, T ]× IRn ×∆(I)×∆(J)

In section 2, we investigate a special class of differential games with asym-
metric information with dynamics and running payoff functions independent
of the state of the system and linear final payoff functions gij(x) = 〈aij , x〉.
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This game is interesting because it is closely related to repeated games with
lack of information on both sides studied by Mertens and Zamir [8]. In-
deed, the operator Φ which associates to any Lipschitz continuous function
W : ∆(I)×∆(J) → IR the unique solution of the following system of func-
tional equations : {

ΦW = Cavq min(ΦW,W )
ΦW = V exp max(ΦW,W )

allows us to link the value V of the game with imperfect information to the
value W of another game with perfect information leading to the represen-
tation formula for the value :

V (t, x, p, q) = (T − t)Φ[H(
∑
i,j

piqjaij , p, q)] +
∑
i,j

piqj〈aij , x〉

This representation formula cannot be generalized to generic differential
games with imperfect information, as shown in [5]. This leads to the ap-
proximation introduced in section 3, where we build a sequence of functions
Vτ converging as τ → 0 to the value of the game for the topology of the
uniform convergence on compacts as in [6].

We define the function Vτ only at discrete times of the form tk := kτ
where τ is a small time step. For the final time T , we set

Vτ (T, x, p, q) :=
∑
i,j

piqjgij(x).

Then using backward induction and assuming Vτ (tk+1, ·, ·, ·) is already built,
we set

Vτ (tk, x, p, q) := Φ{min
u∈U

max
v∈V

[Vτ (tk+1, x+ τf(x, u, v), p, q)

+ τ
∑
i,j

piqjlij(x, u, v)]}

We prove that Vτ → V locally uniformly as τ → 0+. This is a generalization
of the result stated in [6] that dealt with differential game with imperfect
information on one side.

1 Definitions and characterization of the value

We denote by U(t0) (resp. V(t0)) the set of measurable controls of player I
(resp. player II) :

U(t0) := {u(·) : [t0, T ] → U, u measurable}
V(t0) := {v(·) : [t0, T ] → V, v measurable}

Definition 1. Strategies
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1. A pure strategy for player I at time t0 is a map α : V(t0) → U(t0)
which satisfies the following conditions :

• α is a measurable map from V(t0) to U(t0) where V(t0) and U(t0)
are endowed with the Borel σ-field associated with the L1 distance,

• α is non anticipative with delay, i.e. there is some delay τ > 0
such that for any v1, v2 ∈ V(t0), if v1 ≡ v2 a.e. on [t0, t] for some
t ∈ [t0, T ], then α(v1) ≡ α(v2) a.e. on [t0, (t+ τ) ∧ T ]

We denote by A(t0) (resp. B(t0)) the set of pure strategies for player
I (resp. player II).

2. A mixed strategy for player I at time t0 is a pair ((Ωα,Fα,Pα), α)
where (Ωα,Fα,Pα) is a probability space and α : Ωα × V(t0) → U(t0)
satisfies :

• α is a measurable map from Ωα × V(t0) to U(t0) where Ωα is
endowed with the σ-field Fα and V(t0) and U(t0) with the Borel
σ-field associated with the L1 distance,

• α is non anticipative with delay, i.e. there is some delay τ > 0
such that for any ωα ∈ Ωα, the pure strategy α(ωα, ·) is non
anticipative with delay τ

From now on, mixed strategies ((Ωα,Fα,Pα), α) will be simply denoted
by α. We denote by Ar(t0) (resp. Br(t0)) the set of mixed strategies
for player I (resp. player II).

Note that any pure strategy can be considered as a mixed strategy
whose underlying probability space is trivial, namely A(t0) ⊂ Ar(t0) and
B(t0) ⊂ Br(t0).

Remark that these definitions allow us, due to the delay, to associate to
any pair of pure strategies (α, β) ∈ A(t0) × B(t0) a unique pair of controls
(uαβ , vαβ) ∈ U(t0) × V(t0) such that α(vαβ) = uαβ and β(uαβ) = vαβ as
shown in [2].

Given any pair of pure strategies (α, β) ∈ A(t0) × B(t0), we denote by
(Xt0,x0,α,β

t ) the map t 7→ X
t0,x0,uαβ ,vαβ

t defined on [t0, T ] where Xt0,x0,uαβ ,vαβ
·

is the unique solution of the dynamics (1).

Using the results of [4], if (α, β) ∈ Ar(t0)×Br(t0), for all ω = (ωα, ωβ) ∈
Ωα×Ωβ, there is a unique pair of controls (uω, vω) ∈ U(t0)×V(t0) such that
α(ωα, vω) = uω and β(ωβ , uω) = vω. The map ω 7→ (uω, vω) is measurable
from Ωα × Ωβ endowed with Fα ⊗ Fβ into U(t0)× V(t0) endowed with the
Borel σ-field associated with the L1 distance.
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This property allows to compute the payoff of the game with types (i, j) if
player I plays α ∈ Ar(t0) and player II plays β ∈ Br(t0) :

Jij(t0, x0, α, β) : = Eαβ [gij(X
t0,x0,α,β
T ) +

∫ T

t0

lij(Xt0,x0,α,β
s , uαβ(s), vαβ(s))ds]

=
∫

Ωα×Ωβ

[gij(X
t0,x0,uω ,vω

T )

+
∫ T

t0

lij(Xt0,x0,uω ,vω
s , uω(s), vω(s))ds]dPα ⊗ dPβ(ω)

Note that in order to take into account his information, in GT (t0, x0, p, q),
player I has to choose a strategy vector α̂ = (αi) ∈ Ar(t0)I and player II
picks a strategy β̂ = (βj) ∈ Br(t0)J . The final payoff in GT (t0, x0, p, q) in
this case becomes :

J(t0, x0, p, q, α̂, β̂) = Ep⊗q[Jij(t0, x0, αi, βj)] =
∑
ij

piqjJij(t0, x0, αi, βj)

Definition 2. Dual Hamilton-Jacobi equation
We define the dual Hamilton-Jacobi equation by

∂φ

∂t
+H∗(x,Dφ, p, q) = 0 (t, x, p, q) ∈ (t0, T )× IRn ×∆(I)×∆(J)

and H∗(x, ξ, p, q) := −H(x,−ξ, p, q), or

H∗(x, ξ, p, q) = sup
u∈U

inf
v∈V

[〈f(x, u, v), ξ〉 −
∑
i,j

piqjlij(x, u, v)]

= inf
v∈V

sup
u∈U

[〈f(x, u, v), ξ〉 −
∑
i,j

piqjlij(x, u, v)]

Definition 3. Dual viscosity solution
The dual viscosity solution of the Hamilton-Jacobi equation :

∂φ

∂t
+H(x,Dφ, p, q) = 0 (t, x, p, q) ∈ [t0, T ]× IRn ×∆(I)×∆(J)

is a Lipschitz continuous function w(t, x, p, q), convex in p, concave in q and
such that

• if we design by w∗ the convex Fenchel conjugate of w, namely
w∗(t, x, p̂, q) = supp∈∆(I){〈p̂, p〉 − w(t, x, p, q)}, for any test function
φ ∈ C1((t0, T ) × IRn) such that (t, x) 7→ w∗(t, x, p̂, q) − φ(t, x) has a
maximum at some point (t̄, x̄) for some (p̂, q) ∈ IRI ×∆(J) such that
∂w∗

∂p̂ (t̄, x̄, p̂, q) exists, we have:

φt(t̄, x̄) +H∗(x̄,Dφ(t̄, x̄), p, q) ≥ 0 where p =
∂w∗

∂p̂
(t̄, x̄, p̂, q)
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• if we design by w# the concave Fenchel conjugate of w, namely
w#(t, x, p, q̂) = infq∈∆(J){〈q̂, q〉 − w(t, x, p, q)}, for any test function
φ ∈ C1((t0, T ) × IRn) such that (t, x) 7→ w#(t, x, p, q̂) − φ(t, x) has a
minimum at some point (t̄, x̄) for some (p, q̂) ∈ IRI ×∆(J) such that
∂w#

∂q̂ (t̄, x̄, p, q̂) exists, we have:

φt(t̄, x̄) +H∗(x̄,Dφ(t̄, x̄), p, q) ≤ 0 where q =
∂w#

∂q̂
(t̄, x̄, p, q̂)

A Lipschitz continuous function w(t, x, p, q), convex in p, concave in q, sat-
isfying only the first item of the definition will be called a dual super-solution
of the Hamilton-Jacobi equation, and a dual sub-solution if it satisfies only
the second item of the definition.

We assume usual regularity assumptions [3] :
U and V are compact subsets of some finite dimensional spaces,
f : IRn × U × V → IRn is bounded, continuous and uniformly

Lipschitz continuous w.r.t. x
gij : IRn → IR are Lipschitz continuous and bounded
lij : IRn × U × V → IR are Lipschitz continuous and bounded

(3)

We recall a result stated in [3] :

Proposition 1.1. Characterization of the value
Under regularity assumptions (3) and Isaacs’condition (2), the game with
imperfect information and running and final payoff GT (t0, x0, p, q) has a
value V , namely :

V (t0, x0, p, q) = inf
bα∈Ar(t0)I

sup
bβ∈Br(t0)J

J(t0, x0, p, q, α̂, β̂)

= sup
bβ∈Br(t0)J

inf
bα∈Ar(t0)I

J(t0, x0, p, q, α̂, β̂)

Furthermore, the value V is characterized as the only dual viscosity solution
of the Hamilton-Jacobi equation

φt +H(x,Dφ, p, q) = 0 (4)

with terminal condition

V (T, x, p, q) =
∑
i,j

piqjgij(x) (5)

The following Lemma gives a more convenient characterization of dual
solutions.
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Lemma 1.2. For all function w : [t0, T ]× IRn×∆(I)×∆(J) → IR Lipschitz
continuous, convex in p and concave in q,

1. there is equivalence between :

• w is a dual super-solution of φt +H(x,Dφ, p, q) = 0

• for all fixed q ∈ ∆(J), for all test function φ = φ(t, x, p) C1

convex in p and such that (t, x, p) 7→ w(t, x, p, q) − φ(t, x, p) has
a strict global minimum at (t̄, x̄, p̄) ∈ (t0, T )× IRn ×∆(I) :

φt(t̄, x̄, p̄) +H(x̄, Dφ(t̄, x̄, p̄), p̄, q) ≤ 0

2. there is equivalence between :

• w is a dual sub-solutions of φt +H(x,Dφ, p, q) = 0

• for all fixed p ∈ ∆(I), for all test function φ = φ(t, x, q) C1

concave in q and such that (t, x, q) 7→ w(t, x, p, q)− φ(t, x, q) has
a strict global maximum at (t̄, x̄, q̄) ∈ [t0, T )× IRn ×∆(J):

φt(t̄, x̄, q̄) +H(x̄,Dφ(t̄, x̄, q̄)) ≥ 0

2 Representation formula for a specific class of dif-
ferential games

In this section, we consider a very special class of games for which :

• the dynamics f and the running payoffs lij do not depend on the state
of the system x

• the final payoffs gij(x) are linear of the form gij(x) := 〈aij , x〉, for fixed
aij ∈ IRn

We will assume that regularity assumptions (3) and Isaacs’condition (2) are
fulfilled.

The dynamics is now :{
x′(t) = f(u(t), v(t)) t ∈ [t0, T ]
x(t0) = x0

Note that in this game the Hamiltonian H(x, ξ, p, q) does not depend on x
any more and will be denoted by :

H(ξ, p, q) = inf
u

sup
v

[〈f(u, v), ξ〉+
∑
i,j

piqjlij(u, v)]

= sup
v

inf
u

[〈f(u, v), ξ〉+
∑
i,j

piqjlij(u, v)]
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These games have been introduced by Cardaliaguet [5] and have the same
kind of properties as repeated games studied by Aumann and Maschler [1].
Indeed, in case player I only is informed of the true state of nature (namely
I > 1 and J = 1), the value V of the game is linked to the value W of a
game with perfect information that can be derived from the original game
(the non-revealing game) through the formula

V (t, x, p) = V exp(W )(t, x, p)

We extend this formula to games with lack of information on both sides.

2.1 The non-revealing game

We introduce now the so-called ”non-revealing game”, which is the game
where none of the player is using his private information, or equivalently no
one is informed of the true state of nature. The non-revealing game may
be defined as the game with final payoff function

∑
i,j piqjgij and running

payoff
∑

i,j piqjlij . It is well known that this differential game with perfect
information has a value which will be designed by W (t, x, p, q). The value
of the non-revealing game is the only viscosity solution of :{ ∂φ

∂t +H(Dφ, p, q) = 0 (t, x, p, q) ∈ [t0, T ]× IRn ×∆(I)×∆(J)
φ(T, x) =

∑
i,j piqj〈aij , x〉 x ∈ IRn

Following Hopf formula, we can check that the following function

W (t, x, p, q) = (T − t)H(
∑
i,j

piqjaij , p, q) +
∑
i,j

piqj〈aij , x〉 (6)

which is C1 w.r.t. (t, x) and Lipschitz continuous w.r.t. (p, q) is a classical
solution of the previous Hamilton-Jacobi equation.

2.2 Representation formula for the value of the game

In case of games with imperfect information on both sides, the operator
V exp has to be replaced with the operator Φ introduced in [8].

We now recall the exact definition and some properties of this operator
Φ.

We denote by F the set of all Lipschitz continuous functions : ∆(I) ×
∆(J) → IR. We denote by Φ : F → F the operator associating to any ϕ
the unique Lipschitz continuous function Φϕ solution of the system :{

Φϕ(p, q) = V exp{max(ϕ,Φϕ)}(p, q)
Φϕ(p, q) = Cavq{min(ϕ,Φϕ)}(p, q)

Existence and uniqueness of Φϕ is established in this case in [7].

8



Lemma 2.1. The operator Φ is monotonic :

∀ϕ,ψ ∈ F , ϕ ≤ ψ ⇒ Φϕ ≤ Φψ ;

homogeneous :
∀λ ∈ IR, ∀ϕ ∈ F , Φ(λϕ) = λΦϕ

and for all bilinear function L : IRI × IRJ → IR :

∀ϕ ∈ F , Φ (ϕ+ L) = Φ(ϕ) + L

Proof of Lemma 2.1 :

Monotonicity and homogeneity are well known [9].

To prove the third property, we fix ϕ ∈ F and L ∈ L(IRI × IRJ , IR). By
definition of Φϕ = V exp max(ϕ,Φϕ) :

V exp max(ϕ+ L,Φϕ+ L) = V exp(max(ϕ,Φϕ) + L)
= V exp max(ϕ,Φϕ) + L

= Φϕ+ L

and Φϕ+ L is Lipschitz continuous.
We prove the same way that Cavq min(ϕ+L,Φϕ+L) = Φϕ+L, implying

Φ (ϕ+ L) = Φϕ+ L.

Theorem 2.2. The value V (t, x, p, q) of the game with imperfect informa-
tion where the dynamics and running payoff do not depend on the state of
the system and with linear final payoffs is the unique Lispschitz continuous
function solving the system :{

V = V exp max(V,W )
V = Cavq min(V,W )

denoting by W the value of the non revealing game. The representation
formula for V is given by :

V (t, x, p, q) = (T − t)Φ(H(
∑
i,j

piqjaij , p, q)) +
∑
i,j

piqj〈aij , x〉

and V satisfies for all (t, x, p, q) ∈ [t0, T ]× IRn ×∆(I)×∆(J) :

∂φ

∂t
+ Φ(H(Dφ, p, q)) = 0

Proof of Theorem 2.2 :
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The idea is to prove that V and ΦW are dual viscosity solutions of the
same Hamilton-Jacobi equation. Using uniqueness of dual solutions satisfy-
ing the same terminal condition, we will have at the same time V = ΦW
and the representation formula.

If we apply the properties of Φ to the value function of the non-revealing
game W (t, x, p, q) defined by (6) for any fixed (t, x), we get a representation
formula for ΦW :

ΦW (t, x, p, q) = (T − t)Φ(H(
∑
i,j

piqjaij , p, q)) +
∑
i,j

piqj〈aij , x〉

= (T − t)h̃(p, q) +
∑
i,j

piqj〈aij , x〉

denoting by
h̃(p, q) := Φ(H(

∑
i,j

piqjaij , p, q)).

In order to prove that V = ΦW , we use the characterization of the value
as the unique dual solution of the Hamilton-Jacobi equation :

φt +H(Dφ, p, q) = 0 (7)

We will prove that ΦW is a dual super-solution of (7). Indeed, ΦW
is Lipschitz continuous, convex in p and concave in q. We use the char-
acterization of dual super-solution with test functions. For a fixed q ∈
∆(J), we choose a test function φ = φ(t, x, p) C1 convex in p and such
that (t, x, p) 7→ ΦW (t, x, p, q) − φ(t, x, p) has a strict global minimum at
(t0, x0, p0) ∈ (t0, T )× IRn ×∆(I), and we seek to prove that :

φt(t0, x0, p0) +H(Dφ(t0, x0, p0), p0, q) ≤ 0

The test function φ is convex, and the global minimum is strict, so that
p0 is an extreme point of the epigraph of p 7→ ΦW (t0, x0, p, q). By definition
of ΦW , p0 is an extreme point of the epigraph of p 7→ h̃(p, q).

We use now the characterization of the operator Φ due to Laraki [7]:

For all ϕ ∈ F , Φϕ is the unique Lipschitz continuous function such that
∀q ∈ ∆(J), p0 is an extreme point of the epigraph of Φϕ(·, q)

⇒ Φϕ(p0, q) ≥ ϕ(p0, q)
∀p ∈ ∆(I), q0 is an extreme point of the hypograph of Φϕ(p, ·)

⇒ Φϕ(p, q0) ≤ ϕ(p, q0)

(8)

The point p0 is an extreme point of the epigraph of h̃(·, q) implies :

h̃(p0, q) ≥ H(
∑
i,j

p0
i qjaij , p

0, q)
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Since ΦW and φ are C1 w.r.t. (t, x) and (t0, x0, p0) is a minimum point
of ΦW − φ, the first order optimality condition is :

φt(t0, x0, p0) = ∂ΦW
∂t (t0, x0, p0, q) = −h̃(p0, q)

Dφ(t0, x0, p0) = DΦW (t0, x0, p0, q) =
∑

i,j p
0
i qjaij

and we get

φt(t0, x0, p0)+H(Dφ(t0, x0, p0), p0, q) = −h̃(p0, q)+H(
∑
i,j

p0
i qjaij , p

0, q) ≤ 0.

We have just proven that ΦW is a dual super-solution of the Hamilton-
Jacobi equation (7). We could prove using the same kind of arguments that
ΦW is a dual sub-solution. The terminal condition for ΦW is computed
from the terminal condition for W :

ΦW (T, x, p, q) = Φ(
∑
i,j

piqj〈aij , x〉) =
∑
i,j

piqj〈aij , x〉.

This implies ΦW is a dual solution of the Hamilton-Jacobi equation (7).
Uniqueness of the dual solution implies the value of the game is related to
the value of the non-revealing game through

V (t, x, p, q) = ΦW (t, x, p, q)

3 Approximation of the value

In this section, we consider a zero-sum differential game with imperfect
information on both sides, with payoff functions non necessarily linear and
taking into accounts running payoffs and a dynamics that may depend on the
state of the system. Cardaliaguet proved in [5] that for general differential
games, there is no way to extend the previous connection between the value
of the game and the value of the non-revealing game, so that we seek to
build an approximation of the value function V (t, x, p, q) for discrete values
of time. Such an approximation was proposed in [6] for differential games
with imperfect information on one side and final payoff functions. We build
an approximation for games with imperfect information on both sides with
running payoff.

We will always assume that the regularity assumptions (3) are fulfilled
and assume Isaacs’condition, in order to ensure that the game has a value.

We set for large L ∈ IN, τ = T
L the time step and we denote by tk :=

kτ for k ∈ {0, . . . L}.
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We define the function Vτ : {0, . . . tL} × IRn ×∆(I) ×∆(J) → IR using
backward induction on k by

for k = L, Vτ (T, x, p, q) :=
∑
i,j

piqjgij(x) (9)

and assuming Vτ (tk+1, ·, ·, ·) is already built

Vτ (tk, x, p, q) := Φ(min
u∈U

max
v∈V

[Vτ (tk+1, x+ τf(x, u, v), p, q)

+ τ
∑
i,j

piqjlij(x, u, v)])

Theorem 3.1. The sequence of functions Vτ converge to the value function
V for the topology of uniform convergence on compacts of [0, T ] × IRn ×
∆(I)×∆(J).

In order to prove the theorem, we will need the following Lemma :

Lemma 3.2. The functions Vτ (tk, x, p, q) are Lipschitz continuous with a
Lipschitz constant independent of τ .

Proof of Lemma 3.2 :
The Lipschitz continuity of Vτ w.r.t. x is clear for tL = T because the gij

are Lipschitz continuous. We assume first that Vτ (tk+1, x, p, q) is Lipschitz
continuous w.r.t. x with Lipschitz constant Mk+1. Denoting by Mf an
upper-bound of the Lipschitz constants of f and the lij , we prove that

x 7→ min
u

max
v

[Vτ (tk+1, x+ τf(x, u, v), p, q) + τ
∑
i,j

piqjlij(x, u, v)]

is Lipschitz continuous. Fix (u, v) ∈ U × V . For all (x, x′) ∈ IRn × IRn, we
have :

Vτ (tk+1, x+ τf(x, u, v), p, q) + τ
∑

i,j piqjlij(x, u, v)
−Vτ (tk+1, x

′ + τf(x′, u, v), p, q)− τ
∑

i,j piqjlij(x′, u, v)
≤Mk+1‖x− x′ + τ(f(x, u, v)− f(x′, u, v))‖

+τ
∑

i,j piqj |lij(x, u, v)− lij(x′, u, v)|
≤ (Mk+1 + (1 +Mk+1)τMf )‖x′ − x‖

We now take the minimum on U and the maximum on V :

minu maxv[Vτ (tk+1, x+ τf(x, u, v), p, q) + τ
∑

i,j piqjlij(x, u, v)]
≤ minu maxv[Vτ (tk+1, x

′ + τf(x′, u, v), p, q) + τ
∑

i,j piqjlij(x′, u, v)]
+(Mk+1 + (1 +Mk+1)τMf )‖x′ − x‖

We deduce from the monotonicity of the operator Φ that Vτ (tk, x, p, q)
is Lipschitz continuous w.r.t. x with Lipschitz constant (Mk+1 + (1 +
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Mk+1)τMf ). The function Vτ is then globally Lipschitz continuous w.r.t. x
with Lipschitz constant Mx

V := MLe
TMf + TMf independent of τ recalling

τ = T
L .

The Lipschitz continuity of Vτ w.r.t. p and q can be proved the same
way. At time T , it comes from the fact that the functions gij are bounded.
Assuming Vτ (tk+1, ·, ·, ·) is Lipschitz continuous w.r.t. p with Lipschitz con-
stant Mp

k+1 for the L1-norm on ∆(I), we have, using the same arguments,
for all (p, p′) ∈ ∆(I)2 :

minu maxv[Vτ (tk+1, x+ τf(x, u, v), p, q) + τ
∑

i,j piqjlij(x, u, v)]
≤ minu maxv[Vτ (tk+1, x+ τf(x, u, v), p′, q) + τ

∑
i,j p

′
iqjlij(x, u, v)]

+(Mp
k+1 + τ‖l‖∞)‖p− p′‖1

As before, we deduce Vτ (tk, x, p, q) is Lipschitz continuous w.r.t. p with
Lipschitz constant (Mp

k+1 + τ‖l‖∞) and Vτ is globally Lipschitz continuous
w.r.t. p with Lipschitz constant (ML +T‖l‖∞), independent of τ . The proof
is the same for Lipschitz continuity w.r.t. q.

In order to prove Lipschitz continuity w.r.t. tk, we fix (x, p, q). We use
the fact that Vτ is convex in p and concave in q for any fixed (tk, x) and
Lipschitz continuous w.r.t. x with Lipschitz constant Mx

V independent of τ
:

|Vτ (tk+1, x, p, q)− Vτ (tk, x, p, q)|
= |Vτ (tk+1, x, p, q)

−Φ(min
u

max
v

[Vτ (tk+1, x+ τf(x, u, v), p, q) + τ
∑
i,j

piqjlij(x, u, v)])|

≤ |Vτ (tk+1, x, p, q)−Φ(Vτ (tk+1, x, p, q))|
+ τ(Mx

V ‖f‖∞ + ‖l‖∞)
≤ (Mx

V ‖f‖∞ + ‖l‖∞)|tk+1 − tk|

because we assumed f and lij are bounded. By induction on k, we deduce
that Vτ is Lipschitz continuous w.r.t. t on {0, . . . , tL = T} with Lipschitz
constant (Mx

V ‖f‖∞ + ‖l‖∞) independent of τ .
As a conclusion, (tk, x, p, q) 7→ Vτ (tk, x, p, q) is Lipschitz continuous with

Lipschitz constant independent of τ .
Proof of theorem 3.1 :
We now prove that the sequence of Lipschitz continuous functions Vτ con-
verges to V for the topology of uniform convergence on the compact subsets
of [0, T ]× IRn ×∆(I)×∆(J).

The set of functions {Vτ}τ>0 is equicontinuous, so that using Arzel-Ascoli
theorem, {Vτ , τ > 0} is relatively compact for the topology of uniform con-
vergence. Let w be a cluster point of the Vτ as τ → 0+. Then w is Lipschitz
continuous, convex in p, concave in q. It remains to prove that w is a dual
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solution of equation (4) : we already know thatw satisfies the terminal con-
dition because of (9).

We will prove w is a dual super-solution of (4). We fix q ∈ ∆(J).
Let φ = φ(t, x, p) a test function C1 convex in p such that (t, x, p) 7→
w(t, x, p, q)−φ(t, x, p) has a strict global minimum at (t0, x0, p0). There ex-
ists a sequence (tτ , xτ , pτ ) converging to (t0, x0, p0) and such that (t, x, p) 7→
Vτ (t, x, p, q)−φ(t, x, p) has a global minimum at (tτ , xτ , pτ ). In order to get
a strict minimum, we introduce some perturbation on φ. We design by :

φγ(t, x, p) := φ− γ‖x− x0‖2

φεγ(t, x, p) := φγ(t, x, p) + ε‖p‖2 = φ+ ε‖p‖2 − γ‖x− x0‖2

with ε > 0 and γ > 0. This way, Vτ (t, x, p, q) − φεγ(t, x, p) admits a global
minimum denoted by (tεγ , xεγ , pεγ) as continuous and coercive in x.

We introduce now

ψεγ(t, x, p) := φεγ(t, x, p)− ε‖p− pεγ‖2 − ε‖(t, x)− (tεγ , xεγ)‖2

The function ψεγ is convex in p and Vτ (t, x, p, q) − ψεγ(t, x, p) has a strict
global minimum at (tεγ , xεγ , pεγ).

Notice that the sequence (tεγ , xεγ , pεγ) is bounded for γ strictly positive.
We consider a subsequence converging to a point (tγ , xγ , pγ) as ε, τ → 0
with fixed γ. This limit is a global minimum of w(·, ·, ·, q) − φγ . We
know that w(·, ·, ·, q) − φ admits (t0, x0, p0) as strict global minimum so
that w(t, x, p, q) − φγ(t, x, p) = w(t, x, p, q) − φ(t, x, p) + γ‖x − x0‖2 admits
the same strict global minimum and finally (tγ , xγ , pγ) = (t0, x0, p0).

The condition of strict global minimum is : for all (τ,X, p) 6= (0, xεγ , pεγ)

Vτ (tεγ , xεγ , pεγ , q)−ψεγ(tεγ , xεγ , pεγ) < Vτ (tεγ +τ,X, p, q)−ψε,γ(tεγ +τ,X, p)

The function ψεγ being convex in p, and the minimum being strict, re-
mark that pεγ is an extreme point of p 7→ Vτ (tεγ , xεγ , p, q). Using the char-
acterization of the operator Φ (cf. (8)) we have :

min
u∈U

max
v∈V

[Vτ (tεγ + τ, xεγ + τf(xεγ , u, v), pεγ , q)

+ τ
∑
i,j

pεγiqjlij(xεγ , u, v)] ≤ Vτ (tεγ , xεγ , pεγ , q).

Writing the strict global minimum condition at (tεγ , xεγ , pεγ) gives :

min
u∈U

max
v∈V

{ψεγ(tεγ + τ, xεγ + τf(xεγ , u, v), pεγ) + τ
∑
i,j

pεγiqjlij(xεγ , u, v)}

− ψεγ(tεγ , xεγ , pεγ) ≤ 0

14



so that by definition of ψεγ and dividing by τ :

min
u∈U

max
v∈V

{1
τ
(φγ(tεγ + τ, xεγ + τf(xεγ , u, v), pεγ)− φγ(tεγ , xεγ , pεγ))

+
∑
i,j

pεγiqjlij(xεγ , u, v)} − ετ(1 + ‖f‖2
∞) ≤ 0

The function φγ being C1, as ε, τ → 0, the limit of the previous inequality
is :

∂

∂t
φγ(t0, x0, p0)

+ min
u∈U

max
v∈V

[〈f(x0, u, v), Dφγ(t0, x0, p0)〉+
∑
i,j

p0
i qjlij(x

0, u, v)] ≤ 0,

Then, because of the definition of φγ :

∂

∂t
φ(t0, x0, p0)

+ min
u∈U

max
v∈V

[〈f(x0, u, v), Dφ(t0, x0, p0)〉+
∑
i,j

p0
i qjlij(x

0, u, v)] ≤ 0,

and finally w is a dual super-solution of the Hamilton-Jacobi equation(4).
We would prove symmetrically, using the same kind of arguments, that
w is a dual sub-solution of the Hamilton-Jacobi equation. The terminal
condition being fulfilled, the uniqueness of the dual solution of (4) implies
w = V , and the functions Vτ uniformly converge to the value of the game
on compacts.
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