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Unbounded stochastic control problems may lead to Hamilton-Jacobi-Bellman equations whose Hamiltonians are not always defined, especially when the diffusion term is unbounded with respect to the control. We obtain existence and uniqueness of viscosity solutions growing at most like o(1 + |x| p ) at infinity for such HJB equations and more generally for degenerate parabolic equations with a superlinear convex gradient nonlinearity. If the corresponding control problem has a bounded diffusion with respect to the control, then our results apply to a larger class of solutions, namely those growing like O(1 + |x| p ) at infinity. This latter case encompasses some equations related to backward stochastic differential equations.

Introduction

In the joint paper [START_REF] Da Lio | Uniqueness results for second-order Bellman-Isaacs equations under quadratic growth assumptions and applications[END_REF] the authors obtain a comparison result between semicontinuous viscosity solutions, neither bounded from below nor from above, growing at most quadratically in the state variable, of second order degenerate parabolic equations of the form

   ∂u ∂t + H(x, t, Du, D 2 u) = 0 in IR N × (0, T ), u(x, 0) = ψ(x) in IR N , (1) 
where N ≥ 1, T > 0. The unknown u is a real-valued function defined in IR N × [0, T ], Du and D 2 u denote respectively its gradient and Hessian matrix and ψ is a given initial condition. The Hamiltonian H : IR N × [0, T ] × IR N × S N (IR) → IR has the form H(x, t, q, X) = sup α∈A -b(x, t, α), q -ℓ(x, t, α) -Trace σ(x, t, α)σ T (x, t, α)X .

(2) (1) Dipartimento di Matematica Pura e Applicata, Via Trieste, 63, 35121 Padova, Italy.

(2) Laboratoire de Mathématiques et Physique Théorique (UMR CNRS 6083). Fédération Denis Poisson (FR 2964). Université François Rabelais Tours. Parc de Grandmont, 37200 Tours, France.
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Note that H is convex with respect to q. The key assumptions in the paper [START_REF] Da Lio | Uniqueness results for second-order Bellman-Isaacs equations under quadratic growth assumptions and applications[END_REF] are that A is an unbounded control set, the functions b and ℓ grow respectively at most linearly and quadratically with respect to both the control and the state. Instead the functions σ is assumed to grow at most linearly with respect to the state and is bounded with respect to the control. (In fact, in [START_REF] Da Lio | Uniqueness results for second-order Bellman-Isaacs equations under quadratic growth assumptions and applications[END_REF], we consider more general equations of Isaacs type by adding a concave Hamiltonian G with bounded control, see Remark 2.1. To simplify the exposition we take G ≡ 0 here.)

In the present work, we extend the results of [START_REF] Da Lio | Uniqueness results for second-order Bellman-Isaacs equations under quadratic growth assumptions and applications[END_REF] in two directions.

The first issue is to obtain a comparison result for unbounded solutions under the weaker assumption that the diffusion matrix σ is unbounded also with respect to the control. The main difficulty is that the Hamiltonian H may not be continuous. To illustrate this fact, consider for instance the case where A = IR N , b = α, σ = |α|I and ℓ = |α| 2 . The Hamiltonian H becomes sup

α∈IR N {-α, Du -|α| 2 - |α| 2 2 ∆u}, (3) 
which is +∞ as soon as ∆u < -2. This example is motivated by the well-known Stochastic Linear Quadratic problem, see for instance Bensoussan [START_REF] Bensoussan | Stochastic control by functional analysis methods[END_REF], Fleming and Rishel [START_REF] Fleming | Deterministic and stochastic optimal control[END_REF], Fleming and Soner [START_REF] Fleming | Controlled Markov processes and viscosity solutions[END_REF], Øksendal [START_REF]Stochastic differential equations[END_REF], Yong and Zhou [START_REF] Yong | of Applications of Mathematics[END_REF] and the references therein for an overview of this problem. The usual way to deal with such a problem is to plug into the equation value functions V of particular form (for instance quadratic in space) for which one knows that H(x, t, V, DV ) is defined. It leads to some ordinary differential equations of Ricatti type which allow to identify precisely the value function (see [START_REF] Yong | of Applications of Mathematics[END_REF]). Another way is to replace the Hamilton-Jacobi-Bellman equation by a variational inequality, see Barles [START_REF] Barles | An approach of deterministic control problems with unbounded data[END_REF] for instance. Our aim is to study directly the PDE (1) without any a priori knowledge on the value function. Indeed, for general datas, one does not expect explicit formula for the value function.

We overcome the above difficulty in noticing that it is possible to formulate the definition of viscosity solutions for HJB in a new way without writing the "sup" in [START_REF] Alvarez | Bounded-from-below viscosity solutions of Hamilton-Jacobi equations[END_REF], see Definition 2.1. It provides a precise definition of solutions for [START_REF] Alvarez | A quasilinear elliptic equation in R N[END_REF] even in cases like [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF]. Let us stress that it is not a new definition of viscosity solutions but only a new formulation. Using this formulation, we prove a comparison result for solutions in the class of functions growing at most like o(1 + |x| p ) at infinity. It provides new results for Stochastic Linear Quadratic type problems (in this case, p = 2) but, unfortunately, we are not able to treat the classical Stochastic Linear Quadratic type problem with terminal cost ψ(x) = |x| 2 since it requires a comparison in the class O(1 + |x| 2 ). Nevertheless, our results apply to very general datas (not only polynomials of degree 1 or 2 in (x, α)), see Example 2.1.

The second issue of our work is to extend the results of [START_REF] Da Lio | Uniqueness results for second-order Bellman-Isaacs equations under quadratic growth assumptions and applications[END_REF] for p-growth type conditions on the datas and the solutions and for more general equations with an additional nonlinearity f which is also convex with respect to the gradient and depends on u. The motivation comes from PDEs arising in the context of backward stochastic differential equations (BSDEs in short).

In the framework of BSDEs, one generally considers forward-backward systems of the form

dX x,t s = b(X x,t s , s)ds + σ(X t,x s , s)dW s , t ≤ s ≤ T, X t,x t = x, (4) 
-dY x,t s = f (X x,t s , s, Y x,t s , Z x,t s )ds -Z x,t s dW s , t ≤ s ≤ T, Y x,t T = ψ(x), (5) 
where (W s ) s∈[0,T ] is standard Brownian motion on a probability space (Ω, F, (F t ) t∈[0,T ] , P ), with (F t ) t∈[0,T ] the standard Brownian filtration. (Note that b and σ do not depend on the control). The diffusion (4) is associated with the second-order elliptic operator L defined by

Lu = - 1 2 Trace(σσ T D 2 u) -b(x, t), Du .
The forward-backward system (4)-( 5) is formally connected to the PDE

   - ∂u ∂t + Lu -f (x, t, u, s(x, t)Du) = 0 in IR N × (0, T ) u(x, T ) = ψ(x) in IR N . (6) 
by the nonlinear Feynman-Kac formula

u(x, t) = Y x,t t for all (x, t) ∈ IR N × [0, T ]. (7) 
We recall that nonlinear BSDEs with Lipschitz continuous coefficients were first introduced by Pardoux and Peng [START_REF] Pardoux | Adapted solution of a backward stochastic differential equation[END_REF], who proved existence and uniqueness. Their results were extended by Kobylanski [START_REF] Kobylanski | Backward stochastic differential equations and partial differential equations with quadratic growth[END_REF] for bounded solutions in the case of coefficients f having a quadratic growth in the gradient. Briand and Hu [START_REF] Briand | Quadratic BSDEs with convex generators and unbounded terminal conditions[END_REF] generalized this latter result to the case of solutions which are O(1

+ |x| p ), as |x| → ∞, with 1 ≤ p < 2.
In all these works, the connection with viscosity solutions to the related PDE ( 6) is established: u defined by ( 7) is a viscosity solution of (6).

Our aim is to prove the analytical counterpart of their results. More precisely, we want to prove the existence and uniqueness of the solution of ( 6) under the assumptions of [START_REF] Briand | Quadratic BSDEs with convex generators and unbounded terminal conditions[END_REF].

Let us turn to a more precise description of our results. We consider equations of the form

   ∂u ∂t + H(x, t, Du, D 2 u) + f (x, t, u, s(x, t)Du) = 0 in IR N × (0, T ), u(x, 0) = ψ(x) in IR N , (8) 
where H is given by (2) with A unbounded, f : IR N × [0, T ] × IR N → IR is continuous and convex in the gradient and s is bounded. We look for solutions with p > 1 growth assumptions (see [START_REF] Crandall | Quadratic growth of solutions of fully nonlinear second order equations in IR n[END_REF] and (39)) and both H and f satisfies some p ′ growth assumptions, where p ′ = p/(p -1) is the conjugate of p. See (A), (B), (C) for the precise assumptions. Let us mention that the typical case we want to deal with is

f (x, t, u, s(x, t)Du) = |s(x, t)Du| p ′ , p ′ > 1,
and the presence of x in the power-p ′ term is delicate to treat (especially when doubling the variables in viscosity type's proofs, see the proof of Lemma 3.2). The u-dependence in f means that f (x, t, u, s(x, t)Du) may not be on the form of H and induces some technical difficulties.

Section 2 is devoted to the case with diffusion matrices σ which depend on the control in an unbounded way, see condition [START_REF] Briand | Quadratic BSDEs with convex generators and unbounded terminal conditions[END_REF]. The compensation to this condition with respect to [START_REF] Da Lio | Uniqueness results for second-order Bellman-Isaacs equations under quadratic growth assumptions and applications[END_REF] (where σ was assumed to be bounded with respect to the control and p = 2) is that we prove the comparison result Theorem 2.1 for semicontinuous sub-and supersolutions of (8) growing at most like o(1+|x| p ) as |x| → ∞ (instead of O(1+|x| 2 ) in [START_REF] Da Lio | Uniqueness results for second-order Bellman-Isaacs equations under quadratic growth assumptions and applications[END_REF]). So far it remains an open question to know if there is uniqueness in the larger class O(1 + |x| p ). The proof of the comparison result relies on classical techniques of viscosity solutions. We build a suitable test-function and prove some fine estimates on the various terms which appear, the main difficulty consists in dealing with the unbounded control terms.

In Section 3, we extend the comparison result in [START_REF] Da Lio | Uniqueness results for second-order Bellman-Isaacs equations under quadratic growth assumptions and applications[END_REF] for equations with p > 1 growth conditions on the datas (instead of quadratic growth) with the additional nonlinearity f. One motivation to add the nonlinearity f comes from the BSDEs (where s = σ) since the main application of Theorem 3.1 is the uniqueness for the equation stated in [START_REF] Briand | Quadratic BSDEs with convex generators and unbounded terminal conditions[END_REF] (see Example 3.2). In this case, we consider Hamiltonians H with α-bounded diffusion matrices σ, so we choose to replace (8) by the control independent PDE (38) to simplify the exposition. The control case does not present additional difficulties with respect to [START_REF] Da Lio | Uniqueness results for second-order Bellman-Isaacs equations under quadratic growth assumptions and applications[END_REF]Theorem 2.1]. The main difficulty in the proof of Theorem 3.1 is to be able to deal with solutions growing like O(1 + |x| p ) (which are not bounded neither from above nor from below). The strategy of proof is similar to the one used in [START_REF] Da Lio | Uniqueness results for second-order Bellman-Isaacs equations under quadratic growth assumptions and applications[END_REF] which consists essentially in the following three steps. First one computes the equation satisfied by w µ = µu -v, being u, v respectively the subsolution and the supersolution of the original PDE and 0 < µ < 1 a parameter. Then for all R > 0 one constructs a strict supersolution Φ R µ of the "linearized equation" such that Φ R µ (x, t) → 0 as R → +∞. Finally one shows that w µ ≤ Φ R µ and one concludes by letting first R → +∞ and then µ → 1. A by-product of the comparison results obtained in Sections 2 and 3 and Perron's Method of Ishii [START_REF] Ishii | Perron's method for Hamilton-Jacobi equations[END_REF] is the existence and uniqueness of a continuous solution to [START_REF] Bensoussan | Stochastic control by functional analysis methods[END_REF] which is respectively o(1 + |x| p ) and O(1 + |x| p ) as |x| → ∞. However, under our general assumptions one cannot expect the existence of a solution for all times as Example 3.4 shows.

Let us compare our results with related ones in the literature for such kind of Hamilton-Jacobi equations. Uniqueness and existence problems for a class of first-order Hamiltonians corresponding to unbounded control sets and under assumptions including deterministic linear quadratic problems have been addressed by several authors, see, e.g. the book of Bensoussan [START_REF] Bensoussan | Stochastic control by functional analysis methods[END_REF], the papers of Alvarez [START_REF] Alvarez | Bounded-from-below viscosity solutions of Hamilton-Jacobi equations[END_REF], Bardi and Da Lio [START_REF] Bardi | On the Bellman equation for some unbounded control problems[END_REF], Cannarsa and Da Prato [START_REF] Cannarsa | Nonlinear optimal control with infinite horizon for distributed parameter systems and stationary Hamilton-Jacobi equations[END_REF], Rampazzo and Sartori [START_REF] Rampazzo | Hamilton-Jacobi-Bellman equations with fast gradient-dependence[END_REF] in the case of convex operators, and the papers of Da Lio and McEneaney [START_REF] Da Lio | Finite time-horizon risk-sensitive control and the robust limit under a quadratic growth assumption[END_REF] and Ishii [START_REF] Ishii | Comparison results for Hamilton-Jacobi equations without growth condition on solutions from above[END_REF] for more general operators. As for second-order Hamiltonians under quadratic growth assumptions, Ito [START_REF] Ito | Existence of solutions to Hamilton-Jacobi-Bellman equation under quadratic growth conditions[END_REF] obtained the existence of locally Lipschitz solutions to particular equations of the form (1) under more regularity conditions on the data, by establishing a priori estimates on the solutions. Whereas Crandall and Lions in [START_REF] Crandall | Quadratic growth of solutions of fully nonlinear second order equations in IR n[END_REF] proved a uniqueness result for very particular operators depending only on the Hessian matrix of the solution. In the case of quasilinear degenerate parabolic equations, existence and uniqueness results for viscosity solutions which may have a quadratic growth are proved in [START_REF] Barles | Uniqueness results for quasilinear parabolic equations through viscosity solutions' methods[END_REF]. The results which are the closest to ours were obtained in the following works. Alvarez [START_REF] Alvarez | A quasilinear elliptic equation in R N[END_REF] addressed the case of stationary less general equations (see Example 3.1). Krylov [21] succeeded in dealing with equations encompassing the classical Stochastic Linear Quadratic problem but his assumptions are designed to handle exactly this case (cf. Example 2.1 and the discussion therein). Finally Kobylanski [START_REF] Kobylanski | Backward stochastic differential equations and partial differential equations with quadratic growth[END_REF] studied also [START_REF] Bensoussan | Stochastic control by functional analysis methods[END_REF] under quite general assumptions on the datas but for bounded solutions. It seems to be difficult to obtain such a generality in the case of unbounded solutions since her proof is based on changes of functions of the form u → -e -u which do not work for solutions which are neither bounded from below nor from above.

The rigorous connection between control problems and Hamilton-Jacobi-Bellman equations is not addressed in this paper. In the framework of unbounded controls it may be rather delicate. Some results in this direction were obtained for infinite horizon in the deterministic case by Barles [5] and in the stochastic case by Alvarez [START_REF] Alvarez | A quasilinear elliptic equation in R N[END_REF][START_REF] Alvarez | Bounded-from-below viscosity solutions of Hamilton-Jacobi equations[END_REF], Krylov [21] and by the authors [START_REF] Da Lio | Uniqueness results for second-order Bellman-Isaacs equations under quadratic growth assumptions and applications[END_REF].

Finally, let us mention that the convexity of the operator with respect to the gradient is crucial in our proofs. The case of Hamiltonians which are neither convex nor concave (which, in the case of Equations ( 16), amounts to take both the control sets A and B unbounded) is also of interest and it is a widely open subject. Some results in this direction were obtained in [START_REF] Da Lio | Uniqueness results for second-order Bellman-Isaacs equations under quadratic growth assumptions and applications[END_REF]Section 4], for instance in the case of first order equations of the form

∂u ∂t + h(x, t)|Du| 2 = 0 in IR N × [0, T ],
where h(x, t) may change sign and u has a quadratic growth. In a forthcoming paper we are going to investigate this issue for more general quadratic non convex-non concave equations.

Throughout the paper we will use the following notations. For all integer N, M ≥ 1 we denote by M N,M (IR) (respectively S N (IR), S + N (IR)) the set of real N × M matrices (respectively real symmetric matrices, real symmetric nonnegative N × N matrices). For the sake of notations, all the norms which appear in the sequel are denoting by | • |. The standard Euclidean inner product in IR N is written •, • . We recall that a modulus of continuity m : 

IR → IR + is a nondecreasing continuous function such that m(0) = 0. We set B(0, R) = {x ∈ IR N : |x| < R}.

Hamilton-Jacobi-Bellman equations with unbounded diffusion in the control

In this Section we prove a comparison result for second-order fully nonlinear partial differential equations of the form [START_REF] Bensoussan | Stochastic control by functional analysis methods[END_REF]. The main difference with respect to the result in [START_REF] Da Lio | Uniqueness results for second-order Bellman-Isaacs equations under quadratic growth assumptions and applications[END_REF] is that here we suppose that the diffusion matrix σ depends in a unbounded way in the control (see condition ( 9)). The compensation to the condition ( 9) is that we are able to get the uniqueness result in the smaller class of functions which are o(1 + |x| p ) as |x| → ∞ (see [START_REF] Crandall | Quadratic growth of solutions of fully nonlinear second order equations in IR n[END_REF]). We list below the main assumptions on H and f .

(A) (Assumption on H) :

(i) A is a subset of a separable complete normed space. The main point here is the possible unboundedness of A.

(ii) b ∈ C(IR N ×[0, T ]×A; IR N ) and there exists C b > 0 such that, for all x, y ∈ IR N , t ∈ [0, T ], α ∈ A, |b(x, t, α) -b(y, t, α)| ≤ C b (1 + |α|)|x -y|, |b(x, t, α)| ≤ C b (1 + |x| + |α|) ; (iii) ℓ ∈ C(IR N × [0, T ] × A; IR) and, there exist p > 1 and C ℓ , ν > 0 such that, for all x ∈ IR N , t ∈ [0, T ], α ∈ A, C ℓ (1 + |x| p + |α| p ) ≥ ℓ(x, t, α) ≥ ν|α| p -C ℓ (1 + |x| p )
and for every R > 0, there exists a modulus of continuity m R such that for all x, y ∈

B(0, R), t ∈ [0, T ], α ∈ A, |ℓ(x, t, α) -ℓ(y, t, α)| ≤ (1 + |α| p ) m R (|x -y|) ; (iv) σ ∈ C(IR N × [0, T ] × A; M N,M (IR)
) is Lipschitz continuous with respect to x with a constant independent of (t, α): namely, there exists C σ > 0 such that, for all x, y ∈ IR N and (t,

α) ∈ [0, T ] × A, |σ(x, t, α) -σ(y, t, α)| ≤ C σ |x -y|,
and satisfies for every

x ∈ IR N , t ∈ [0, T ], α ∈ A, |σ(x, t, α)| ≤ C σ (1 + |x| + |α|). (9) 
(B) (Assumption on f ) f ∈ C([0, T ] × IR N × IR × IR N ; IR)
and, for all R > 0, there exist a modulus of continuity m R and C s , Ĉ > 0 such that, for all t ∈ [0, T ], x, y

∈ IR N , u, v ∈ IR, z ∈ IR N , (i) |f (x, t, u, z)| ≤ C f (1 + |x| p + |u| + |z| p ′ ), (ii) |f (x, t, u, z) -f (y, t, u, z)| ≤ m R ((1 + |u| + |z|)|x -y|) if |x| + |y| ≤ R, (iii) z → f (x, t, u, z) is convex, (iv) s ∈ C(IR N × [0, T ]; M N ), |s(x, t) -s(y, t)| ≤ C s |x -y|, |s(x, t)| ≤ C s , (v) |f (x, t, u, z) -f (x, t, v, z)| ≤ Ĉ|u -v|.
The typical case we have in mind in the context of (A)(iv) (σ not bounded with respect to the control) is

σ(x, t, α) = Q(t)x + R(t)α,
where Q(t) and R(t) are matrices of suitable sizes. This case includes Linear Quadratic control problems, see Example 2.1.

Under the current hypotheses, the Hamiltonian H may be infinite (see Example 2.1) and for this reason we re-formulate the definition of viscosity solution in the following way.

Definition 2.1 (i) A function u ∈ U SC(IR N ×[0, T ]) is a viscosity subsolution of (8) if for all (x, t) ∈ IR N ×[0, T ] and ϕ ∈ C 2 (IR N × [0, T ]) such that u -ϕ has a maximum at (x, t), we have u(x, t) ≤ ψ(x) if t = 0 and, if t > 0, then ∂ϕ ∂t (x, t) + H(x, t, Dϕ(x, t), D 2 ϕ(x, t)) + f (x, t, u(x, t), s(x, t)Dϕ(x, t)) ≤ 0,
which is equivalent to: for all α ∈ A,

∂ϕ ∂t (x, t) -b(x, t, α), Dϕ(x, t) -ℓ(x, t, α) -Trace σ(x, t, α)σ T (x, t, α)D 2 ϕ(x, t) + f (x, t, u(x, t), s(x, t)Dϕ(x, t)) ≤ 0. ( 10 
) (ii) A function u ∈ U SC(IR N × [0, T ]) is a viscosity supersolution of (8) if for all (x, t) ∈ IR N × [0, T ] and ϕ ∈ C 2 (IR N × [0, T ]
) such that u -ϕ has a minimum at (x, t), we have u(x, t) ≥ ψ(x) if t = 0 and, if t > 0, then for all η > 0, there exists

α η = α(η, x, t) ∈ A, such that ∂ϕ ∂t (x, t) -b(x, t, α η ), Dϕ(x, t) -ℓ(x, t, α η ) -Trace σ(x, t, α η )σ T (x, t, α η )D 2 ϕ(x, t) + f (x, t, u(x, t), s(x, t)Dϕ(x, t)) ≥ -η. (11) 
(iii) A locally bounded function u : IR N × [0, T ] → IR is a viscosity solution of (8) if its USC envelope u * is a subsolution and its LSC envelope u * is a supersolution.

Note that ( 10) and ( 11) is only a way to write the definition of sub-and supersolutions without writing a supremum which could not exist because of assumption [START_REF] Briand | Quadratic BSDEs with convex generators and unbounded terminal conditions[END_REF]. We say that a function u :

IR N × [0, T ] → IR is in the class C p if u(x, t) 1 + |x| p -→ |x|→+∞ 0, uniformly with respect to t ∈ [0, T ]. ( 12 
)
Note that u ∈ C p if and only if, for all ε > 0, there exists

M ε > 0 such that |u(x, t)| ≤ M ε + ε(1 + |x| p ) for all (x, t) ∈ IR N × [0, T ].
In particular, for all λ > 0,

sup x∈IR N {u(x, t) -λ(1 + |x| p )} = M λ < +∞. ( 13 
)
The main result of this Section is the Theorem 2.1 Assume (A)-(B) and suppose that ψ is a continuous function which belongs to

C p . Let u ∈ U SC(IR N × [0, T ]
) be a viscosity subsolution of (8) and v ∈ LSC(IR N × [0, T ]) be a viscosity supersolution of [START_REF] Bensoussan | Stochastic control by functional analysis methods[END_REF]. Suppose that U and V are in the class C p defined by [START_REF] Crandall | Quadratic growth of solutions of fully nonlinear second order equations in IR n[END_REF] and

satisfy u(x, 0) ≤ ψ(x) ≤ v(x, 0). Then u ≤ v in IR N × [0, T ].
Before giving the proof of the theorem, let us state an existence result and some examples of applications. As it was already observed in [START_REF] Da Lio | Uniqueness results for second-order Bellman-Isaacs equations under quadratic growth assumptions and applications[END_REF], the question of the existence of a continuous solution to (1) is not completely obvious and in general the solutions may exist only for short time (see Example 3.4). One way to obtain the existence is to establish a link between the solution of the PDE and related control problems or BDSE systems which have a solution. By using PDE methods, in the framework of viscosity solutions, the existence is usually a consequence of the comparison principle by means of Perron's method, as soon as we can build a sub-and a super-solution to the problem. Here, the comparison principle is proved in the class of functions belonging to C p . Therefore, to prove the existence, it siffices to build sub-and super-solutions to (38) in C p . We need to strengthen (A)(iii) and (B)(i) by assuming that ℓ(•, t, α), f (•, t, u, z) ∈ C p uniformly with respect to α, t, u, z, i.e., for all (x, t, α, u, z)

∈ IR N × [0, T ] × A × IR × IR N , χ(x) ≥ ℓ(x, t, α) ≥ ν|α| p -χ(x), |f (x, t, u, z)| ≤ C f (1 + γ(x) + |u| + |z| p ′ ),
and lim

|x|→+∞ χ(x) 1 + |x| p , γ(x) 1 + |x| p = 0. ( 14 
)
We have Theorem 2.2 Assume (A)-(B) and [START_REF] Da Lio | Finite time-horizon risk-sensitive control and the robust limit under a quadratic growth assumption[END_REF]. For all ψ ∈ C p , there is τ > 0 such that there exist a subsolution u ∈ C p and a supersolution u ∈ C p of (8) in IR N × [0, T ]. In consequence, Equation (8) has a unique continuous viscosity solution in

IR N × [0, τ ] in the class C p .
The proof of this theorem is postponed at the end of the section. 

dX s = X s ds + √ 2α s dW s , t ≤ s ≤ T, t ∈ (0, T ], X 0 = x ∈ IR,
where W s is a standard Brownian motion, (α s ) s is a real valued progressively measurable process and the value function is given by

V (x, t) = inf (αs)s E tx T t |α s | 2 ds + ψ(X T ) .
(Note that in this case, p = p ′ = 2.) The Hamilton-Jacobi equation formally associated to this problem is

-u t + sup α∈IR {-α 2 (u ′′ + 1)} -xu ′ = 0 in IR × (0, T ], u(x, T ) = ψ(x) in IR. (15) 
We observe that in this case if u ′′ + 1 < 0 then the Hamiltonian becomes +∞. Nevertheless, we are able to prove comparison [START_REF] Fleming | Deterministic and stochastic optimal control[END_REF] as soon as the terminal cost ψ ∈ C p (i.e., has a strictly sub-p growth). This is not completely satisfactory since, in the classical Linear Quadratic Control Problem, one expects to have quadratic terminal costs like ψ(x) = |x| 2 . Let us mention that Krylov [21] succeeded in treating this latter case. But his proof consists on some algebraic computations which rely heavily on the particular form of the datas (the datas are supposed to be polynomials of degree 1 or degree 2 in (x, α)). In our case, up to restrict slightly the growth, we are able to deal with general datas.

Remark 2.1 Theorems 2.1 and 3.1 still hold for the Isaacs equation of [START_REF] Da Lio | Uniqueness results for second-order Bellman-Isaacs equations under quadratic growth assumptions and applications[END_REF],

∂u ∂t + H(x, t, Du, D 2 u) + G(x, t, Du, D 2 u) + f (x, t, u, s(x, t)Du) = 0 ( 16 
)
where

G(x, t, q, X) = inf β∈B -g(x, t, β), q -l(x, t, β) -Trace c(x, t, β)c T (x, t, β)X ,
is a concave Hamiltonian, B is bounded, g, l, c satisfy respectively (A)(ii),(iii),(iv) (with bounded controls β). The case where both the control sets A and B are unbounded is rather delicate. It is the aim of a future work.

Let us turn to the proof of the comparison theorem.

Proof of Theorem 2.1. We are going to show that for every µ ∈ (0, 1), µu -v ≤ 0, in

IR N ×[0, T ].
To this end we argue by contradiction assuming that there exists (x, t)

∈ IR N ×[0, T ] such that u(x, t) -v(ŷ, t) > δ > 0. ( 17 
)
We divide the proof in several steps.

1. The µ-equation for the subsolution. If u is a subsolution of ( 8), then ũ = µu is a subsolution of ũt + sup α∈A {-Trace σ(x, t, α)σ(x, t, α) T D 2 ũ + b(x, t, α), Dũ -µℓ(x, t, α)}

+µf x, t, 1 µ ũ(x, t), 1 µ s(x, t)Dũ) ≤ 0,
with the initial condition µu(x, 0) ≤ µψ(x).

2. Test-function and estimates on the penalization terms. For all ε > 0, η > 0 and θ, L > 0 (to be chosen later) we consider the auxiliary function

Φ(x, y, t) = µu(x, t) -v(y, t) -e Lt |x -y| 2 ε 2 + θ(1 -µ)(1 + |x| 2 + |y| 2 ) p/2 -ρt. Since u, v ∈ C p , the supremum of Φ in IR N × IR N × [0, T
] is achieved at a point (x, ȳ, t). We will drop for simplicity of notation the dependence on the various parameters. If θ and ρ are small enough we have

Φ(x, ȳ, t) ≥ µu(x, ŷ) -v(x, ŷ) -θ(1 -µ)(1 + 2|x| p ) -ρ t > δ 2 , which implies |x -ȳ| 2 ε 2 + θ(1 -µ)(1 + |x| 2 + |ȳ| 2 ) p/2 ≤ µu(x, t) -v(ȳ, t).
Therefore, by [START_REF] Da Lio | Uniqueness results for second-order Bellman-Isaacs equations under quadratic growth assumptions and applications[END_REF], we get

|x -ȳ| 2 ε 2 + θ 1 -µ 2 (1 + |x| 2 + |ȳ| 2 ) p/2 ≤ sup (x,t)∈IR N ×[0,T ] {µu(x, t) -θ 1 -µ 2 (1 + |x| p )} + sup (x,t)∈IR N ×[0,T ] {-v(x, t) -θ 1 -µ 2 (1 + |x| p )} ≤ M for some 0 < M = M (µ, θ, u, v). Thus |x|, |ȳ| ≤ R µ,θ (18) 
with R µ,θ independent of ε and |x -ȳ| → 0 as ε → 0. Up to extract a subsequence, we can assume that

x, ȳ → x 0 ∈ B(0, R µ,θ ), t → t 0 as ε → 0 ( 19 
)
Actually we can obtain a more precise estimate: we have Φ(x, ȳ, t) ≥ max

IR N ×[0,T ] {µu(x, t) -v(x, t) -e Lt θ(1 -µ)(1 + 2|x| 2 ) p/2 -ρt} := M µ,θ . Thus lim inf ε→0 Φ(x, ȳ, t) ≥ M µ,θ .
On the other hand lim sup ε→0 Φ(x, ȳ, t)

≤ lim sup ε→0 [µu(x, t)-v(ȳ, t) -e L tθ(1-µ)(1 + |x| 2 + |ȳ| 2 ) p/2 -ρ t] -lim inf ε→0 e L t |x-ȳ| 2 ε 2 ≤ M µ,θ -lim inf ε→0 e L t |x -ȳ| 2 ε 2 .
By combining the above inequalities we get, up to subsequences, that

|x -ȳ| 2 ε 2 → 0 as ε → 0. ( 20 
)
Note that we have

|x -ȳ|, |x -ȳ| 2 ε 2 = m(ε), (21) 
where m denotes a modulus of continuity independent of ε (but which depends on θ, µ).

3. Ishii matricial theorem and viscosity inequalities. We set

Θ(x, y, t) = e Lt |x -y| 2 ε 2 + θ(1 -µ)(1 + |x| 2 + |y| 2 ) p/2 + ρt.
We claim that there is a subsequence ε n such that t = 0. Suppose by contradiction that for all ε > 0 we have t > 0. Next Steps are devoted to prove some estimates in order to obtain the desired contradiction at the end of Step 8. By Theorem 8.3 in the User's guide [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF], for every ̺ > 0, there exist a 1 , a 2 ∈ IR and X, Y ∈ S N such that

(a 1 , D x Θ(x, ȳ, t), X) ∈ P2,+ (µu)(x, t), (a 2 , -D y Θ(x, ȳ, t), Y ) ∈ P2,-(v)(ȳ, t), a 1 -a 2 = Θ t (x, ȳ, t),
and

-( 1 ̺ + |M |)I ≤ X 0 0 -Y ≤ M + ̺M 2
where M = D 2 Θ(x, ȳ, t). Note that

a 1 -a 2 = Le L t |x -ȳ| 2 ε 2 + θ(1 -µ)(1 + |x| 2 + |ȳ| 2 ) p/2 + ρ,
and, setting p ε = 2e L t x -ȳ ε 2 , q x = e L tpθ(1 -µ)x(1 + |x| 2 + |ȳ| 2 ) p/2-1 , q y = -e L tpθ(1 -µ)ȳ(1 + |x| 2 + |ȳ| 2 ) p/2-1 we have D x Θ(x, ȳ, t) = p ε + q x and D y Θ(x, ȳ, t) = -p ε -q y , and

M = A 1 + A 2 + A 3
where

A 1 = 2e L t ε 2 I -I -I I , A 2 = e L tpθ(1 -µ)(1 + |x| 2 + |ȳ| 2 ) p/2-1 I 0 0 I , A 3 = e L tp(p -2)θ(1 -µ)(1 + |x| 2 + |ȳ| 2 ) p/2-2 x ⊗ x x ⊗ y x ⊗ y y ⊗ y . It follows Xξ, ξ -Y ζ, ζ ≤ 2e L t ε 2 |ξ -ζ| 2 +e L tpθ(1 -µ)(1 + |x| 2 + |ȳ| 2 ) p/2-1 (|ξ| 2 + |ζ| 2 ) +2e L tp(p -2)θ(1 -µ)(1 + |x| 2 + |ȳ| 2 ) p/2-2 ξ, x 2 + ζ, y 2 +m ̺ ε 4 , ( 22 
)
where m is a modulus of continuity which is independent of ρ and ε.

We now write the viscosity inequalities satisfied by the subsolution µu and the supersolution v (recall that we assume t > 0).

For all α ∈ A we have

a 1 -Trace(σ(x, t, α)σ(x, t, α) T X) + b(x, t, α), p ε + q x -µℓ(x, t, α) + µf (x, t, u(x, t), 1 µ s(x, t)(p ε + q x )) ≤ 0. ( 23 
)
On the other hand, for all η > 0, there exists α η ∈ A such that

a 2 -Trace(σ(ȳ, t, α η )σ T (ȳ, t, α η )Y ) + b(ȳ, t, α η ), p ε + q y -ℓ(ȳ, t, α η ) + f (ȳ, t, v(ȳ, t), 1 µ s(ȳ, t)(p ε + q y )) ≥ -η. (24) 
We set for simplicity

σ x := σ(x, t, α η ), σ y = σ(ȳ, t, α η ) b x = b(x, t, α η ), b y = b(ȳ, t, α η ), s x = s(x, t), s y = s(ȳ, t).
By subtracting [START_REF] Pardoux | Adapted solution of a backward stochastic differential equation[END_REF] and [START_REF] Rampazzo | Hamilton-Jacobi-Bellman equations with fast gradient-dependence[END_REF] we get

Le L t |x -ȳ| 2 ε 2 + θ(1 -µ)(1 + |x| 2 + |ȳ| 2 ) p/2 + ρ ≤ Trace(σ x σ T x X -σ y σ T y Y ) + b y , p ε + q y -b x , p ε + q x -ℓ(ȳ, t, α η ) + µℓ(x, t, α η ) +f (ȳ, t, v(ȳ, t), s y (p ε + q y )) -µf (x, t, u(x, t), 1 µ s x (p ε + q x )) + η. (25) 
4. Estimates of the second-order terms. From ( 22) and (A)(iv), it follows

Trace σ x σ x T X -σ y σ y T Y -m ̺ ε 4 ≤ e L t 2 ε 2 |σ x -σ y | 2 + pθ(1 -µ)(1 + |x| 2 + |ȳ| 2 ) p/2-1 (|σ x | 2 + |σ y | 2 ) +2p(p -2)θ(1 -µ)(1 + |x| 2 + |ȳ| 2 ) p/2-2 (|σ x | 2 |x| 2 + |σ y | 2 |y| 2 ) ≤ 2C 2 σ e L t |x -ȳ| 2 ε 2 + p(p -1)θ(1 -µ)(1 + |x| 2 + |ȳ| 2 ) p/2-1 (1 + |x| 2 + |ȳ| 2 + |α η | 2 ) ≤ 2C 2 σ e L t |x -ȳ| 2 ε 2 + p(p -1)θ(1 -µ)(1 + |x| 2 + |ȳ| 2 ) p/2 +p(p -1)θ(1 -µ)|α η | 2 (1 + |x| 2 + |ȳ| 2 ) p/2-1 .
By Young's inequality,

|α η | 2 (1 + |x| 2 + |ȳ| 2 ) p/2-1 ≤ 2 p |α η | p + p -2 p (1 + |x| 2 + |ȳ| 2 ) p/2 .
It follows, using (21),

Trace σ x σ x T X -σ y σ y T Y ≤ 4(p -1) 2 C 2 σ e L tθ(1 -µ)(1 + |x| 2 + |ȳ| 2 ) p/2 +4(p -1)C 2 σ e L tθ(1 -µ)|α η | p + m(ε) + m ̺ ε 4 . (26)
5. Estimates of the drift terms. By using (A)(ii) and, from (21), by taking ε is small enough in order that |x -ȳ| ≤ 1, we get

b y , p ε + q y -b x , p ε + q x ≤ b y -b x , p ε + q y + b x , q y -q x ≤ |b y -b x ||p ε | + |b y -b x ||q y | + |b x ||q x -q y | ≤ C b e L t 2(1 + |α η |) |x -ȳ| 2 ε 2 + 2pθ(1 -µ)(1 + |α η |)|x -ȳ|(1 + |x| 2 + |ȳ| 2 ) (p-1)/2 +2pθ(1 -µ)(1 + |x| 2 + |ȳ| 2 ) p/2 ≤ C b e L t 2 |x -ȳ| 2 ε 2 + 4pθ(1 -µ)(1 + |x| 2 + |ȳ| 2 ) p/2 +m(ε)|α η | + θ(1 -µ)m(ε)|α η |(1 + |x| 2 + |ȳ| 2 ) (p-1)/2 .
By Young's inequality, we get

m(ε)|α η | + θ(1 -µ)m(ε)|α η |(1 + |x| 2 + |ȳ| 2 ) (p-1)/2 ≤ m(ε) (θ(1 -µ)) 1/(p-1) + θ(1 -µ)|α η | p + θ(1 -µ)m(ε) + θ(1 -µ)(1 + |x| 2 + |ȳ| 2 ) p/2 . It follows b y , p ε + q y -b x , p ε + q x ≤ (4p + 1)C b e L tθ(1 -µ)(1 + |x| 2 + |ȳ| 2 ) p/2 + C b e L tθ(1 -µ)|α η | p + m(ε).
(27)

6. Estimates of running cost terms. Recall that we chose ε small enough in order that |x-ȳ| ≤ 1.

Setting R = 1, from (A)(iii), we get

µℓ(x, t, α η ) -ℓ(ȳ, t, α η ) = (µ -1)ℓ(x, t, α η ) + ℓ(x, t, α η ) -ℓ(ȳ, t, α η ) ≤ (1 -µ)|α η | p -ν + m 1 (|x -ȳ|) 1 -µ +C ℓ (1 -µ)(1 + |x| p ) + m 1 (|x -ȳ|). Since m 1 (|x -ȳ|) = m(ε) by (21), we obtain µℓ(x, t, α η ) -ℓ(ȳ, t, α η ) ≤ (1 -µ)|α η | p (-ν + m(ε)) + C ℓ (1 -µ)(1 + |x| p ) + m(ε). ( 28 
)
Note that it is the term "-(1 -µ)ν|α η | p " which will allow to control all the unbounded control terms in the sequel.

7. Estimates of f -terms. To simplify, we replace (B)(v) by the assumption that f is nondecreasing with respect to the u variable. By some changes of functions as in Lemma 3.1, we can reduce to this case without loss of generality. We write

f ȳ, t, v(ȳ, t), s y (p ε + q y ) -µ f x, t, u(x, t), 1 µ s x (p ε + q x ) = T 1 + T 2 + T 3 with T 1 = f ȳ, t, v(ȳ, t), s y (p ε + q y ) -f x, t, v(ȳ, t), s y (p ε + q y ) ,
T 2 = f x, t, v(ȳ, t), s y (p ε + q y ) -f x, t, u(x, t), s y (p ε + q y ) ,

T 3 = f x, t, u(x, t), s y (p ε + q y ) -µ f x, t, u(x, t), 1 µ s x (p ε + q x ) ,
and we estimate the three terms separately. From (B)(ii), we have

T 1 ≤ m R µ,θ ((1 + |v(ȳ, t)| + |s y (p ε + q y )||x -ȳ|) ,
where R µ,θ is given by [START_REF] Ishii | Comparison results for Hamilton-Jacobi equations without growth condition on solutions from above[END_REF]. Using (B)(iv) and the fact that v ∈ C p , we get

|v(ȳ, t)|, |s y q y | = O(R µ,θ ) and |s y p ε ||x -ȳ| ≤ m(ε), (29) 
and therefore

T 1 ≤ m(ε). ( 30 
)
To deal with T 2 , we first note that µu(x, t) -v(ȳ, t) ≥ Φ(x, ȳ, t)

≥ Φ(x, x, t) ≥ µu(x, t) -v(ŷ, t) -e L tθ(1 -µ)(1 + 2|x| 2 ) p/2 -ρ t.
Since u(x, t) > v(ŷ, t) by ( 17), if we take µ close enough to 1 and ρ, θ close enough to 0, we obtain that µu(x, t) ≥ v(x, t).

From (B)(v) (monotonicity of f in u), it follows that

T 2 ≤ f x, t, v(ȳ, t), s y (p ε + q y ) -f x, t, µu(ȳ, t), s y (p ε + q y ) +f x, t, µu(ȳ, t), s y (p ε + q y ) -f x, t, u(ȳ, t), s y (p ε + q y ) ≤ (1 -µ)|u(x, t)| ≤ C u (1 -µ)(1 + |x| 2 ) p/2 , ( 31 
) since u ∈ C p .
To estimate T 3 , we first recall the following convex inequality. If Ψ : IR N → IR is convex and 0 < µ < 1, then, for all ξ, ζ ∈ IR N , we have

-µ Ψ(ξ) + Ψ(ζ) ≤ (1 -µ)Ψ µξ -ζ µ -1 . (32) 
By (B)(iii) (convexity of f with respect to the gradient variable), for all z 1 , z 2 ∈ IR N , we obtain

f (x, t, u, z 1 ) -µ f x, t, u, z 2 µ ≤ (1 -µ) f x, t, u, z 1 -z 2 1 -µ .
Therefore

T 3 ≤ (1 -µ) f x, t, u(x, t), 1 1 -µ (s y (p ε + q y ) -s x (p ε + q x )) ≤ C f (1 -µ) 1 + |x| p + |u(x, t)| + s y (p ε + q y ) -s x (p ε + q x ) 1 -µ p ′ (33) by (B)(i). But s y (p ε + q y ) -s x (p ε + q x ) = (s y -s x )p ε + (s y -s x )q y + s x (q y -q x ).
Hence for some C > 0 depending only on p (which may change during the computation), we have

s y (p ε + q y ) -s x (p ε + q x ) 1 -µ p ′ ≤ CC p ′ s (1 -µ) p ′ (|x -ȳ||p ε |) p ′ + (|x -ȳ||q y |) p ′ + |q x -q y | p ′ ≤ e p ′ L tm(ε) + CC p ′ s e p ′ L tθ p ′ (1 + |x| 2 + |ȳ| 2 ) p/2 ,
by using (29). Finally, since u ∈ C p , we get from (33)

T 3 ≤ (1 -µ)C f (1 + C u + CC p ′ s e p ′ L tθ p ′ )(1 + |x| 2 + |ȳ| 2 ) p/2 + e p ′ L tm(ε). ( 34 
)
8. End of the case t > 0, choice of the various parameters. By plugging estimates (26), ( 27), ( 28), ( 30), ( 31) and ( 34) in ( 25), we get

Le L tθ(1-µ)(1 + |x| 2 + |ȳ| 2 ) p/2 + ρ ≤ C 1 e L tθ + C 2 + C 3 e p ′ L tθ p ′ (1-µ)(1 + |x| 2 + |ȳ| 2 ) p/2 + -ν + θe L t(C 4 + m(ε)) (1-µ)|α η | p +(1 + e p ′ L t)m(ε) + m(̺/ε 4 ) + η, (35) 
where

C 1 = 4(p -1) 2 C 2 σ + 4(p + 1)C b , C 2 = C ℓ + C u + C f (1 + C u ), C 3 = C f CC p ′ s , C 4 = 4(p -1)C 2 σ + C b ,
are positive constants which depend only on the given datas of the problem. Now we choose the different parameters in order to have a contradiction in the above inequality. We first assume that the final time T such that T = 1/L > 0 (we will recover the result on any interval [0, T ] by a step-by-step argument). The main difficulty in the above estimate is to deal with the term in |α η | p since the control α η is unbounded. Taking θ > 0 such that

θe 1 (C 4 + 1) ≤ ν 2 ,
we obtain that the coefficient in front of |α η | p is negative (we can assume that ε is small enough in order to have m(ε) ≤ 1). Then we fix

L > C 1 + C 2 θ + C 3 e p ′ -1 θ p ′ -1 and η < ρ 2 . ( 36 
) Therefore (35) implies ρ 2 ≤ (1 + e p ′ )m(ε) + m(̺/ε 4 ).
Sending first ̺ → 0, we obtain a contradiction for small ε. In conclusion, up to a suitable choice of the parameters θ, L, η, the claim of the Step 3 is proved if T ≤ 1/L. 9. Case when t = 0. We have just proved that there is a subsequence ε n such that t = 0. Therefore for n large enough, for all (x, t)

∈ IR N × [0, T ], T ≤ 1/L, we have µu(x, t) -v(x, t) -θ(1 -µ)e Lt (1 + 2|x| 2 ) p/2 -ρt ≤ µu(x, 0) -v(ȳ, 0) -θ(1 -µ)(1 + |x| 2 + |ȳ| 2 ) p/2 - |x -ȳ| 2 ε 2 n ≤ (1 -µ)(|u(x, 0)| -θ(1 + |x| 2 ) p/2 ) + u(x, 0) -v(ȳ, 0) ≤ (1 -µ)M θ + u(x, 0) -v(ȳ, 0)
where M θ is given by ( 13) since u ∈ C p . Since u -v is upper-semicontinuous, from [START_REF] Ito | Existence of solutions to Hamilton-Jacobi-Bellman equation under quadratic growth conditions[END_REF], we get lim sup

εn→0 u(x, 0) -v(ȳ, 0) ≤ u(x 0 , 0) -v(x 0 , 0) ≤ 0, using that u(x 0 , 0) ≤ ψ(x 0 ) ≤ v(x 0 , 0). It follows µu(x, t) -v(x, t) -θ(1 -µ)e Lt (1 + 2|x| 2 ) p/2 -ρt ≤ (1 -µ)M θ .
Sending µ → 1 and ρ → 0, we get u ≤ v in IR N × [0, T ], T ≤ 1/L. Noticing that L given by (36) depends only on the given constants of the problem, we recover the comparison on [0, T ] for any T > 0 by a classical step-by-step argument. It completes the proof of the theorem. 2

We end with the proof of the existence result.

Proof of Theorem 2.2. The point is to build a sub-and a supersolution. We treat the case of the subsolution (the case of the supersolution being simpler). It suffices to prove that, there exists τ > 0 such that, for all ε > 0 there exists M ε > 0 such that

u ε (x, t) = -e ρt (M ε + ε(1 + |x| p )) (37) 
is a subsolution of (8) in

IR N × [0, τ ] with initial data ψ. Indeed, u ε does not belong to C p but u := sup ε>0 u ε ∈ C p and u is still a subsolution. Let ε > 0. Since ψ, ℓ(•, t, α), f (•, t, u, z) ∈ C p , there exists M ε = M ε (ψ, ℓ, f ) such that |ψ|, |χ|, |γ| ≤ M ε + ε(1 + |x| p ). Let u ε defined by (37) with this choice of M ε . Let α ∈ A.
In the following computation, C > 0 is a constant which depends only on the given datas of the problem and may change line to line. We have, for all (x, t)

∈ IR N × [0, T ], L(u ε ) := ∂u ε ∂t -b, Du ε -ℓ -Trace σσ T D 2 u ε + f (x, t, u ε , sDu ε ) ≤ -ρ|u ε | + Cεe ρt (1 + |x| + |α|)|x| p-1 -ν|α| p + |χ| + Cεe ρt (1 + |x| 2 + |α| 2 )|x| p-2 +|γ| + C|u ε | + Cε p ′ e p ′ ρt |x| p ′ (p-1) ≤ -ρ|u ε | + C|u ε | + Cε p ′ -1 e (p ′ -1)ρt |u ε | - ν 2 |α| p , since p ′ (p -1) = p, |α||x| p-1 + |α| 2 |x| p-2 ≤ ν 2 |α| p + C|x| p and |χ| + |γ| ≤ 2(M ε + ε(1 + |x| p )) = 2|u ε |.
By choosing ρ large enough such that ρ = C + Ce 1 and τ > 0 such that (p ′ -1)ρτ ≤ 1, we obtain L(u ε ) ≤ 0 in IR N × [0, τ ]. Since u ε (•, 0) ≤ ψ by the choice of M ε , we obtain that u ε is a subsolution, which ends the proof. 2

3 Equations with superlinear growth on the datas and the solutions

In this Section we extend the comparison result of [START_REF] Da Lio | Uniqueness results for second-order Bellman-Isaacs equations under quadratic growth assumptions and applications[END_REF] for equations with p > 1 growth conditions on the datas and on the solutions. For simplicity, we choose to consider here the following model equation where the diffusion and the drift do not depend on the control.

   ∂u ∂t -Trace(σσ T D 2 u) + b, Du + f (x, t, u, sDu) = 0 in IR N × [0, T ], u(x, 0) = ψ(x) in IR N . (38) 
The hypothesis on the data are the following:

(C) (Asssumptions on the diffusion and the drift)

(i) b ∈ C(IR N × [0, T ]; IR N ) and there exists C b > 0 such that, for all x, y ∈ IR N , t ∈ [0, T ], |b(x, t) -b(y, t)| ≤ C b |x -y|, |b(x, t)| ≤ C b (1 + |x|) ; (ii) σ ∈ C(IR N × [0, T ]; M N,M (IR)
) is Lipschitz continuous with respect to x (uniformly in t), namely, there exists C σ > 0 such that, for all x, y ∈ IR N and t ∈ [0, T ],

|σ(x, t) -σ(y, t)| ≤ C σ |x -y|.
Note that σ satisfies, for every

x ∈ IR N , t ∈ [0, T ], |σ(x, t)| ≤ C σ (1 + |x|).
We are able to consider functions which are in a larger class than in Section 2. We say that a function u :

IR N × [0, T ] → IR is in the class Cp if for some C > 0 we have |u(x, t)| ≤ C(1 + p ), for all (x, t) ∈ IR N × [0, T ].
The main result of this Section if the following Theorem 3.1 Assume that σ and b satisfy (C), that f satisfies (B) and that ψ ∈ Cp . Let u ∈ U SC(IR N × [0, T ]) be a viscosity subsolution of (38) and v ∈ LSC(IR N × [0, T ]) be a viscosity supersolution of (38). Suppose that U and V are in the class Cp and satisfy u(x, 0) ≤ ψ(x) ≤ v(x, 0).

Then u ≤ v in IR N × [0, T ].
Before giving the proof of the theorem, we state an existence result and provide some examples. As observed in Section 2, we can prove the existence of solutions of (8) (at least for small time) as soon as we are able to build sub-and supersolutions in the class Cp . In Example 3.4, we see that solutions may not exist for all time.

Theorem 3.2 Assume (B)-(C). If K, ρ > 0 are large enough, then u(x, t) = Ke ρt (1 + |x| 2 ) p/2
is a viscosity supersolution of (38) in IR N × [0, T ] and there exists 0 < τ ≤ T such that u(x, t) = -Ke ρt (1 + |x| 2 ) p/2 is a viscosity subsolution of (38) in IR N × [0, τ ]. In consequence, for all ψ ∈ Cp , there exists a unique continuous viscosity solution of (38 

) in IR N × [0, τ ] in Cp .
u t -∆u + |Du| p ′ = -f (x, t) in IR N × [0, T ], (39) 
where f satisfies (B). Note that (39) can be written

u t -∆u + p sup α∈IR N { α, Du - |α| p ′ p ′ } + f (x, t) = 0
and therefore is on the form [START_REF] Bensoussan | Stochastic control by functional analysis methods[END_REF]. The stationary version of this equation was studied in Alvarez [START_REF] Alvarez | A quasilinear elliptic equation in R N[END_REF] under more restrictive assumptions on the datas and the growth of the solution. More precisely, he assumed conditions like ( 12) and ( 14).

Example 3.2 Equation ( 8) typically appears in the study of BSDEs where s(x, t) = σ(x, t).

In [START_REF] Briand | Quadratic BSDEs with convex generators and unbounded terminal conditions[END_REF], Briand and Hu proved that u given by ( 7) is a viscosity solution of ( 8) for 1 ≤ p < 2. Theorem 3.1 proves this solution is unique. We are able to deal with any p > 1 but we had to impose the regularity condition (B)(ii) on x for f, which is not needed for the BDSEs.

Example 3.3 As far as the coefficient f is concerned, a typical case we have in mind is

f (x, t, u, z) = g(x, t, u) + |z| p ′ ,
with continuous g satisfying (B)(i),(ii) and (v). It leads to nonlinearities like "g(x, t, u) + |s(x, t)Du| p ′ " in the equation. Note that the power-p ′ term depends on x via s(x, t). This dependence brings an additional difficulty, see Lemma 3.2.

Example 3.4 (Deterministic Control Problem) Consider the control problem (in dimension 1 for sake of simplicity)

dX s = α s ds, s ∈ [t, T ], 0 ≤ t ≤ T, X t = x ∈ IR,
where the control α ∈ A t := L p ([t, T ]; IR) and the value function is given by

V (x, t) = inf α∈At { T t ( |α s | p p + ρ|X s | p ) ds -|X T | p } for some ρ > 0.
The Hamilton-Jacobi equation formally associated to this problem is

-w t + 1 p ′ |w x | p ′ = ρ|x| p in IR × (0, T ), w(x, T ) = -|x| p in IR.
Looking for a solution w under the form w(x, t) = ϕ(t)|x| p , we obtain that ϕ is a solution of the differential equation

-ϕ ′ + |ϕ| p ′ p ′ = ρ in (0, T ), ϕ(T ) = -1.
We get

ϕ(t) -1 p ′ |y| p ′ -ρp ′ dy = t -T.
One can check that if 0 < ρp ′ < 1 and T > -1 -∞ p ′ |y| p ′ -ρp ′ dy, then there is τ ∈ (0, T ) such that the solution blows up at t = τ.

Let us turn to the proof of the comparison theorem.

Proof of Theorem 3.1. To avoid a lot of technicality, we start the proof with several lemmas collecting the main intermediate results. The proofs of the lemmas are postponed at the end of the section and can be skipped at first reading. 

     ũt -Trace(σ(x, t)σ(x, t) T D 2 ũ) + b(x, t), Dũ + f (x, t, ũ -h, s(x, t)(Dũ -Dh)) = 0 in IR N × (0, T ], ũ(x, 0) = ψ(x) + h(x) f or all x ∈ IR N , (40) 
with, for all (x, t, v, z)

∈ IR N × [0, T ] × IR N , f (x, t, v, z) = Lv + g(x, t) + e -Lt f x, t, e Lt v, e Lt z , (41) 
where

g(x, t) = Trace(σ(x, t)σ(x, t) T D 2 h(x)) -b(x, t), Dh(x) . (42) 
Moreover,

f (x, t, v, z) -f (x, t, v ′ , z) ≤ ( Ĉ -L)(v ′ -v) if v ≤ v ′ . (43) 
In the sequel, since u, v, ψ ∈ Cp , we can choose C > 0 such that

|u|, |v|, |ψ| ≤ C 2 (1 + |x| p ). (44) 
In this case, note that

ψ(x) + h(x) = ψ(x) + C(1 + |x| p ) ≥ 0
and the initial data is nonnegative in (40). Moreover, we take

L > Ĉ and L > 4p(p -1)N C 2 σ + 4pC b + 10 Ĉ (45) 
(the constants C σ , C b and Ĉ appear in (B)). The first condition ensures that the right-hand side of (43) is nonpositive (i.e. v → f (x, t, v, z) is nondecreasing). The second condition appears naturally in the proof of the following lemma.

We distinguish 3 cases. At first, if the maximum is achieved for t = 0, then, writing that ũµ is a subsolution of (54) and ṽ a supersolution of (40) at t = 0 we obtain ũµ (x, 0) ≤ µψ(x) + µh(x) and ṽ(x, 0) ≥ ψ(x) + h(x). It follows that w(x, 0) ≤ (µ -1)(ψ(x) + h(x)) = (µ -1)(ψ(x) + C(1 + |x| p )) ≤ 0 by (44). Therefore w satisfies (46) at (x, 0).

Secondly, we suppose that t > 0 and w(x, t) ≤ 0. Again, w satisfies (46) at (x, t).

From now on, we consider the last and most difficult case when t > 0 and w(x, t) > 0.

(56)

Step 3. Viscosity inequalities for ũµ and ṽ. This step is classical in viscosity theory. We can assume that the maximum in (55) at (x, t) is strict in the some ball B(x, r) × [ t -r, t + r] (see [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF] or [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF]). Let Θ(x, y, t) = ϕ(x, t) + |x -y| 2 ε 2 and consider M ε := max

x,y∈B(x,r), t∈[ t-r, t+r] {ũ µ (x, t) -ṽ(y, t) -Θ(x, y, t)}.

This maximum is achieved at a point (x ε , y ε , t ε ) and, since the maximum is strict, we know that

x ε , y ε → x, |x ε -y ε | 2 ε 2 → 0, (57) 
and

M ε = ũµ (x ε , t ε ) -ṽ(y ε , t ε ) -Θ(x ε , y ε , t ε ) -→( w -ϕ)(x, t) as ε → 0.
It means that, at the limit ε → 0, we obtain some information on w -ϕ at (x, t) which will provide the new equation for w. From (56), for ε small enough, we have ũµ (x ε , t ε ) -ṽ(y ε , t ε ) > 0.

We can take Θ as a test-function to use the fact that ũµ is a subsolution of (54) and ṽ a supersolution of (40). Indeed (x, t) ∈ B(x, r) × [ t -r, t + r] → ũµ (x, t) -ṽ(y ε , t) -Θ(x, y ε , t) achieves its maximum at (x ε , t ε ) and (y, t) ∈ B(x, r)×[ t-r, t+r] → -ũ µ (x ε , t)+ṽ(y, t)+Θ(x ε , y, t) achieves its minimum at (y ε , t ε ). Thus, by Theorem 8.3 in the User's guide [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF], for every ρ > 0, there exist a 1 , a 2 ∈ IR and X, Y ∈ S N such that

(a 1 , D x Θ(x ε , y ε , t ε ), X) ∈ P2,+ (ũ µ )(x ε , t ε ), (a 2 , -D y Θ(x ε , y ε , t ε ), Y ) ∈ P2,-(ṽ)(y ε , t ε ), a 1 -a 2 = Θ t (x ε , y ε , t ε ) = ϕ t (x ε , t ε ) and -( 1 ρ + |M |)I ≤ X 0 0 -Y ≤ M + ρM 2 where M = D 2 Θ(x ε , y ε , t ε ). ( 59 
) Setting p ε = 2 x ε -y ε ε 2 , we have D x Θ(x ε , y ε , t ε ) = p ε + Dϕ(x ε , t ε ) and D y Θ(x ε , y ε , t ε ) = -p ε , and 
M = D 2 ϕ(x ε , t ε ) + 2I/ε 2 -2I/ε 2 -2I/ε 2 2I/ε 2 .
Thus, from (59), it follows

Xp, p -Y q, q ≤ D 2 ϕ(x ε , t ε )p, p + 2 ε 2 |p -q| 2 + m ρ ε 4 , ( 60 
)
where m is a modulus of continuity which is independent of ρ and ε. In the sequel, m will always denote a generic modulus of continuity independent of ρ and ε.

Writing the subsolution viscosity inequality for ũµ and the supersolution inequality for ṽ by means of the semi-jets and subtracting the inequalities, we obtain

ϕ t (x ε , t ε ) -Trace σ(x ε , t ε )σ T (x ε , t ε )X + Trace σ(y ε , t ε )σ T (y ε , t ε )Y -b(x ε , t ε ), p ε + Dϕ(x ε , t ε ) + b(y ε , t ε ), p ε +µ f x ε , t ε , ũµ (x ε , t ε ) µ -h(x ε ), s(x ε , t ε )( p ε + Dϕ(x ε , t ε ) µ -Dh(x ε ))
f (y ε , t ε , ṽ(y ε , t ε ) -h(y ε ), s(y ε , t ε )(p ε -Dh(y ε )))

≤ 0 (61) Now, we derive some estimates for the various terms appearing in (61) in order to be able ton send ε → 0. The estimates for the σ and b terms are classical wheras those for the f terms are more involved.

For the sake of simplicity, for any function g : IR N × [0, T ] → IR, we set g(x ε , t ε ) = g x and g(y ε , t ε ) = g y .

Step Finally, we obtain

T 3 ≤ (1 -µ) - L 2 + p(p -1)N C 2 σ + pC b + 3 Ĉ 2 h(x)
+e -L tf x, t, 0, e L ts(x, t) Dϕ(x, t) µ -1 -Dh(x) + m(ε).

(66)

Step (68)

Now, the assumption (B)(i) on the growth of f plays a crucial role: For this choice of parameters, for all (x, t) ∈ IR N × (0, τ ], we have L(Φ(x, t)) ≥ C ϕ t (h, Ct) -hϕ r (h, Ct) -h 2 ϕ rr (h, Ct) + (1 -µ)h > 0 since ϕ is a solution of (48) and h > 0. This proves the lemma. 2

f x,

+ 1 p ′ = 1 .

 11 Finally for any O ⊆ IR K , we denote by U SC(O) the set of upper semicontinuous functions in O and by LSC(O) the set of lower semicontinuous functions in O. Given p > 1 we will denote by p ′ its coniugate, namely 1 p Acknowledgments. Part of this work was done while the second author was a visitor at the FIM at the ETH in Zürich in January 2007. He would like to thank the Department of Mathematics for his support. We thank Guy Barles for useful comments on the first version of this paper.
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 21 A Stochastic Linear Quadratic Control Problem) Consider the stochastic differential equation (in dimension 1 for sake of simplicity)

  The proof is very close to the one of [13, Lemma 2.1], thus we omit it. Let us give some examples of Equations for which Theorem 3.1 applies and some examples.

Example 3 . 1

 31 The typical (simple) case we have in mind is

Lemma 3 . 1 (

 31 Change of functions)Let ũ = e -Lt u+h(x) where h(x) = C(1+|x| p ) for some constants C, L > 0. Then ũ is a viscosity solution of

7 . 1 - 2 Proof of Lemma 3 . 4 .

 71234 End of the proof. Combining (61), (62), (63), (64), (65) and (66), setting L > 4p(p -1)N C 2 σ + 4pC b + 10 Ĉ and sending ρ → 0 and then ε → 0, we getϕ t (x, t) -Trace σσ T (x, t)D 2 ϕ(x, t) -C b (1 + |x|)|Dϕ(x, t)| + L 4 (1 -µ)h(x) -(1 -µ)e -L tf x, t, 0, e L ts(x, t) Dϕ(x, t) µ -Dh(x) ≤ 0,which is exactly the new equation for w in the case (56). It completes the proof of the lemma. For simplicity, we fix R and set ϕ = ϕ R for simplicity. Therefore ϕ r denotes the derivative of ϕ wrt the space variable. We computeΦ t = Cϕ t , DΦ = ϕ r Dh, D 2 Φ = ϕ r D 2 h + ϕ rr Dh ⊗ Dh,with h = C(1 + |x| p ), Dh = pC|x| p-2 x, D 2 h = pC(|x| p-2 Id + (p -2)|x| p-4 x ⊗ x).

For 1 + 1

 11 all (x, t) ∈ IR N × (0, T ], L(Φ(x, t))= Cϕ t -Trace(σσ T D 2 h) + C b (1 + |x|)|Dh| ϕ r -Trace(σσ T Dh ⊗ Dh)ϕ rr +(1 -µ) L 4 h -(1 -µ)e -Lt f x, t, 0, e Lt s ϕ r µ -Dh .(67)Using (C)(ii) and the fact that p ′ (p -1) = p, we have the following estimates:|Dh| ≤ pC|x| p-1 , |D 2 h| ≤ p(p -1)C|x| p-2 , C b (1 + |x|)|Dh| ≤ pC b h, |Trace(σσ T D 2 h)| ≤ p(p -1)N C 2 σ h, 0 ≤ Trace(σσ T Dh ⊗ Dh) ≤ C 2 σ (1 + |x| 2 )p 2 C 2 |x| 2(p-1) ≤ p 2 C 2 σ h 2 .

  [START_REF] Bardi | On the Bellman equation for some unbounded control problems[END_REF]. Estimate of σ-terms. Let us denote by (e i ) 1≤i≤N the canonical basis of IR N . By using (60), we obtainTrace c x σ T x X -σ y σ T y Y = Xσ x e i , σ x e i -Y σ y e i , σ y e i ≤ Trace σ x σ T x D 2 ϕ(x ε , t ε ) + 2 ε 2 |σ x -σ y | 2 + m ρ ε 4 ≤ Trace σ x σ T x D 2 ϕ(x ε , t ε ) + 2C 2Now we estimate the f -terms. From (B)(iii) (convexity of f with respect to the gradient variable), we can apply (32) to obtain-µe -Ltε f y ε , t ε , e Ltε (ṽ(y ε , t ε ) -h y ), e Ltε s x ( p ε + Dϕ(x ε , t ε ) µ -Dh x ) +e -Ltε f y ε , t ε , e Ltε (ṽ(y ε , t ε ) -h y ), e Ltε s y (p ε -Dh y ) ≤ (1 -µ)e -Ltε f y ε , t ε , e Ltε (ṽ(y ε , t ε ) -h y ), Q ε , -s y )p ε + s x Dϕ(x ε , t ε ) + s y Dh y -µs x Dh x ) = e L ts(x, t) Dϕ(x, t) µ -1 -Dh(x) + m(ε).from (B)(iv) and (57). From (B)(v), (44) and the continuity of f, it follows e -Ltε f y ε , t ε , e Ltε (ṽ(y ε , t ε ) -h y ), Q ε ≤ e -L tf x, t, 0, e L ts(x, t)

	where						
	Q ε =	e Ltε µ -1	((s x Dϕ(x, t) µ -1	-Dh(x)	+	3 2 Ĉ	h(x) + m(ε).
			N				
			i=1				
			σ,r ≤ Trace σσ T (x, t)D 2 ϕ(x, t) + m(ε) + m |x ε -y ε | 2 ε 2 ρ ε 4 , + m	ρ ε 4	(62)

  since ϕ r ≤ e T (Lemma 3.3) and |Dh| p ′ ≤ p p ′ C p C 2 σ + pC b )ϕ r -p 2 C 2 σ h 2 ϕ rr

	t, 0, e Lt s ≤ C f 1 + |x| p + e Lt s ϕ r µ -1 ≤ C f 1 C + p p ′ C p ′ s C p ′ -1 e Lp ′ t + 1 Dh ϕ r + 1 Dh µ -1 e T 1 -µ + 1 p ′	p ′	h(x)
	+(1 -µ)	L 4	-	C f e -Lt C	-p p ′ C p ′ s C	p ′ -1 e Lp ′ t	e T 1 -µ	+ 1	p ′	h(x).
	We take									
	σ + pC b , p 2 C 2 σ , C > max p(p -1)N C 2 L > 4C f C + 4p p ′ C p ′ s C p ′ -1 e p ′ e T + 1 1 -µ τ = 1 L .	p ′	+ 1 and (45) holds,

′ -1 h(x) (because p ′ (p -1) = p). It follows from (67), L(Φ(x, t)) ≥ Cϕ t -(p(p -1)N

Lemma 3.2 (A kind of linearization procedure) Let C, L > 0 be such that (44) and (45) hold. Let 0 < µ < 1 and set w = µũ -ṽ. Then w is a viscosity subsolution of the variational inequality

where

and h is defined in Lemma 3.1.

Lemma 3.3 (An auxiliary parabolic problem) Consider, for any R > 0, the parabolic problem

For the proof of Lemma 3.3 we refer the reader to [START_REF] Da Lio | Uniqueness results for second-order Bellman-Isaacs equations under quadratic growth assumptions and applications[END_REF]. 

where L is defined by (47). Now, we continue the proof of Theorem 3.1. Consider max

where w is given by Lemma 3.2 and Φ is the function built in Lemma 3.4. From (49), for |x| large enough, we have Φ(x, t) ≥ C(1

, it follows that the maximum (51) is achieved at a point (x, t) ∈ IR N × [0, 1/L]. We can assume that w(x, t) > 0 otherwise, arguing as in ( 52)-(53), we prove w ≤ 0 in IR N × [0, 1/L] and the conclusion follows.

We claim that t = 0. Indeed suppose by contradiction that t > 0. Then since w is a viscosity subsolution of (46) with w(x, t) > 0, by taking Φ as a test-function, we would have L[Φ](x, t) ≤ 0 which contradicts the fact that Φ satisfies (50) . Thus, for all (x, t)

where the last inequality follows from (46) and the fact that Φ ≥ 0. Therefore, for every (x, t) ∈

Letting R to +∞, we get by (49), µũ -ṽ ≤ 0 in

We can repeat the above arguments on IR N × [1/L, 2/L] with the same constants. By a step-by-step argument, we then prove that µũ -ṽ ≤ 0 in IR N × [0, T ]. Letting µ go to 1, we obtain u ≤ v as well which completes the proof of the theorem.

2

We turn to the proof of the Lemmas 3.1, 3.2 and 3.4.

Proof of Lemma 3.1. Since

we obtain easily that ũ is a viscosity solution of (40) with f and g given by ( 41) and (42). It remains to check (43

It ends the proof of the lemma. 2

Proof of Lemma 3.2. For 0 < µ < 1, let ũµ = µũ and w = ũµ -ṽ. We divide the proof in different steps.

Step 1. A new equation for ũµ . It is not difficult to see that, if ũ is a subsolution of (40), then ũµ is a subsolution of

Step 2. The equation for w. Let ϕ ∈ C 2 (IR N × [0, T ]) and suppose that we have max

where C σ,r is a Lipschitz constant for σ in B(x, r) and we used that σ is continuous, ϕ is C 2 and (57).

Step 5. Estimate of b-terms.

Step 6. Estimate of f -terms. We write

where

We estimate T 1 . From (58), we have

Using (43) (the monotonicity in u of f ) and then (B)(v) (Lipschitz continuity in u of f ), we get

Since h is continuous, we have Ĉ|h x -h y | = m(ε). By (44) and since x ε → x, we obtain

Therefore

The estimate of T 2 relies on (B)(ii). Setting Q ε = e Ltε s x ( pε+Dϕ(xε,tε) µ -Dh x ) and recalling that r is defined at the beginning of Step 3, we have Let us turn to the estimate of T 3 . We have T 3 = L(1 -µ)(ṽ(y ε , t ε ) -h y ) + (1 -µ)g(y ε , t ε )

-µe -Ltε f y ε , t ε , e Ltε (ṽ(y ε , t ε ) -h y ), e Ltε s x ( p ε + Dϕ(x ε , t ε ) µ -Dh x ) +e -Ltε f y ε , t ε , e Ltε (ṽ(y ε , t ε ) -h y ), e Ltε s y (p ε -Dh y ) .

At first, from (44), we have

Using (C) (see (68) for the details), a straightforward computation gives an estimate for the continuous function g: