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Abstract

Cued Speech is a specific linguistic code for mepimpaired people. It is based on both lip-reading
and manual gestures. In the context of THIMP (Tedeyy for the Hearing-IMpaired Project), we work
on automatic Cued Speech translation. In this paperonly address the problem of automatic Cued
Speech manual gesture recognition. Such a gesagegmition issue is really common from a
theoretical point of view, but we approach it witspect to its particularities in order to derive a
original method. This method is essentially buitiuand a bio-inspired method call&érly Reduction
Prior to a complete analysis of each image of aisece, the Early Reduction process automatically
extracts a restricted number of key images whichrearize the whole sequence. Only the key images

are studied from a temporal point of view with lighcomputation than the complete sequence.

Keywords: Cued Speech, Early Reduction, automatic gesturegmtion, hearing-impaired, retinal

persistence.

1. Introduction

Amongst the various means of expression dedicatddet hearing impaired, the best known are Sign
Languages (SLs). Most of the time, SLs have a stracompletely different from oral languages. As a
consequence, the mother tongue of the hearing-meghdany SL) is completely different from that
which the hearing impaired are supposed to reahfly (i.e. French or English). This paper does not
deal with the study and the recognition of SLs.d;ave are interested in a more recent and totally
different means of communication, the importancewdfich is growing in the hearing-impaired
community: Cued Speech (CS). It was developed byCornett in 19671]. Its purpose is to make the

natural oral language accessible to the hearingira@, by the extensive use of lip-reading. But lip



reading is ambiguous: for example, /p/ and /b/diiferent phonemes with identical lip shape. Carnet
suggests (1) replacing invisible articulators (sashvocal cords) that participate to the productbn
the sound by hand gestures, and (2) keeping thigleviarticulators (such as lips). Basically, it mea
completing the lip-reading with various manual ges$, so that phonemes which have similar lip
shapes can be differentiated. Thanks to the coribmaf both lip-shapes and manual gestures, each
phoneme has a specific visual aspect. Such a "Rdimtreading” becomes as meaningful as the oral
message. The interest of CS is to use a code visishmilar to oral language. As a consequence, it
prevents hearing impaired people to have an uruksised representation of oral language and help
them to learn to verbalize properly.
The CS’s message is formatted into a list of coastrmowel syllables (CV syllables). Each CV
syllable is coded by a specific manual gesturecambined to the corresponding lip shape, so thet th
whole looks unique. The concepts behind Cued Spkeity rather common, it has been extended to
several languages so far (around fifty). In thipgra we are concerned by the French Cued Speech
(FCS).
Whatever the CS, the manual gesture is produce diggle hand, with the palm facing the coder.
It contains two pieces of information:
— The hand shape, which is actually a particular configuration ¢fedched and folded fingers.
It provides information with respect to the consutnaf the CV syllable (Figure 1). In order to
make the difference between the shape (as it ssicllly understood in pattern recognition) and
the hand shape (as a meaningful gesture with regpéee CS), we call this lattercanfiguration.
— Thelocation of the hand with respect to the face. This location around the face is precisely
defined by being touched by one of the stretchegefis during the coding (the touching finger is
called thepointing finger). Its purpose is to provide information about thmwvel of the CV
syllable (Figure 1). In the same way, it is necess® make the difference between the
morphologic part of the face being touched by thmting finger, and its semantic counterpart in
the code. We call the firgiinted area, and keep the wordcation for the gesture itself.

Hand coding brings the same quantity of informatisrip shape. This symmetry explains why:

— A single gesture codes several phonemes of difféieshapes: it is as difficult to read on the

lip without any CS hand gesture, as it is to unideid the hand gestures without any vision of the

mouth.



— The code is compact: only eight configurations aeeessary for the consonant coding and

only five locations are necessary for the voweliegdWe add the configuration 0 (a closed fist) to

specify the absence of coding, so that we consdital of nine hand configurations (Figure 1).

The configuration 0 has no meaning with respectht CV coding, and consequently it is not

associated with any location (it is classicallyqwoed by the coder together with the side location

but it has no interpretation in the code).

The presented work only deals with the automaticogeition of FCS manual gestures
(configuration and location). Therefore, the autbmdip-reading functionality and the linguistic
interpretation of the phonemic chain are beyondsttepe of this paper. This work is included in the
more general framework of THIMP (Telephony for tHearing IMpaired Project)2], the aim of
which is to provide various modular tools whichngritelephone accessible to French hearing-impaired
people. To have an idea of the aspect of FCS cpdasexamples of videos[aj.

In addition to the usual difficulties for recogoiti processes of dynamic sequences, CS has several
particularities which are the source of extra técdlrobstacles:

- The inner variations of each class for the configons are so wide that the classes intermingle

with each other. Hence, in spite of the restrictedhber of classes, the recognition process is not

straightforward. The same considerations prevaittfe location recognition.

— The hand is theoretically supposed to remain itaa parallel to the camera len, but in practice,

the hand moves and our method must be robust riegantinor orientation changes. In practice,

this projection of a 3D motion into a 2D plan ispsfme importancé4].

— The rhythm of coding is really complicated as itsigpposed to fit the oral rhythm: in case of
succession of consonants (which are coded as CW mvisible vowels) the change of
configuration is really fast. On the contrary, la¢ £nd of a sentence, the constraints are lesgystro
and the hand often slows down. For a complete swfdthe FCS synchronization, from the
productive and perceptive point of view of professil coders, segé].

- From an image processing point of view, when auwesis repeated (there are twice the same
location and configuration), the kinetic clues ating such a repetition are almost inexistent.

— The finger which points the various locations aitime face (the pointing finger) depends on the
configuration performed at the same time. For imsa it is the medium for configuration 3 and the

index for configuration 1.



- Finally, some long transition sequences occur betwieey gestures. They are to be dealt in the
proper way. At least some transition images canainra hand shape which really looks like any of
the configurations by chance, or equivalently, guwnting finger can cross or point a peculiar
pointed area which does not correspond to theitotalf the current gesture: in the corresponding
state machine, some states are on the path betweather states...

Knowing all these specifications, the problem isasociate a succession of states to each video
sequence. The possible states correspond to the product of five locations and eight configunasio
plus the configuration 0 (which is not associatedahy location to specify the absence of coding),
which makes a total of forty-one possible statdsusl the theoretical frame of our work is widely
addressed: the problem is to recognize a mathemhatajectory along time. The methods we should
implement for our problem are likely to be inspitegdthe tremendous amount of work related to such
trajectory recognition problems (robotic, speedatogmition, financial forecast, DNA sequenciny...

Basically, this field is dominated by graphical édsnethods under the Markov prop€#ay;, [7], [8]
(Hidden Markov Chain, Hidden Markov Model or HMM aknan filters, particles filters...). These
methods are so efficient, that their use does aetno be justified anymore. Nonetheless, theyesuff
from some drawbacK9]:

— As the complexity of the problems increases, thdetoturn to become almost intractable.

— To avoid such things, the models often lose in gaitg: the training sequence on which they are
based is simplified so that both the state macankethe training set have reasonable size.

— The training is only made of positive examples,clhiloes not facilitate the discrimination required
for a recognition task.

— They require enormous amount of data to be tragmed

In practice, these technical drawbacks can leadttations in which the method is not efficient.tkiVi

respect to our application, difficult situationsutab materialize in several manners. For instance,

— The succession of manual gestures will only be geized when performed by a specific coder

whose inner dynamism is learned as a side-effect.

— The improbable successions of manual gesturesrestbect to the training datasets are discarded

(which leads to understand the trajectory recogmifiroblem on a semantic point of view which is far

too sophisticated for the phonetic recognition nempliat the level we work in THIMP).



To avoid some of these drawbacks, several methade heen submitted so far. For a complete
review on the matter, s¢@].

For our problem, we could apply a method whichtfits usual scheme of the state-of-the-art: image
by image processing permits to extract some lceatiufes, which are then transmitted to a dynamical
process which deals with the data along time. Hewewe develop a method which is not based on
this pattern. The reasons are twofold.

First, it is very difficult to have meaningful datwven if raising the interest of a part of therireg
impaired community, FCS is not that spread yegfippeared in 1979, so only the younger have been
trained since their infancy). Consequently, gatigeenough sequences to perform complete training
with respect to the French diversity and the péénbding hand variety is very difficult. Moreoveo
have a proper coding which does not contain anyongxartifact for the training, one must only targe
certified or graduated FCS coders, who are verg campared to the number of various coders we
need.

Secondly, from our expertise on the particulard¢ayfiFCS gesture, we are convinced that thanks to
the inner structure of the code, it is possibletastically simplify the problem. This simplificati
leads to an important save in terms of computatguch a saving is really meaningful for THIMP, in
the context of the future global integration oftakk algorithms into a real-time terminal.

This simplification is the core of this paper, ang main original contribution to the problem. st i
based on some considerations which are rootedeovetty specific structure of CS.

From a linguistic point of view, FCS is the compleisual counterpart of oral French. Hence, it has
a comparable prosody and the same dynamic aspech & gesture recognition point of view, the
interpretation is completely different: each FCStgee {configuration + location} is a static gesur
(named &PhonemicTargetor PT in the remaining of the paper) as it doescoatain any motion and
can be represented in a single picture or a dravangh as Figure 1. Then, a coder is supposed to
perform a succession of PTs. In real coding, thedhsevertheless moves from PT to PT (as the hand
can not simply appear and disappear) @rahsition Gesture§T Gs) are produced.

We are interested in decoding a series of phond@¥s) from a succession of manual gestures
which are made of discrete PTs linked by continucassitions. We formulate infast hypothesighat
PTs are sufficient to decode the continuous septeas a consequence, complete TG analysis is most

of the time useless to be processed (with the gamiterms of complexity it implies).We do not asse



that TGs have no meaning by themselves, as we tlovant to engage the debate on linguistic
purposes. These transitions may carry a lot ofrmédion such as paralinguistic clues, or even be
essential for the human brain FCS decoding task itBs considered as not relevant here, as wasfoc
on the message made by the succession of PTs.

We also suppose in second hypothesishat the differentiation between TG and PT issiide
thanks to low-level kinetic information that can &eracted before the complete recognition process.
This is motivated by the analysis of FCS sequeritestiows that the hand is slowing down each time
the hand is reaching a phonemic target. As a caese®, PTs are related to smaller hand motion than
TGs. It nonetheless appears that there is almastyal some residual motion during the realization of
the PT (because of the gesture counterpart ofafeeticulation).

These two hypotheses are the foundation ofghdy Reductionit is possible (1) to extract some
key images via very low level kinetic informatioand (2) to apprehend a continuous series of
phonemes in a sequence thanks to the study oteetiisset of key images.

The advantages of thearly Reductiorare twofold: (1) the computation is lighter asslof images
are discarded before being completely analyzedth@)omplexity of the dynamical integration is far
lower, as the size of the input data is smallethla purpose oEarly Reductionwe worked in10] to
drastically reduce the number of input images bggithe inner structure and dynamic of the gestures
we are interested in. In this paper, we sum upeapand this analysis, while linking it with othezvn
works related to segmentation and classification.

We develop a global architecture which is centevedheEarly Reductionconcept. It is made of
several modules: the first one is made of the satptien tools. We extract the hand shape, its paint
finger, and we define the pointed area of codinth wéspect to the coder's face position in the Bnag
The second module performs tarly Reductionits purpose is to reduce the whole image sequence
the images related to PTs. This is based on lowetlknetic information. The third module deals with
the classification aspect of locations and configions on each key image. This is summarized in the
functional diagram of Figure 2.

In Section 2, we present the image segmentatioaritdgns required to extract the objects of
interest from the video. Section 3 is the coreha&f paper as thEarly Reductionis developed. The

recognition itself is explained in Section 4. Flgalve globally discuss the presented work in Sech:



we develop the experimental setting on which th@levhmethodology has been tested and we give

guantitative results on its efficiency.

2. Segmentation

In this section, we rapidly cover the different @sts of our segmentation algorithm for the purpafse
hand segmentation, pointing finger determinatiord pointed area definition. Pointed area definition
requires face detection. Moreover even if the pwsibf the face is known, the chin, as the lower
border of the face, is really difficult to segmeAs well, the cheek bone has no strict borderseto b
segmented from a low level point of view. Hence, dedine these pointed areas with respect to the

features which are robustly detectable on a fages,enose and mouth.

2.1. Hand Segmentation

As specified in the THIMP descriptid@], the coding hand is covered with a thin glove arghort
learning process on the color of the glove is ddrés makes the hand segmentation easier: the hand
often crosses the face region, and achieving astaf®rgmentation in such a case is still an opereiss
The glove is supposed to be of uniform but undetezthcolor. Even if a glove with separated colors
on each fingef11] would really be helpful, we reject such a use skeveral reasons:

— Ergonomic reasonit is difficult for a coder to fluently code with glove which does not perfectly
fit the hand. Consequently, we want the coder tehhe maximum freedom on the choice of the glove
(thickness, material, color with respect to the/baickground/clothes, size, etc...)

— Technical reasonin the long term, we expect to be able to renttieeglove (natural coding). But
fingers without glove are not of different color @t we do not want to develop an algorithm relate
to different colors in order to identify and separéingers. The glove’s presence has to be coresider
only as an intermediate step.

With the glove, the segmentation is not a real [@mbanymore. Our segmentation is based on the
study of the Mahalanobis distance in the color sphetween each pixel and the trained color of the
glove. Here follows the description of the mainpst®f the segmentation process. This process is an
evolution of prior workg12].

(0) Training At the beginning of a video sequence, the colbthe glove is learned from a

statistical point of view and modeled by a 3D Garssnodel (Figure 3). We choose a color space



where luminance and chrominance pieces of infoonadre separated to cope better with illumination
variations. Among all the possible color spacesuse the YCbCr (or YUV) color space for the only

reason that the transform from the RGB space isalinand thus, demanding less computation
resources.

(1) Similarity map For each pixel, the Mahalanobis distance to tloelehof the color's glove is
computed. It simply corresponds to evaluate thelgixunder the Gaussian modeh§) (Figure 4),
where m is the mean of the Gaussian color model, ands covariance matrix. We call the
corresponding Mahalanobis image @imilarity Map (SM). From a mathematical point of view, the

Similarity Mapis the Mahalanobis Transform of the original image

B . _ (p-m{p-n'
SM(p=MT,_,(p for @dimage with MT, (p=* exié 2(det) ]

where detf) is the determinant of the covariance madrix

(2) Light correction On this SM, light variations are classically badad under the assumption that
the light distribution follows a centered Gaussiamv. For each image, the distribution of the
luminance is computed and if its mean is differieatm the mean of the previous images, then it is
shifted so that the distribution remains centered.

(3) Hand extraction:Three consecutive automatic thresholds are apptiedxtract the glove’s
pixels from the rest of the image. We develop hbe methods for an automatic definition of the
thresholds.

(3a) Hand localization‘A first very restricting thresholdl is applied on the SM in order to
spot the region(s) of interest where the pixelthefglove are likely to be found (Figure 5b). This
threshold is automatically set with respect tohkies of the SM within the region in which the

color is trained. Iim is the mean of the color model, ahchining is the set of pixels on which the

1 max (SM)
T1== m+ Tralrjlng
2 min (SM)

Training

training was performed:

(3b) Local coherenceA second threshold?2 is applied to the not yet selected pixels. This
threshold is derived from the first one, but itdueavaries with the number of already selected
pixels in the neighborhood of the current pigét,y): each pixel in the five-by-five neighborhood

is attributed a weight according to its positiorthmiespect tq(x,y). All the weights for the 25



pixels of the five-by-five neighborhood are summad in theGWM matrix. The sum of all the
weights is used to ponder the threshbld Practically, GWMis a matrix which contains a five-by-

five sampling of a 2D Gaussian,

T2(x,y)= 331%2 3 (GWM(i )INbar, (i j))j

i==2j=-2

2 4 5 4 2
: ) . : 4 9 12 9 4
with Nbgr, = : SM( % y) : andGWM=|5 12 15 12

: g - : 4 9 12 9 4
2 4 5 4 2

SM(x-2,y-2) -+ - o SM(%2,%2)

SM(x2,y-1) - - - SM( %2, ¥2)

SM(x y) being the value for pixelp & y) in SM.

Such a method allows having a clue on the spatiai@nce of the color and on its local variation.
Moreover, this second threshold permits the pikitle color of which is related to the glove one)
to be connected (Figure 5c¢). This connectivitymiportant to extract a single object.

(3c) Holes filling A third threshold T3 is computed over the valoéSM, and it is applied to
the not selected pixels in the fifteen-by-fifteegighborhood of the selected pixels. It permits to
fill the holes as a post processing (Figure 5d):

max (SM)

__ Training 1

_ -0.
min (SM)

Training

2.2. Pointing finger determination

The pointing finger is the finger among all theeithed fingers, which touches a particular zone on
the face or around the face, in order to deterrtiiedocation. From the theoretical definition of ,GiS
is very easy to determine which finger is used @anipthe location around the coder's face: it i th
longest one between those which are stretched ftrextluded). Then, it is always the medium but in
case of configurations 0 (as there is no codingand 6 (where it is the index). This morphologic
constraint is very easy to translate into an imaigeeessing constraint: the convex hull of the binar
hand shape is computed and its vertex which iguttibest from the center of palm and which is highe

than the gravity center is selected as the poirftimger (Figure 6).



2.3. Head, feature & pointed area determination

In this application, it is mandatory to efficientigtect the coder's face and its main features,dar to
define the regions of the image which corresponedaoh area potentially pointed by the pointing
finger. Face and features are robustly detectell thi2¢ Convolutional Face & Feature Finder (C3F)
described if13], [14] (Figure 7). From morphological and geometricalsiderations, we define the
five pointed areas required for coding, with respgecdhe four features (both eyes, mouth and nimse)
the following way:

— Side: An ovoid horizontally positioned beside the farel vertically centered on the nose.

— Throat: A horizontal oval positioned under the face aligih@d with the nose and mouth centers.

— Cheek bone: A circle which is vertically centered on the ndwmEght and horizontally so that it is
tangent to the vertical line which passes throughdye center (which is on the same side as the
coding hand). Its radius is 2/3 of the verticatalice between nose and eyes.

— Mouth: The same circle as the cheek bone one, but eshter the end of the lips. The end of the
lips is roughly defined by the translation of the® centers so that the mouth center is in the lmidd
of the so-defined segment.

— Chin: An ellipse below the mouth (within a distance igglent to mouth center to nose center).
Despite the high detection accurgdy!], the definition of the pointed areas varies toccmon

consecutive images (video processing). Hence, dhetellation of features needs to be smoothed. In

that purpose, we use a mono-directional Kalmaerfigépresented by the system of equat®ns

' dx, dy,)_( 1@ 1d@)] dx dy
[X‘” Yo Ta Ta ]_[ZER% |d(8)jD[X‘ o dt]+ ON(ZERQ,, 1d8))

T T
dX, dy)_ dx dy v(da
X, Y = t= —t Y+ ON| ZERQ, —
[‘ bt dtj ()‘ Y & dt]+ [ G co dt

where:

— X andy; are the column vectors of the horizontal and waltcoordinates of the four features (both
eyes, nose and mouth centres) in the image at ttiamad X; and Y, their respective observation
vectors.

- 1d(i) is the identity matrix of size andZERQ; is the null matrix of sizéx j.



— ooN(paraml, param2)s a random variable which follows a Gaussian tdwmeanparamland of
covarianceparam2

- dZz/dtis a training set for the variability of the pr&ioin of the C3F with respect to the time.

3. Early Reduction

3.1. Principle

The Early Reductionpurpose is to simplify the manual gesture recagmitproblem so that its

resolution becomes easier and less computatioretiyensive. Its general idea is to suppress

processing for transition images and to focus oy ikeages associated to PTs. The difficulty is to

define the key images prior to any analysis ofrthentent. As we explained in the introduction:

- images corresponding to PTs are key images in #ening that they are sufficient to decode the
global Cued Speech gesture sequence;

— Around the instant of the realization of a PT, tla&d motion decreases (but still exists, even durin
the PT itself) when compared to the TG.

The purpose of this section is to explain how tolge level kinetic information which reflects this

motion variation, so that the PTs instants camberiied.

When coding, the hand motion is double: a globadhagid motion associated to location and a
local non rigid fingers motion associated to cowfagion formation. The global rigid motion of the
hand is supposed to be related to the trajectoryhefhand gravity center. Such a trajectory is
represented on Figure 9, where each curve repeeientariation of a coordinate ¢r y) along time.
When the hand remains in the same position, thedatates are stable (which means the motion is less
important). When a precise location is reachedgitesponds to a local minimum on each curve. On
the contrary, when two consecutive images have digigrent values for the gravity center coordisate
it means the hand is moving fast. So, it gives vgopd understanding of the stabilization of the
position around PTs (i.e. the motion decreases).

Unfortunately, this kinetic information is not acate enough. The reasons are twofold:
— When the hand shape varies, the number of strefiigetrs also varies and so varies the repartition
of the mass of the hand. As a consequence, the slaaations make the gravity center moving and

looking unstable along time.



— The hand gravity center is closer to the wrist {tiet which rotates for most of the movement) than
the pointing finger, and consequently, some motfom® a position to another one are very difficult
to spot.

As a matter of fact, the pointing finger positionwd be a better clue for the motion analysis and P

detection, but on transition images as well as wihenfist is closed, it is impossible to define any

pointing finger. This is illustrated on the exanmgptd Figure 10.

Thus, the position information (the gravity centrehe pointing finger) is not usable as it is, avel
suggest focusing on the study of the deformatiorthef hand shape to get the required kinetic
information.

Because of the lack of rigidity of the hand defotioyg usual methods for motion analysis such as
differential and block matching methofis] or model based method$6] are not well suited. We
propose to provide thigarly Reductiorthanks to a new algorithm for motion interpretathm|msed on a

bio-inspired approach.

3.2. Retinal persistence

The retina of vertebrates is a complex and powesfatem (of which the justification of the effic@n
roots in natural selection process) and a largecsoof inspiration for computer vision. From an
algorithmic point of view[17], a retina is a powerful processor in addition toick it is one of the
most efficient sensors: the sensor functionalitynpes the acquisition of a video stream and a
succession of various modules process them, sudxp@lgined in Figure 11. Each module has a
specific interest, such as smoothing the variatioh#lumination, enhancing the contours, detecting
and analyzing motions...

Among all these processes, there is the Inner ®Blexi cells Layer (IPL) filtering. It enhances
moving edges, particularly edges perpendicularh® motion direction. Its output can easily be
interpreted in terms of retinal persistence: ttaefaan object goes in front of the retina, therridst
the (perpendicular to motion) edges are. Rouglhlg,IPL filter can be approximated by a high pass
temporal filter, (as indicated in the Figure 11j for more a comprehensive description, [5e8.

By evaluating the amount of persistence at theflldr output, one can have a clue on the amount

of motion in front of the retina sensor. This cam dpplied to our gesture recognition problem. As



shown in Figure 12, it is sensible to use the attipersistence to decide whether the hand is
approximately stable (it is likely to be a target)not (it is likely to be a transition).

Our purpose is to extract this specific functiotyabif the retina and to pipe-line it to our other
algorithms in order to create a complete "sens@ré&processor” system which meets our expectation

on the dedicated problem of gesture recognitibadedicated retina filter.

3.3. Dedicated retina filter

The dedicated retina filter [9] is constituted of several elements which are @uhitogether, as
indicated in Figure 13.

(0) aVideo Sensor. It is nothing more than a video camera.

(1) Hand Segmentation, which has been described in Section 4. At the afritie segmentation
process, the hand is rotated on each image smth#tte global sequence, the wrist basis (which is
linked to the forearm) remains still. In this walye global motion is suppressed, and only the tiana
of shape is taken into account.

(2) An Edge Extractor, which provides the contours of the hand shapis. tiser to work on the
contour image because, from a biological pointiefw the eye is more sensitive to edges for motion
evaluation. As extracting a contour image from maby image is rather trivial, we use a simple
subtraction operatdfi8]. The length. of the closed contour is computed.

(3) A Finger Enhancer, which is a weighted mask applied to the contaoaty image. It makes
the possible positions of the fingers with resgedhe hand more sensitive to the retinal persigteas
the changes in the hand shape are more relatéuger imotions that palm or wrist motion, theseelatt
are underweighted (Figure 14a). The numerical whfethe mask are not optimized, and there is no
theoretical justification for the choice of the it described in Figure 14b. This is discussech t
evaluation part.

(4) A Smoothing Filter, which is a 4 operations/byte approximation ofau§sian smoothét 7].
Such a filter appears at the retina pre-procedsittige IPL.

(5) Thelnner Plexiform Layer (IPL) itself, which has already been presented in theique

paragraph 3.2 as the core of the retinal persistenc



(6) A Sum Operator, which integrates the output of the IPL filter amder to evaluate the
"blurriness" of the edges, which can directly beiipreted as a motion energy measure. By dividing i
by the edge length, we obtain a normalized meashieh is homogenous with a speed measure:

MotionQuantificatior{ framg :%DZ IPLoutpuf ,x)
X,y
Where frameg represent the currenf image, L represents the length of the contour of the shape
computed in thedge extractomodule, andPLoutput(x,y) represent the value of the pix&ly) in the

image result of the processingfedime by modules (0) to (5) of the dedicated retinafilt

3.4. Phonemic Target identification

The motional energy given as output of thedicated retina filteris supposed to be interpreted as
follows: at each time, the higher the motional energy is, the more thené at time contains motion,
and vice-versa. On Figure 15, each minimum of theves is related to a slowing down or even a
stopping motion. As the motion does not take irdooaint any translation or rotation, which are globa
rigid motion, the amount of motion only refers k@ tamount of hand shape deformations in the video
(fingers motion).

Hence, any local minimum in the curve of FigurechBresponds to an image which contains less
deformation than the previous and next images: andmage is related to the notion of PTs as ddfine
above. Unfortunately, even if the relation is vigjlthe motional energy is too noisy a signal toval
direct correspondence between the local minima and tise th& local minima are too numerous.

Here are the reasons of such noisiness:

— A PT is defined from a phonemic point of view whisha high level piece of information: whatever
the manner the gesture is made, it remains a siR@leper gesture. On the contrary, a local
minimum in the motion can have several origins: thation may be jerked, or the gesture may
require several accelerations and decelerationsnfisphologic reasons; it is simply related to the
kind of motion (speed, acceleration, jerk ...) andsita very low-level piece of information.
Consequently, several such instants in which aivelatability is measured can appear in a single
gesture. These instants must be filtered in ordédeep only the ones which are likely to have a

higher level of interpretation.



— Because of the nature of the dedicated retina fikspecially the IPL filter), its output is noisy
(there are lots of local minima of no meaning fraphonetic point of view).

— Any mistake in the previous processing can alsal leaunjustified local minima (noise in the
segmentation, relative sensitivity of the captolighting variations, approximation of considering
the motion as planar, ...).

For all these reasons, it is impossible to simmgoaiate local minima to PTs. On the contrary, it

appears from common sense, that any image whidlly cesresponds to a PT is a local minimum. This

is confirmed by experiments (see Section 5). Andlie set of all the local minima is too big to be
associated to the set of the phonemic targetscdntiains it. We consider the set of local minimaas
first step of theEarly Reductionand the corresponding images are consideredrgastgeof very low

level called KT1 (which stands for Kinetic Targéttgpe 1) on which set of targets of higher levdl w

be defined.

The point is now to define a set of KT2 based angét of KT1, (in which all the useless KT1 has
been removed, and in which no PT is missing). Rat purpose, the motion energy is filtered, so that
the small variations are smoothed and the importemtations are enhanced (Figure 16). The
remaining KT1 on the filtered motional energy cume considered as KT2. To perform such a
filtering, we use a series of convolutions with fokbowing kernelltKe:

ltke=(0.1 0.2 0.4 0.2 0)

After each iteration, the remaining local extrema set back to their original values, so that ahly
small variations are suppressed. In practice, titeeations are sufficient.

The KT2 images are images which potentially comespto the PTs, but they still remain too
numerous. The next step of the reduction is tongefin equivalence class for all the KT2 which
correspond to the same gesture. The difficultyoisgtoup the images of a same gesture without
analyzing the images of the sequence.

To create these equivalence classes, we simplypgitoel consecutive images together, under the
hypothesis that any change of gesture leads tonporiant amount of retinal persistence. As soon as
the motional energy becomes too high (higher tindifiresh the gesture is supposed to be not stable
enough any more (one leaves the previous equivalelass of stable images). As soon as the motional
energy becomes small enough (smaller tBapTresh the gesture is supposed to be approximately

stable back and enter a new class of images cordids being equivalent (Figure 18upTreshmust



be higher tharinfTresh (it defines a hysteresis cycle) to take into aotdhe delay induced by the
temporal filtering of the IPL.

If the thresholds are not properly set, two kindswor can appear. We catror of type 1 a
transition which is not spotted; in such a caseptiesious gesture and next gesture are mergedheget
We callerror of type 2 a transition which is detected whereas none ocgussich a case, a gesture is
split into two. As a matter of fact, errors of typeare really easy to correct. Then, it is not seagy
for the thresholds to be precisely tuned, as langhay prevent any error of type 1. That is why we
have roughly and manually selected them to theevalli30% and 40% of the maximum values
reachable by the motional energy (which is Oldfifresh= 0.03 andSupTresh=0.04.

Once the equivalence classes of KT2 are definedmibst representative KT2 element of each class
(the one which has the lowest motional energy valweng the equivalence class) is defined as KT3,
the kind of kinetic targets of highest level ofergretation: the early reduction purpose is toragefi
KT3s which are as closed as possible to the thealt®Ts.

To correct an error of type 2, it is sufficientdompare the result of the recognition for each KT3
(i.e. after the recognition stage which is desdilie the next section). If consecutive KT3s are
recognized as containing the same configuratidmsttwo possible meanings:

— Two identical configurations have been producetivim PTs. No mistake has been made.
— Asingle PT has been cut in two by mistake andglsiconfiguration has provided two KT3s.

To make the difference between these two cases,sitifficient to process the single TG image
which corresponds to the local maximum (the imafgeaximum motion) between the two considered
KT3s. If the same hand shape is recognized duhiagrG, it means a single PT has been artificially
cut into two. In addition to all the RT3 images,m@ TGs images are processed (their number
obviously varies, as it is discussed in Section 5).

The interests of using a hierarchical definitiontfte KTs (KT1s, KT2 and KT3s) instead of using a
direct method to extract KTs which correspond t@ Bile manifold:

- Stronger reduction: We have got the following relationship which mhbstenforced:

{kT3¢ O{ KT23 O{ KT}

Then, by explicitly defining intermediate level BfTs, we pedagogically explain that the target

images must be recognized as such at various |lefetgerpretation. For example, several local



minima after the smoothing by th&e kernel are not in {KT2s}, whereas they fulfil trether
conditions: they do not belong to {KT1s} becaus¢he non-zero phase of the convolutional filter.
— Computation resour ces. The definition of intermediate KTs, allows reciging fewer images
for the definition of equivalence classes with extfo the gesture contained in the image.

- Extension to future works: We expect in our future work to be able to autboadly spot
some of the mistakes made by the system. Thergrarbhical definition of targets of various level

of interpretation would allow correcting them me@sily by descending the level of interpretation.

4. Hand shape classification

In this section, we are interested in the clasdiific of a KT3 image. Working on KT3 simplifies
the recognition task for two reasons:

— For each zone of stability that corresponds toguivelence class for the KT2, all the images have
their hand shape recognized through the recognitidhe single corresponding KT3.

— The configurations to recognize are fully realizad PTs. So, there is less variance to take into
account, and the classes are well defined and leolu(d opposition to when transitions are taken
into consideration).

Figure 18 is an example of the kind of images #ratobtained in the KT3 set, and which are likely

to be classified. Some images represent imperfestuges, such as the examples of configurations 3

and 4. As explained in Section 2, by nature of FB8,hand shapes obtained are prone to numerous

artefacts which complicate the classification takKR.3 images are more stable, but this stability

remains relative.

4.1. Pre-processing: the wrist removal

The wrist is a source of variation: (1) it is anjpothe shape of which varies, and (2) its sizeegri
with the glove. Hence one does not want to perfany learning on it, and we simply remove it. We
define the wrist as the part of the hand whichndar the palm (Figure 19). We define the palm as th
biggest inner circle of the hand. We find it vigiatance transform which is computed over the lyinar
image coming from the segmentation step. The parpbshe distance transform is to associate to each
pixel of an object in the binary image, a valueathéorresponds to the Euclidian distance between th

considered pixel and the closest pixel belonginghto background of the image. For morphological



reasong19], the centre of the palm is the point of the hama talue of which is the highest in the

corresponding distance transform image (Figure 19).

4.2. Attributes definition

Several image descriptors exist in the image cosgioa literaturg20]. We focus on Hu invariants,
which are successful in representing hand shg@e$heir purpose is to express the mass repartition
the shape via several inertial moments of variomers, on which specific transforms ensure
invariance to similarities. Centered inertial motseare invariant to translation. The momemy, of

orderp+q is defined as:

My ZJ‘J.(X_Y)‘)( y_i))qd( x ¥y dxd

With X andy being the coordinates of the gravity center of shepe andi(x,y) = 1 if the pixel

belongs to the hand and 0 otherwise. The followiagnalization makes them invariant to scale:

m
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Then, we compute the seven Hu invariants, whichras@iant to scale and rotati¢®0], [4]:
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4.3. Classification methodology

For the classification itself, we use Support VechMachines (SVMs)[21]. SVMs are binary
classification tools based on the computation obptimal hyperplane to separate the classes in the
feature space. When the data are not linearly abfmra kernel function is used to map the feature

space into another space of higher dimension ichvtiie separation is possible. We use:



— "One vs. One" methodology for the multi-classifioataspect. It means that to deal with multiple
classes, one uses a SVM per pair of classes, arfihtdl classification is derived from the resuit o
all the binary classifications.

- A voting procedure: each SVM gives a vote to thesslit selects and the final classification is
achieved by choosing the class which gatheresigiest score.

— The C-SVM algorithnj22].

— Sigmoid kernels, in order to transform the attrébspace so that it is linearly separable.

5. Discussion on the overall method

In order to evaluate the algorithms presented im paper, we mainly use a specific corpus which
corresponds to a single experiment campaign. ltslifons of acquisition perfectly fit the general
situation which our system is supposed to work@mnsequently, it is used to test all the algorithms
Sometimes, this setting is not sufficient to makéha evaluations and we use some other expersnent
in parallel which are dedicated to a peculiar dthar (segmentation, classification, etc...). Thetfirs
main data collection is described in the first gaaph. In the following paragraphs, each algoritem
evaluated with respect to this main corpus. If addal minor datasets are required, they are desdri

in the corresponding paragraph.

5.1. Experimental setting and data collection

The main data collection deals with a corpus of 8éiitences of very uninteresting (or inexistent)
meaning, but with the particularity of presentinlj the potential transitions among the French
phonemes. This lack of clarity leads to a codingcivhis not perfectly fluent, as there are some
hesitations, or mistakes, which are finally alsegent in an unprepared talk. The sentences are long
from five to twenty-five syllables and have elaliethstructures. No learning is performed on their
semantic level, so that the power of generalisatbrthis dataset is complete: any new sentence
acquired in the same conditions is processed imadas way and gives similar result. Consequently,
the mere content of the corpus in terms of linguisteaning is not as important as the other vanati
factors (coder, lightening conditions, camera dyaétc...), which may have far more consequences.

The coder is a native French female, certified F@S translation, and working regularly as a

translator (in schools, meetings, etc...). She cades sound-proof room, with professional studio



lightening conditions, sitting in front of a camgeeand using the thin black-silk glove she usuabed
to protect her hands from cold (consequently, tleeggis really chosen up to the coder). This is the
first time she uses a glove for a coding acquisjtiand after a short warm up, she is not bothered
anymore by its presence. It appears that the gitol@ur is very close to the coder's hair. In ortber
assess the choice of the glove with respect tth@ fomfort of its use, (2) its colour for segménta
purpose, (3) the difficulty of recognizing a badlyosen glove, we also made few acquisitions with a
thick blue glove which is two sizes too big for twder's hand.

The acquisition is made at 25 images/second wipnofessional analogical camera of the highest
quality. Then, the video is digitalized. Frames Ad&B are separated and each is used to recreate a
complete image thanks to a mean interpolation m®cEinally the video rate is 50 images/second,

with a lowest quality, which is not a disturbanae,the original one is high enough to allow sudtsa.

5.2. Hand Segmentation evaluation

For the evaluation of the hand segmentation prooessmade the choice of using a qualitative
approach defined in the following way: the handasrectly segmented if the global shape is preserve
in the sense that a human expert is able to reeeghe right configuration. So segmentation “efrors
such as small extension, border suppression, bagkdrfingers missing..are not considered (Figure
20a, Figure 20c). On the contrary, if a small nkistenodifying the shape is observed, the segmentatio
is considered as mislead (Figure 20b, Figure 208).do not consider an automatic and quantitative
evaluation of the hand segmentation by comparingresults with a ground truth as our main goal is
configuration recognition and not only hand segraton.

The accuracy is defined as follows: for each videquence, we count the proportion of images which
are considered as correctly segmented (with regpdbe previous conditions). With such a defimitio
of the accuracy, the results for each sentenckeofrtain corpus are the following: the lowest accyra
is 95.8% and the highest 100%, with a mean of 9944162 images. These results are equivalent
with other gloves under the same conditions of &iiipn: yellow glove (99.56%) and bright pink
glove (98.98%), but the number of images for th& te less important. Concerning lower quality
acquisition, it is really difficult to assess a seas it is far more depending on the conditions
(lightening, glove, etc...). As an example; the resifl Figure 5 is obtained with a portable digital

camera in a classroom lit by the sun and with ndiquéar constraint. Finally, the results are not



corrupted by the addition of a salt and pepperenof$60%. This result is not surprising as the gole

modelled by a Gaussian and the image smoothedrotidions (Figure 21).

As we expect our segmentation to be accurate enaagprovide precise descriptors to the
recognition process, another mean to evaluate ffi@eacy of the segmentation is to consider the
accuracy of the classification process: so longhaslatter is efficient enough it is not necesstry
improve the segmentation.

Despite the number of steps (the error rates ofhvbumulate each other) involved in the extraction
of the hand our experiment have shown the goodiefity of this module.

We perform other acquisitions, with various webcarrintermediate quality digital cameras, and
various gloves, in order to determine the robustridshe method with respect to the equipment. Of
course, the quality of the results is somehow eeldab the quality of the camera. From our expertise
most of the errors are due to:

— Atoo low shutter speed on the camera which lead® e images on which the fingers are blurred;

— Unwise choice of the color of the glove (it is maiifficult to segment it when its color is closed t
the color of an element of the background, to ke solor, or to the color of the hair);

— Bad color sensors, which prevent any color diseration.

— Too dark gloves are difficult to segment as onlg thminance of the pixel is meaningful. On the
other hand, too light glove are more sensitiveigitl variation and shadow effects (Figure 5).
Intermediate colors are more efficient: luminancad achrominances are useful for the
discrimination and shadows effects are dealt bynth#iple thresholding.

— Texture of the surrounding or background: becadsthe heavy use of convolution filter in the
segmentation process, the border of the hand iesi@ccurate in case of textured area around it
(Figure 20e).

— If the training step is not accurately performeble tsegmentation results quality drastically
decreases. We think an ergonomic study might bessacy to provide a convenient interface which
ensures the coder who is not familiar with the paogto have his/her glove well learned (Figure
20f, Figure 20g). Of course, such a study is beythedscope of scientific research and is of greater

concern for a commercial application.



5.3. Pointed area and pointing finger evaluation

Practically, the definition of the pointed areagkeoefficiently. It is possible to evaluate theeirgst
of the pointed areas with respect to their morpiplfor the coding task: it is actually interestitm
check whether the chin is efficiently detected hg torresponding ellipse, (and for the mouth or the
cheek bone as well) independently from the positibthe pointing finger during the realization of a
gesture. To do so, we applied our algorithm tor@dges of the BiolD databafes3]. It appears from
this test, that all the defined pointed areas giatisfactory results, but the area related to thia c
remains less accurate than the others (due torésemce of beard, and the opening of the jaw). We d
not provide accuracy rates, as there is no obgeground truth. On the contrary, we provide litiggo
cases (see Figure 23). The interesting point is trece this algorithm is coupled with its counpart
on lip-reading (a work lead by another team of THIMthe mouth contour will be accurately
segmented and it will improve mouth and chin débecas a side effect.

As shown on Figure 8 the coordinates of each feadne far more stable after being processed by
the Kalman filter. Consequently, the pointed amkefined above are also more stable.

Concerning the pointing finger determination, thecuaacy score is between 99% and 100%
depending on the sentences of the corpus, (witheannof 99.7%), so long as the hand perfectly
remains in the acquisition plan. Otherwise, becafsparallax distortions, the longest finger on the
video is not the real one, as illustrated in FigePe As we expect the code to be correctly dore, th

images with parallax distortions are not taken axoount in this evaluation.

5.4. Early Reduction evaluation

PT definition: The PTs are only defined with respect to the gbkaof configuration, and not with
respect to the change of location. It intuitivedadls to a problem: when two consecutive gestunes ha
the same configuration but different locationsirgle PT should be detected and the other one ghoul
be potentially lost. In practice, there is a strangelation on hand shape deformation and glohatih
position, so it does not to occur too often: itsgortion with respect to the other mistakes is lrigt
enough to be quantified at the level of a phonesmialuation of the system. On the contrary, it may
lead to global inconsistencies for higher levekiptetation, such as complete sentence decoding.

(Section 5.7).



The finger enhancer: The mask is manually set to correspond to theigdmpattern represented in
(Figure 14a). In order to decide whether to us® ihot, we simply qualitatively compare the outpfit
the dedicated retina filter when it processes barteenhanced data. As the results of the Early
Reduction seem more adapted with than without thgef enhancer, it is kept with no longer
optimization (although we concede that it couldbbé&mized, there is no need for it at the moment).

KT selection: We have set a hierarchical definition of thregety of kinetic targets. The last type of
targets is associated to zones of stabiligyative minimum in the motion) which are suppoged
correspond to the full realization of gestures. aterage proportion of images in a sequence whieh a
KT1s is 40%. The proportion of the images in thgussce which are KT2 is between 25% and 30%,
depending on the rhythm of coding, and this praporis between 6% and 12% for KT3.

PTs are included in KT1 and KT2. From our experitagthis is true in more than 98% of the cases:
the extremely rare errors are due to a very badngoioh which the corresponding gesture is not
performed until its end, but completely smashedHsy next gesture so that it appears as a transitive
phenomenon. As these very few errors are not dweftilure of the algorithm, but to a bad coding,
they are removed from the corpora for the evalmat@oncerning the error rate for KT3s, it is a bit
more complicated, as there are two types of etype(1 and type 2).

The rate of errors of type 1 (RT1%) is evaluatechyexpert, and consequently is expert-dependent:
it is based on the evaluation of stability by thsual perception of the expert. For each gestuge th
expert check that the selected set of image doegartain any motion; the configuration and the
location must not change. From our experiments,%®%14%. Errors are most of the time due to an
odd rhythm in the coding, which breaks the kinetgsumptions implicitly made in the way the
motional energy is processed.

The rate of errors of type 2 (RT2%) is much higjust before the recognition step, but as they are
dealt with later on, their number is not evaluaéthis level. After the recognition step thes@esiare
dealt with, at the price of the addition of somesJ@&ahich are processed until the recognition level.
Then in addition to all the KT3 images, some TGades are processed (their number varies from zero
to the number of KT3s). It leads to a total humiieimages, which is 13% to 18% of the total number
of frame in the sequence. Of course, it is wiseadd some other images to prevent that any mistake
has too large consequences. Practically, we fohatlthe results do not improve if we process more

than 25% of the images of the whole video. Evehtuahis improvement in the robustness of the



detection is correlated with more fake alarms, WHinally annihilates the interest of using too ypan
images. As a consequence, it validatgsosteriorithe interest of the Early Reduction.

As long as no mistake is made at the recognitionl]eL00% of the errors of type 2 are properly
adressed by considering the appropriate TGs. HEIT2% is directly related to the error rate of the
recognition module (which is developed in the resdtion).

Concerning the identification of PTs by KT3s, tleewracy is really high from a gesture point of
view, as we reach 89% to 100% depending on theesees, with a mean of 93%. Nonetheless, these
results must be cautiously interpreted, as thepatadeal with the synchronisation with "the poigtin
of the location gesture”, and as the ground trsithpiecified for each PT. Hence, the results, agthou

they are an important improvement, are still fanfrcomplete sentences recognition.

5.5. Classification evaluation

We use the LIBSVM library [22] for the implementati of the SVM algorithm. Thanks to a tenfold
cross-validation, the classification parameterscdiesd above are set: the cost parameter is set to

100,000 and termination criterion to 0.001. Therggl kernel is:
Ker, q(u, V) = tanh(y[uT O+ F§ with y=0.001 and R=- 0.

To evaluate the methodology (attributes and clizsssklection, classification parameter tuning) we
perform the following experiment: a hand shape lolzge is derived from our main dataset of FCS
videos. The transition shapes are eliminated manaatl the remaining shapes are labelled and stored
in the database as binary images representingrnkecanfigurations (Figure 18).

The training and test sets of the database areefbisuch that there is no strict correlation between
them. Thus, two different corpuses are used in wihicsingle coder is performing two completely
different sets of sentences using Cued SpeechreéBpective distributions of the two corpora areegiv
in Table 1. The statistical distribution of the &igarations is not balanced at all within each esp
The reason of such a distribution is related tdittguistics of Cued Speech.

For each image, the real labels are known, Thug)seethe following definition of the accuracy to

evaluate the performance of the classifier:

Ll\lumberOf Well Classified ltems

Accuracy=100
Total NumberOf Items




On the test set, we obtain an Accuracy of 90.7%st\bthe mistakes are due to:

- A strong overlap of the classes in the descrippace: some rather different images have closed
description and consequently, the Hu invarianteugiih efficient on really discriminated classes of
hand shapes, are not powerful enough.

— Classes 3 and 4 are difficult to separate, becalgee similarity of the configurations, as well as
for classes 1 and 2 and for classes 6 and 7, vileefirigers are kept grouped.

— The descriptors are also not very successful fissels 3 and 7; it is due to the similarity between
a mirror image of configuration 3 and an image afifguration 7 when both of them are performed
with the fingers too much separated. The deteatifothe thumb, which is an easier finger to detect,
would help to make the difference.

—  The fusion of the binary SVMs is not really effioteto our point, 3 to 5% of the mistakes are due
to the One-versus-One procedure: the final resulmistaken whereas the separated SVMs give
consistent results.

In this experiment both learning and test are nwda single corpus user. We nonetheless consider
some small experiments to have an idea of the mannehich these results can be generalized to
multiple coders: within our database, few acquissi are made with another glove which is not as
adapted as the main one (see Section 5.1). Con#dqube shape of the hand looks rather different.
We used the learning made on the main glove ird#tabase to classify the other few images with the
"bad" glove. Consequently, we submit unknown glekiapes to the classification algorithm. We also
capture few hand shape performed by non Cued Spemidr (consequently the configurations are
performed out of coding context) in order to havhirt on the variability of the hands. The same
classification process is applied with the samerviptes learning. It appears that the accuracy drops

only from 1 to 3 points, depending on the corpora.

5.6. Camera calibration and computation cost

In terms of computation, we are now restricted tatlMb/C/C++ code (with no micro-processor
optimizations) and Intel Pentium® workstations rimgnunder Microsoft Windows®, so the real-time
is not reachable yet. However, a processing raté mhages/sec (image size: 480 x 360 pixels) is

promising for future real time implementation ondoated hardware. From our test, a real-time



version of the algorithm needs to cope with raighdr than 40image/sec: an acquisition frame rhte o
50 images/sec is really sufficient for no PT bdwgf by the sub-sampling, even in case of a fagerco
On the contrary, a frame rate of 25 and 30 imagesssnot enough: some PTs are missing. Finaléy, th
focus of the camera is a real issue, as it is reduio have the face and the hand in a single ngictu
while having a high enough resolution to segmeatlith (for the lip reading task carried out by drest
team, as we do not expect to use several camerBidIMP). So far, only the professional camera of

the main corpus of data fulfils these requirements.

5.7. Sentence recognition

All the elements of our architecture have been rilesd so far, and the whole system has to be
evaluated. As our purpose is to decode senteneevd®le, let us select for each sentence from the

corpus a lattice of potential phonemes, and defireoverall accurac@®vAccas:

d\lumberOf Sentences completly included in theoposed lattice of phonem
NumberOf Sentences

OvAcc=100

This definition of the overall accuracy is verytregdive as a single omission of a gesture in desgre

is sufficient to consider the whole sentence asefaDf course, a rate on the number of correctly
recognized gestures would lead to higher recognitades. But as our final purpose is natural coding
recognition (that is sentence decoding), we comglul it is better to evaluate the whole procedgh w

respect to this goal, even if the global resultéieguracy score is not as high.

In practice, the selection of PTs is very efficieag our experiments showed it. But,

- few mistakes remain.

— for the PTs which have been correctly detectedethee several images that potentially correspond,
and theEarly Reductiordoes not always select the same one as the expertefined the ground
truth. Hence, we find that the set of PTs autoraliticand correctly detected via tHearly
Reductiorhas a bigger variance that the ground truth set.

Consequently, the accuracy of configuration recigmiis slightly lower when considered in the whole

process rather than isolated. Secondly, the saotggm occurs in bigger proportion for the location

recognition, for the simple reason that the PTshast been designed to detect PTs for the locatson

precisely as to detect the PTs for the configunatiénally, the synchronization problems between th



two components (hand configuration and location)ttef hand gesture (raised E3]) are not yet
addressed in the process we presented.

For these three reasons, the overall accu@wiccon the lattice of phonemes is far lower than
acceptable rates. Hence we have evaluated it anB0sentences, randomly chosen among the part of
the corpus which has not been used to extracralarg set for the configuration classificatiomofn
our test, 40% OvAcc< 50%, depending on the evaluations. This does nestipn our methodology
and algorithms (specially thearly Reductiol as, taken individually, they all provide good\ary
good results (these results are summarized in TAble

Moreover, despite giving still insufficient ressiibn global sentence recognition, our method has a
very powerful advantage: its use is not conditioteedny subset of language. Hence, the resultshwhic
are announced are likely to be easily generalizednbre complex sentences or even to natural
dialogue. Classically, the systems described iHitbeature (see Section 1) propose accurate seealt
very restrictive cases for which any extension @urded to reduce the performance. Hence, our
method is really new and its performances needet@diimated with respect to this generalization
capability.

Nonetheless, the results only points out the laicklobal fusion or integration process. For the
moment, such a process gathers all our effortsismide main aspect of our future work. From our
prime analysis, this integration module is likedylde far less complicated than expected thankkeo t
Early ReductionFinally, for a perfect sentence-by-sentence mtgation such an integration module
might not be sufficient, and a language model migdhinecessary. These aspects will be the topic of

our future works, but also that of the other te@amEHIMP.

6. Conclusion

In this paper, we proposed a first complete autanfatied Speech gesture recognition method.
From an image-by-image processing point of viewg #igorithms involved are rather classical
(segmentation and classification steps), but fromidao processing point of view, we provided an
original method called th&arly Reduction From our experiments, all the proposed algoritlyive
satisfactory or very satisfactory results, at atigeslevel. On the contrary, their integration irgo
global system leads to results at the level of detepsentence interpretation, which are not yet as

satisfactory. This is due to the lack of a last mledhe purpose of which is to fuse the information



from the various classifiers and tBarly ReductionConsequently, our future works will be focused

on such a module.
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Figure 1. French Cued Speech specifications: on theleft, 5 different hand locations coding
vowels; on theright, 8 different hand shapes coding consonants.
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Figure 2: Global architecturefor FCS gesturerecognition




Figure 4: Similarity map computation

(b) (©) (d)

Figure5: (a) original image (b) first threshold (step 3) (c) second threshold and post-processing
(d) third threshold and post-processing

Figure 6: Pointing finger extraction from the convex hull of the hand shape

e b

| I j
(a) Convolutional Face & Feature Finder result (b) Pointed areas definition with respect to the
[14] features

Figure 7: determination of the pointed areasfor the location recognition
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Figure 8: Projection of each of the eight components of the output vector of the C3F and the
same projection after the Kalman filtering.

Figure 9: Example of the hand gravity center trajectory along time (x coordinate above and y
coordinate below). Vertical scale: pixel. Horizontal scale: frame

(a) During a transition no location is pointed

@psed wrist does not refer to any position

Figure 10: Hand shapeswith no pointing finger.
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Figure 11: Modeling of the global algorithm for theretina processing [17].

(b)

Figure 12: IPL output for (a) A potential target image (local minimum of the motion) (b) A
transition image (important motion)
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Figure 13: Dedicated retinafilter functional diagram



Upper part: square root evolution of the weight
w(x,y)along the {maxy +Xmax x /2) vector.
w(x,yF 0.5 ify=0
wW(x,yF 1 if(x, y)= (Xmax, Ymax)

Lower part: linear evolution of the weight(x,y)
along the y vector.

w(x,y)=0 ify=0

w(x,y)=0.5 ify=Ymax2

K (b) Expression of the mask for each pigét,y)
The lower left hand corner is the reference, and
(Xmax, Ymaxare the dimensions of the image

(a) grayscale representation of the weight mas
(the darker the gray, the lower the weights)

Figure 14: Weight mask for the finger enhancement
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Figure 15: Dedicated retinafilter output: The normalized motional energy per image along time
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Figure 17: A zone of stability (in green bold) deter mined by hysteresis cycle. Its minimum value
correspondsto itsrepresenting KT3.
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Figure 18: Examplesfrom KT3 imagesfor classes0to 8 respectively.
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Figure 19: grayscalerepresentation (thelighter the gray, the further from the border) of the
distance transform of a stretched hand (the edge of each finger appears), and the use of such a
transform applied to remove the wrist on a peculiar hand shape (b, c)

Table 1: Details of the database

Hand Shape Training set Test set

0 37 12
1 94 47
2 64 27
3 84 36
4 72 34
5 193 59
6 80 46
7 20 7
8 35 23

Total 679 291




(d) Wrong

(a) the border is not accurate and L segmentation
. (b) Wrong (c) the segmentation is not
the unstretched fingers are I due to the
o . . segmentation: a accurate, but the general S
missing but the segmentationis . S . similarity
ginger is missing shape is respected

between the hair
and the glove

still good.

(e) influence of the background (f) Bad training (9) Ba training
wrt to the precision of the border  consequence consequence

Figure 20: litigious segmentation illustration

Figure 21: Segmentation of a noisy image (60% salt and pepper noise)




(a) The wrist is flexed: the other fingers (b) The medium is not as parallel as the index wédpect to
appear shorter than they are with respectthe camera plan. Thus, the longest finger appedrs the
to the thumb. index.

Figure 22: deformations of the hand which lead to a wrong deter mination of the pointing finger.

Figure 23: various litigious case from Biol D database.



Table 2: summary of theresults

algorithm Qualitative evaluation Accuracy rate
segmentation Good results within the acquisitiomditions 99.4%
specified
Pointing areal The chin pointing area is less rothest the others
Definition improve by Kalman filtering
Pointing The hand must remain in the acquisition plan 99.7%
finger
PT 96%
selection
Configuration 90.7%
classification
Camera Professional camera with frame rate > 40
calibration images/sec are required
Sentence There are synchronization problems which are nof <50%

recognition

dealt yet




