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Abstract. Gestural interfaces, besides providing natural means of human-

computer interaction for everyone, enable the hearing impaired to use sign 

language or better understand speech through vision. This chapter over-

views (1) the various modalities involved in gestured languages (2) the 

mean to automatically apprehend them individually and (3) to fuse them in 

order to provide a communication medium adapted to hearing-impaired. We 

present two example applications, a sign language tutoring tool and a cued 

speech interpreter and discuss theoretical and practical aspects. 

Keywords. Hand gesture recognition, belief functions, multimodal fu-

sion, sign language, cued speech 

Introduction 

Recent research in Human-Computer Interaction (HCI) has focused on 

equipping machines with means of communication that are used between 

humans, such as speech and accompanying gestures. For the hearing im-



 

paired, the visual components of speech, such as lip movements, or gestur-

al languages such as sign language are available means of communication. 

This has led researchers to focus on lip reading, sign language recognition, 

finger spelling, and synthesis. Gestural interfaces for translating sign lan-

guages, cued speech translators, finger spelling interfaces, gesture con-

trolled applications, and tools for learning sign language have been devel-

oped in this area of HCI for the hearing impaired.  

Gestural interfaces developed for hearing impaired communication are 

naturally multimodal. Instead of using audio and visual signals, hearing 

impaired people use multiple vision based modalities such as hand move-

ments, shapes, position, head movements, facial movements and expres-

sions, and body movements in parallel to convey their message.  

 

 
(a) 

 
(b) 

   
(c) 

Fig. 1. (a) An example sign “anne (mother)” from Turkish Sign Language (TSL), 

(b) Fingerspelling alphabet of TSL (Dynamics are indicated by red arrows), and 

(c) an example of French cued speech “bonjour (good morning)". 



 

The primary means of communication between hearing-impaired people 

are sign languages. Almost all countries and sometimes regions within 

countries have unique sign languages that are not necessarily related with 

the spoken language of the region. Each sign language has its own gram-

mar and rules (Stokoe 1960). Instead of audio signals, sign languages use 

hand movements, shapes, orientation, position, head movements, facial 

expressions, and body movements both in sequential and parallel order 

(Lidell 2003). Research on automatic sign language communication has 

progressed in recent years. Several survey papers are published that show 

the significant progress in the field (Ong and Ranganath 2005; Parton 

2006). Interfaces are developed that handle isolated (Keskin et al. 2007) 

and continuous sign language recognition (Fang et al. 2007; Holden et al. 

2005). Interactive educational tools have also been developed for teaching 

sign language (Aran et al. 2006). 

Fingerspelling is a way to code the words with a manual alphabet which 

is a system of representing all the letters of an alphabet, using only the 

hands. Fingerspelling is a part of sign languages and is used for different 

purposes. It may be used to represent words which have no sign equiva-

lent, or for emphasis, clarification, or when teaching or learning a sign lan-

guage (Feris et al. 2004, Wu and Gao 2001). 

Cued Speech (CS) is a more recent and totally different means of com-

munication, whose importance is growing in the hearing-impaired com-

munity. It was developed by Dr. Cornett in 1967 (Cornett 1967). Its pur-

pose is to make the natural oral language accessible to hearing-impaired 

people, by the extensive use of lip-reading. But lip-reading is ambiguous: 

for example, /p/ and /b/ are different phonemes with identical lip shape. 

Cornett suggests replacing invisible articulators (such as vocal cords) that 

participate to the production of the sound by hand gestures. Basically, it 

means completing the lip-reading with various manual gestures. Then, 

considering both lip shapes and hand gestures, each phoneme has a specif-

ic visual aspect.  There are three modalities in CS: lip motion, hand shape 

and hand location with respect to the face. 

Fig. 2 shows the overall architecture of the multimodal gesture based in-

terfaces for the hearing impaired communication. In the next section, we 

discuss and review analysis techniques for the modalities that are used in 

hearing impaired communication. We concentrate on the individual modal-

ities: hand, face, lips, expression and treat their detection, segmentation, 

and feature extraction. In the Temporal analysis section, we focus on the 

temporal analysis of the modalities, specifically in sign languages and in 

CS. The following section presents temporal modeling and belief-based 

multimodal fusion techniques. In the last section, we give two example ap-

plications: a sign language tutoring tool and a cued speech interpreter. 



 

 

 
Fig. 2. Multimodal gestural interfaces for the hearing impaired 

Modality Processing and Analysis 

The modalities involved in gestured languages can be discussed from sev-

eral points of view: 

• The part of the body that is involved: Hands, head, facial features, 

shoulders, general standing, etc. For example, sign languages use the 

whole upper body, hands, head, facial features, and body/shoulder mo-

tion, whereas in cued speech, only a single hand and lips are in action.  

• Whether the modality conveys the main message or a paralinguistic 

message: The hand shapes, locations and the lips in a CS phrase jointly 

convey the main message. On the other hand, in sign languages, para-

linguistic elements can be added to the phrase via the non-manual ele-

ments or the variations of the manual elements. In sign languages, the 

main message is contained jointly in the manual (hand motion, shape, 

orientation and position) and non-manual (facial features, head and body 

motion) modalities where the non-manual elements are mainly used to 

complement, support or negate the manual meaning.  

• Whether the modality has a meaning by itself or not: In CS, both modal-

ities contain an ambiguity if they are used independently. The hand 

shapes code the consonants and the hand locations code the vowels. A 

hand shape-location pair codes several phonemes that are differentiated 

by the lip shape. In sign languages, the manual component has a mean-

ing by itself for most of the signs. For a small number of signs, the non-

manual component is needed for full comprehension.  



 

In this section, we present analysis and classification methods for each 

of the modalities independently. The synchronization, correlation, and the 

fusion of modalities are discussed in the next sections. 

Preprocessing 

Vision based systems for gestural interfaces provide a natural environ-

ment in contrast to the cumbersome instrumented gloves with several sen-

sors and trackers that provide accurate data for motion capture. However, 

vision based capture methodology introduces its own challenges, such as 

the accurate detection and segmentation of the face and body parts, hand 

and finger configuration, or handling occlusion. Many of these challenges 

can be overcome by restricting the environment and clothing or by using 

several markers such as differently colored gloves on each hand or colored 

markers on each finger and body part. In communication of the hearing 

impaired, the main part of the message is conveyed through the hands and 

the face. Thus the detection and segmentation of hands and face in a vision 

based system is a very important issue.   

 

 

 
(a)                               (b)                                    (c) 

Fig. 3. Hand segmentation by automatically defined thresholds. (a) Original image 

and the detected hands, (b) thresholding & connected components labeling, (c) re-

gion growing 

 

Hand detection 

Hand detection and segmentation can be done with or without markers. 

Several markers are used in the literature such as single colored gloves on 



 

each hand, or gloves with different colors on each finger or joint. With or 

without a marker, descriptors of color, motion and shape information, sep-

arately or together, can be used to detect hands in images (Habili et al. 

2004; Holden et al. 2005; Awad et al. 2006 ). Similar techniques are used 

to detect skin colored pixels or the pixels of the glove color. Color classifi-

cation can be done either parametrically or non-parametrically. In parame-

tric methods, a distribution is fitted for the color of interest, and the biggest 

connected region is extracted from the image (see Fig. 3 from Aran and 

Akarun 2006).  

A popular non-parametric method is histogram-based modeling of the 

color (Jayaram et al. 2004). In this approach, a normalized histogram is 

formed using the training pixels and the thresholds are determined. The 

similarity color map of the image is extracted using the histogram bins. 

Similar steps, thresholding, connected components labeling and region 

growing, are applied to obtain the segmented hand (Aran et al. 2006).  

The main advantage of using a marker is that it makes tracking easier 

and helps to resolve occlusions. In a markerless environment, hand track-

ing presents a bigger challenge. In sign languages, the signing takes place 

around the upper body and very frequently near or in front of the face. 

Moreover the two hands are frequently in contact and often occlude each 

other. Another problem is to decide which of these two hand regions cor-

respond to the right and left hands. Similarly in CS, the frequent face/hand 

contacts are difficult to deal with. Thus, the tracking and segmentation al-

gorithm should be accurate enough to resolve these conditions and provide 

the two segmented hands.  

 

  
Fig. 4. Face localization 

Face detection 

The user face conveys both verbal and non-verbal communication infor-

mation. The first step is to localize the user’s face during the gesture anal-

ysis process. Face localization have been widely studied (Hjelmäs and 

Low 2001, Yang et al. 2002). The most popular face detector is the detec-

tor developed by (Viola and Jones 2004) whose code is freely available 



 

(MPT). Independent of the technique employed, the output of the face de-

tector is a bounding box around the face and the position of some facial 

features, as shown in Fig. 4. 

Retinal pre-processing 

In the human retina, some low level processing is done on video data. 

This processing is very efficient in order to condition the data for high lev-

el processing.  

In the human retina (Bullier 2001), two steps of filtering (OPL and IPL 

filtering) are done so that two information channels are extracted: the Par-

vo (parvocellular) channel dedicated to detail analysis (details: static con-

tours enhancement) and the Magno (magnocellular) channel dedicated to 

motion analysis (moving contours enhancement). For a more detailed de-

scription of the retina modeling and properties, see (Benoit and Caplier 

2005a, 2005b, Herault 2007). 

 

Fig. 5.  Retina filtering effect 

 

In the sequel of this chapter, we provide several examples where the 

properties of the retina are used to condition video data before high level 

processing. 

Hand shape  

Hand shape is one of the main modalities of the gestured languages. Apart 

from sign language, CS or finger spelling, hand shape modality is widely 

used in gesture controlled computer systems where predefined hand shapes 

are used to give specific commands to the operating system or a program. 

Analysis of the hand shape is a very challenging task as a result of the very 

high degree of freedom of the hand. For systems that use limited number 

of simple hand shapes, such as hand gesture controlled systems (hand 



 

shapes are determined manually by the system designer) or in CS (the 

French, Spanish, English and American CSs are based on eight predefined 

hand shapes), the problem is easier. However, for sign languages, the un-

limited number and the complexity of the hand shapes make discrimina-

tion a very challenging task, especially with 2D vision based capture sys-

tems.   

 
 

Fig. 6. French cued speech hand shapes  

 

In CSs, there are eight hand shapes that mainly differ by open and 

closed fingers. The CSs coding is ideally performed in 2D. Thus, the hand 

is supposed to be frontal, and all the hand rotations are supposed to be pla-

nar, although it is not the case in practical situations (which is the source of 

one of the main difficulties). French cued speech (FCS) hand shapes are 

presented in Fig. 6. 

 

      
(a)                                                    (b) 

Fig. 7. Example hand shapes from (a) ASL and (b) TSL 

 

In sign languages, the number of hand shapes is much higher. For ex-

ample, without considering fingerspelling, American Sign Language 

(ASL) has around 150 hand shapes, and in British Sign Language there are 

57 hand shapes. These hand shapes can be further grouped into around 20 

phonemically distinct subgroups. Example hand shapes from ASL and 

TSL are given in Fig. 7.  



 

Inertial Study of the Hand 

It is possible to compute the global direction of the hand shape using prin-

cipal axis analysis. Then, a hand rotation in order to work on a vertical 

shape is considered in order to make the whole study easier. 

 

          
 

Fig. 8. Illustration of the distance transform in gray level (black pixels belong to 

the background and the lighter the pixels the higher its value after the distance 

transform) and in 3D. 

 

The Distance Transform of the binary image of an object associates to 

each pixel of the object its distance to the closest pixel of the background, 

and associates the value 0 to all the pixels of the background.  

Obviously, the centre of palm is one of the points of the hand which is 

the furthest from the contour of the hand (Fig. 8).  As a consequence, the 

palm of the hand can be approximated by a circle whose radius is related 

to the maximum value given by the distance transform of the binary hand 

image. 

               
                                         (a)                                    (b) 
Fig. 9. (a) Palm delimitation, (b) once the "V" is removed, the shape is instable, 

(c) after the "V" is filled with a disc whose radius linearly varies between the two 

sides of the "V". 

 

Once the palm is approximated by a circle, the wrist (or eventually the 

forearm) is removed as illustrated in Fig. 9. 



 

 The next step is to detect particular fingers. The main application is the 

study of a pointing (or deixis) gesture. The deixis gesture may be per-

formed by the whole arm, and sometimes by the gaze of the eye. However, 

we consider hand shape for the pointing gestures: 

- The general hand shape orientation is used to indicate a direction. In 

such a case, it is straightforward to deal with as the first principal axis 

of the bounding box corresponds to the deixis direction. 

- The longest unfolded finger is used to materialize a pointing zone (for 

instance, a cursor gesture for HMI).  

- The position of the extremity of a particular finger is considered de-

pending on the hand shape. 

- The precise deixis gesture with a single finger is replaced by a deixis 

gesture where the pointing element does not belong to the hand, but 

to its convex hull (linear or polynomial). This case is practically very 

likely in human gestures, including CSs, for which the pointing rules 

are supposed to be really strict. 

In the case of CSs, the deixis gesture is of prime importance, as it is re-

quired to determine the location of the hand with respect to the face.  

The location is determined by the position of the pointing finger with re-

spect to the face. It is theoretically the longest one, but, in practice, (1) pa-

rallax errors, (2) wrist flexion, and (3) the use of the convex hull of the 

hand shape modify the problem. Then a more robust algorithm, using fu-

sion of information from hand shape and respective positions, must be 

used (Burger 2007).  

In (Burger et al. 2007b), we consider the use of a thumb presence indi-

cator, which returns a non-zero positive value if the thumb is unfolded and 

0 otherwise. This is useful when (1) the thumb-up gesture is used, or when 

(2) the thumb presence has a particular meaning. The approach uses the 

polar parametric representation of the binary hand shape. The peaks of this 

representation correspond to potential fingers of the hand shape. Thre-

sholds, derived from statistics on the morphology of the hand (Norkin and 

Levangie 1992), are defined in order to materialize the region of the thumb 

extremity when it is unfolded. If a finger is detected within the thumb area, 

then, it is the thumb. The corresponding peak height is measured with re-

spect to the lowest point between the thumb and the index. This value pro-

vides a numerical indicator of the presence of the thumb. 

Hand shape descriptors 

To analyze the hand shape, appearance or 3D-model based features can be 

used (Wu and Huang 2001). Appearance based features are preferred due 

to their simplicity and low computation times, especially for real time ap-



 

plications. Region based descriptors (image moments, image eigenvectors, 

Zernike moments, Hu invariants, or grid descriptors) and edge based de-

scriptors (contour representations, Fourier descriptors, or Curvature Scale 

Space descriptors) can be used for this purpose. A survey on binary image 

descriptors can be found in (Zhang 2003). 

 

               
(a)                           (b) 

Fig. 10. (a) Best fitting ellipse, (b) Area filters. Green and white pixels indicate the 

areas with and without and hand pixels, respectively. 

 

A combination of several appearance based features is used as hand 

shape features for recognizing ASL signs (Aran et al. 2006). Half of the 

features are based on the best fitting ellipse (in least-squares sense) to a bi-

nary image, as seen in Fig. 10a. The rest are calculated using area filters as 

seen in Fig. 10b. The bounding box of the hand is divided into eight areas, 

in which percentage of on and off hand pixels are calculated. 

Hu invariants are successful in representing hand shapes (Hu 1962; Cap-

lier et al. 2004; Burger et al. 2007b). Their purpose is to describe the bi-

nary shape region via several moments of various orders, on which specif-

ic transforms ensure invariance properties. 

The centered scale invariant inertial moments of order p+q are calcu-

lated as follows: 

( ) ( )
1

2
00

with ( , )δ+
+

= = − −∫∫
p qpq

pq pqp q

x y

m
n m x x y y x y dx dy

m

 

where andx y  are the coordinates of the center of gravity of the shape and 

( , ) 1x yδ =  if the pixel belongs to the hand shape and 0 otherwise. Then, the 

seven Hu invariants are calculated:  
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We have used Hu invariants as descriptors of CS hand shapes (Burger et 

al. 2007b). The experiments show that Hu invariants have an acceptable 

performance which can be improved by the addition of the thumb informa-

tion presence. 

The Fourier-Mellin Descriptors (FMD) are an interesting alternative 

(Adam et al. 2001) . The Fourier-Mellin Transform (FMT) of a function f 

corresponds to its Mellin transform result represented in terms of Fourier 

coefficients. The FMT is defined for all real positive function f(r,θ) in po-

lar coordinates (the shape to describe) so that the Mellin transform is 2π-

periodic: 
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Then the application of the delay theorem and the extraction of the 

module of the FMT lead to a set of descriptors indexed by q and s. They 

are rotation invariant, and normalization by Mf (0, σ) makes them scale in-

variant. The translation invariance is derived from the choice of the centre 

of development (the origin of (r,θ) coordinates). 

In case of digital images, it is necessary to digitalize the FMT and to 

convert the sampled Cartesian space into a polar space. In practice, Mf 

(0, σ) is approximated by: 
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These descriptors are particularly efficient to discriminate hand shapes, 

even in cases of (1) multi-coder (when the morphologic variability is in-

troduced), (2) unknown coder, (3) imprecise classifier tuning (Burger 

2007). 



 

Hand location 

The location of the hand must be analyzed with respect to the context. It is 

important to determine the reference point on the space and on the hand. In 

sign languages, where both the relative location and the global motion of 

the hand are important (see Fig. 11), the continuous coordinates and the 

location of the hand with respect to body parts should be analyzed. This 

analysis can be done by using the center of mass of the hand. On the other 

hand, for pointing signs, using center of mass is not appropriate and the 

coordinates of the pointing finger and the pointing direction should be 

used. Since signs are generally performed in 3D space, location analysis 

should be done in 3D if possible. Stereo cameras can be used to recon-

struct 3D coordinates in vision based systems. 

 

 
 CLEAN sign: Hand location w.r.t the other hand 

 
DRINK sign: Hand location w.r.t the mouth 

Fig. 11. Possible reference points on the signing space. Examples from ASL. 

 

The hand locations in CS are determined by the pointing location of the 

hand with respect to the coder’s face. For example, in French CS, 

“mouth”, “side”, “throat”, “chin”, and “cheek bone” are used as five dif-

ferent locations on the face (see Fig. 12a). Once the pointing finger and the 

face features are located of the image, determining the location component 

of the gesture is rather simple. 

 



 

                 
                              (a)                                               (b) 
Fig. 12. (a) French and (b) American cued speech hand locations, and their pho-

nemic meaning. 

 

Hand motion 

In gestured communication, it is important to determine whether the per-

formed hand motion conveys a meaning by itself.  

From a linguistic point of view, FCS is the complete visual counterpart 

of oral French. Hence, it has a comparable prosody and the same dynamic 

aspect. From a gesture recognition point of view, the interpretation is com-

pletely different: each FCS gesture {Hand shape + Location} is a static 

gesture (named a target gesture) as it does not contain any motion and can 

be represented in a single picture or a drawing. Then, a coder is supposed 

to perform a succession of targets. In real coding, the hand nevertheless 

moves from target to target (as the hand cannot simply appear and disap-

pear) and transition gestures are produced. We consider that FCS is inhe-

rently static: target images are sufficient to decode the continuous sen-

tence: as a consequence, complete transition analysis is most of the time 

useless to be processed (Burger 2007; Burger et al. 2007a).  

In sign languages, the hand motion, together with the hand shape and 

location, is one of the primary modalities that form the sign. Depending on 

the sign, the characteristic of the hand trajectory can change, requiring dif-

ferent levels of analysis. For example, some signs are purely static and 

there is no need for trajectory analysis. The motion of the dynamic signs 

can be examined as either of two types:  



 

1. Signs with global hand motion: In these signs, the hand center of 

mass translates in the signing space. 

2. Signs with local hand motion: This includes signs where the hand 

rotates without any translation, or where the finger configuration of 

the hand changes. 

Trajectory Analysis 

Trajectory analysis is needed for signs with global hand motion. For 

signs with local motion, the change of the hand shape over time should be 

analyzed in detail, since even small changes of the hand shape convey in-

formation content.  

The first step of hand trajectory analysis is tracking the center of mass 

of each segmented hand. Hand trajectories are generally noisy due to seg-

mentation errors resulting from bad illumination or occlusion. Thus a fil-

tering and tracking algorithm is needed to smooth the trajectories and to 

estimate the hand location when necessary. Moreover, since hand detection 

is a costly operation, hand detection and segmentation can be applied not 

in every frame but less frequently, provided that a reliable estimation algo-

rithm exists. For this purpose, algorithms such as Kalman filters and par-

ticle filters can be used. Kalman filters are linear systems with Gaussian 

noise assumption and the motion of each hand is approximated by a con-

stant velocity or a constant acceleration motion model. Particle filtering, 

also known as the condensation algorithm (Isard and Blake 1998), is an al-

ternative with non-linear and non-Gaussian assumptions. The main disad-

vantage is its computational cost which prevents its usage in real time sys-

tems. 

Based on the context and the sign, hand coordinates should be norma-

lized with respect to the reference point of the sign, as discussed in the 

previous section. In addition to the coordinates, the velocity and the acce-

leration can be used as hand motion features.  

Several methods are proposed and applied in the literature for modeling 

the dynamics of signs or hand gestures. These include Hidden Markov 

Models (HMM) and its variants, Dynamic Time Warping (DTW), Time 

Delay Neural Networks (TDNN), Finite State Machines (FSM), and tem-

poral templates. Some of these techniques are only suitable for simple 

hand gestures and cannot be applied to complex dynamic systems. Among 

dynamic systems, HMM and its variants are popular in sign language rec-

ognition, and hand gesture recognition in general. 



 

Static Gestures in Dynamic Context 

In order to take advantage of the static nature of some gestures, let us as-

sume that it is possible to extract target gestures from the surrounding tran-

sition motions using low-level kinetic information that can be extracted be-

fore the complete recognition process.  

This hypothesis is motivated by the analysis of FCS sequences, and can 

be generalized directly to other static gestural languages. It shows that the 

hand is slowing down each time the hand is reaching a phonemic target. 

As a consequence, target gestures have slower hand motion than transition 

gestures. It nonetheless appears that there is almost always some residual 

motion during the realization of the target (because of the co-articulation).  

 

 
Fig. 13. Representation of the coordinates (vertical above and horizontal below) of 

the gravity centre of the hand shape during a CS sequence. The vertical lines cor-

respond to images of minimal motion that are target images of hand location. 

 

In case the motion in which the static gesture is hidden is a global trans-

lation motion (i.e. the change of location in CS or any deixis gesture), any 

study of the rigid movement is likely to stress the variations of speed and 

the images on which the motion is small enough to be potentially consi-

dered as a target gesture. Fig. 13 illustrates the trajectory of the hand gravi-

ty centre during a CS video sequence.  It appears that each image for 

which the two components of the trajectory are stable (which corresponds 

to local minima in the speed evolution) corresponds to some location being 

reached. 

In case of non-rigid motion, such as the deformation of the hand contour 

when its shape is considered, it is more difficult to define a cinematic clue 

that indicates when a target is reached or when the image represents a tran-

sitive motion. In order to do so, an approach based on the properties of the 

retina (and specially the IPL filter) has been proposed in (Burger et al. 

2006a). A dedicated retina filter (Burger et al. 2007a) has been defined to 

evaluate the amount of deformation of the hand contour along the se-



 

quence. It is made of several elements which are chained together (Fig. 

14). As established in (Burger 2007; Burger et al. 2007a) this method is 

particularly efficient. 

 

 
 

Fig. 14. Flowchart of the dedicated retina filter 

Facial movements 

Thanks to the retina model, it is possible to efficiently detect some facial 

movements. The analysis of the temporal evolution of the energy of the 

Magno output related to moving contours has been used in (Benoit and 

Caplier 2005c) in order to develop a motion events detector. Indeed, in 

case of motion, the Magno output energy is high and on the contrary, if no 

motion occurs, the Magno output energy is minimum or even null. In Fig. 

15, the case of an eye blink sequence is illustrated: the motion event detec-

tor generates a signal α(t) which reaches 1 each time a blink is detected 

(high level of energy on the Magno channel, frames 27, 59 and 115) and 

which is 0 if no blinks are present (the energy of the Magno channel is 

null).  

 



 

 
Fig. 15.  a. Temporal evolution of the Magno output in case of a blink video se-

quence; b. temporal evolution of the motion events detector 

Lip reading 

The main difference between SL and CS is that the CS message is partly 

based on lip reading: Although signers also use lip movements while they 

are signing, it is not a part of the sign language. However, for CS, it is as 

difficult to read on the lip without any CS hand gesture, than to understand 

the hand gestures without any vision of the mouth. The link between lip 

and oral message is included in the shape and the motion of the lips.  

An important step for lip reading is lip contours extraction. Significant re-

search has been carried out to accurately obtain the outer lip contour. One 

of the most popular approaches is using snakes (Kass et al. 1988), which 

have the ability to take smoothing and elasticity constraints into account 

(Terzopoulos and Waters 1993; Aleksic et al. 2002). Another popular ap-

proach is using active shape models and appearance shape models. (Cootes 

1994) presents statistical active model for both shape (AMS) and appear-

ance (AAM). Shape and grey-level appearance of an object are learned 

from a training set of annotated images. Then, a Principal Component 

Analysis (PCA) is performed to obtain the main modes of variation. Mod-

els are iteratively matched to reduce the difference between the model and 

the real contour by using a cost function. Another approach is presented in 

(Eveno et al. 2004), where a parametric model associated with a “jumping 

snake” for the initialization phase is proposed. 

Relatively few studies deal with the problem of inner lip segmentation. 

The main reason is that inner contour extraction from front views of the 

lips without any artifice is much more difficult than outer contour extrac-

tion. Indeed, we can find different mouth shapes and non-linear appear-

ance variations during a conversation. Especially, inside the mouth, there 

are different areas which have similar color, texture or luminance than lips 

(gums and tongue). We can see very bright zones (teeth) as well as very 

dark zones (oral cavity). Every area could continuously appear and disap-

pear when people are talking. Among the few existing approaches for in-

ner lip contour extraction, lip shape is represented by a parametric deform-



 

able model composed of a set of curves. In (Zhang 1997), authors use de-

formable templates for outer and inner lip segmentation. The chosen tem-

plates are three or four parabolas, depending on whether the mouth is 

closed or open. The first step is the estimation of candidates for the para-

bolas by analyzing luminance information. Next, the right model is chosen 

according to the number of candidates. Finally, luminance and color in-

formation is used to match the template. This method gives results, which 

are not accurate enough for lip reading applications, due to the simplicity 

and the assumed symmetry of the model. In (Beaumesnil et al. 2006), au-

thors use internal and external active contours for lip segmentation as a 

first step. The second step recovers a 3D-face model in order to extract 

more precise parameters to adjust the first step. A k-means classification 

algorithm based on a non-linear hue gives three classes: lip, face and back-

ground. From this classification, a mouth boundary box is extracted and 

the points of the external active contour are initialized on two cubic curves 

computed from the box. The forces used for external snake convergence 

are, in particular, a combination of non-linear hue and luminance informa-

tion. Next, an inner snake is initialized on the outer contour, and then 

shrunk by a non isotropic scaling with regard to the mouth center and tak-

ing into account the actual thickness of the lips. The main problem is that 

the snake has to be initialized close to the contour because it will converge 

to the closest gradient minimum. Particularly for the inner lip contour, dif-

ferent gradient minima are generated by the presence of teeth or tongue 

and can cause a bad convergence. The 3D-face model is used to correct 

this problem, but the clone does not give accurate results for lip reading. 

In (Luettin et al. 1996), an AMS is build and in (Gacon et al. 2005), an 

AMS and an AAM are built to inner and outer lip detection. The main in-

terest of these models is that the segmentation gives realistic results, but 

the training data have to deal with many cases of possible mouth shapes. 

Once the mouth contours have been extracted, lip shape parameters for 

lip reading have to be extracted. Front views of the lips are phonetically 

characterized with lip width, lip aperture and lip area. These lip parameters 

are derived from the inner and outer contours. In an automatic recognition 

task of lip-reading process, it is thus pertinent to consider these parameters 

Facial expressions  

A summary of the significant amount of research carried out in facial ex-

pression classification can be found in (Pantic et al. 2000) and (Fasel et al. 

2003). One of the main approaches is optical flow analysis from facial ac-

tions (Yacoob and Davis 1996; Black and Yacoob 1997; Essa and Pentland 



 

1997; Cohn et al. 1998]: These methods focus on the analysis of facial ac-

tions where optical flow is used to either model muscle activities or to es-

timate the displacements of feature points. A second approach is using 

model-based approaches (Zhang et al. 1998; Gao et al. 2003; Oliver et al. 

2000; Abboud et al. 2004): Some of these methods apply an image warp-

ing process to map face images into a geometrical model. Others realize a 

local analysis where spatially localized kernels are employed to filter the 

extracted facial features. Once the model of each facial expression is de-

fined, the classification consists in classifying the new expression to the 

nearest model using a suitable metric. A third group is fiducial points 

based approaches (Lien et al. 1998; Tian et al. 2001; Cohen et al. 2003; 

Tsapatsoulis et al. 2000): Recent years have seen the increasing use of 

geometrical features analysis to represent facial information. In these ap-

proaches, facial movements are quantified by measuring the geometrical 

displacement of facial feature points between the current frame and a ref-

erence frame. 

We are going to illustrate the approach described in detail in (Hammal 

et al. 2007). In this work, the classification process is based on the Trans-

ferable Belief Model (TBM) (Smets and Kennes 1994) framework (see 

section on belief functions). Facial expressions are related to the six uni-

versal emotions, namely Joy, Surprise, Disgust, Sadness, Anger, Fear, as 

well as Neutral. The proposed classifier relies on data coming from a con-

tour segmentation technique, which extracts an expression skeleton of fa-

cial features (mouth, eyes and eyebrows) and derives simple distance coef-

ficients from every face image of a video sequence (see Fig. 16).  

 

 
Fig. 16. Facial expression skeletons 

 

The characteristic distances are fed to a rule-based decision system that re-

lies on the TBM and data fusion in order to assign a facial expression to 

every face image. This rule-based method is well adapted to the problem 

of facial expression classification because it deals with confusing expres-

sions (Joy or Disgust, Surprise or Fear, etc) and recognizes an Unknown 

expression instead of forcing the recognition of a wrong expression. In-

deed, in the presence of doubt, it is sometimes preferable to consider that 

both expressions are possible rather than to choose one of them.  



 

Temporal Analysis 

In a multimodal interface, the correlation and synchronization of modali-

ties must be clearly analyzed. This is a necessary step prior to multimodal 

fusion. 

Sign Language 

The temporal organization of sign languages can be analyzed in two: (1) 

The temporal organization within manual components (manual simultanei-

ty), (2) the temporal organization between manual and non-manual com-

ponents (manual/non-manual simultaneity).  

The manual simultaneity is due to the usage of two independent moving 

elements: The two hands can perform different signs at the same time. We 

can classify the signs in a language as one or two-handed signs. In two-

handed signs, the two hands are synchronized and perform a single sign. 

Whereas in one-handed signs, the performing hand is called the dominant 

hand and the other hand is idle in the isolated case. In continuous signing, 

as a result of the speed, while one hand is performing one sign, the other 

hand may perform the next sign, at the same time. From the recognition 

point of view, this property enforces the independent modeling of the two 

hands, while keeping their relation in case of two-handed signs.  

The simultaneity of manual/non-manual components depends on the 

linguistic property of the performed sign. For example, non-manual signs 

for grammatical operators, such as negation and question, are performed 

over a phrase which generally includes more than one sign. On the other 

hand, the modifications on the meaning of a sign are performed via non-

manual signs and they only affect the sign in focus. Of course, if these 

modifications affect a phrase, then the non-manual signs co-occur with one 

or more manual sign.  

Cued Speech 

In this section, we describe the temporal organization of the three modali-

ties (hand shape, location, lips) of French Cued Speech. This description is 

based on the observation of numerous video sequences featuring a profes-

sional coder (hearing able translators) as well as hearing impaired people. 

A first study (Attina 2005) has been published by Attina on the desynchro-

nization between the labial motion and the manual one, but the desynchro-

nization of the two modalities of the manual motion (the hand shape 



 

movement and the location movement) is not in its scope. Here, we sum-

marize the principal results of (Attina 2005) and we complete them with 

observations about hand shape/ location temporal organization. 

The main point of (Attina 2005) is a temporal scheme which synthesizes 

the structure of the code along time from a hand/lip delay point of view.  

From this work it is possible to extract two remarks: The first is that the 

hand is in advance with respect to the lips, and apparently, the labial mo-

tion disambiguates the manual motion, and not the contrary. The second is 

that the variability of desynchronization is much too important to be direct-

ly used in a recognition system which automatically balances the desyn-

chronization. Nevertheless, this scheme contains a lot of information 

which can be used to set the parameters of an inference system which pur-

pose is to find a best matching between the modalities. 

In general, the hand shape target is reached before the location target. 

This is easily explained by mechanic and morphologic arguments: in case 

of finger/face contact, the pointing finger must be completely unfolded be-

fore the beginning of the contact. As a consequence, hand shapes are in 

advance with respect to the locations. However, for some other hand 

shape/ location pairs, this observation is not valid (Burger 2007).As a con-

sequence, it is really difficult to establish a precise enough model to fore-

cast the desynchronization pattern. Nonetheless, the desynchronization are 

most of the time of intermediate amplitude (except at the beginning and 

the end of a sentence) so that computing a matching among the modalities 

in order minimize the desynchronization does not seem intractable. 

Multimodal Fusion 

There are two major difficulties in integrating modalities of gesture based 

communication: joint temporal modeling and multiplexing information of 

heterogeneous nature. 

Temporal modeling 

In gesture based communication of the hearing impaired, multiple modali-

ties are used in parallel to form the linguistic units such as signs/words in 

sign languages or phonemes in CS. The temporal relation between these 

modalities must be carefully investigated to obtain a good temporal model 

that will result in high accuracies in a recognition task. 



 

Hidden Markov Models 

Among the temporal modeling techniques for hand gestures HMMs draw 

much attention (Rabiner 1998). Their success comes from their ability to 

cope with the temporal variability among different instances of the same 

sign.  

HMMs are generative probability models that provide an efficient way 

of dealing with variable length sequences and missing data. Among differ-

ent kinds of HMM architectures, left-to-right HMMs (Fig. 17) with either 

discrete or continuous observations are preferred for their simplicity and 

suitability to the hand gesture and sign language recognition problems. 
 

 
 

Fig. 17. Left-to-right HMM architecture 

 

An HMM consists of a fixed number of states. Given a data sequence, 

the probabilities to determine the start state and transition probabilities, 

one can construct a state sequence.  Each state generates an output (an ob-

servation) based on a probability distribution. This observation is the fea-

tures observed at each frame of the data sequence.  

For a sequence classification problem, one is interested in evaluating the 

probability of any given observation sequence, {O1 O2 ... OT}, given a 

HMM model, Θ.  

In isolated sign language recognition, an HMM model is trained for 

each sign in the dictionary. The simplest case is to put the features of all 

the concurrent modalities in a single feature vector. The likelihood of each 

model is calculated and the sequence is classified in to the class of the 

model that produces the highest likelihood. Instead of concatenating the 

features into a single feature vector, a process can be dedicated for each 

modality with established links between the states of different processes. 

In (Brand et al. 1997), Coupled HMMs are proposed for coupling and 

training HMMs that represent different processes (see Fig. 18a). 
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Fig. 18. (a) Coupled HMM, (b) Parallel HMM, (c) Input-Output HMM 

 

When the synchronization of the modalities is weak, then it is not a 

good idea to process all the modalities in a single temporal model. Several 

models for each of the modalities can be used independently and integra-

tion can be done afterwards. An example is the Parallel HMM, as illu-

strated in Fig. 18b (Vogler and Metaxas 1999). Belief based methods can 

also be used to fuse different models to handle the ambiguity in between, 

as we describe in the following sections. 

An alternative is to use Input Output HMMs (IOHMM) (see Fig. 18c) 

which model sequential interactions among processes via hidden input va-

riables to the states of the HMM (Bengio and Frasconi 1996). 

Co-articulation 

In continuous gestural language, the consequent signs affect the beginning 

and end of each other. This co-articulation phenomenon can also be seen in 

spoken languages. When an HMM for each sign is trained to recognize the 

signs, the performance will drop down since each sign in the continuous 

signing will be slightly different than their isolated equivalents. Many of 

the methods proposed for solving the co-articulation affect, rely on model-

ing the co-articulation by using pairs or triples of signs instead of a single 

one. 
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Fig. 19. Illustration of the definition of the temporal segments. Their overlapping 

deal with the dynamical aspect of the fusion of the modalities. 

 

In case the modalities to be fused have a static nature which is classical-

ly hidden in a dynamic context because of a co-articulation phenomenon, 

we propose an alternative solution (Burger 2007). The main idea is to as-

sociate to any static gesture of the modalities a temporal segment of the 

video sequence which is centered on the target image. This segment is 

supposed to represent the time interval in which it is not possible to get 

another static gesture for a minimum time interval is necessary to produce 

the transition movements which are required to reach and to leave the tar-

get of the gesture. Then, whatever the recognition process output within 

this segment, it is reasonable to assume that a single gesture has been pro-

duced during this time interval. As a consequence, even if the target ges-

tures of each modality are not produced at the same time, it is possible to 

balance this lack of synchronization by matching the segments which over-

lap (Fig. 19). 

Of course, such a process only allows balancing small desynchroniza-

tion. If the desynchronization is larger than the segments associated to the 

target images, it is impossible to easily warp the modalities. On the other 

hand, this hypothesis of small desynchronization is not that an important 

restriction. In HCI systems, it is rather common to assume that the "gestur-

er" (coder/signer) produces an academic motion, which means, he/she is 

concentrated on limiting the desynchronization between the various com-

ponent of his/her gestures. 

In the general case, if multiple overlaps and/or empty intersection re-

main too numerous to allow a simple matching, then, the use of DTW me-

thods or graph matching algorithm can be successfully applied to finalize 

the temporal matching of the modalities. 



 

Heterogenic Multiplexing 

The purpose of fusing the various gestural modalities is to provide a con-

text in which taking a decision is less hazardous as the whole information 

is taken into account. Most of the time, such a strategy is more efficient 

than making a decision on each modality and grouping the independent 

decision afterward. In order to do so, the classical method is to associate 

probability scores to each possible decision for each modality and use 

them as input vectors in a probabilistic inference system which fuses the 

pieces of knowledge under some rules expressed as conditional dependen-

cies. Most of the time, such a framework is efficient as it corresponds to an 

excellent trade-off between complexity and accuracy. Nonetheless it suf-

fers from several drawbacks. Here are few of them: 

- The likelihood associated to a hypothesis is most of the time derived 

from a training algorithm. This guaranties a good generalization pow-

er in cases where the training data is representative. 

- This likelihood is definitely derived from an objectivist point of view 

on probabilities, as statistical analysis of the training data are used, 

but probabilistic inference is deeply subjective.  

- In the particular case of gesture interpretation, there is a lot of conflic-

tive, contradictory, incomplete and uncertain knowledge, and there 

are other formalisms which are more adapted to this kind of situa-

tions. 

Amongst all these formalisms, the one of belief function is really power-

ful. Moreover, it is close enough to the probabilistic formalism to keep 

some of its advantages and to allow an intermediate modeling where some 

interesting properties of both probabilities and belief functions can be used 

in common. 

Belief functions  

Originally, this theory was introduced by (Dempster 1968) throughout the 

study of lower and upper bound of a set of probabilities, and it was forma-

lized by Shafer in A Mathematical Theory of Evidence (Shafer 1976).  

In this section, we recall the main aspects of belief functions from (Sha-

fer 1976). Let X={x1,…xM} be a set of M variables and ΩX be the set of N 

exhaustive and exclusive multivariate hypotheses {h1, …, hN} that can be 

associated to X. ΩX is the frame of discernment (of frame for short) for 

X. Let 2
ΩX be the set of all the subsets A of ΩX, including the empty set:  

{ }2 /X

XA A
Ω = ⊆ Ω  

2
ΩX is called the powerset of ΩX. Let m a belief mass function (or BF 

for short) over 2ΩX that represents our belief on the hypotheses of ΩX: 
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m(A) represents the belief that is associated exactly to A, and to nothing 

wider or smaller. A focal set is an element of 2
ΩX (or a subset of ΩX) with a 

non-zero belief. A consonant BF is a BF with nested focal sets with re-

spect to the inclusion operator (⊆). The cardinal of a focal set is the num-

ber of elements of the frame it contains. 

Let m be a BF over ΩX and X and Y two sets of variables so that X⊆Y. 

The vacuous extension of m to Y, noted m↑Y is defined so that: 

( ) ( )\ 2 XY

Y Xm A m A A
Ω↑ × Ω = ∀ ⊆  

Basically, it means that the vacuous extension of a BF is obtained by ex-

tending each of its focal sets by adding all the elements of ΩY which are 

not in ΩX.  

The combination of N BFs from independent sources is computed using 

the Dempster's rule of combination. It is a N-ary associative and symme-

tric operator, defined as follows:  

1 2

1 2 ( )

: ...

...

XX X N X

N

N
m m m m

ΩΩ Ω Ω

(∩) (∩) (∩)

(∩) × × × →

I

64444744448

a

B B B B  

with BΩXi being the set of BFs defined on ΩXi and with ΩX being the cy-

linder product of the ΩXi: 
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where the vertical bar indicating on its right the condition that A should 

fulfil in order to be taken account in the summation (we use this notation 

when the condition would be difficult to read on subscript under the sum-

mation sign). The normalizing constant 
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quantifies the amount of incoherence among the BFs to fuse. 

The refinement operation permits to express the knowledge in a more 

refined manner, by using a more precise frame than the one on which the 

original BF is defined. It is defined as follow: let two frames Ω1 and Ω2, 



 

and R an application from the powerset of Ω1 to the powerset of Ω2, so 

that: 
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BFs are also widely connected to fuzzy set theory. It appears that mem-

bership functions on Ω are included in B
Ω
. Consequently, fuzzy sets are 

BFs and moreover, they are particularly easy to manipulate and to combine 

with the Dempster's rule (Dempster 1968). In that fashion, the link be-

tween the subjective part of the probabilities and the confidence measure 

in the fuzzy set theory is perfectly supported in the BF framework. 

 

 
Fig. 20. Superposition of a membership function on the feature description where 

the SVM algorithm works. 

 

Derivation of new belief-based tools for multimodal fusion 

Evidential Combination of SVM  An efficient method to solve multi-

classification problems is to use a bank of binary classifiers, such as SVM) 

and to fuse their partial results into a single decision. We propose to do so 

in the BF framework. As it is proved in (Burger et al. 2006a, 2007a), the 

BF formalism is particularly adapted as it allows an optimal fusion of the 

various pieces of information from the binary classifiers. Thanks to the 

margin defined in SVMs, it is possible to implement the notion of hesita-

tion easily and thus, to benefit from the richness of the BF modeling. In 

order to associate a BF to the SVM output, we rely on the strong connec-

tion between fuzzy sets and BFs, as explained in (a et al. 2006) and Fig. 

20. 



 

In order to make sure that the BF associated to each SVM are combina-

ble via the Dempster's rule, it is necessary to apply a refinement from the 

frame of each SVM (made of two classes), to the frame of the entire set of 

classes, but then, it provides more accurate results than classical methods. 

Evidential Combination of Heterogeneous Classifiers  In case the bi-

nary classifiers involved in the process are not SVMs, then our method is 

not applicable anymore. As no margins are defined altogether with the se-

paration between the classes, there is no trivial support for the hesitation 

distribution. An alternative is to use one of the numerous classifiers which 

directly provide a BF, such as CrEM (Vannoorenberghe and Smets 2005), 

Evidential K-NN, Expert systems, and Evidential NN (Denoeux 1995, 

1997, 2000). 

Another alternative is to use classical classifiers (no margins, no BF 

outputs), but to consider W the width of the support for the hesitation as an 

unknown value to determine by a learning or a cross validation. 

The main interest of this evidential combination is to permit the simul-

taneous use of heterogeneous classifiers. As long as a classifier provides a 

BF, this latter can be fused with other BFs from other classifiers thanks to 

the conjunctive combination. This is particularly interesting when it is ne-

cessary to consider very wide sets of features which cannot be expressed in 

the same formalism.  

Evidential Combination of Unary Classifiers  It also possible to use a 

similar scheme (the definition of the support of the hesitation pattern via 

cross-validation) in order to extend the Evidential Combination of classifi-

ers to the case of unary classifiers. In such a case, the point is to associate a 

generative model (without any discrimination power) to each class, to let 

them in competition. Each unary classifier provides a likelihood score be-

tween the generative model and the item to classify. 

Then, it is possible to consider that the whole system provide an array of 

scores, each score being a likelihood value for each item to classify. If we 

assume that the highest the score, the more creditable the corresponding 

class (it corresponds to the first of the Cox-Jaynes axiom for the definition 

of subjective probabilities (Cox 1946)), then, it is possible to infer an evi-

dential output with all the advantages it brings. 

By considering the result of the algebraic comparison of the scores of 

each of the couple of classes, on obtains a series of values which are very 

similar to the precursors of the EBFs: they actually indicates the compara-

tive membership of the item for each class of the two considered classes, 

in a equivalent way to a bank of SVM. The only difficulty remains to de-

termine the values which separate the certitude of a class with respect to 



 

another one, or on the contrary, the doubt. Here again, we propose the use 

of the cross-validation. 

Decision Making: Partial Pignistic Transform  

When a decision is to be made with respect to a peculiar problem, there are 

two kinds of behavior: to wait for the proofs of the trueness of one of the 

hypotheses, or to bet on one of them, with respect to its interest and risk. 

These two behaviors are considered as antagonist and it appears that no 

mathematical model allows making a decision which is a mix of these two 

stances. Consequently, we propose to generalize the Pignistic Transform, a 

popular method to convert BF into probabilities (Smets and Kennes 1994), 

in order to fill this lack (Burger and Caplier 2007). 

Let γ be an uncertainty threshold and S
γ
 be the set of all the sets of the 

frame for which the cardinal is between 0 and γ (It is a truncation of the 

powerset to the elements of cardinal smaller than or equal to γ). We call S
γ 

the γ
th
 frame of decision 

{ }2 0,γ γΩ= ∈ ∈   S A A  

where |.| is the cardinality function. The result Mγ(.) of the Partial Pignis-

tic Transform of order γ (noted γth-PPT) of m(.) is defined on 2Ω  as: 
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Then, the decision is made by simply choosing the element of the γth 

frame of decision which is the most believable, i.e. which gathers the high-

est score: 

( )*

2

argmaxD Mγ
Ω

=  

Application for multimodal fusion 

Automatic clustering  A first classical method is to use the confusion ma-

trix of the HMM based classifier to automatically identify sign clusters. 

The confusion matrix is converted to a sign cluster matrix by considering 

the confusions for each sign. Signs that are confused form a cluster. For 

example, assume that sign i is confused with sign j half of the time. Then 

the sign cluster of class i is {i,j}. The sign cluster of class j is separately 



 

calculated from its confusions in the estimation process. The disadvantage 

of this method is its sensitivity to odd mistakes which may result from the 

errors in the feature vector calculation as a result of bad segmentation or 

tracking. 

We propose a more robust alternative which evaluates the decisions of 

the classifier and only consider the uncertainties of the classifier to form 

the sign clusters. For this purpose, we define a hesitation matrix. Its pur-

pose is close to the classical confusion matrix, but it contains only the re-

sults of the uncertain decision, regardless with their correctness. Then, 

when a decision is certain (either true or false), it is not taken into account 

do define the hesitation matrix. On the contrary, when a decision is uncer-

tain among sign i and sign j, it is counted in the hesitation matrix regard-

less with the ground truth of the sign being, i, j or even k. As a matter of 

fact, the confusion between a decision (partial or not) and the ground truth 

can be due to any other mistake (segmentation, threshold effect, etc…) 

whereas, on the contrary, the hesitation on the classification process only 

depends on the ambiguity at the level of the classification features with re-

spect to the class borders. Then, it is more robust. In addition, it is not ne-

cessary to know the ground truth on the validation set on which the clus-

ters are defined. This is a determining advantage in case of semi-

supervised learning to adapt the system to the coder's specificity. 

Partial Decision  Thanks to the PPT, it is possible to make partial deci-

sions, which is particularly adapted to classification problems where the 

classes are defined in a hierarchical manner (dendrogram), such as ex-

plained in (Burger and Caplier 2007), where an illustration is given on the 

interest of the PPT to perform automatic lip-reading on French vowels. On 

classical problems where such a hierarchical does not exist (such as SL 

recognition), it is possible to simply let it appear by defining clusters based 

on the hesitation matrix described above. Then, during the decision mak-

ing procedure, all the pieces of information are fused together and convert 

into an evidential formalism via the use of the Evidential Combination. 

Then, the format of the result of the Evidential Combination is naturally 

suitable to apply the PPT. 

Optional sequential decision step  The only problem with such a method 

is that it does not guaranty that a decision is made: when the data are too 

uncertain, the PPT does not make any decision. Then, it can be fused with 

some other information, and finally, a last hesitation-free decision is taken. 

In (Aran et al. 2007), after a first decision step allowing some partial deci-

sions, we propose to add some less conflictive non-manual information 

(that could not be taken into account earlier in the process without raising 

the amount of uncertainty) in order to perform a second decision step. The 



 

originality of the method is that this second step is optional: if no hesita-

tion occurs at the first step, the good decision is not put back into question. 

This is possible thanks to the use of the PPT which automatically makes 

the most adapted decision (certain or not). We call this original method se-

quential belief-based fusion. Its comparison with classical methods de-

monstrates its interest for the highly conflictive and uncertain decision re-

quired in a gesture recognition system. 

Applications 

Sign Language Tutoring Tool 

SignTutor is an interactive platform that aims to teach the basics of sign 

language. The interactivity comes from the automatic evaluation of the 

students’ signing and visual feedback and information about the goodness 

of the performed sign. The system works on a low-cost vision based setup, 

which requires a single webcam, connected to a medium-level PC or a lap-

top that is able to meet the 25 fps in 640x480 camera resolution require-

ment. 

 

 
Fig. 21. SignTutor user interface 

 

To enable the system to work in different lighting conditions and envi-

ronments, the system requires the user to wear two colored gloves on each 

hand. With the gloves worn on the hands and no other similarly colored 

objects in the camera view, there are no other restrictions.  



 

The current system consists of 19 ASL signs that include both manual 

and non-manual components. The graphical user interface consists of four 

panels: Training, Information, Practice and Synthesis (Fig. 21). The train-

ing panel involves the pre-recorded sign videos. These videos are prepared 

for the students’ training. Once the student is ready to practice, and presses 

the try button, the program captures the students sign video.  

The captured sign video is processed to analyze the manual and non-

manual components. Here, we give a brief summary of the analysis, fusion 

and recognition steps. The techniques described here are also explained in 

the previous sections in detail so we only indicate the name of the tech-

nique and do not give the details. More details can be found in (Aran et al. 

2006). 

The analysis of the manual features starts with hand detection and seg-

mentation based on the glove colors. Kalman filtering is used to smooth 

the hand trajectory and to estimate the velocity of each hand. The manual 

features consist of hand shape, position and motion features. Hand shape 

features are calculated from the ellipse fitted on each hand and a mask 

placed on the bounding box. Hand position at each frame is calculated by 

the distance of each hand center of mass to the face center of mass. As 

hand motion features, we used the continuous coordinates, and the velocity 

of each hand center of mass. The starting position of the hands are as-

sumed as the (0,0) coordinate.  

In this system, the head motions are analyzed as the non-manual com-

ponent. The system detects rigid head motions such as head rotations and 

head nods with the help of retina filtering as described in the previous sec-

tions. As a result, the head analyzer provides three features per frame: the 

quantity of motion and the vertical, horizontal velocity. 

The recognition is applied via sequential belief-based fusion of manual 

and non-manual signs (Aran et al 2007). The sequential fusion method is 

based on two different classification steps: In the first step, we perform an 

inter-cluster belief-based classification, using a general HMM that receives 

all manual and non-manual features as input in a single feature vector. A 

BF is derived from this bank of HMMs via the evidential combination. 

Then, the PPT is applied. This first step gives the final decision if there is 

no uncertainty at this level. Otherwise, a second optional step is applied. In 

this second step, we perform an intra-cluster classification and utilize the 

non-manual information in a dedicated model. The clusters are determined 

via the hesitation matrix automatically from the training set, prior to HMM 

training.  

At the end of the sign analysis and recognition, the feedback about the 

students’ performance is displayed in the information panel. There are 

three types of results: “ok” (the sign was confirmed), “false” (the sign was 



 

wrong) and “head is ok but hands are false”. Possible errors are also shown 

in this field. The students can also watch a simple synthesized version of 

their performance on an avatar. 

Cued Speech Manual Gesture Interpreter 

In this chapter, we have presented several techniques in order to deal with 

FCS recognition:  

- Hand segmentation 

- Hand analysis : reduction of the variability of the shape and definition 

of the pointing finger 

- Hand shape recognition (the shape descriptors are the FMD and the 

classification method is a 1vs1 Evidential Combination of SVMs fol-

lowed by a PPT with an uncertainty parameter of 1 or 2)  

- Face and feature detection 

- Location of the pointing finger with respect to the face zones used in 

FCS. 

- Lip segmentation 

- Lip shape recognition 

- Extraction of target image in case of static gestures 

- Fusion of several static modalities (CS Hand shape and CS Location) 

Then, the next step is to integrate all these functionalities into a global 

system in order to propose a French Cued Speech Translator. As the lip-

reading functionality (based on the joint use of lip segmentation and lip 

shape recognition) as well as the fusion of manual and labial modalities 

(the manual gesture is static whereas the labial one is more complex 

(Burger 2007)) are still open issues, we propose at the moment a system 

which is restricted to the manual part: the CS Manual Gesture Interpreter.  

This system works as follows: a CS coder (it is important to be a skilled 

coder, in order to produce a code in which prosody is fluent, as the dedi-

cated retina filter is tuned for such a rhythm) wearing a thin glove of uni-

form but unspecified color is filmed at the frame rate of 50 images/s. The 

system is able to cope with unknown coder having different unknown 

morphology and glove. Once the video sequence is over, it is processed 

(this version of the interpreter works off-line), and the result is displayed. 

The screen is separated into two. On the left, the original video is played 

whereas on the right part, a virtual clone produces the gesture synchron-

ously with the right part video (Fig. 22). Under the clone performing the 

recognized code, the corresponding potential phonemes are given. Note 

that, as no interpretation of higher level than the phonemic one is per-



 

formed, the system is not restricted to any dictionary, and any French mes-

sage can be processed. 

 

 

Fig. 22. User interface for the display of FCS manual gesture interpreter result.  

Conclusion 

Gestural interfaces can aid the hearing impaired to have more natural 

communication with either a computer or with other people. Sign lan-

guage, the primary means of communication among the hearing impaired, 

and cued speech, which enriches lipreading with hand and facial cues, are 

inherently multimodal means of communication: They use gestures of the 

body, hands and face. Computer vision techniques to process and analyze 

these modalities have been presented in this chapter. These steps, as sum-

marized below, are essential for an accurate and usable interface. 

- A thorough analysis of each visual modality that is used to convey the 

message  

- The identification of static and temporal properties of each modality 

and their synchronization  

- Independent modeling and recognition of static/dynamic modalities 

- The integration of various modalities for accurate recognition 

We concentrated on sign languages and cued speech for two reasons: (1) 

Sign languages and cued speech are the two main media of hearing im-

paired communication; (2) they have different static and temporal cha-



 

racteristics, thus require different analysis and fusion techniques. After 

treating the problem in its most general form, we present two example 

applications: A sign language tutor that is aimed to teach signing to 

hearing people; and a cued speech manual gesture interpreter. The tech-

niques discussed are general and can be used to develop other applica-

tions, either for the hearing impaired or for the general population, in a 

general modality replacement framework. 
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