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Abstract

In this paper we propose a well-balanced finite volume / augmented Lagrangian
method for compressible viscoplastic models focusing on a compressible Bingham
type system with applications to dense avalanches. For the sake of completeness
we also present a method showing that such system may be derived for a shallow
flow of a rigid-viscoplastic incompressible fluid, namely for incompressible Bingham
type fluid with free surface. When the fluid is relatively shallow and spread slowly,
lubrication-style asymptotic approximations can be used to build reduced models
for the spreading dynamics, see for instance [N.J. Balmforth et al., J. Fluid Mech.
(2002)] . When the motion is a little bit quicker, shallow water theory for non
Newtonian flows may be tried to handle with for instance assuming Navier type
boundary condition at the bottom. We start from the variational inequality for
incompressible Bingham fluid and derive a shallow water type system. In the case
where Bingham number and viscosity are set to zero we obtain the classical Shal-
low Water or Saint-Venant equations obtained for instance in [J.F. Gerbeau & B.
Perthame, DCDS (2001)]. For numerical purposes, we focus on the one dimensional
in space model: we study associated static solutions with sufficient condition that
relates the slope of the bottom with the Bingham number and domain dimensions.
We also propose a well-balanced finite volume / augmented Lagrangian method.
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It combines well-balanced finite volume schemes for the spacial discretization with
the augmented Lagrangian method to treat the associated optimization problem.
Finally, we present various numerical tests.

Keywords : Compressible flows, shallow water systems, viscoplastic flows, Bingham
flows, avalanches, mixed finite volume/augmented Lagrangian, well-balanced scheme.
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Changes of notation from the original text:

• to harmonize with more standard nomenclatures, η2 → τy, κc → τc, η1 → η
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1 Introduction

Avalanches are natural phenomena that occur in mountainous regions such as Alps in
France. During these last few years, we assist to real efforts devoted to the physical
understanding of avalanche formation and motion in complex topography, see e.g. [2],
[26], [3, 4, 24, 29]. This paper is an attempt to derive a compressible viscoplastic system
from depth-averaged process for dense avalanches and to provide an accurate numerical
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scheme for such model. Our results concern two parts: A simple method to derive shallow
water type model for an incompressible Bingham flow with free surface; A generalization
to compressible flows of the Augmented Lagrangian method for incompressible Bingham
viscoplastic flow initiated by R. Glowinski, see [16]. Note that our numerical scheme
may be used in other applications such as numerical modeling of projectile penetration
into compressible rigid viscoplastic media, see for instance models in [13].

Remark that it is very difficult to postulate a constitutive relation for the stress tensor
in terms of a deformation measure that correctly describes avalanches behaviour, see for
instance [1]. This explain, for instance, why instead of prescribing a detailed constitutive
relation, a Coulomb dry friction law for the basal friction and a Mohr-Coulomb yield
criterion for the interior behavior have been used by several authors, see [26]. The infor-
mation obtained in this way is sufficient to derive, more easily, dynamic equations that
describe the spatio-temporal evolution of the height and the depth-averaged horizontal
velocity component of the moving avalanche pile. In our paper, we propose to consider a
shallow flow of a rigid viscoplastic incompressible fluid, namely a Bingham fluid [9]. More
general constitutive relations may be studied such as those included in [13]. Remark also
that depending on the basal boundary condition (slip boundary condition or non-slip
boundary condition), various shallow water type equations may be obtained, see for in-
stance [20] and [10] for models coming from incompressible Navier-Stokes equations and
[18] for models coming from Bingham type equations with Dirichlet boundary condition
at the bottom. Here, we consider boundary conditions in the spirit of [20], namely Navier
boundary conditions at the bottom. This is dedicated to quicker flows replacing Dirichlet
boundary conditions by a wall law boundary condition taking into account the boundary
layer. Assuming Navier boundary condition, we start with the variational inequality for
incompressible Bingham fluid and prove that a shallow water type system may be ob-
tained using adequate test functions.
Several numerical simulations of avalanching flows in simple configuration are then pro-
posed to compare our proposed scheme to previous ones. More precisely in our study,
we propose a well-balanced finite volume / augmented Lagrangian method. It combines
well-balanced finite volume schemes for the spacial discretization with the augmented
Lagrangian method to treat the optimization problem. The key point in our result is
that there exists a real interaction between the finite volume scheme and the augmented
Lagrangian procedure. This gives a real well-balanced scheme that allows us to simulate
initiation and run-out problems capturing interesting stationary solutions. Let us say
that our numerical scheme will be soon tested in two-dimensional space interacting with
C. Ancey’s group for experimental data. Readers interested by theoretical studies linked
to compressible Bingham type models are referred to [7], [6], [5], [28] and more recently
[23].

This paper is organized as follows: in Section 2, we present the equations that define
the 3D free-surface problem. In Section 3, we deduce the depth-averaged model from
the variational inequality for incompressible Bingham fluid. In Section 4, we present
the associated 1D system and sufficient conditions to identify stationary solutions of the
model. The numerical scheme based on the combination of well-balanced finite volumes
methods and the use of the augmented Lagrangian is shown in Section 5. Finally, in
Section 6, we present three numerical tests. In the first one we study the convergence to
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a stationary solution when the initial profile of the free surface is a rectangular pulse. In
this test we compare the results that we obtain with the proposed numerical scheme with
non well-balanced numerical schemes. In the second numerical test we study the transi-
tion between two different stationary solutions corresponding to two different Bingham
numbers. And in the third test we present the case of an avalanche over all the domain.

Let us finish this introduction by mentioning that this paper is dedicated to the
Memory of Professor Alexander V. Kazhikov, one of the most inventive applied math-
ematicians in compressible fluid mechanics.

2 Statement of the 3D problem

We consider here the evolution equations in the time interval (0, T ), T > 0 describing the
flow of an inhomogeneous Bingham fluid in a domain D(t) ⊂ R3 with a smooth boundary
∂D(t). In the following, the space and time coordinates as well as all mechanical fields are
non dimensional. The notation u stands for the velocity field, σ denotes the Cauchy stress
tensor field, p = − trace(σ)/3 represents the pressure and σ′ = σ + pI is the deviatoric
part of the stress tensor. The momentum balance law in the Eulerian coordinates reads

ρ
(

St
∂u

∂t
+ (u · ∇)u

)
− divσ′ +

1

Fr2
∇p =

1

Fr2
ρf in D(t), (1)

where ρ = ρ(t, x) ≥ ρ > 0 is the mass density distribution and f denotes the body forces.

We have denoted by St = Lc/(VcTc), Fr2 = V 2
c /(Lcfc) the Strouhal and Froude numbers

and we introduce B = τc/(ρcV
2
c ), where ρc, Vc, Lc, τc, Tc, fc are the characteristic density,

velocity, length, yield stress, time and force respectively. The characteristic pressure pc
is assumed to be pc = ρcLcfc, and the characteristic stress σc = ρcV

2
c . Since we deal with

an incompressible fluid, we get

div u = 0 in D(t). (2)

The conservation of mass becomes

St
∂ρ

∂t
+ u · ∇ρ = 0 in D(t). (3)

We notice from the above equation that, excepting some special cases, the flow of an
incompressible fluid with inhomogeneous mass density is not stationary.

If we denote by D(u) = (∇u + ∇Tu)/2 the rate of deformation tensor, the consti-
tutive equation of the Bingham fluid can be written as follows:

σ′ =
2

Re
ηD(u) + Bτy

D(u)

|D(u)|
if |D(u)| 6= 0, (4)

|σ′| ≤ Bτy if |D(u)| = 0, (5)

where η ≥ η0 > 0 is the non dimensional viscosity distribution depending on ρ and
τy ≥ 0 is a non-negative continuous function which stands for the non dimensional yield
stress distribution in D(t). Here, Re = ρcVcLc/ηc is the Reynolds number and ηc is a
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characteristic viscosity. Note that if τc is the characteristic yield stress then B = Bi/Re,
where Bi = τcLc/(ηcVc) is the Bingham number. The type of behavior described by
equations (4–5) can be observed in the case of some oils or sediments used in the process of
oil drilling. The Bingham model, also denominated “Bingham solid” (see for instance [25])
was considered in order to describe the deformation of many solid bodies. Recently, the
inhomogeneous (or density-dependent) Bingham fluid was chosen in landslides modeling
[15, 12].

When considering a density-dependent model, the viscosity coefficient η and the yield
limit τy depend on the density ρ through two constitutive functions, i.e.,

η = η(ρ), τy = τy(ρ). (6)

In order to complete equations (1–6) with the boundary conditions, we assume that ∂D(t)
is divided into two disjoint parts so that ∂D(t) = Γb(t) ∪ Γs(t). On the boundary Γb(t),
which corresponds to the bottom part of the fluid, we consider a Navier condition with
a friction coefficient αa and a no-penetration condition

σt = −αaut, u · n = 0 on Γb(t), (7)

where a is the non dimensional friction coefficient, α = ac/(ρcVc) and ac is the charac-
teristic friction coefficient. Here, n stands for the outward unit normal on ∂D(t) and we
have adopted the following notation for the tangential and normal decomposition of any
velocity field u and any density of surface forces σn:

u = unn+ ut, with un = u · n, σn = σnn+ σt with σn = σn · n.

The (unknown) boundary Γs(t) is a free surface, i.e. we assume a no-stress condition

σn = 0 on Γs(t), (8)

and the fact that the fluid region is advected by the flow, which can be expressed by

St
∂1D(t)

∂t
+ u · ∇1D(t) = 0, (9)

where 1D(t) is the characteristic function of the domain D(t).

Finally the initial conditions are given by

u|t=0 = u0, ρ|t=0 = ρ0. (10)

Setting

V(t) =
{
Φ ∈ H1(D(t))3 / div Φ = 0 in D(t), Φ · n = 0 on Γb(t)

}
,

we give the variational formulation of (1), (2), (4), (5) and (7-8) for the velocity field (see
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[17]), namely
∀t ∈ (0, T ), u(t, ·) ∈ V(t), ∀Φ ∈ V(t),∫
D(t)

ρ
(

St
∂u

∂t
+ (u · ∇)u

)
· (Φ− u)

+
1

Re

∫
D(t)

2η(ρ)D(u) : (D(Φ)−D(u))

+B

∫
D(t)

τy(ρ) (|D(Φ)| − |D(u)|)

+

∫
Γb(t)

αaut · (Φt − ut) ≥
1

Fr2

∫
D(t)

ρf · (Φ− u).

(11)

We can formulate the same problem in terms of velocity and pressure by using the
space

W(t) =
{
Φ ∈ H1(D(t))3 / Φ · n = 0 on Γb(t)

}
,

to deduce

∀t ∈ (0, T ), u(t, ·) ∈ W(t), p(t, ·) ∈ L2(D(t)), ∀Φ ∈ W(t), ∀q ∈ L2(D(t)),∫
D(t)

ρ
(

St
∂u

∂t
+ (u · ∇)u

)
· (Φ− u)− 1

Fr2

∫
D(t)

p(div Φ− divu)+

1

Re

∫
D(t)

2η(ρ)D(u) : (D(Φ)−D(u)) +B

∫
D(t)

τy(ρ) (|D(Φ)| − |D(u)|) +∫
Γb(t)

αaut · (Φt − ut) ≥
1

Fr2

∫
D(t)

ρf · (Φ− u),∫
D(t)

q divu = 0.

(12)

Finally the problem of the flow of a inhomogeneous Bingham fluid becomes:

Find the velocity field u and the mass density field ρ such that conditions (3), (6), (10)
and (11) hold.

or in an equivalent form

Find the velocity field u, the pressure p and the mass density field ρ such that conditions
(3), (6), (10) and (12) hold.

As far as we know there does not exist any uniqueness result for this problem. Note
recent mathematical studies in [7], [6], [5] and [28] dedicated to non-homogeneous incom-
pressible Bingham flows and compressible Bingham flows in 1D space.

3 The plane slope case

We consider here the case of a plane slope. For this let Ω ⊂ R2 be a fixed bounded
domain and

D(t) = {(x, z) ; x ∈ Ω, 0 < z < h(t, x)},
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where h(t, x) is the thickness of the fluid and x = (x1, x2). We define by

Γs(t) = {(x, z) ; x ∈ Ω, z = h(t, x)}, Γb(t) = ∂D(t) \ Γs(t),

the free and bottom surfaces, respectively. We denote by v = (v1, v2) the horizontal
components of the velocity field and by w the vertical one, i.e. u = (v, w).

Penalization condition averaging. Let us remark that equation (9), for this choice of the
flow geometry, reads

St
∂h

∂t
+ v · ∇xh− w = 0, for z = h(t, x). (13)

If we choose q = q(x) dependent only on x in (12) we get

0 =

∫
D(t)

q divu =

∫
Ω

q(x)

(∫ h(t,x)

0

divxv(t, x, z) dz + w(t, x, h(t, x))

)
dx =

∫
Ω

q(x)

[
divx

(∫ h(t,x)

0

v(t, x, z) dz

)
− v(t, x, h(t, x)) · ∇xh(t, x) + w(t, x, h(t, x))

]
dx,

and using the kinematic conditions (13) we get∫
Ω

q

(
St
∂h

∂t
+ divx(hv)

)
dx = 0, for all q ∈ L2(Ω), (14)

where v(t, x) :=
1

h(t, x)

∫ h(t,x)

0

v(t, x, z) dz is the vertical mean value of the horizontal

velocity.

Mass conservation equation averaging. Using the same technique as before one can deduce
from the mass equation (3) that∫

Ω

q

(
St
∂ρh

∂t
+ divx(hρv)

)
dx = 0, for all q ∈ L2(Ω), (15)

where ρ(t, x) :=
1

h(t, x)

∫ h(t,x)

0

ρ(t, x, z) dz is the vertical mean value of the mass density

and ρv(t, x) :=
1

h(t, x)

∫ h(t,x)

0

ρ(t, x, z)v(t, x, z) dz is the vertical mean value of the mass

flux.
On the other hand the divergence free condition (2) reads

w(t, x, z) = −
∫ z

0

divxv(t, x, s) ds, for all (x, z) ∈ D(t). (16)

Equation rescaling. In order to deduce an asymptotic model in the shallow flow ap-
proximation, we consider ε � 1 a small parameter representing the aspect ratio of the
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thickness. Following a standard scaling technique, we denote

X := x, Z :=
z

H(t, x)ε
, H :=

h

ε
, β(t,X, Z) :=

αa(t, x, z)

ε
,

V (t,X, Z) := v(t, x, z), W (t,X, Z) :=
w(t, x, z)

ε
, P (t,X, Z) := p(t, x, z),

FX(t,X, Z) := fX(t, x, z), FZ(t,X, Z) := εfZ(t, x, z),

(17)

assuming f = (fX , fZ) and a small slope angle leading to |fX | � fZ . We denote by D̃
the domain defined by Ω× (0, 1). In these new variables the equations (14-15) read

St
∂H

∂t
+ divx(HV ) = 0, (18)

St
∂(ρH)

∂t
+ divx(HρV ) = 0, (19)

where

V (t, x) :=

∫ 1

0

V (t, x, Z) dZ

and

ρV (t, x) :=

∫ 1

0

%(t, x, Z)V (t, x, Z) dZ

are mean values on the thickness and we note %(t, x, Z) = ρ(t, x, z).

We write now each term of the variational inequality (12) in the scaled variables. For
this we choose the same scaling for the test functions Φ = (Ψ, εθ). We decompose the
left-hand side of (12) in five terms Ii for i = 1, . . . , 5. They read

I1 = ε

∫
D̃
H%

(
St
∂V

∂t
· (Ψ− V ) + ε2St

∂W

∂t
(θ −W )

)
dXdZ

+ ε

∫
D̃
H%((V · ∇x)V +

1

H
W∂ZV ) · (Ψ− V )dXdZ

+ ε3

∫
D̃
H%(V · ∇xW +

1

H
W∂ZW )(θ −W )dXdZ

(20)

I2 =
ε

Fr2

∫
D̃
HP

(
divxΨ +

1

H
∂Zθ − divxV −

1

H
∂ZW

)
dXdZ (21)

I3 =
ε

Re

∫
D̃

2η(%)

(
HD(V ) : (D(Ψ)−D(V )) +

1

H
∂ZW (∂Zθ − ∂ZW )

)
dXdZ

+
ε

Re

∫
D̃

( 2∑
i=1

η(%)(ε∂xiW +
1

εH
∂ZVi)(

1

ε
∂Z(Ψi − Vi) + εH∂xi(θ −W ))

)
dXdZ

(22)
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I4 = −εB
∫
D̃
Hτy(%)

(√√√√|D(V )|2 + (
1

H
∂ZW )2 +

1

2

2∑
i=1

(ε∂xiW +
1

εH
∂ZVi)2

−

√√√√|D(Ψ)|2 + (
1

H
∂Zθ)2 +

1

2

2∑
i=1

(ε∂xiθ +
1

εH
∂ZΨi)2

)
dXdZ

(23)

I5 =

∫
Ω

εβV · (Ψ− V )dX.

Concerning the right-hand side named I6, we get

I6 =
ε

Fr2

∫
D̃

(
%HFX · (Ψ− V ) + %HFZ(θ −W )

)
dXdZ.

3.1 Momentum equation asymptotic

Let us assume that
St = Re = B = Fr = O(1), ε� 1.

Dividing the variational inequality by ε, let us search for solutions, in the rescaled for-
mulation, under the form

V = V 0 + εV 1 + · · · , W = W0 + εW1 + · · · ,
P = P0 + εP1 + · · · , % = ρ0 + ερ1 + · · ·

(24)

We denote V 0 = (V0,1, V0,2). In what follows, we first focus on the terms of order 1/ε2

and, then, we write the terms of order ε0.

� Terms of order 1/ε2.
One gets ∫

D̃

η(ρ0)

H
∂ZV 0 · ∂Z(Ψ− V 0) = 0.

Assuming η > c > 0 in D̃, this gives using the boundary conditions

∂ZV0,1 = ∂ZV0,2 = 0. (25)

� Terms of order ε0.
Coming from (18)–(19), we get

St
∂H

∂t
+ div(HV 0) = 0, (26)

St
∂(ρ0H)

∂t
+ div(Hρ0V 0) = 0. (27)
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Moreover, taking into account (25), the variational inequality becomes:∫
D̃
Hρ0

(
St∂tV 0 + (V 0 · ∇x)V 0

)
· (Ψ− V 0)dXdZ +

∫
Ω

βV 0 · (Ψ− V 0)dX

+

∫
D̃

(
2

Re
Hη(ρ0)D(V 0) : D(Ψ− V 0) +

2

Re

1

H
η(ρ0)∂ZW0(∂Zθ − ∂ZW0)

)
dXdZ

+

∫
D̃
HBτy(ρ0)

(√
|D(Ψ)|2 + (

1

H
∂Zθ)2 −

√
|D(V 0)|2 + (

1

H
∂ZW0)2

)
dXdZ

+
1

Fr2

∫
D̃
HP0(divxΨ +

1

H
∂Zθ)dXdZ −

1

Fr2

∫
D̃
HP0(divxV 0 +

1

H
∂ZW0)dXdZ

≥ 1

Fr2

∫
D̃
Hρ0FX · (Ψ− V 0)dXdZ +

1

Fr2

∫
D̃
Hρ0FZ(θ −W0)dXdZ.

(28)
Using (25), div(V 0,W0) = 0 and the boundary conditions, we have W0 = −ZHdivxV 0.
Moreover, in what follows we choose Ψ independent of Z. Finally, we choose the same
relation for the test functions, that is θ = −ZHdivxΨ. As D̃ = Ω × (0, 1), we can also
integrate in Z ∈ (0, 1). We denote

η(ρ0) =

∫ 1

0

η(ρ0(Z))dZ, τy(ρ0) =

∫ 1

0

τy(ρ0(Z))dZ,

ρ0FX =

∫ 1

0

ρ0(Z)FX(Z)dZ, Zρ0FZ =

∫ 1

0

Zρ0(Z)FZ(Z)dZ.

And we obtain

∫
Ω

Hρ0

(
St∂tV 0 + (V 0 · ∇x)V 0

)
· (Ψ− V 0)dX +

∫
Ω

βV 0 · (Ψ− V 0)dX

+

∫
Ω

2

Re
Hη(ρ0)

(
D(V 0) : D(Ψ− V 0) + divxV 0(divxΨ− divxV 0)

)
dX

+

∫
Ω

HBτy(ρ0)
(√
|D(Ψ)|2 + (divxΨ)2 −

√
|D(V 0)|2 + (divxV 0)2

)
dX

≥ 1

Fr2

∫
Ω

Hρ0FX · (Ψ− V 0)dX − 1

Fr2

∫
Ω

H2Zρ0FZ(divxΨ− divxV 0)dX.

(29)

Equation (29) with (26) and (27) gives a viscous shallow water formulation of Bingham
type.

Remark 1. From (29), when τy = 0, we obtain an equality. In this case, we obtain a 2D
viscous Shallow Water formulation, naturally associated to the Navier-Stokes equations,
like in Gerbeau and Perthame [20].

4 One dimensional system and stationary solutions

In this section, we present the one dimensional in space system and its stationary solu-
tions. In the next section, we present the numerical scheme to discretize this system and

10



we study the well-balanced properties i.e. conditions allowing to preserve the stationary
solution of the associated system.

From (26), (27) and (29), we obtain the one-dimensional in space model, if H =
H(x, t), ρ0 = ρ0(x, t)1 and V 0 = V 0(x, t), with (x, t) ∈ [0, L]× [0, T ].

We consider the external forces

FX = − sin θ, FZ = −ε cos θ.

Then one-dimensional in space model is defined by:

St
∂H

∂t
+
∂(HV 0)

∂x
= 0, (30)

St
∂(ρ0H)

∂t
+
∂(Hρ0V 0)

∂x
= 0, (31)∫ L

0

Hρ0

(
St∂tV 0 +

1

2
∂x(V

2
0)

)
(Ψ− V 0)dx+

∫ L

0

βV 0(Ψ− V 0)dx

+

∫ L

0

4

Re
Hη(ρ0)∂x(V 0)∂x(Ψ− V 0)dx+

∫ L

0

HBτy(ρ0)
√

2
(
|∂xΨ| − |∂xV 0|

)
dx

≥ −1

Fr2

∫ L

0

Hρ0 sin θ(Ψ− V 0)dx+
1

Fr2

∫ L

0

H2ρ0
ε cos θ

2
(∂xΨ− ∂xV 0)dx.

(32)

In what follows, we study sufficient conditions to ensure that a solution over an inclined
slope is a stationary solution, with velocity being equal to zero.

By (32), we obtain that such a stationary solution must verify, for all Ψ∫ L

0

HBτy(ρ0)
√

2|∂xΨ| ≥
−1

Fr2

∫ L

0

Hρ0 sin θΨ +
1

Fr2

∫ L

0

H2ρ0
ε cos θ

2
∂xΨ. (33)

Furthermore, we will focus on two types of solutions. The first one corresponds to material
at rest, i.e. a stationary solution with velocity being equal zero and a horizontal free
surface (See Figure 1). The property of horizontal free surface is defined by

x sin θ + εH cos θ = cst,

where cst is the height of the free surface. Then, for this stationary solution, we obtain
that the right hand side of (33) is equal to zero for all Ψ. By the way, we deduce that
the stationary solution corresponding to material at rest is a stationary solution of the
model for all values of τy and θ.

Secondly, we want to study sufficient conditions which ensure that a solution with a
constant height over an inclined slope is stationary (See Figure 2). We define

F(x) =
1

Fr2

∫ x

0

Hρ0 sin θdx+
1

Fr2

ρ0

2
H2ε cos θ.

Then (33) can be rewritten as∫ L

0

HBτy(ρ0)
√

2|∂xΨ|dx ≥
∫ L

0

F(x)∂xΨdx.

1From now on, we can actually already assume that ρ0 does not depend on Z.

11



θ

H

Figure 1: Stationary solution with horizontal free surface

θ

L

H

Figure 2: Stationary solution with constant height

And this inequality is satisfied if

|F(x)| ≤ HBτy(ρ0)
√

2. (34)

If H is constant (as well as ρ0), then

F(x) =
1

Fr2Hρ0 sin θ x+
1

Fr2

ρ0

2
H2ε cos θ + cst,

where cst is a constant. Since we assume H to be constant, we can then set

cst = − 1

Fr2Hρ0 sin θ
L

2
− 1

Fr2

ρ0

2
H2ε cos θ.

Finally, for this particular F , we deduce that (34) and then (33) hold if

1

Fr2ρ0 sin θ
L

2
≤ Bτy(ρ0)

√
2. (35)

Observe that if ε = H/L, previous condition can then be written as

ρ0

Fr2H sin θ ≤ 2
√

2 εBτy(ρ0).

5 A well-balanced finite volume / augmented La-

grangian algorithm

In this section, we propose a numerical scheme to discretize the 1D model presented in
the previous section. We consider the case with constant density , in such a way the

12



model reduces to the equations (30) and (32) which contain the main difficulties.

First, we write the semi-discretization in time. Then, following [19], we observe that
the problem (32) can be seen as an optimization problem and we use an augmented
Lagrangian formulation to rewrite (32). This classically leads to the resolution of a
saddle-point problem which involves an iterative method where are successively solved :

• a linear system associated to a problem on the speed (let us denote it as SU),

• and a minimization problem associated to the Lagrange multiplier (the solution of
this problem is known explicitly).

The key-point of present paper consists in realizing that the global problem, which cou-
ples “indirectly” (30) and SU, implies that the numerical algorithms solving these two
problems must also be coupled. Namely, their finite-volume spatial discretizations have
terms in common. This is not obvious a priori, but if we look at the global problem,
(30) and SU lead to an underlying Shallow Water system with source terms (linked to
topography and Lagrangian terms). Consequently, if one wants the global scheme to
preserve stationary solutions, philosophy inspired by so called “well-balanced” methods
for Shallow Water system with source terms, must be used. Adopting these methods, SU
is complemented with terms linked to the augmented Lagrangian, inducing a coupling
which is – to our knowledge – not mentioned in previous works. In the following, we
show that this method allows to perform simulations which preserve various stationary
solutions (on the contrary to previous approaches for which we show that they are not
well-balanced). Let us note that, actually, this method can be seen as a generalization
to compressible flows of the augmented Lagrangian method for incompressible Bingham
viscoplastic flow (applied, in the present paper, to Shallow Water type equations). In the
context of non-integrated Navier-Stokes-Bingham, without Well-Balanced schemes, one
can refer to [30].

Let us now precise further the underlying Shallow Water ideas which inspired our
approach.
The accurate solution of hyperbolic systems with source terms requires numerical solvers
with specific properties. Indeed, an upwind discretization of the source term, compatible
with the one of the flux term, must be performed. Otherwise, a first order error in
space, stemming from the numerical diffusion terms, takes place. This error, after time
iterations, may yield large errors in wave amplitude and speed. Roe in [27] studies the
relation between the choice of quadrature formulae to approximate the average of the
source term and the property of preserving the stationary solutions.
Bermúdez and Vázquez-Céndón introduce in [8] some numerical solvers – with an
upwind treatment of the source term for 1D Shallow Water equations (1D SWE) – which
preserve water at rest. This work originated the so-called “well-balanced” solvers, in the
sense that the discrete source terms balance the discrete flux terms when computed on
some (or all) of the steady solutions of the continuous systems. Several sequels of this
work for 1D SWE followed. See e.g. Greenberg-Leroux [21], LeVeque [22], Castro
et al. [11].
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This section is organized as follows. In Subsection 5.1, we present the semi-discretization
in time of the model. In Subsection 5.2, we present the associated reformulation using an
augmented Lagrangian method. We also discuss the link between the system obtained
and the classical Shallow Water equations. In Subsection 5.3, we detail the iterative
algorithm of the augmented Lagrangian. In Subsection 5.4, we introduce the spatial dis-
cretization. And finally, in Subsection 5.4.3, we study the well-balanced properties of the
proposed numerical scheme.

5.1 Semi-discretization in time

We denote the variables with superscript n to denote the approximation at time t = tn

and with superscript n+ 1 for the time t = tn + ∆t.
Then, we consider the following semi-discretization in time of (30)-(32) :

St
Hn+1 −Hn

∆t
+
∂(HnV n

0 )

∂x
= 0, (36)∫ L

0

Hnρ0

(
St
V n+1

0 − V n
0

∆t
(Ψ− V n+1

0 ) +
1

2
∂x((V

n
0 )2)(Ψ− V n+1

0 )

)
dx

+

∫ L

0

βV n+1
0 (Ψ− V n+1

0 )dx+

∫ L

0

4

Re
Hnη(ρ0)∂x(V

n+1
0 )∂x(Ψ− V n+1

0 )dx

+

∫ L

0

HnBτy(ρ0)
√

2
(
|∂x(Ψ)| − |∂x(V n+1

0 )|
)
dx

≥ −1

Fr2

∫ L

0

Hnρ0 sin θ(Ψ− V n+1
0 ) +

1

Fr2

∫ L

0

(Hn)2ρ0
ε cos θ

2
(∂xΨ− ∂xV n+1

0 )dx.

(37)

5.2 Rewriting the system: augmented Lagrangian

We now follow Fortin & Glowinski [19] and rewrite equation (37) as an optimization
problem : V n+1

0 is the solution of the minimization problem

J n(V n+1
0 ) = min

V
J n(V ),

where
J n(V ) = F n(B(V )) +Gn(V ),

with

B : V → H F n : H → R with V = H1
0 ([0, L])

B(V ) = ∂xV , F n(λ) =
∫ L

0
HnBτy(ρ0)

√
2|λ|dx, and H = L2([0, L]),

and

Gn(V ) =

∫ L

0

Hnρ0

(
St
V 2/2− V n

0V

∆t
+

1

2
∂x((V

n
0 )2)V

)
dx

+

∫ L

0

β
V 2

2
dx+

∫ L

0

4

Re
Hnη(ρ0)

1

2
(∂xV )2dx

+
1

Fr2

∫ L

0

Hnρ0 sin θV dx− 1

Fr2

∫ L

0

(Hn)2 ε cos θ

2
ρ0∂xV dx.

14



Then, we define the Lagrangian by

Ln : V ×H×H → R

Ln(V , q, µ) = F n(q) +Gn(V ) +

∫ L

0

Hnµ(B(V )− q)dx,

and the augmented Lagrangian, for a given value r ∈ R (r > 0), is defined by

Lnr (V , q, µ) = Ln(V , q, µ) +
r

2

∫ L

0

Hn(B(V )− q)2dx. (38)

Consequently the initial optimization problem consists now in characterizing the sad-
dle point of Lnr (V , q, µ). On the one hand, let us now begin by deriving with respect to
V in (38). It reads

M(V , q, µ,Ψ) = 0, ∀Ψ,

where

M(V , q, µ,Ψ) =

∫ L

0

Hnρ0

(
St
V − V n

0

∆t
Ψ +

1

2
∂x((V

n
0 )2)Ψ

)
dx

+

∫ L

0

βVΨdx+

∫ L

0

4

Re
Hnη(ρ0)∂x(V )∂x(Ψ)dx

+
1

Fr2

∫ L

0

Hnρ0 sin θΨdx

− 1

Fr2

∫ L

0

(Hn)2ρ0
ε cos θ

2
∂xΨdx+

∫ L

0

µHnB(Ψ)dx

+ r

∫ L

0

Hn(B(V )− q)B(Ψ)dx.

(39)

On the other hand, as the problem is non differentiable with respect to q, we obtain the
following variational inequality:∫ L

0

Hnrq(p− q) +HnBτy(ρ0)
√

2(|p| − |q|)−Hn(µ+ rB(V ))(p− q)dx ≥ 0, ∀p ∈ H,

which can be rewritten as the following minimization problem: find q ∈ H solution of

min
p∈H

(
Hnr

2
p2 +HnBτy(ρ0)

√
2|p| −Hn(µ+ rB(V ))p

)
. (40)

But this problem can be directly (and locally, for each x ∈ [0, L]) solved: the solution is

q =

 0 if |µ+ rB(V )| < Bτy(ρ0)
√

2,

1
r

(
(µ+ rB(V ))− Bτy(ρ0)

√
2SGN(µ+ rB(V ))

)
otherwise.

(41)
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Moreover, from (39), we deduce that V verifies

Hnρ0

(
St
V − V n

0

∆t
+

1

2
∂x((V

n
0 )2)

)
+ ∂x

(
1

Fr2 (Hn)2ρ0
ε cos θ

2

)
= −βV

− 1

Fr2H
nρ0 sin θ + ∂x(H

n(µ− rq)) + ∂x

(
Hn4η(ρ0)

Re
∂xV

)
+ ∂x(H

nr∂xV ). (42)

Finally, we observe that the new form of system (36)-(37) exhibits a coupling (through
an iterative process described in the next subsection) of the following equations :

∂tH + ∂x(HV ) = 0

Hρ0St∂tV +
Hρ0

2
∂x(V

2) + ∂x

(
1

Fr2H
2ρ0

ε cos θ

2

)
= −βV

− 1

Fr2Hρ0 sin θ + ∂x(H(µ− rq)) + ∂x

(
H

4η(ρ0)

Re
∂xV

)
+ ∂x(Hr∂xV ).

(43)

Which are precisely the Shallow Water equations in formulation (H,V ), with viscos-
ity, the source term defined by the topography and an extra source term linked to the
augmented Lagrangian, namely :

∂x(H(µ− rq)), (44)

where µ is the Lagrange multiplier and q is the solution of the optimization problem (40),
defined by (41).

5.3 Iterative algorithm for the saddle-point

We now present (still following [19]) the iterative algorithm used to compute the saddle-
point mentioned in the previous section.

We denote with superscripts k and k + 1 the variables involved in the iterative algo-
rithm. Let us recall that, with superscript n and n + 1, we denote the approximations
of the variables at time t = tn and t = tn + ∆t, respectively. The iterative algorithm is
defined through the following steps:

Step I.0 :
We consider that we know V n

0 , Hn, µn and qn. Then, we impose for k = 0, V k = V n
0 ,

µk = µn, qk = qn.

Step I.1 :
Compute qk+1(x), ∀x ∈ [0, L] via :

dk+1(x) = [µk + rB(V k)](x)

qk+1(x) =

 0 if |dk+1| ≤ Bτy
√

2

1
r

(
dk+1 −Bτy

√
2 dk+1

|dk+1|

)
if |dk+1| > Bτy

√
2

(45)
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Step I.2 :
Compute V k+1 via :

Hn

[
ρ0St

V k+1 − V n
0

∆t
+ ∂x

(
ρ0(V n

0 )2

2
+

1

Fr2H
nρ0ε cos θ

)]
= −βV k+1

− 1

Fr2H
nρ0 sin θ + ∂x(H

n(µk − rqk+1)) + ∂x

(
Hn(

4η(ρ0)

Re
+ r)∂xV

k+1

)
.

(46)

Step I.3 :
Update µk+1 via :

µk+1 = µk + r(B(V k+1)− qk+1). (47)

Loop Steps I.1-I.3 : k → k + 1
Until (e.g. with tol = 10−2)

‖µk+1 − µk‖
‖µk‖

≤ tol. (48)

At convergence :
We now have determined the value of V 0 at time tn+1, we just have to set :

V n+1
0 = V k+1, (49)

and we also set µn+1 = µk+1, qn+1 = qk+1.

5.4 Spatial discretization

In this subsection, we describe the discretization in space of equations (36) and (46).
That is, the spatial discretization of the following two equations:

St
Hn+1 −Hn

∆t
+
∂(HnV n

0 )

∂x
= 0,

Hn

[
ρ0St

V k+1 − V n
0

∆t
+ ∂x

(
ρ0(V n

0 )2

2
+

1

Fr2H
nρ0ε cos θ

)]
=

−βV k+1 − 1

Fr2H
nρ0 sin θ + ∂x(H

n(µk − rqk+1))

+∂x

(
Hn(

4η(ρ0)

Re
+ r)∂xV

k+1

)
.

(50)

We observe that usually, to discretize Bingham system where two equations are involved,
the discretization in space of both equations is uncoupled. See e.g. [14] for compressible
Bingham system with variable density. Nevertheless, we propose a spatial discretization
that contains a coupling between previous equations. As we mentioned previously, we
want to obtain well-balanced numerical schemes. Basically, the difficulty to treat the
spatial discretization in the present model comes from the extra source terms, which
depends on µ and q.

In this section, we want to design a numerical scheme that preserves the following
stationary solutions which can be encountered when using present model, namely :
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• Case τy = 0 : the model degenerates to Shallow Water equations (SWE) and the
so called “water at rest” test case – where the velocity is equal to zero and the
free surface is horizontal – is a classical solution. We thus want our scheme to
degenerate to one of the well-balanced schemes for SWE ;

• Case τy 6= 0 :

– Case “material at rest” : the solution to be captured for all τy > 0 is such that
the velocity is equal to zero and the free surface is horizontal (cf. Figure 1) ;

– Case where the free surface has a constant height on an inclined slope (cf.
Figure 2) and the velocity is equal to zero is also a stationary solution under
condition (35).

We note that the solution of the “water at rest” case and the one of the “material at
rest” case are actually the same. Since our global model degenerates to the SWE when
τy = 0, we want that, not only the solution in the case of a free surface with a constant
height on an inclined slope, is rigorously captured by our scheme but also that the so-
lution of the “material at rest” case (which seems to be rarely studied in the context of
Bingham model). And it is worth noting that, on the one hand, designing a scheme that
captures one or the other of these two solutions is quite easily achievable. On the other
hand, a consistant scheme for the present model must preserve both solutions and the
difficulty of its design lies behind this feature.

Let us go back for a while to the case τy = 0 – when the model reduces to SWE –
and follow the paper [11]. Namely, we remark that for Shallow Water model, the source
term linked to the topography is only present in the momentum equations and does not
appear in the mass conservation equation. Nevertheless, in well-balanced schemes, the
topography term induces a contribution in the discretization of the mass conservation
equation.
Taking into account the “Shallow Water structure” (mentioned in Section 5.2) of the
present model, we borrow aforementioned idea by taking into account all the source
terms of our momentum equation and plugging their contribution in the discretization
of the mass conservation equation. In particular, and this is the key point of present
approach, Lagrangian terms µ and q will be in the discretization of the first equation of
(50).

First, we rewrite the second equation of (50) as

Hnρ0St
V k+1

∆t
+ βV k+1 − ∂x

(
Hn(

4η(ρ0)

Re
+ r)∂xV

k+1

)
= −Hn

[
∂x

(
ρ0(V n

0 )2

2
+

1

Fr2H
nρ0ε cos θ

)
− ρ0St

V n
0

∆t
+

1

Fr2ρ0 sin θ

]
+ ∂x(H

n(µk − rqk+1)). (51)

For the right hand side of previous equation, we denote by bi ∀i, a given approximation
at the point xi, i.e.

bi ≈
{
−Hn

[
∂x

(
ρ0(V n

0 )2

2
+

1

Fr2H
nρ0ε cos θ

)
18



− ρ0St
V n

0

∆t
+

1

Fr2ρ0 sin θ

]
+ ∂x(H

n(µk − rqk+1))

}∣∣∣∣
x=xi

. (52)

In Subsection 5.4.1, we will introduce the approximation that we consider to define bi.

Then, we define the vector b with all components, b := (bi)i. And we solve the linear
system AV = b, where A is the matrix of the system induced by (51). To define A we
consider a second order finite difference to approximate the left hand side of (51) and it
reads (

Hn
i ρ0St

∆t
+ β + (

4η(ρ0)

Re
+ r)

Hn
i+1/2 +Hn

i−1/2

∆x2

)
V k+1

i

−(
4η(ρ0)

Re
+ r)

Hn
i+1/2

∆x2
V k+1

i+1 − (
4η(ρ0)

Re
+ r)

Hn
i−1/2

∆x2
V k+1

i−1 ,

where Hn
i+1/2 = (Hn

i +Hn
i+1)/2.

5.4.1 Definition of b

The definition of the right hand side in the linear system is fundamental in the design
of the numerical scheme. For example, in relation with the stationary solutions of the
system with velocity zero, b must be zero for all components.

We use a finite volume method to define b. In (52) we distinguish a component that
is constant for the iterative algorithm in k:

−Hn

[
∂x

(
ρ0(V n

0 )2

2
+

1

Fr2H
nρ0ε cos θ

)
− ρ0St

V n
0

∆t
+

1

Fr2ρ0 sin θ

]
. (53)

And the first equation of (50) also contains the terms evaluated in t = tn:

− St
Hn

∆t
+
∂(HnV n

0 )

∂x
. (54)

In the following, we denote by F (Hn,V n) the flux function contained in equations (53)-
(54):

F (W ) =

(
HV

ρ0V
2/2 +Hρ0ε cos θ/Fr2

)
, with W =

(
H
V

)
,

and by φ a numerical flux function that approximates F . We begin by considering a
family of numerical flux functions defined by (see [11]):

φi+1/2 = φ(Wi,Wi+1) =
F (Wi) + F (Wi+1)

2
− 1

2
Di+1/2(Wi+1 −Wi), (55)

where Di+1/2 is a defined or semi-defined positive matrix. For example, the Lax-Friedrichs
scheme corresponds to the definition Di+1/2 := ∆x

∆t
I, where I is the identity matrix. If

we denote the Roe matrix by Ji+1/2, then Roe method is obtained for Di+1/2 = |Ji+1/2|,
the absolute value of the Roe matrix associated to F . For the numerical results that we
present in Section 6, we consider this scheme.

In the sequel, we denote by φH the first component of the numerical flux function
and by φV the second one. The numerical flux function that we use is introduced in the
following subsection and is defined in equation (59).
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By using the notation introduced previously we propose the following approximation
of (52) to define bi:

bi = −Hn
i

[
φVi+1/2 − φVi−1/2

∆x
+

1

Fr2ρ0 sin θ − St
ρ0V

n
0,i

∆t

]
+
GV
i−1/2 +GV

i+1/2

2

with

GV
i+1/2 =

Hn
i+1

(
µki+1 − rqk+1

i+1

)
−Hn

i

(
µki − rqk+1

i

)
∆x

. (56)

5.4.2 Approximation of Hn+1

The first possible choice to define an approximation of Hn+1 is to use directly the first
component of the flux function defined by (55). In this case we obtain

StHn+1
i = StHn

i −
∆t

∆x
(φHi+1/2 − φHi−1/2). (57)

In the following, we denote the numerical scheme obtained in this case by (Non-WB 1),
i.e. the first non well-balanced scheme. Since, actually, this scheme does not preserve the
two types of stationary solutions. Namely, it is easy to prove that the scheme preserves
the stationary solutions with constant height over an inclined plane. But, it does not
preserve the stationary solutions with horizontal free surface.

Following [11], we can conclude that the source term which introduces the topography
must be taken into account in the definition of φH . If we denote

Gtopo =

(
0

− 1
Fr2
ρ0 sin θ

)
then φH is defined as the first component of

φtopo,i+1/2 =
F (Wi) + F (Wi+1)

2
− 1

2
Di+1/2(Wi+1 −Wi − J −1

i+1/2Gtopo). (58)

There are several techniques which are applied in the case where Ji+1/2 is not inversible.
For instance, one can define the eigenvalues of the generalized inverse matrix by zero
if the corresponding eigenvalue to be inversed is null or smaller than a certain value of
tolerance.
We can now introduce a second choice by defining φH as the first component of (58). This
leads to another numerical scheme, which is denoted as (Non-WB 2), since it is not a
well-balanced scheme. As a matter of fact, by introducing the technique proposed in [11]
for SWE, we obtain that the scheme preserves the stationary solutions with horizontal
free surface. But a constant height over an inclined plane is not a stationary solution of
SWE, and we can prove that the obtained numerical scheme is not able to preserve these
solutions.

Finally, we propose another discretization to define φH which leads to a scheme de-
noted as (WB-B). As we mentioned at the beginning of this section, the main difference

20



between the scheme that we propose and previous ones is to treat Lagrangian variables
µ and q in the same manner as in the well-balanced schemes for SWE. Consequently, we
propose to define φH by taking into account the term defined as a function of µ + r q
as a source term. Namely, if the iterative algorithm ends for index ke, we approximate
previous term by µke+1 + r qke+1. And we thus define φH as the first component of

φµ,q,i+1/2 =
F (Wi) + F (Wi+1)

2
−

1

2
Di+1/2(Wi+1 −Wi − J −1

i+1/2(Gtopo,i+1/2 +Gµ,q,i+1/2)). (59)

where

Gµ,q,i+1/2 =

(
0

Hn
i+1(µke+1

i+1 − rq
ke+1
i+1 )−Hn

i (µke+1
i − rqke+1

i )

)
.

5.4.3 Well-balanced properties of the proposed scheme

If we consider a domain of length L, we obtain the following result:

Theorem 5.1 If we consider the following initialization for µ and q:

µ(x) =
1

Fr2ρ0 sin θ (x− L/2)− 1

Fr2ρ0ε cos θ(H(x)−H(L/2)), q(x) = 0 ∀x ∈ [0, L],

then, the numerical scheme (WB-B) exactly preserves the stationary solution of material
at rest, and also exactly preserves the stationary solution of constant height over an
inclined plane verifying (35).

Proof
To prove this result, it is enough to prove the following two items:

i) b = 0. In this case the solution of the linear system is V k+1 = 0 ∀k. So, if V n = 0
we obtain that V n+1 = 0.

ii) Hn
i+1 −Hn

i − [J −1
i+1/2(Gtopo,i+1/2 +Gµ,q,i+1/2)]1 = 0 ∀i. In this case, since V n+1 = 0,

we obtain that φHi+1/2 defined by (59) is zero for all i, then by (57) we have that

Hn+1 = Hn.

Consequently, if i) and ii) are verified, the given stationary solution is exactly preserved.
The verification of i) and ii) is an easy computation, so that, for the sake of brevity, we
omit it.

�
Although we refer to two types of stationary solutions, in Section 6 we observe that the

proposed scheme preserves other types of stationary solutions, even when there is a bump
in the free surface and the Bingham number is relatively huge. In the Test 1 presented
in Section 6, we compare the results obtained with (WB-B) and the non-well-balanced
schemes (Non-WB 1) and (Non-WB 2).
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Figure 3: Test 1: Initial condition

6 Numerical tests

In this section, we present three numerical tests. In the first one, we study the con-
vergence of a rectangular pulse towards the stationary solution, and the dependence of
the stationary state on various Bingham numbers is explored. In the second numerical
test, we present the transition between two stationary solutions when the rigid properties
of the material change. In the third test, we present the case of an avalanche over the
considered domain.

For the tests, we set the parameters St = B = Re = 1, ε = 1, η = 1 and Fr = 0.3193.
Moreover, CFL condition is equal to 0.8, r = ∆x τy/η and ∆x = 0.01. We consider
different values of τy in the following numerical tests. For the boundary conditions we
impose the velocity to be zero.

6.1 Test 1: convergence to a stationary solution

In this subsection, we present a test where the free surface of the initial condition is a
rectangular pulse and the initial velocity is equal to zero in all the domain. Furthermore,
the bottom is supposed to be an inclined plane with an angle of 5 degrees (cf. Figure 3).
We study the final stationary profile of the material surface and the dependence of the
shape with respect to different Bingham numbers.

The domain considered is [0, 1]. The height of the material is defined by:

H(x, 0) =

{
0.2 if x ∈ [0.5, 0.6],
0.1 otherwise.

We study the evolution towards a stationary solution for different values of the Bingham
number. Namely, we consider τy = 10, 2, 0.1 and 0.01. The goal is to study the rigid
properties of the material with respect to the Bingham number. When the Bingham
number is nearly zero, the material is more similar to a fluid like the water. In fact,
it can be remembered that when τy = 0 the proposed model reduces to Shallow Water
equations with viscous terms.

First, in Figure 4, we present the evolution at four different times of the material
surface for τy = 10. Figure 4(d) corresponds to t = 5 s., where the solution is stationary.
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We observe that the stationary solution presents a bump, i.e. the material is sufficiently
rigid to support the gradient of pressure produced by the gradient of the surface.

In Figure 5, we compare the numerical result obtained for τy = 10 with the proposed
well-balanced scheme (continuous black line) and the results obtained without a well-
balanced treatment for the discretization of H. Namely, we compare with the schemes
(Non-WB 1) (red doted lines of Figure 5) and (Non-WB 2) (blue dashed lines of
Figure 5) presented in Section 5. Both schemes are not able to preserve the stationary
solution with a bump in the free surface.

In Figure 6, we present the evolution of the surface for the four different values of τy
(τy = 10, 2, 0.1 and 0.01). In Figure 7, we present the stationary surfaces obtained with
these values of τy.

If we compare figures 7(a) with 7(b), corresponding to τy = 10 and τy = 2, respectively,
we observe that in both cases the stationary solution present a bump in the surface.
Nevertheless the bump is smaller when τy decreases.

Figures 7(c) and 7(d) correspond to τy = 0.1 and τy = 0.01, respectively. We observe
that when τy converges to zero, the stationary solution converges to the stationary solution
of water at rest over an inclined plane. Namely, they converges to the stationary solution
that we obtain for this test with Shallow Water equations, i.e. the model obtained for
τy = 0.

In Figure 8, we present the velocity at different times obtained with the four different
values of τy. We observe that the smaller values of velocities are obtained when the
Bingham number is greater. Namely, for t = 0.5 s. (Figure 8(a)) we observe that
the velocity is nearly zero for τy = 10. And for t = 1 s. (Figure 8(a)) the solution
corresponding to τy = 10 is vanishing, while for the other values of τy the velocity is, by
comparison, far from zero. For t = 5 s. (Figure 8(c)) the solution for τy = 2 exhibits a
vanishing motion. We observe that for t = 20 s. (Figure 8(d)) the velocities corresponding
to τy = 0.1 and τy = 0.01 tend much more slowly to zero than the ones for τy = 2 and
τy = 10.

Finally, in Figure 9 we present two comparisons. In Figure 9(a), we compare the
four stationary solutions corresponding to the fours considered values of τy . And, in
Figure 9(b), we present the values of µ obtained at the final time, when the solution is
stationary, for these values of τy. We can easily identify that µ follows the same type of
profile as the surface. Actually, as we mentioned previously, µ is a term whose role is to
introduce an equilibrium in the pressure. If we observe for instance the case τy = 10, the
material surface exhibits a gradient, which in the model of Shallow Water corresponds
to a pressure gradient. This pressure gradient for stationary solutions is compensated, in
the proposed model, by µ. That is why, in the case of a stationary solution, the profile of
the surface is of the same type as the one of µ. Equivalently we observe that for τy = 0.01
where the material surface is nearly flat, the gradient of pressure is nearly zero, then the
pressure gradient which has to be compensated is small, hence the profile of µ is close to
zero.

6.2 Test 2: transition between two stationary solutions

The objective of this test is to observe the behaviour of the material when its rigid
properties change. For instance, if we think about the snow, many phenomena can
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Figure 4: Test 1: Evolution of the material surface τy = 10.
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Figure 5: Test 1: Evolution of the material surface τy = 10. Comparison between the
numerical result of the well-balanced scheme (continuous black line) and the non well-
balanced schemes (Non-WB 1) (discontinuous red line) and (Non-WB 2) (dashed blue
line)
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(c) τy = 0.1.
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Figure 6: Test 1: Evolution of the free surface for τy = 10, 2, 0.1 and 0.01
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Figure 7: Test 1: Material surface of the stationary solutions obtained with τy = 10, 2,
0.1 and 0.01
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Figure 8: Test 1: Velocities obtained for τy = 10, 2, 0.1 and 0.01
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Figure 9: Test 1: Left: Material surface, Right: µ, for the stationary solutions obtained
with τy = 10, 2, 0.1 and 0.01

modify this material and introduce this type of change in its properties.
We consider a domain of 2 meters over an inclined slope of 20 degrees. First we

compute numerically the stationary solution for τy = 10 when the initial condition is

H(x, 0) =

{
2.1 if x ∈ [1.5, 1.6],
0.1 otherwise.

Then, we consider this stationary solution as initial condition for the same problem,
except we change the value of τy. Namely, we consider τy = 5 and τy = 2. In Figure
10, we see the transitions between the stationary solution (continuous black line, labelled
“initial condition”) when we change the rigid properties of the material. For τy = 2
(Figure 10(a)) we observe that the transition is from a bump to a stationary solution
defined by two areas of horizontal free surface and an inclined surface connecting these
areas. For τy = 5 (Figure 10(b)) the transition leads to a similar bump shape with only
a change of the height and the width of the bump.

6.3 Test 3: avalanche

In this test, we consider a domain of 10 meters. The final time is T = 2 s. The angle of
the inclined plane that defines the bottom is 30 degrees, and τy = 10. As initial conditions
we consider a velocity which is equal to zero in all the domain and H defined by

H(x, 0) =

{
10.1 if x ≥ 9.5,
0.1 otherwise.

In Figure 11, we present the evolution of the free surface for t = 0.3, 0.5, 1, 1.5 and 2
s. We observe that contrary to the two previous tests for the same value of τy, in this
case we do not obtain a stationary solution with a bump shape. There are several factors
which induce the avalanche of the material in this test. First, the angle that defines the
bottom is bigger in this case. Second, the height of the jump in H at the initial condition.
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Figure 10: Test 2: Free surface. Transition between two stationary solutions. Continuous
black line : first stationary solution (used as initial condition for the second run, see text).
Blue lines: evolution of the free surface. Red line: second stationary solution.
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Figure 11: Test 3: avalanche. Surface evolution.

And finally, by condition (35) we observe that the length of the domain is also important.
Even in the zone where the height of the material is constant, in x ∈ [0, 9.5), the solution
is not stationary.

In Figure 12, we compare the surface at t = 1 s. and t = 2 s. with the value of the
Lagrange multiplier µ. To picture both quantities in the same range we have multiplied
µ by 0.3. We observe that the value of µ tends to follow the profile of the surface, in
order to compensate the gradient of pressure. Nevertheless in this case, contrary to the
Test 1, it is not sufficient to block the flow and an avalanche of the material occurs all
over the domain.
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