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THE ROUGH PATH ASSOCIATED TO THE MULTIDIMENSIONAL
ANALYTIC FBM WITH ANY HURST PARAMETER

SAMY TINDEL AND JÉRÉMIE UNTERBERGER

Abstract. In this paper, we consider a complex-valued d-dimensional fractional Brow-
nian motion defined on the closure of the complex upper half-plane, called analytic

fractional Brownian motion and denoted by Γ. This process has been introduced in [16],
and both its real and imaginary parts, restricted on the real axis, are usual fractional
Brownian motions. The current note is devoted to prove that a rough path based on Γ
can be constructed for any value of the Hurst parameter in (0, 1/2). This allows in par-
ticular to solve differential equations driven by Γ in a neighborhood of 0 of the complex
upper half-plane, thanks to a variant of the usual rough path theory due to Gubinelli
[6].

0. Introduction

The (two-sided) fractional Brownian motion t → Bt, t ∈ R (fBm for short) with Hurst
exponent α, α ∈ (0, 1), defined as the centered Gaussian process with covariance

E[BsBt] =
1

2
(|s|2α + |t|2α − |t − s|2α), (1)

is a natural generalization in the class of Gaussian processes of the usual Brownian motion,
in the sense that it exhibits two fundamental properties shared with Brownian motion,
namely, it has stationary increments, viz. E[(Bt−Bs)(Bu−Bv)] = E[(Bt+a−Bs+a)(Bu+a−
Bv+a)] for every a, s, t, u, v ∈ R, and it is self-similar, viz.

∀λ > 0, (Bλt, t ∈ R)
(law)
= (λαBt, t ∈ R). (2)

One may also define a d-dimensional vector Gaussian process (called: d-dimensional frac-
tional Brownian motion) by setting Bt := Bt = (Bt(1), . . . , Bt(d)), where (Bt(i), t ∈
R)i=1,...,d are d independent (scalar) fractional Brownian motions. Its theoretical interest
lies in particular in the fact that it is (up to normalization) the only Gaussian process
satisfying the two properties (1) and (2). Furthermore, a standard application of Kol-
mogorov’s theorem shows that fBm has a version with (α − ǫ)-Hölder paths for every
ǫ > 0. This makes this process amenable to models where a Gaussian process with Hölder
continuity exponent different from 1/2 is needed, and we refer for instance to [1, 9, 14]
for some applications to biophysics.

Consequently, there has been a widespread interest during the past ten years in con-
structing a stochastic integration theory with respect to fBm and solving stochastic dif-
ferential equations driven by fBm. The multi-dimensional case is very different from the
one-dimensional case. When one tries to integrate for instance a stochastic differential
equation driven by a two-dimensional fBm B = (B(1), B(2)) by using any kind of Picard
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2 S. TINDEL AND J. UNTERBERGER

iteration scheme, one encounters very soon the problem of defining the Lévy area of B
which is the antisymmetric part of Ats :=

∫ t

s
dBt1(1)

∫ t1
s

dBt2(2). This is the simplest

occurrence of iterated integrals Bk
ts(i1, . . . , ik) :=

∫ t

s
dBt1(i1) . . .

∫ tk−1

s
dBtk(ik) which lie at

the heart of the rough path method due to T. Lyons.

Let us describe briefly this method, rephrased in the setting of [6] which is going to
be used in the sequel of the paper: assume X = (X(1), . . . , X(d)) is some non-smooth
α-Hölder d-dimensional path. Integrals such as

∫

f1(X(t))dX1(t) + . . . + fd(X(t))dXd(t)
do not make sense a priori because X is not differentiable (Young’s integral works for
α > 1

2
but not beyond). In order to define the integration of a differential form along

X, it is enough to define a truncated multiplicative functional (X1, . . . , X⌊1/α⌋) where
X1

ts = Xt − Xs and each Xk = (Xk(i1, . . . , ik))1≤i1,...,ik≤d – a matrix of (increments of)
continuous paths – is a substitute for the iterated integrals formally given as Xk

ts :=
∫ t

s
dXt1(i1)

∫ t1
s

dXt2(i2) . . .
∫ tk−1

s
dXtk(ik), with the following two properties:

(i) Each component of Xk is kκ-Hölder continuous for any κ < α.
(ii) Multiplicativity: letting (δXk)tus := Xk

ts − Xk
tu − Xk

us, one requires

(δXk)tus(i1, . . . , ik) =
∑

k1+k2=k

Xk1

tu (i1, . . . , ik1
)Xk2

us(ik1+1, . . . , ik). (3)

Once these functionals are defined, the theory described in [4, 6, 10] can be seen as a
procedure which allows to define out of these data iterated integrals of any order and to
solve differential equations driven by X.

With these preliminary considerations in mind, it is easily conceived that the funda-
mental problem in order to apply the general theory is to give a suitable definition of the
functionals Xk. For any smooth path, Xk can be defined as a Riemann multiple integral.
The multiplicative and Hölder continuity properties are then trivially satisfied, as can be
checked by direct computation. So the most natural way to construct such a multiplica-
tive functional is to start from some smooth approximation Xη, η ց 0 of X such that
each iterated integral Xk,η(i1, . . . , ik), k ≤ ⌊1/α⌋ converges in the kκ -Hölder norm for
any κ < α. This general scheme has been applied to fBm in a paper by L. Coutin and
Z. Qian [2], by means of standard n-dyadic piecewise linear approximations B̃2−n

of B.
In a later paper, one of the authors [16] tried to tackle the problem by seeing B as the
real part of the boundary value of an analytic process Γ living on the upper half-plane
Π+ = {z ∈ C |ℑz > 0}. The time-derivative of this centered Gaussian process has the
following hermitian positive-definite covariance kernel:

E
[

Γ′(z)Γ′(w)
]

= K ′(z, w̄) =
α(1 − 2α)

2 cosπα
(−ı(z − w̄))2α−2, z, w ∈ Π+ (4)

where z2α−2 := e(2α−2) ln z (with the usual determination of the logarithm) is defined and
analytic on the cut plane C\R−. Also, by construction, EΓ′(z)Γ′(w) ≡ 0 identically. It is
essential to understand that K ′ is a multivalued function on C × C \ {(z, z̄) | z ∈ C}; on
the other hand, for z, w ∈ Π+ we have ℜ(−ı(z − w̄)) > 0, so the kernel K ′ is well-defined.
Then ℜBη

t := ℜΓt+ıη is a good approximation of fBm, namely, ℜBη converges a.s. in the
κ-Hölder distance to a process ℜB with the same law as fBm for any κ < α.

Both approximation schemes introduced in [2, 16] lead to the same semi-quantitative
result, namely:

• When α > 1/4, the Lévy area and volume (in other words, the truncated multi-
plicative functional truncated to order 3) converge a.s. in the appropriate variation
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norm. The heart of the proof lies in the study of the Lévy area Ã2−n

ts , resp. Aη
ts

of the smooth approximation; one may prove in particular that E[(Ã2−n

ts )2] and
E[(Aη

ts)
2] converge to the same limit when 2−n or η go to 0;

• When α < 1/4, E[(Ã2−n

ts )2] and E[(Aη
ts)

2] diverge resp. as n(1−4α) and η−(1−4α).
Hence the methods alluded to above fail.

The latter result is of course unsatisfactory, and constitutes by no means a proof that
no coherent stochastic integration theory with respect to fBm may exist when α < 1/4.
However, to the best of our knowledge, there is no explicit example in the literature
of a d-dimensional (with d > 1) process with Hölder regularity κ < 1/4 allowing the
construction of a rough path.

The current article proposes then to make a step in this direction, and the rough
path construction we propose will simply be obtained by considering the complex-valued
process Γ (recall that this process is induced by the covariance function (4)) for its own
sake, instead of ℜΓ. In particular, for t ∈ R, the irregular process Bt := Γt will be
approximated by the complex valued analytic process Bη

t := Γt+ıη. But in a more general
way, Γη

z := Γz+ıη will stand for an analytic approximation of Γ on the closed upper half-
plane Π̄+ := {z ∈ C | ℑz ≥ 0}. An adequate limiting procedure for η → 0 will allows us
to prove the following main results:

(1) The iterated integrals Γη,k(i1, . . . , ik), k ≤ ⌊1/α⌋ converge in the (kκ)-Hölder norm
for any κ < α and any Hurst index α > 0. The limiting objects Γk satisfy our
conditions (i) and (ii) above, which yields the construction of a rough path above
the process Γ.

(2) One deduces from this fact that stochastic differential equations of the type

dzt = b(zt)dt + σ(zt)dΓt, z0 = a ∈ C
n, (5)

where b and σ are vector-valued, resp. matrix-valued analytic functions on a
complex neighborhood Ω of 0, have a strong local solution zt defined on Ω′ ∩ Π̄+

where Ω′ ⊂ Ω is another complex neighborhood of 0.

Let us make now a few comments on these results:

(i) An appropriate name for the Γ-process could be analytic fractional Brownian motion
(analytic fBm or afBm for short). This is the name we shall use throughout the article.
Yet the reader should be warned against two possible misunderstandings:
– Γ is analytic only in the (open) upper half-plane. When we consider its restriction to
R (its boundary value on R, one might say) it is merely a continuous process with the
same Hölder continuity as the usual fBm. The fact that Γ is very irregular on R makes it
interesting to be able to solve stochastic differential equations driven by Γ, whereas they
are almost trivially solved on Π+;
– considering the restriction of Γ to R, one may be tempted to write Γt = ℜΓt + ıℑΓt and
to consider separately the real and the imaginary part. Elementary computations show
that both ℜΓ and ℑΓ have the same law as fBm. But Γ is not merely a complex fBm
since ℜΓ and ℑΓ are not independent (see section 1). It is the correlation between ℜΓ
and ℑΓ that cancels the singularities for small Hurst indices.

(ii) It is of course possible to consider (5) as a system of two real coupled equations on
Rn, namely,

dxt = b1(xt, yt)dt + σ1(xt, yt)dℜΓt − σ2(xt, yt)dℑΓt,

dyt = b2(xt, yt)dt + σ1(xt, yt)dℑΓt + σ2(xt, yt)dℜΓt (6)
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where zt = xt + ıyt, b = b1 + ıb2, σ = σ1 + ıσ2, ℜΓ and ℑΓ are correlated fBm, and the
components of (b1, b2) and (σ1, σ2) satisfy the Cauchy-Riemann equations ∂xb1 = ∂yb2,
∂yb1 = −∂xb2 and ∂xσ1 = ∂yσ2, ∂yσ1 = −∂xσ2.

(iii) As in [8, 15], we have chosen here to solve the differential equation (5) thanks to a
variant of Lyon’s rough path method [4, 10] called algebraic integration theory, introduced
in [6]. The ideas are roughly the same in both theories, but the technical apparatus is
different and makes some of our technical proofs become significantly shorter (in partic-
ular, one replaces q-variation norms by Hölder norms which are easier to estimate), and
renders the adaptation of the theory to the analytic setting more transparent. We outline
this generalization to the complex plane in Sections 1, 2 and 3.

(iv) Let us try to explain briefly why the regularized Levy area is divergent for the real
fBm and α ≤ 1/4, while it converges for the analytic one for any α > 0. Let us call
then Aη

ts the regularized Levy area for ℜΓ, and let us compute E(Aη
ts)

2 for t, s ∈ R: by
definition (recall that E[Γ′(z)Γ′(w)] ≡ 0 identically)

E
[

(Aη
ts)

2
]

= 2E

(
∫ t

s

dΓx1+ıη(1)

∫ x1

s

dΓx2+ıη(2)

)(
∫ t

s

dΓ̄y1+ıη(1)

∫ y1

s

dΓ̄y2+ıη(2)

)

+ 2ℜE

(
∫ t

s

dΓx1+ıη(1)

∫ x1

s

dΓ̄x2+ıη(2)

)(
∫ t

s

dΓ̄y1+ıη(1)

∫ y1

s

dΓy2+ıη(2)

)

=: V1(η) + V2(η). (7)

The first term in the right-hand side writes

V1(η)

= C

∫ t

s

dx1

∫ x1

s

dx2

∫ t

s

dy1

∫ y1

s

dy2(−ı(x1 − y1) + 2η)2α−2(−ı(x2 − y2) + 2η)2α−2

= C ′

∫ t

s

dx1

∫ t

s

dy1(−ı(x1 − y1) + 2η)2α−2

×
[

(−ı(x1 − y1) + 2η)2α − (−ıx1 + 2η)2α − (ıy1 + η)2α
]

,

while the second term writes

V2(η) = C ′

∫ t

s

dx1

∫ t

s

dy1(−ı(x1 − y1) + 2η)2α−2

×
[

(ı(x1 − y1) + 2η)2α − (ıx1 + 2η)2α − (−ıy1 + η)2α
]

.

Both integrals look the same except that V2 (contrary to V1) involves both −ıx1 and
ıx1, and similarly for y1. This seemingly insignificant difference is essential, since V1

can be shown to have a bounded limit when η → 0 by using a contour deformation in
Π+ × Π+ which avoids the real axis where singularities live, while this is impossible for
V2. Namely, (−ı(x1− ȳ1)+2η)2α−2 is well-defined if (x1, y1) are in the closure of Π+×Π+,
while (ı(x1 − ȳ1) + 2η)2α for instance is well-defined on the closure of Π− × Π−, where
Π− is the lower half-plane. In fact, explicit computations prove that V2(η) diverges in
the limit η → 0 when α < 1/4. Now, the integral V1(η) is the one which appears in the
computations concerning the analytic fBm Γ, while the additional integral V2(η) is needed
in order to handle the case of the real-valued fBm ℜΓ. This fact had already been noted
in [16], where V1(η) (as part of the calculations needed to compute Aη

ts) is evaluated in
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closed form involving Gauss’ hypergeometric function (see proof of Theorem 4.4 in [16])
– in fact (see [16], formula (4.36))

V1(η)
η→0
→

α(2α − 1)

4 cos2 πα
.

[

2Γ(2α − 1)Γ(2α + 1)

Γ(4α + 1)
+

cos 2πα

(2α − 1)(4α − 1)

]

|t − s|4α (8)

(a regular expression when α → 1/4 or 1/2 as Taylor’s formula proves). In the same
article, more general iterated integrals of the process Γη are introduced en passant under
the name of analytic iterated integrals and shown to converge in the limit η → 0; we
reproduce these crucial results here. On the other hand, singularities of non-analytic
iterated integrals for α < 1/4 are analyzed in great details in [17].

Here is how our article is structured. The first three sections are devoted to show how
to solve differential equations in the complex plane like (5), under suitable assumptions
on b, σ and on the iterated integrals Xk: in Section 1, we recall the basic features of the
algebraic integration theory; Section 2 aims at giving some details for the resolution of
equation (5) in case of a rough signal with Hölder regularity γ > 1/3, while Section 3
generalizes our considerations to an arbitrary Hölder regularity exponent in (0, 1/2). The
remaining sections deal with the application of the general theory to the analytic fBm
Γ: Section 4.1 is concerned with the definition of this process, Section 4.2 with the proof
of some general regularity results for increments. Some useful (yet elementary) complex
analysis preliminaries are given in Section 4.3. We then proceed to prove the convergence
of our approximations based on Γη: Section 5.1 deals with Γη itself, Section 5.2 handles
the case of the Levy area, while the general multiple integral case is treated in Section
5.3.

Notations: Starting from Section 2 and throughout the paper, the following notations
concerning processes will be used. A generic γ-Hölder function will be denoted by X. The
analytic fBm defined on the complex upper half-plane is written Γ = {Γt; t ∈ Π̄+}, and its
smooth approximation is denoted by Γε or Γη. If s, t ∈ Π̄+, then [s, t] = {λs+(1−λ)t | λ ∈
[0, 1]} ⊂ Π̄+ is the segment between s and t. Generally speaking, Ω will denote a bounded
neighborhood of 0 in the closure of the upper half-plane Π̄+. Since this notation is
generally used for probability spaces, we shall call (U ,F ,P) the probability space under
consideration here. Here is also a convention which will be used throughout the paper:
for two real positive numbers, the relation a . b stands for a ≤ C b, where C is a given
universal constant (possibly depending continuously on α ∈ (0, 1)).

1. Algebraic integration

Algebraic integration theory is conceived as an alternative to the popular rough paths
analysis, and aims at solving differential equations driven by irregular processes with a
minimal theoretical apparatus. Introduced in [6] for a Hölder regularity of the driving
noise γ > 1/3, it has then be extended to arbitrary γ > 0 in a quite general setting (far
beyond the geometric case) in [7]. See also [15] for a detailed study of the case γ > 1/4.
We have decided to recall some aspects of this formalism here for two main reasons: first,
the integration theory we shall use takes place naturally in the upper complex plane Π+.
This induces some slight changes in the original setting, which we have chosen to outline.
Second, we are able to deal with geometric rough paths in the current paper, which leads
some simplifications in the analysis of the generalized integrals, compared for instance
with [7]. We shall thus recall the main features of algebraic integration in our context.
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This will also hopefully help to clarify the main assumptions which shall be checked on
the process Γ.

1.1. Increments. The extended integral we deal with is based on the notion of increment,
together with an elementary operator δ acting on them. These first notions are specifically
introduced in [6, 8], and we shall merely recall here their definition in the complex plane
context. Consider an arbitrary neighborhood Ω of 0 in the closure of the upper half-plane
Π̄+ = {z ∈ C |ℑz ≥ 0}. Then, for a complex vector space V , and an integer k ≥ 1,
we denote by Ck(Ω; V ) the set of functions g : Ωk → V such that gt1···tk = 0 whenever
ti = ti+1 for some i ≤ k − 1. Such a function will be called a (k − 1)-increment, and
we shall set C∗(V ) = ∪k≥1Ck(Ω; V ). The operator δ alluded to above can be seen as an
operator acting on k-increments, and is defined as follows on Ck(Ω; V ):

δ : Ck(Ω; V ) → Ck+1(Ω; V ), (δg)t1···tk+1
=

k+1
∑

i=1

(−1)igt1···t̂i···tk+1
, (9)

where t̂i means that this particular argument is omitted. Then a fundamental property
of δ, which is easily verified, is that δδ = 0, where δδ is considered as an operator from
Ck(Ω; V ) to Ck+2(Ω; V ), so (C∗(Ω; V ), δ) is a cochain complex. we shall denote ZCk(Ω; V ) =
Ck(Ω; V ) ∩ Kerδ and BCk(Ω; V ) = Ck(Ω; V ) ∩ Imδ.

Some simple examples of actions of δ, which will be the ones we shall really use through-
out the paper, are obtained by letting g ∈ C1 and h ∈ C2. Then, for any t, u, s ∈ Ω, we
have

(δg)ts = gt − gs, and (δh)tus = hts − htu − hus. (10)

Furthermore, it is readily checked that the complex (C∗, δ) is acyclic, i.e. ZCk(Ω; V ) =
BCk(Ω; V ) for any k ≥ 1.

Let us mention at this point some conventions on products of increments which will be
used in the sequel: assuming for the moment that V = C, set Ck(Ω; C) = Ck(Ω). Then
the complex (C∗(Ω), δ) is an (associative, non-commutative) graded algebra once endowed
with the following product: for g ∈ Cn(Ω) and h ∈ Cm(Ω) let gh ∈ Cn+m−1(Ω) be the
element defined by

(gh)t1,...,tm+n−1
= gt1,...,tnhtn,...,tm+n−1

, t1, . . . , tm+n−1 ∈ Ω. (11)

The pointwise multiplication of g, ĝ ∈ Cn(Ω), denoted by g ◦ ĝ, is also defined by:

(g ◦ ĝ)t1,...,tn = gt1,...,tn ĝt1,...,tn, t1, . . . , tn ∈ Ω.

Our future discussions will mainly rely on k-increments with k ≤ 2, for which we shall
use some analytic assumptions. Namely, sticking to the case V = Cd for d ≥ 1, we
measure the size of these increments by Hölder norms defined in the following way: for
f ∈ C2(Ω; V ) let

‖f‖µ ≡ sup
s,t∈Ω

|fts|

|t − s|µ
, and Cµ

2 (V ) = {f ∈ C2(Ω; V ); ‖f‖µ < ∞} .

In the same way, for h ∈ C3(Ω; V ), set

‖h‖γ,ρ = sup
s,u,t∈Ω

|htus|

|u − s|γ|t − u|ρ
(12)

‖h‖µ ≡ inf

{

∑

i

‖hi‖ρi,µ−ρi
; h =

∑

i

hi, 0 < ρi < µ

}

,
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where the last infimum is taken over all sequences {hi ∈ C3(Ω; V )} such that h =
∑

i hi

and for all choices of the numbers ρi ∈ (0, z). Then ‖·‖µ is easily seen to be a norm on
C3(Ω; V ), and we set

Cµ
3 (V ) := {h ∈ C3(Ω; V ); ‖h‖µ < ∞} .

Notice that, in order to avoid ambiguities, we shall use the notation N [· ; Cµ
k (Ω; V )], instead

of ‖·‖µ, to denote the Hölder norms in the spaces Ck(Ω; V ). Finally, let C1+
3 (Ω; V ) =

∪µ>1C
µ
3 (Ω; V ), and remark that the same kind of norms can be considered on the spaces

ZC3(Ω; V ), leading to the definition of normed subspaces ZCµ
3 (Ω; V ) = Cµ

3 (Ω; V )∩ZC3(Ω;
V ) and ZC1+

3 (Ω; V ) = ∪µ>1C
µ
3 (Ω; V ) ∩ ZC3(Ω; V ). It also turns out to be useful to

consider the spaces of continuous (k − 1) increments C0
k(Ω; V ), equipped with the norm

N [h; C0
k(Ω; V )] = supt1,...,tk∈Ω |ht1,...,tk |. Let us mention once and for all that all the Hölder

spaces we are considering in this article are complete.

1.2. Iterated integrals on the upper-half plane. The iterated integrals of analytic
functions on Ω ∩ Π+ are particular cases of elements of C∗ which will be of interest for
us. Let us recall some basic rules for these objects. Set Cω

k (Ω ∩Π+) = Cω
k (Ω ∩Π+; C) for

the set of analytic (k − 1)-increments from Ω∩Π+ to C, and consider f, g ∈ Cω
1 (Ω∩Π+).

Then the integral
∫

dg f , which will also be denoted by J (dg f), can be considered as an
element of Cω

2 (Ω ∩ Π+) ≡ Cω
2 (Ω ∩ Π+; C). That is, for s, t ∈ Ω ∩ Π+, we set

Jts(dg f) =

(
∫

dgf

)

ts

=

∫

[s,t]

dgufu.

The multiple integrals can also be defined in the following way: given a smooth element
h ∈ Cω

2 and s, t ∈ Ω ∩ Π+, we set

Jts(dg h) ≡

(
∫

dgh

)

ts

=

∫

[s,t]

dguhus.

In particular, the double integral Jts(df
3df 2 f 1) is defined, for f 1, f 2, f 3 ∈ Cω

1 (Ω∩Π+), as

Jts(df
3df 2 f 1) =

(
∫

df 3df 2 f 1

)

ts

=

∫

[s,t]

df 3
u Jus

(

df 2 f 1
)

.

Now, suppose that the nth order iterated integral of dfn · · · df 2 f 1, still denoted by J (dfn

· · · df 2 f 1), has been defined for f 1, f 2 . . . , fn ∈ Cω
1 (Ω∩Π+). Then, if fn+1 ∈ Cω

1 (Ω∩Π+),
we set

Jts(df
n+1dfn · · · df 2f 1) =

∫

[s,t]

dfn+1
u Jus

(

dfn · · · df 2 f 1
)

, (13)

which defines the iterated integrals of smooth functions recursively. Observe that a nth

order integral J (dfn · · · df 2df 1), where we have simply replaced f 1 by df 1, could be defined
along the same lines.

The following relations between multiple integrals and the operator δ are easily checked
for analytic functions. They are also a prototype of the algebraic relations we shall impose
in the rough setting:

Proposition 1.1. Let f, g be two elements of Cω
1 (Ω∩Π+). Then, recalling the convention

(11), it holds that

δf = J (df), δ (J (dgf)) = 0, δ (J (dgdf)) = (δg)(δf) = J (dg)J (df),
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and, in general,

δ
(

J (dfn · · · df 1)
)

=
n−1
∑

i=1

J
(

dfn · · · df i+1
)

J
(

df i · · ·df 1
)

which is simply a way of rewriting the multiplicative property (3).

1.3. The complex sewing map. The algebraic integration theory heavily relies on a
generalization of Young integrals to increments in C2 (as explained in [6, 8]). This gener-
alization is obtained through a map which is often called the sewing map according to the
terminology of [3]. We present here a construction of this map adapted to the complex
plane context, for which some additional notation is needed: for j ≥ 1 and β > 0, let
Cm,β

j (Ω; V ), where m stands for multiparametric, be the subspace of Cj(Ω; V ) induced by
the semi-norm:

N [h; Cm,β
j (Ω; V )] = sup

{

|hs1+ıε,...,sj+ıε − hs1,...,sj
|

εβ
; ε ∈ [0, 1], s1, . . . , sj ∈ Ω

}

. (14)

The definition is better understood when one thinks of the regularity properties of the
boundary value of hyperfunctions (see [11], Theorem 3.9.8); for instance it is known that
if f is analytic on Π+, and supx∈R |f(x + ıy)| . y−β for some β, then the boundary value
of f is a distribution.

In order to define a sewing map on the complex plane, we shall then use the following
norm defined for (j − 1)-increments:

NC[h; Cµ,β
j (Ω; V )] = N [h; Cµ

j (Ω; V )] + N [h; Cm,β
j (Ω; V )],

and as usual now, we call Cµ,β
j (Ω; V ) the associated normed space.

Proposition 1.2 (construction of the complex sewing map Λ). Let µ > 1, β > 0,
and assume that h ∈ C3(Ω; V ) satisfies the following hypotheses:

(i) h is an element of ZCµ
3 (Ω; V ) ∩ Cm,β

3 (Ω; V ). In particular, NC[h; Cµ,β
3 (Ω; V )] is finite.

(ii) For t, u, s ∈ Π+, htus can be written as htus = [δ(J (df r))]tus for an analytic function
f and an increment r ∈ C2 such that, for any s ∈ Π+, the function u 7→ rus is analytic.

Then, for any 1 < ν < µ, there exists a unique Λh ∈ Cν
2 (Ω; V ) such that δ(Λh) = h.

Furthermore, there exists a strictly positive constant cν such that

N [Λ(h); Cν
2 (Ω; V )] ≤ cν NC[h; Cµ,β

3 (Ω; V )]. (15)

Calling Aµ,β
3 (Ω; V ) the set of increments satisfying conditions (i) and (ii) above, this gives

rise to a continuous linear map Λ : Aµ,β
3 (Ω; V ) → Cν

2 (Ω; V ) such that δΛ = IdAµ,β
3

(Ω;V ).

Proof. The proof of this proposition is an extension of [8, Proposition 2.3], for which we
refer for further details. In particular, the uniqueness of g := Λ(h) can be proven just
as in the above reference. We shall thus outline the proof of the existence part of the
increment g.

The increment g can be defined in a natural way in two cases: (1) When t, s ∈ Ω∩R, then
gts can be constructed as in the proof of [8, Proposition 2.3]. (2) When t, s ∈ Ω∩Π+, then
gts can simply be defined as Jts(df r). By construction, we thus have that [δg]tus = htus

when t, u, s ∈ Ω ∩ R or t, u, s ∈ Ω ∩ Π+.

In order to define gts for t ∈ Π+ and s ∈ R, we use two limiting procedures: first, for
ε > 0, we set g1,ε

ts = Jt+ıε,s+ıε(df r), which is defined in the Riemann sense. Next, another
candidate for an approximating sequence of g is g2,ε constructed along the same lines as
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in [8, Proposition 2.3]: we know that there exists a B ∈ C2 such that δB = h. For n ≥ 0,
consider the dyadic partition {rε,n

j ; 0 ≤ j ≤ 2n} of the segment [s + ıε, t], where

rε,n
j = s + ıε +

(t − s)j

2n
, for 0 ≤ j ≤ 2n.

Then, for n ≥ 0 set Mε,n
ts = Bts −

∑2n−1
j=0 Brε,n

j+1
,rε,n

j
. In this context, it can be shown that

Mε,n+1
ts − Mε,n

ts =
2n−1
∑

j=0

hrε,n+1

2j+2
,rε,n+1

2j+1
,rε,n+1

2j
, (16)

from which the convergence of Mε,n
ts is easily deduced. We call g2,ε := limn→∞ Mε,n. By

a uniqueness argument, restricted on the segment [s + ıε, t + ıε] and elaborated as in the
real case of [8, Proposition 2.3], it can also be shown that g1,ε = g2,ε.

Furthermore, we claim that for any 1 < ν < µ and ε, η small enough, we have

N [g2,ε − g2,η; Cν
2 (Ω; V )] . NC[h; Cµ,β

3 (Ω; V )]|ε − η|β̂, (17)

for a certain β̂ > 0. Indeed, we have defined g2,ε as
∑

n≥0 Mε,n+1 − Mε,n, and it is thus
sufficient to show that

|∆n
ts(ε, η)| . NC[h; Cµ,β

3 (Ω; V )]|ε − η|β̂ 2−nγ̂ |t − s|ν (18)

for some γ̂ > 0, where we have set ∆n
ts(ε, η) := (Mε,n+1

ts −Mε,n
ts )− (Mη,n+1

ts −Mη,n
ts ). Now,

thanks to our decomposition (16), it is readily checked for an arbitrary ρ ∈ (0, 1) that

|∆n
ts(ε, η)| ≤

2n−1
∑

j=0

∣

∣

∣
hrε,n+1

2j+2
,rε,n+1

2j+1
,rε,n+1

2j
− hrη,n+1

2j+2
,rη,n+1

2j+1
,rη,n+1

2j

∣

∣

∣

1−ρ

×
(
∣

∣

∣
hrε,n+1

2j+2
,rε,n+1

2j+1
,rε,n+1

2j

∣

∣

∣
+
∣

∣

∣
hrη,n+1

2j+2
,rη,n+1

2j+1
,rη,n+1

2j

∣

∣

∣

)ρ

,

and hence, invoking the fact that h is an element of Cm,β
3 (Ω; V ) and Cµ

3 (Ω; V ), we obtain:

|∆n
ts(ε, η)| ≤ 3NC[h; Cµ,β

3 (Ω; V )] |ε − η|(1−ρ)β 2−n(ρµ−1) |t − s|ρµ,

which immediately entails (18) for ρµ = ν, and thus (17), since ρ can be taken arbitrarily
close to 1. This implies the convergence of g2,ε towards an increment g as ε → 0, and
allows to define gts for t ∈ Π+ and s ∈ R. Notice that g = limε→0 g1,ε = limε→0 g2,ε, the
limit being understood in Cν

2 (Ω; V ).

We now have to check that (δg)tus = htus in two remaining cases: (1) When t, u ∈ Π+

and s ∈ R. (2) When t ∈ Π+ and u, s ∈ R. In fact, the two cases can be treated
similarly, and we focus on the first one. To this purpose, we resort to the approximation
gts = limε→0 g1,ε

ts . This yields the relation:

δgtus = lim
ε→0

δ [J (df r)]t+ıε,u+ıε,s+ıε = lim
ε→0

ht+ıε,u+ıε,s+ıε = htus,

where the second equality is obtained thanks to our assumption (ii) on the increment h.
We have thus proved our claim δg = h. It remains to prove that g ∈ Cν

3 , which can be
done exactly as in [8, Proposition 2.3].

�

It is also worth mentioning that the operator Λ (called complex sewing map) can be
related to some Riemann type sums, which is a way to link the objects constructed so far
with a generalized notion of integral:
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Proposition 1.3 (Integration of small increments). For any 1-increment g ∈ C2(Ω; V )
such that δg satisfies the assumptions of Proposition 1.2, set δf = (Id−Λδ)g. Then

(δf)ts = lim
|Dts|→0

n
∑

i=0

gti+1 ti ,

where the limit is over any partition Dts = {t0 = t, . . . , tn = s} of the segment [s, t] ⊂ Π̄+,
whose mesh tends to zero. The 1-increment δf is thus the indefinite integral of the 1-
increment g.

2. Rough path analysis of order 2

As we mentioned before, our complex setting leads us naturally to solve differential
equations in a neighborhood of 0 in the upper half-plane Π̄+. This framework being rather
unusual, we shall try to explain its main features on the simplest non-trivial example one
can think of, namely the case of a driving signal with Hölder continuity exponent greater
than 1/3. More specifically, we assume in this section that X satisfies the following
condition:

Hypothesis 1. The signal X is an element of Cγ
1 (Ω; Cd) with 1/3 < γ ≤ 1/2. Further-

more, its restriction to Π+ is analytic.

Under these assumptions, we shall now explain how to solve equation (5). Once again,
these considerations follow closely the methodology introduced in [6], but we include them
here because of the slight changes due to our complex plane situation.

In the sequel of the paper, we shall use indistinctly
∫

[s,t]
dg f or Jts(dg f) for the integral

of a function f with respect to a given increment dg on the segment [s, t] ⊂ Ω. Observe
that the second notation Jts(dg f) aims at avoiding some cumbersome notations in our
future computations. Recall also that we wish to solve an equation of the form

yt = a +

∫

[0,t]

dX∗
s σ(ys), t ∈ Ω, (19)

where X is a given γ-Hölder continuous path from Ω to Rd, with 1/3 < γ < 1/2, and X∗

is the transpose of the path X, considered as a C1,d-valued process. Notice that in the
last equation, we have chosen to use the slightly unusual convention of multiplying the
coefficient σ by the driving process X in order to simplify a little our further expansions.
With respect to equation (5), we have also chosen to skip the drift term b for notational
sake, though the inclusion of such a drift term would be technically easy.

Before going into the technical resolution of (19), let us make some heuristic consider-
ations about the form that a candidate solution should have: set σ̂t = σ(yt), and suppose
we have been able to exhibit a solution y to (19), such that y ∈ Cκ

1 for a given 1/3 < κ < γ.
Then the integral form of our equation, for t ∈ Ω, can be read as

yt = a +

∫

[0,t]

dX∗
u σ̂u. (20)

Our approach to generalized integrals induces us to work, instead of (20), with increments
of the form (δy)ts = yt − ys. However, it is easily checked that, provided one is given a
reasonable notion of integral, one can decompose (20) into

(δy)ts =

∫

[s,t]

dX∗
u σ̂u = (δX∗)ts σ̂s + ρts, with ρts =

∫

[s,t]

dX∗
u (σ̂u − σ̂s).
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We have thus obtained a decomposition of y of the form δy = δX∗ σ̂ + ρ. Let us see,
still at a heuristic level, what is the regularity one can expect on σ̂ and r: first, suppose
that σ is an analytic function, and assume that yt ∈ B(0, M) for all t ∈ Ω, where
B(0, M) = {z ∈ C; |z| ≤ M}. Then σ̂ is bounded and

|σ̂t − σ̂s| ≤ ‖σ′‖∞,M |yt − ys| ≤ ‖σ′‖∞,M N [y; Cγ
1 (Ω)] |t − s|γ,

where the notation N has been introduced in Section 1.1 and where ‖σ′‖∞,M stands for
supz∈B(0,M) |σ

′(z)|. Thus, still with the notations of Section 1.1, we have that σ̂ ∈ Cγ
1 (Ω)∩

C0
1(Ω). As far as ρ is concerned, provided one can define the integral

∫

[s,t]
dX∗

u (σ̂u − σ̂s) =
∫

[s,t]
dX∗

u (δσ̂)su, it should inherit both regularities of δσ̂ and dx. Thus, one should expect

that ρ ∈ C2κ
2 . In conclusion, we have found that δy should be decomposable into

δy = δX∗ σ̂ + ρ, with σ̂ ∈ Cγ
1 (Ω) ∩ C0

1(Ω) and ρ ∈ C2κ
2 (Ω). (21)

This motivates the definition of what we call the class of analytic controlled paths of order
1, in which we shall solve equation (19) when γ > 1/3:

Definition 2.1 (space of analytic controlled paths Qκ,a(Ω)). Let z be a process in
Cκ

1 (Ω; Ck) with 1/3 < κ ≤ γ. We say that z is an analytic controlled path of order 1
based on X, if z0 = a, which is a given initial condition in Ck, and for i = 1, . . . , k, the
increment δz(i) ∈ Cκ

2 (Ω; C) can be decomposed into

δz(i) = δX(j) ζ(j, i)+ r(i), i. e. (δz)ts(i) = (δX)ts(j) ζs(j, i)+ rts(i), s, t ∈ Ω, (22)

with ζ ∈ Cκ
1 (Ω; Cd,k) and r is a regular part such that r ∈ C2κ

2 (Ω; Ck). In our complex plane
setting, we assume moreover that z, ζ and u 7→ rus are analytic paths when restricted to
Π+, for any s ∈ Π+. The space of analytic controlled paths will be denoted by Qκ,a(Ω; Ck),
and a process z ∈ Qκ,a(Ω; Ck) can be considered in fact as a couple (z, ζ). The natural
semi-norm on Qκ,a(Ω; Ck) is given by

N [z;Qκ,a(Ω; Ck)] = N [z; Cκ
1 (Ω; Ck)] + N [ζ ; C0

1(Ω; Cd,k)] + N [ζ ; Cκ
1 (Ω; Cd,k)]

+ N [r; C2κ
2 (Ω; Ck)],

with N [ζ ; C0
1(V )] = sup0≤s≤T |ζs|V .

With this definition at hand, here is the global strategy we shall adopt in order to solve
equation (19):

(1) Study the stability of Qκ,a(Ω; Ck) under an analytic map ϕ : Ck → Cn.
(2) Define rigorously the integral

∫

dX∗
u zu = J (dX∗ z) for an analytic controlled path

z and compute its decomposition (22).
(3) Solve equation (19) in the space Qκ,a(Ω; Ck) by a fixed point argument.

Let us go on with this program, and first see how smooth functions act on analytic
controlled paths.

2.1. Action of analytic maps on controlled paths. The action of a smooth function
on an analytic controlled path can be summarized in the following proposition, for which
we need an additional notation: given an analytic function ϕ : Ck → Cn, we set ϕi(z)
for the ith coordinate of ϕ(z) and ∂jϕ

i for the derivative of ϕi with respect to the jth

coordinate of z.
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Proposition 2.2. Let z ∈ Qκ,a(Ω; Ck) with decomposition (22). Let ϕ : Ck → Cn be
an analytic function, and set ẑ = ϕ(z), â = ϕ(a). Then ẑ ∈ Qκ,â(Ω; Cn), and it can be
decomposed into

δẑ(i) = δX(k)ζ̂(k, i) + r̂(i), i = 1, . . . , n

with

ζ̂(k, i) = ζ(k, j)∂jϕ
i(z) and r̂(i) = r(j)∂jϕ

i(z) +
[

δ(ϕi(z)) − δz(j)∂jϕ
i(z)
]

.

Furthermore, assuming that zs ∈ B(0, M) if s ∈ Ω, where B(0, M) stands for the set
{z ∈ Cn; |z| ≤ M}, the following bound holds true:

N [ẑ;Qκ,â(Ω; Cn)] ≤ cM

(

N [z;Qκ,a(Ω; Cn)] + N 2[z;Qκ,a(Ω; Cn)]
)

. (23)

Proof. The algebraic part of the assertion is quite straightforward. Just write

(δẑ)ts(i) = ϕi(zt) − ϕi(zs) = (δz)ts(j)∂jϕ
i(zs) + ϕi(zt) − ϕi(zs) − (δz)ts(j)∂jϕ

i(zs),

and plugging expression (22) instead of δz(j) above, our first assertion is easily shown.

In order to give an estimate for N [ẑ;Qκ,â(Ω; Cn)], one must of course establish bounds

for N [ẑ; Cκ
1 (Ω; Cn)], N [ζ̂; C0

1(Ω; Cn,k)], N [ζ̂; Cκ
1 (Ω; Cn,k)] and N [r̂; C2κ

2 (Ω; Cn)]. Let us focus
on the last of these estimates, the other ones being quite similar. First notice that
r̂ = r̂1 + r̂2 with

r̂1(i) = r(j)∂jϕ
i(z) and r̂2(i) = δ(ϕi(z)) − δz(j)∂jϕ

i(z). (24)

Now, since ∇ϕ is a bounded C
n,k-valued function on B(0, M), we have

N [r̂1; C2κ
2 (Ω; Cn)] ≤ c1,MN [r; C2κ

2 (Ω; Ck)]. (25)

Moreover, with the same kind of argument for ∇2ϕ, we also get:

|r̂2
ts| ≤ c2,M |(δz)ts|

2 ≤ c2,MN 2[z; Cκ
1 (Ω; Ck)]|t − s|2κ,

which yields
N [r̂2; C2κ

2 (Ω; Cn)] ≤ c2,MN 2[r; C2κ
2 (Ω; Ck)], (26)

and thus we obtain

N [r̂; C2κ
2 (Ω; Cn)] ≤ c3,M

(

1 + N 2[r; C2κ
2 (Ω; Ck)]

)

.

The analytic assumptions on the increments ẑ, ζ̂ and r̂ are then readily checked, and this
concludes the proof.

�

2.2. Integration of analytic controlled paths. The aim of this section is to define
the integral J (dX∗ m) for an analytic controlled process m ∈ Qκ,a(Ω; Cd), admitting the
decomposition given by (22). Namely, we assume that m can be decomposed as:

δm(i) = δX(j) µ(j, i) + r(i), i = 1, . . . , d, (27)

where µ ∈ Cκ
1 (Ω; Cd,d) and r ∈ C2κ

2 (Ω; Cd). In order to see how the integral J (dX∗ m)
may look like, let us treat first the case of smooth processes X, µ and r, and see how
J (dX∗ m) can be expressed in terms of the operators δ and Λ: in the regular case,
J (dX∗ m) is well-defined, and we have

∫

[s,t]

dX∗
u mu = [Xt − Xs]

∗ ms +

∫

[s,t]

dX∗
u [mu − ms]

for s, t ∈ Ω, or in other words

J (dX∗ m) = δX∗ m + J (dX∗ δm).
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Let us plug the decomposition (27) into this expression, which yields

J (dX∗ m) = δX∗ m + J (dX(i) δX(j) µ(j, i)) + J (dX∗ r). (28)

Let us transform now the term J (dX(i)δX(j) µ(j, i)): it is easily seen that

Jts (dX(i) δX(j) µ(j, i)) =

∫

[s,t]

dXu(i) δXus(j) µs(j, i) = X2
ts(i, j) µs(j, i)

for s, t ∈ Ω, where X2 is the C2(Ω; Cd,d)-function defined by

X2
ts =

∫

[s,t]

dXu ⊗ [δX]su, i.e. [X2
ts](i, j) =

∫

[s,t]

dXu(i) [δX]su(j), 1 ≤ i, j ≤ d.

Inserting this expression into (28), we get

J (dX∗ m) = δX∗ m + X2(i, j) µ(j, i) + J (dX∗ r). (29)

Let us focus now on the term X2
ts: when X is a smooth process, it is readily checked

that we have
[δX2]tus = X2

ts − X2
su − X2

ut = (δX)tu ⊗ (δX)us.

This decomposition of δX2 into a product of increments is the fundamental algebraic
property we shall use in order to extend the above integral to non-smooth processes, and
thus, in the sequel of this section, we shall assume the following:

Hypothesis 2. The path X is Cd-valued γ-Hölder with γ > 1/3, it satisfies Hypothesis 1,
and it admits a so-called Lévy area, that is, a process X2 ∈ C2γ

2 (Ω; Cd,d), defined formally
as X2 = J (dX ⊗ dX), and satisfying

δX2 = δX ⊗ δX, i. e.
[

(δX2)tus

]

(i, j) = [δX]tu(i)[δX]us(j),

for any t, u, s ∈ Ω and i, j ∈ {1, . . . , d}. We also suppose that X2 belongs to the space
Cm,γ

2 (Ω; Cd,d) defined by relation (14). Notice that under our assumptions, the increment
X2 is analytic on Π+ × Π+.

Let us keep this hypothesis in mind, while we finish the analysis of the smooth case: it
remains to find a suitable expression for J (dX∗ r). To this purpose, let us write (29) as

J (dX∗ r) = J (dX∗ m) − δX∗ m − X2 · µ∗, (30)

where in the above expressions, we have denoted by M · N the Hilbert-Schmidt inner
product of two matrices, that is M · N = Tr(MN∗) for M, N ∈ Cd,d. Let us apply now δ
to both members of the above equation: recall first our convention (11) and the general
relations

δ(J (dX∗ m)) = 0, and δ(δX∗ m) = −δX∗ δm,

which hold true for smooth processes m and X. Applying these relations to the right
hand side of (30), we end up with:

δ [J (dX∗ r)] = δX∗ δm − δX2 · µ∗ + X2 · δµ∗ = δX∗ r + X2 · δµ∗. (31)

When m, X, µ and X2 are smooth enough, it is now clear that δ[J (δX∗ r)] ∈ ZC1+
3 .

Furthermore, this increment clearly satisfies the assumption (ii) of our Proposition 1.2,

and the fact that δ[J (δX∗ r)] is an element of Cm,β
3 for any β ≤ κ easily stems from the

second expression in (31). The increment δ[J (δX∗ r)] is thus in the domain of application
of Λ (recall that δδ = 0), and we can write now

J (dX∗ r) = Λ
(

δX∗ r + X2 · δµ∗
)

.
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Reporting this identity into (29), we end up with

J (δX∗ m) = δX∗ m + X2 · µ∗ + Λ
(

δX∗ r + X2 · δµ∗
)

. (32)

Observe that the expression above can be generalized to the non-smooth case, since
J (δX∗ m) has been expressed now in terms of increments of m and X. As a consequence,
we shall use (32) as a definition of our extended integral, and summarize the previous
considerations in the following proposition:

Proposition 2.3. For a given γ > 1/3 and 1/3 < κ < γ, let X be a process satisfying
Hypothesis 2. Furthermore, let m ∈ Qκ,b(Ω; Cd) such that m0 = b, δm = δX∗µ + r, with
µ ∈ Cκ

1 (Ω; Cd,d) and r ∈ C2κ
2 (Ω; Cd). Define z by z0 = a ∈ C and

δz = δX∗ m + X2 · µ∗ + Λ
(

δX∗ r + X2 · δµ∗
)

. (33)

Finally, set

J (dX∗ m) = δz.

Then:

(1) z is well-defined as an element of Qκ,a(Ω; C), and J (dX∗ m) coincides with the usual
Riemann integral in case of two smooth processes m and X. The quantity Jts(dX∗ m) is
also defined as a Riemann integral for t, s ∈ Π+.

(2) Assume that Ω ⊂ B(0, τ), where B(0, τ) stands for the ball of radius τ centered at 0
in C. Then the semi-norm of z in Qκ,a(Ω; C) can be estimated as

N [z;Qκ,a(Ω; C)] ≤ cX

(

|b| + τγ−κN [m;Qκ,b(Ω; Cd)]
)

, (34)

for a positive constant cX depending only on X and X2. Furthermore, the constant cX

can be bounded as follows:

cX ≤ c
(

N [X; Cγ
1 (Ω; Cd)] + N [X2; C2γ

2 (Ω; Cd,d)]
)

,

for a universal constant c.

(3) It holds

Jts(dX∗ m) = lim
|Dts|→0

n
∑

i=0

[

(δX∗)ti+1,timti + X2
ti+1,ti · µ

∗
ti

]

(35)

for any s, t ∈ Ω, where the limit is taken over all partitions Dts = {s = t0, . . . , tn = t} of
[s, t], as the mesh of the partition goes to zero.

Proof. we shall decompose this proof in two steps.

Step 1: Recalling the assumption 1/3 < κ < γ, let us analyze the three terms in the right-
hand side of (33) and show that they define an element of Qκ,a such that δz = δX∗ ζ + r
with

ζ = m and r̂ = X2 · µ∗ + Λ
(

δX∗ r + X2 · δµ∗
)

.

Indeed, on the one hand, m ∈ Cκ
1 (Ω; Cd) and thus ζ = m is of the desired form for an

element of Qκ,a. On the other hand, if m ∈ Qκ,b, µ is assumed to be bounded and since

X2 ∈ C2γ
2 (Ω; Cd,d) we get that µ ·X2 ∈ C2γ

2 (Ω; C). Along the same lines we can prove that
r δx ∈ C2κ+γ

3 (Ω; C) and X2 · δµ∗ ∈ Cκ+2γ
3 (Ω; C). Since κ+2γ ≥ 2κ+γ > 1, we obtain that

δX∗ r + X2 · δµ∗ ∈ C2γ+κ
3 (Ω; C). In order to show that the latter increment is an element

of Dom(Λ), let us observe that the assumption (ii) of Proposition 1.2 is easily satisfied,
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and we already mentioned that relation (31) entails δX∗ r +X2 · δµ∗ ∈ Cm,β
3 (Ω; C) for any

β ≤ κ. Hence, δX∗ r + X2 · δµ∗ ∈ Dom(Λ), and

Λ
(

δX∗ r + X2 · δµ∗
)

∈ C3κ
2 (Ω; C).

Thus we have proved that

r̂ = X2 · µ∗ + Λ
(

δX∗ r + X2 · δµ∗
)

∈ C2κ
2 (Ω; C)

and hence that z ∈ Qκ,a(Ω; C). The estimate (34) is now obtained using the same kind
of considerations and is left to the reader for the sake of conciseness. The analyticity z, ζ
and r is also a matter of standard considerations, as in Proposition 2.2.

Step 2: The same kind of computations as those leading to (31) also show that

δ
(

δX∗ m + X2 · µ∗
)

= −
[

δX∗ r + X2 · δµ∗
]

.

Hence equation (33) can also be read as

J (dX∗ m) = [Id−Λδ] (δX∗ m + X2 · µ∗),

and a direct application of Proposition 1.3 yields (35), which ends our proof.
�

Remark 2.4. The previous proposition has a straightforward multidimensional extension,
which won’t be stated here for sake of conciseness. For the nice continuity properties of
the integral with respect to the driving process X, we refer to [6, p. 101].

2.3. Rough differential equations of order 2. Recall that we wish to solve equations
of the form (19). In our algebraic setting, we shall rephrase this as follows: we shall
say that y is a local solution to (19), if y0 = a, y ∈ Qκ,a(Ω; Cl) and if there exists a
neighborhood Ω0 of 0 in Π̄+ such that, for any s, t ∈ Ω0 we have

(δy)ts = Jts(dX∗ σ(y)), (36)

where the integral J (dX∗ σ(y)) has to be understood in the sense of Proposition 2.3. Our
existence and uniqueness result reads as follows:

Theorem 2.5. Let X be a process satisfying Hypothesis 2 and σ : Cl → Cd,l be an analytic
function. Then

(1) There exists a neighborhood Ω0 of 0 in Π̄+ such that equation (36) admits a unique
solution y in Qκ,a(Ω0; C

l) for any 1/3 < κ < γ.

(2) The mapping (a, x,X2) 7→ y is continuous from Cl × Cγ
1 (Ω0; C

d) × C2γ
2 (Ω0; C

d,d) to
Qκ,a(Ω0; C

l).

Proof. We just sketch the proof of this theorem for sake of completeness: we shall identify
the solution on a small neighborhood Ω0 as the fixed point of the map Θ : Qκ,a(Ω0; C

l) →
Qκ,a(Ω0; C

l) defined by Θ(z) = ẑ with ẑ0 = a and δẑ = J (dX∗ σ(y)). The first step in
this direction is to show that the ball

QM =
{

z; z0 = a, N [z;Qκ,a(Ω0; C
l)] ≤ M

}

(37)

is invariant under Θ for a certain M > 0, if Ω0 ⊂ B(0, τ), with τ small enough. Indeed,
due to Propositions 2.2 and 2.3 and assuming τ ≤ 1 we have

N [Γ(z);Qκ,a(Ω0; C
l)] ≤ c

(

1 + cMτγ−κ(N [z;Qκ,a(Ω0; C
l)] + N 2[z;Qκ,a(Ω0; C

l)])
)

. (38)
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Since the set A = {u ∈ R∗
+ : c(1 + cuτ

γ−κ(u + u2)) ≤ u} is not empty as soon as τ is
small enough, it is easily shown that the ball QM defined in (37) is left invariant by Θ for
τ small enough and M in A.

Now, since we are working in QM , the fixed point argument for Θ on Ω0 is standard
and left to the reader (see [6, Proposition 7]).

�

3. Rough path analysis: the general case

Having understood the rough path type tools we use for the case of a driving process X
with Hölder regularity γ > 1/3, we now proceed to a mere description of the generalization
to the case of an arbitrary regularity γ > 0. As in Lyons’ theory, the algebraic integration
setting for the resolution of rough differential equations relies on the a priori definition of
a number of iterated integrals of the driving process X, which is shown to generate all the
useful information needed to solve differential systems. More specifically, the following
set of hypotheses is a generalization of the assumptions made in [7] to the complex plane:

Hypothesis 3. Let Ω be a neighborhood of 0 in Π+, X : Ω → Cd be a γ-Hölder path with
0 < γ < 1, whose restriction to Π+ is analytic, and set N = ⌊1/γ⌋. Then X is assumed to
generate a family {Xn; 1 ≤ n ≤ N} defined on Ω, where Xn is a 1-increment with Hölder
regularity nγ, taking values in Cdn

, that is Xn ∈ Cnγ
2 (Ω; Cdn

). We also suppose that Xn

belongs to the space Cm,γ
2 (Ω; Cdn

) defined by relation (14). By definition X1 := X, and
the algebraic relations satisfied by the Xn are the same as those of Proposition 1.1: for
any n ≤ N , (i1, . . . , in) ∈ {1, . . . , d}n, we have the multiplicative property

δXn(i1, . . . , in) =

n−1
∑

j=1

Xj(i1, . . . , ij)Xn−j(ij+1, . . . , in), (39)

that is δXn
tus(i1, . . . , in) =

∑n−1
j=1 Xj

tu(i1, . . . , ij)Xn−j
us(ij+1, . . . , in), for any t, u, s ∈ Ω.

Furthermore, the rough path generated by X is said to be of geometric type under the
following additional condition: for any n, m such that n + m ≤ N , we have:

Xn(i1, . . . , in) ◦ Xm(j1, . . . , jm) =
∑

k̄∈Sh(̄ı,̄)

Xn+m(k1, . . . , kn+m), (40)

where, for two tuples ı̄, ̄, Σ(̄ı,̄) stands for the set of permutations of the indices contained
in (̄ı, ̄), and Sh(̄ı, ̄) is a subset of Σ(̄ı,̄) defined by:

Sh(̄ı, ̄) =
{

σ ∈ Σ(̄ı,̄); σ does not change the orderings of ı̄ and ̄
}

.

It should be mentioned at this point that relation (39) is just a version of Chen’s relation
for iterated integrals, while equation (40) states that any product of iterated integrals can
also be expressed as a sum of iterated integrals.

For the sake of completeness, let us say a few words about the integration theory we
rely on under Hypothesis 3 (we refer to [7, 15] for further details). First of all, the class
of processes we are able to integrate with respect to X are called analytic controlled
processes of order N − 1, and are defined as follows: we say that a path z ∈ Cκ

1 (Ω; Ck),
with 1

N
< κ < γ < 1

N−1
, is an analytic controlled path of order N − 1 if its increments

(δz(1), . . . , δz(k)) can be decomposed into:

δz(i) =
N−1
∑

n=1

Xn(a1, . . . , an) ζn(a1, . . . , an; i) + ρ0(i), (41)
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where the paths ζn(i) ∈ Cκ
1 (Ω; Ck×n) can be decomposed themselves as:

δζn(a1, . . . , an; i) =
N−1−n
∑

l=1

Xl(b1, . . . , bl) ζ l+n(b1, . . . , bl, a1, . . . , an; i) + ρn(a1, . . . , an; i),

(42)
and where the remainder terms ρ0, . . . , ρN−1 have the following regularity: for any n ≤

N−1, we have ρn ∈ C(N−n)κ
2 (Ω; Ck). As in the case of order 2 described in the last section,

we assume that the paths z, ζn, ρn are analytic on Π+. Denote by Qκ,a(Ω; Ck), or simply
by Qκ,a for notational sake, the set of Ck-valued analytic controlled paths. Then a natural
norm on this space is given by:

N [z;Qκ,a] =

N−1
∑

n=0

N [ζn; Cκ
1 ] +

N−1
∑

n=1

N [ζn; C0
1 ] +

N−1
∑

n=0

N [ρn; C(N−n)κ
2 ].

With this notions in hand, it is worth recalling how to integrate controlled processes.
This is summarized in the following proposition, which is a simplified version of [7, The-
orem 8.5] adapted to the complex plane, and for which we use the traditional convention
of summation over repeated indices.

Proposition 3.1. For a given γ > 0, let X be a process satisfying Hypothesis 3. Fur-
thermore, for ⌈1/γ⌉−1 < κ < γ, let z ∈ Qκ,b(Ω; Cd), with a decomposition given by (41)
and (42). Define ẑ by ẑ0 = a ∈ C and

δẑ = δx(i) z(i) +
N−1
∑

n=1

Xn+1(a1, . . . , an, i) ζn(a1, . . . , an; i) + Λ(U), (43)

with

U =

N−1
∑

n=0

Xn+1(a1, . . . , an, i)ρ
n(a1, . . . , an; i) + XN(a1, . . . , aN−1, i)δζ

N−1(a1, . . . , aN−1; i).

Finally, set J (m dx) = δẑ. Then:

(1) ẑ is well-defined as an element of Qκ,a(Ω; C), and J (m dx) coincides with the usual
Riemann integral in case of two analytic processes m and X.

(2) Assume that Ω ⊂ B(0, τ), where B(0, τ) stands for the ball of radius τ centered at 0
in C. Then the semi-norm of ẑ in Qκ,a(Ω; C) can be estimated as

N [ẑ;Qκ,a(Ω; C)] ≤ cX

(

1 + τγ−κN [z;Qκ,b(Ω; Cd)]
)

, (44)

for a positive constant cX depending only on X1, . . . , XN .

(3) It holds

Jts(z dx) = lim
|Dts|→0

n
∑

k=0

[

δXtk+1,tk(i) ztk(i) +

N−1
∑

n=1

Xn+1
tk+1,tk(a1, . . . , an, i) ζn

tk
(a1, . . . , an; i)

]

for any s, t ∈ Ω, where the limit is taken over all partitions Dts = {s = t0, . . . , tn = t} of
[s, t], as the mesh of the partition goes to zero.

Furthermore, the construction above allows to solve rough differential equations in a
reasonable sense:
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Proposition 3.2. Under the same conditions as for Proposition 3.1, let σ be a function
from Cn to Cn×d, analytic in each of its variables. Then there exists a neighborhood Ω0

of 0 in Π̄+ such that the differential equation

(δy)ts = Jts(σ(y) dx), s, t ∈ Ω,

where the integral in the right hand side has to be understood as in equation (43), admits
a unique solution on Ω0, living in the class of Cn-valued analytic controlled processes.

4. Analytic fractional Brownian motion and preliminaries

We review in this section the construction of the analytic fBm Γ, and we also include
here some useful preliminary results concerning the regularity of increments in Ω, and
some complex analysis estimates for the kernel (−ı(z − w̄))2α−2 defined on Π+.

4.1. Definition of the analytic fBm. As mentioned in the Introduction, the article
[16] is an elaboration of a stochastic calculus with respect to the fractional Brownian
motion by analytic continuation. More specifically, a complex-valued processed indexed
by z ∈ Π+, called Γ, is introduced there. This process is analytic on Π+ and converges
in every reasonable sense to a continuous process with real-time parameter (still denoted
by Γ) when the imaginary part of z goes to 0. The current section is devoted to recall
this formalism, which is the one we shall adopt in order to construct a fractional rough
path for Γ for any Hurst parameter α ∈ (0, 1). Notice that, since the case α > 1/2 is
trivial from the rough path analysis point of view, we shall assume in the sequel that
α ∈ (0, 1/2). The Brownian case α = 1/2 may be seen as a limit.

Let us first recall some classical notations of complex analysis: for x ∈ R and k ∈ N,
the Pochhammer symbol (x)k is defined by:

(x)k =
k−1
∏

j=0

(x + j) =
Γ(x + k)

Γ(x)
,

where Γ stands for the usual Gamma function. Recall that we denote by Π+ = {z =
x + ıy | x ∈ R, y > 0}, resp. Π̄+ = {z = x + ıy | x ∈ R, y ≥ 0} the open, resp. closed
upper half-plane in C. Similarly, Π−, resp. Π̄− stand for the open, resp. closed lower
half-planes.

With these notations in mind, the easiest way to define Γ = {Γz; z ∈ Π+} makes use
of a series expansion involving the analytic functions {fk; k ≥ 0}, defined on Π+ by:

fk(z) = 2α−1

[

α(1 − 2α)(2 − 2α)k

2 cos(πα)k!

]1/2 [
z + ı

2ı

]2α−2 [
z − ı

z + ı

]k

.

It is shown in [16] that the series
∑

k≥0 fk(z)fk(w) converges in absolute value for z, w ∈
Π+, and that the following identity holds true:

∑

k≥0

fk(z)fk(w) =
α(1 − 2α)

2 cos(πα)
(−ı(z − w̄))2α−2 . (45)

This fact allows to define the process Γ in the following way:

Proposition 4.1. Let {ξ1
k, ξ

2
k; k ≥ 0} be two families of independent standard Gaussian

random variables, defined on a complete probability space (U ,F ,P), and for k ≥ 0, set
ξk = ξ1

k + ıξ2
k. Consider the process Γ′ defined for z ∈ Π+ by Γ′

z =
∑

k≥0 fk(z)ξk. Then:

(1) Γ′ is a well-defined analytic process on Π+.
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(2) Let Γ : (0, 1) → Π+ be any continuous path with endpoints Γ(0) = 0 and Γ(1) = z,
and set Γz =

∫

Γ
Γ′

u du. Then Γ is an analytic process on Π+. Furthermore, as z runs
along any path in Π+ going to t ∈ R, the random variables Γz converge almost surely to
a random variable called again Γt.

(3) The family {Γt; t ∈ R} defines a Gaussian centered complex-valued process, whose
covariance function is given by:

E[ΓsΓt] = 0, E[ΓsΓ̄t] =
e−ıπα sgn(s)|s|2α + eıπα sgn(t)|t|2α − eıπα sgn(t−s)|s − t|2α

4 cos(πα)
.

The paths of this process are almost surely κ-Hölder for any κ < α.

(4) Both real and imaginary parts of {Γt; t ∈ R} are (non independent) fractional Brow-
nian motions indexed by R, with covariance given by

E[ℜΓsℑΓt] = −
tan πα

8

[

−sgn(s)|s|2α + sgn(t)|t|2α − sgn(t − s)|t − s|2α
]

. (46)

Remark 4.2. It should be stressed at this point that the paper [16] mainly focuses on the
real part of Γ, that is a standard fractional Brownian motion. We shall see however that
Γ is an interesting process in its own right, insofar as it allows the construction of a rough
path for any value of the Hurst parameter α ∈ (0, 1).

Let us also recall some basic facts about Γ which will be used extensively in the sequel:
first, according to (45), the (Hermitian) covariance between Γ′

z and Γ′
w for z, w ∈ Π+ is

given by:

E
[

Γ′
z Γ̄′

w

]

=
α(1 − 2α)

2 cos(πα)
(−ı(z − w̄))2α−2 . (47)

The following formula will be used throughout the article: for a piecewise smooth path
γ : (0, 1) → Π+, we have:

E

[
∫

γ

Γ′
zdz

∫

γ

Γ̄′
wdw

]

=
α(1 − 2α)

2 cos(πα)

∫

γ

dz

∫

γ

dw (−ı(z − w̄))2α−2 . (48)

4.2. Garsia-Rodemich-Rumsey type lemmas. This section is devoted to recall or
give some deterministic regularity results for increments, which will be essential in order
to quantify the convergence of the approximations of our process Γ. First let us recall a
particular case of a classical lemma due to Garsia [5, Lemma 2]:

Lemma 4.3. Let f be a continuous function defined on a compact set D ⊂ R
d for d ≥ 1,

and set, for p ≥ 1

Uκ,p(f) =

(
∫

D

∫

D

|(δf)wv|2p

|w − v|2κp+2d

)1/2p

.

Then N [f ; Cκ
1 (D)] ≤ c Uκ,p(f), for a universal positive constant c.

When D = Ω ⊂ Π̄+, we need an extension of this lemma to increments which are not
necessarily written as δf for functions f ∈ C1:

Proposition 4.4. Let Ω := B(0, r)∩Π̄+ be a neighborhood of 0 in Π̄+, and R ∈ C2(Ω; Cn)
for n ≥ 1 such that δR ∈ Cκ

3 (Ω; Cn). Set for p ≥ 1

Uκ,p(Ω;R) :=

(
∫

Ω

∫

Ω

|Rwv|
2p

|w − v|2κp+4
dv dw

)1/2p

, (49)
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and assume Uκ,p(Ω;R) < ∞. Then R ∈ Cκ
2 (Ω; Cn); more precisely,

N [R; Cκ
2 (Ω; Cn)] ≤ c (Uκ,p(Ω;R) + N [δR; Cκ

3 (Ω; Cn)]) , (50)

for a universal constant c > 0.

Proof. Let s, t ∈ Ω′ := B(0, r/4) ∩ Π̄+ ⊂ Ω. We wish to show that

Rts ≤ c (Uκ,p(Ω;R) + N [δR; Cκ
3 (Ω; Cn)]) |t − s|κ. (51)

To this end, let us construct a sequence of points (sk)k≥0, sk ∈ Ω converging to t in the
following way: set s0 = t, suppose by induction that s0, . . . , sk have been constructed,

and let Vk := B(s, |sk−s|
2

) ∩ Π̄+. Note that, since we are working on the upper half plane

Π+, the area µ(Vk) of Vk is at least 1
2
µ(B(s, |sk−s|

2
) = π

8
|sk − s|2. Define then

Ak :=

{

v ∈ Vk | Iv >
16

π

U2p
κ,p(Ω;R)

|sk − s|2

}

(52)

and

Bk :=

{

v ∈ Vk |
|Rskv|2p

|sk − v|2κp+4
>

16

π|sk − s|2
I(sk)

}

(53)

where we have set

I(v) :=

∫

B(s,|v−s|)∩Π̄+

|Ruv|
2p

|v − u|2κp+4
du.

Let us prove now that Vk \ (Ak ∪ Bk) is not empty: observe that

U2p
κ,p(Ω;R) ≥

∫

Ak

dvI(v) >
16

π

U2p
κ,p(Ω;R)

|sk − s|2
µ(Ak)

and

I(sk) ≥

∫

Bk

|Rusk
|2p

|sk − u|2κp+4
du >

16

π

µ(Bk)

|sk − s|2
I(sk).

All together one has obtained µ(Ak), µ(Bk) < π
16
|sk − s|2 so µ(Ak) + µ(Bk) < µ(Vk). One

now chooses sk+1 arbitrarily in Vk \ (Ak ∪ Bk). Note that, by construction, |t − s| < r/2,

and
∣

∣

∣

sk+1−s

sk−s

∣

∣

∣
< 1/2 so sk → s while staying inside Ω.

Now decompose (by using a number of times the operator δ) Rs0,s into

Rs0s = Rsn+1s +

n
∑

k=0

(

Rsksk+1
+ (δR)sksk+1s

)

. (54)

Applying (53)k and (52)k−1, one gets

|Rsksk+1
|2p

|sk − sk+1|2κp+4
<

16

π|sk − s|2
.

16

π

U2p
κ,p(Ω;R)

|sk−1 − s|2
<

256

π2
U2p

κ,p(Ω;R)|sk − s|−4.

Recalling our convention a . b for the relation a ≤ C b, where C is a given universal
constant, we obtain |Rsksk+1

| . Uκ,p(Ω;R)|sk−s|κ. Furthermore, we have by construction
|sk − s| . 2−n|t − s|, and thus

∣

∣

∣

∣

∣

n
∑

k=0

Rsk,sk+1

∣

∣

∣

∣

∣

. Uκ,p(Ω;R)|t − s|κ. (55)
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Turning now to δR, it is easily seen that |δRsksk+1,s| . N [δR; Cκ
3 (Ω; Cn)]|sk − s|κ.

Invoking again the relation |sk − s| . 2−n|t − s|, we end up with
n
∑

k=0

|δRsksk+1,s| . N [δR; Cκ
3 (Ω; Cn)] |t − s|κ. (56)

Finally, plugging relations (55)-(56) into (54) and letting n → ∞, we easily get the
announced bound (51), which ends the proof.

�

4.3. Complex analysis preliminaries. The identity (48) involves integrals along some
piecewise smooth paths in C, which have to be estimated. We summarize in this section
the upper bounds which will be needed later on.

First of all, the integral appearing in (48) can be estimated thanks to the following
lemma borrowed from [16, Lemma 1.5]:

Lemma 4.5. Let γ : (0, 1) → Π+ be a piecewise smooth, continuous path. Then
∣

∣

∣

∣

∫

γ

dz

∫

γ̄

dw̄ (−ı(z − w̄))2α−2

∣

∣

∣

∣

≤ c|γ(1) − γ(0)|2α,

for a universal positive constant c.

The following bound on iterated integrals of the process Γ, shown in [16, Theorem 3.4]
(where they are called analytic iterated integrals) can then be seen as an extension of the
previous lemma.

Lemma 4.6 (analytic iterated integrals). Consider s, t in a fixed bounded neighbor-
hood of 0 in Π̄+, and let f1, . . . , fn and g1, . . . , gn be analytic functions defined on a neigh-
borhood V of the closed strip Π̄+

s,t := {z ∈ C | z = λs + (1− λ)t + ıµ|t− s|, λ, µ ∈ [0, 1]}.
Let also Γ = (Γ(1), . . . , Γ(d)) be a d-dimensional analytic fractional Brownian motion,
where each component Γ(j) is defined as in Section 4.1. For ε, η small enough, define
Vs,t(ε, η) by

Vts(ε, η) = E [Z1 Z2]

=

(
∫

[s;t]

du1

∫

[s,u1]

du2 . . .

∫

[s,un−1]

dun

)(
∫ t

s

dv1

∫

[s,v1]

dv2 . . .

∫

[s,vn−1]

dvn

)

×
n
∏

j=1

fj(uj + ıε) gj(vj + ıη) (−ı(uj − v̄j) + ε + η)2α−2 duj dvj,

where Z1 is defined by
∫

[s;t]

f1(u1 + ıǫ)dΓu1+ıǫ(1)

∫

[s;u1]

f2(u2 + ıǫ)dΓu2+ıǫ(2) . . .

∫

[s;un−1]

fn(un + ıǫ)dΓun+ıǫ(n),

and Z2 can be written as:
∫

[s;t]

g1(v1 + ıǫ)dΓ̄v1+ıǫ(1)

∫

[s;v1]

g2(v2 + ıǫ)dΓ̄v2+ıǫ(2) . . .

∫

[s;vn−1]

gn(vn + ıǫ)dΓ̄vn+ıǫ(n).

Then the following bound holds true:

|Vts(ε, η)| .
n
∏

j=1

sup
z∈Π̄+

s,t

|fj(z)|
n
∏

j=1

sup
z∈Π̄+

s,t

|gj(z)| |t − s|2αn.
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The last ingredient we need for our computations is a specific bound for analytic func-
tions integrated with respect to the kernel (−ı(x− y))2α−2. Observe that this bound will
not be used directly in the sequel, but will serve as a prototype for our future computa-
tions.

Lemma 4.7. Let s, t in a fixed bounded neighborhood of 0 in Π̄+, and φ(z, w̄) be an
analytic function on a neighborhood of Π̄+

(s,t) × Π̄−
(s,t), where

Π̄+
s,t := {z ∈ C | z = λs+(1−λ)t+ ıµ|t− s|, λ, µ ∈ [0, 1]}, Π̄−

s,t := {z̄ | z ∈ Π̄+
s,t} (57)

For ǫ, η > 0, define Θ(φ) as:

[Θ(φ)] (ǫ, η; s, t)

:=

∫

[s,t]

dz

∫

[s̄,t̄]

dw̄
[

(−ı(z − w̄) + 2ǫ)2α−2 − (−ı(z − w̄) + ǫ + η)2α−2
]

φ(z, w̄)

Then, for every ρ ∈ (0, 2α), there exists Cρ such that

| [Θ(φ)] (ǫ, η; s, t)| ≤ Cρ|ǫ − η|ρ|t − s|2α−ρ Mφ
ts, (58)

where
Mφ

ts , sup
{

|φ(u, v̄)|; (u, v̄) ∈ Π̄+
(s,t) × Π̄−

(s,t)

}

.

Proof. Without restriction of generality we may assume that ǫ > η > 0. We use the
following contour of integration in Π̄+

(s,t) × Π̄−
(s,t):

∆ := Γ×Γ̄, Γ = Γ1∪Γ2∪Γ3 := [s, s+ı|t−s|]∪[s+ı|t−s|, t+ı|t−s|]∪[t+ı|t−s|, t]. (59)

Set ∆i,j = Γi×Γ̄j so that ∆ = ∪1≤i,j≤3∆i,j . Let Ii,j be the integral over ∆i,j of the function
(z, w̄) 7→ [(−ı(z − w̄) + 2ǫ)2α−2 − (−ı(z − w̄) + ǫ + η)2α−2]φ(z, w̄). We shall give a bound
of type (58) for each Ii,j. The proof relies on the following observation: if ǫ, η > 0 and
z ∈ C, ℜz > 0, then (for any ρ ∈ (0, 1))

|(z + ǫ)2α−2 − (z + η)2α−2| ≤ C|ǫ − η|ρ|z|2α−2−ρ. (60)

By symmetry we only need to consider the following four cases (only the fourth one is
non-trivial since z and w̄ may be ǫ-close) :

Case 1: i = j = 2.

|I2,2| =
∣

∣

∣

∫

[s;t]

dz

∫

[s̄;t̄]

dw̄
[

(−ı(z − w̄) + 2|t − s| + 2ǫ)2α−2

−(−ı(z − w̄) + 2|t − s| + ǫ + η)2α−2
]

φ(z + ı|t − s|, w̄ − ı|t − s|)
∣

∣

∣

≤ Cρ

∫

[s;t]

|dz|

∫

[s̄;t̄]

|dw̄||t− s|2α−2−ρ(ǫ − η)ρ Mφ
ts = C ′

ρ|t − s|2α−ρ(ǫ − η)ρ Mφ
ts.(61)

Case 2: i = 1, j = 3.

|I1,3| =
∣

∣

∣

∫ |t−s|

0

dx

∫ |t−s|

0

dy
[

(−ı(s − t̄) + x + y + 2ǫ)2α−2

−(−ı(s − t̄) + x + y + ǫ + η)2α−2
]

φ(s + ıx, t − ıy)
∣

∣

∣

≤ Cρ

∫ |t−s|

0

dx

∫ |t−s|

0

dy|t− s̄|2α−2−ρ(ǫ − η)ρ Mφ
ts

≤ C ′
ρ|t − s|2α−ρ(ǫ − η)ρ Mφ

ts, (62)
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since |t − s̄| ≥ |t − s|.

Case 3: i = 1, j = 2.

|I1,2| =
∣

∣

∣

∫ |t−s|

0

dx

∫

[s̄;t̄]

dw̄
[

(−ı(s − w̄) + |t − s| + x + 2ǫ)2α−2

−(−ı(s − w̄) + |t − s| + x + ǫ + η)2α−2
]

φ(s + ıx, w̄ − ı|t − s|)
∣

∣

∣

≤ Cρ

∫ |t−s|

0

dx

∫

[s̄;t̄]

|dw̄||t− s|2α−2−ρ(ǫ − η)ρ Mφ
ts = C ′

ρ|t − s|2α−ρ(ǫ − η)ρ Mφ
ts.

(63)

Case 4: i = 1, j = 1.

|I1,1| =

∣

∣

∣

∣

∣

∫ |t−s|

0

dx

∫ |t−s|

0

dy [K2ǫ(x, y) − Kǫ+η(x, y)]φ(s + ıx, s − ıy)

∣

∣

∣

∣

∣

(64)

≤ Cρ

∫ |t−s|

0

dx

∫ |t−s|

0

dy(x + y)2α−2−ρ(ǫ − η)ρ Mφ
ts ≤ C ′

ρ|t − s|2α−ρ(ǫ − η)ρ Mφ
ts,

where we have set Ka(x, y) = (2ℑs+x+y+a)2α−2 for any positive a. It should be noticed
at this point that the last integral converges only if ρ < 2α, which is one of our standing
assumptions. Now, putting together the estimates (61), (62), (63) and (64), we get the
desired result.

�

Remark 4.8. The kernel (x, y) → (x + y)2α−2−ρ appearing in the last case is singular
only at the point (x, y) = (0, 0), whereas the usual kernel (x, y) → (±ı(x − y)))2α−2 is
singular on the diagonal. This simple fact explains why our estimates work (and why
the deformation of contour is so important). Note that the absolute value should not
be placed inside the integral before the deformation of contour (otherwise the integrals
become most of the time infinite in the limit η → 0).

5. The rough path associated to Γ

We proceed in this section to the definition of a rough path above the process Γ defined
at Section 4.1. As mentioned in the introduction, this will be achieved by regularizing Γ
into a process Γε defined on Π+ by Γε

t = Γt+ıε. This latter process is analytic on Π+, which
allows to define any iterated integral of Γε in the Riemann sense. Then the convergence of
these integrals in some suitable Hölder spaces is obtained by combining the Garsia type
result of Proposition 4.4 and some moment estimates similar to Lemma 4.7.

5.1. Convergence of Γε. A very first step in the analysis of Γ consists in getting some
convergence results for Γε itself towards Γ, in Hölder spaces. In order to obtain this
(intuitively trivial) convergence, we shall use the following elementary estimate:

Lemma 5.1. For all ε, η > 0, and s, t ∈ Π+, we have

E
[

|Γε
t − Γε

s|
2] ≤ c |t − s|2α , and E

[

|Γε
t − Γη

t |
2
]

≤ c |ε − η|2α ,

where the constants c do not depend on ε, η, s, t.
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Proof. For the first inequality, observe that

Γε
t − Γε

s =

∫

[s+ıη,t+ıη]

Γ′
z dz,

so that

E
[

|Γε
t − Γε

s|
2] ≤ c

∣

∣

∣

∣

∫

[s+ıη,t+ıη]

∫

[s̄−ıη,t̄−ıη]

(−ı(z − w̄))2α−2dzdw̄

∣

∣

∣

∣

≤ c |t − s|2α ,

owing to Lemma 4.5. For the second inequality, use the decomposition:

Γε
t − Γη

t =

∫

[t+ıε,t+ıη]

Γ′
z dz,

which yields, with the same kind of arguments,

E
[

|Γε
t − Γη

t |
2
]

≤ c

∣

∣

∣

∣

∫

[t+ıε,t+ıη]

∫

[t̄−ıε,t̄−ıη]

(−ı(z − w̄))2α−2dzdw̄

∣

∣

∣

∣

≤ c |ε − η|2α .

�

We are now ready to study the convergence of Γε on our fixed neighborhood Ω (recall
also that we work on a complete probability space (U ,F ,P)):

Lemma 5.2. As ε → 0, the process Γε converges in L1(U ; Cγ
1 (Ω)), for any γ < α and

T > 0. Its limit is the analytic fractional Brownian motion Γ.

Proof. We shall divide this proof into two steps:

Step 1: Reduction to moment estimates. We shall prove that {Γε; ε > 0} is a Cauchy
sequence in L1(U ; Cγ

1 (Ω)), and in order to estimate N [Γε − Γη; Cγ
1 ], we shall resort to

Lemma 4.3 with f = Γε − Γη. This yields, for p > 1 and γ < α,

N [Γε − Γη; Cγ
1 ] ≤ c Uγ,p (δ(Γε − Γη)) = c

(
∫

Ω

∫

Ω

|δ(Γε − Γη)ts|2p

|t − s|2γp+4
dsdt

)1/2p

.

Hence, invoking Jensen’s inequality, we obtain:

E [N [Γε − Γη; Cγ
1 ]] .

(
∫

Ω

∫

Ω

E [|δ(Γε − Γη)ts|
2p]

|t − s|2γp+4
dsdt

)1/2p

.

(
∫

Ω

∫

Ω

Ep [|δ(Γε − Γη)ts|
2]

|t − s|2γp+4
dsdt

)1/2p

,

where we have used the fact that Γε, Γη are Gaussian processes in the last inequality. By
considering p large enough in the relation above, it is thus easily seen that, if we can prove
that

E[|δ(Γε − Γη)ts|
2] ≤ c|t − s|2γ̂ |ε − η|β (65)

for a certain β > 0 and γ < γ̂ < α, then the following relation holds true:

E [N [Γε − Γη; Cγ
1 ]] . |ε − η|β.

Thus, we get that the family {Γε; ε > 0} is a Cauchy sequence in L1(U ; Cγ
1 ([0, T ])), whose

limit is the analytic fBm Γ, provided we can prove (65). The remainder of the proof is
thus devoted to show the latter relation.

Step 2: Moment estimates. Set Uts = E[|δ(Γε − Γη)ts|
2]. We shall now prove that Uts ≤

cρ|t − s|2αρ|ε − η|2α(1−ρ) for every ρ ∈ (0, 1). To this purpose, notice that:

|δ(Γε − Γη)ts|
2 . |δΓε

ts|
2 + |δΓη

ts|
2, and |δ(Γε − Γη)ts|

2 . |Γε
t − Γη

t |
2 + |Γε

s − Γη
s |

2.
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This allows to write, for an arbitrary exponent ρ ∈ (0, 1),

Uts .
(

E
[

|δΓε
ts|

2 + |δΓη
ts|

2
])ρ (

E
[

|Γε
t − Γη

t |
2 + |Γε

s − Γη
s |

2
])1−ρ

.

A direct application of Lemma 5.1 gives now:

Uts . |t − s|2αρ |ε − η|2α(1−ρ), (66)

which ends the proof, since γ ≡ αρ can be taken as close as we wish to α.
�

Remark 5.3. A slight extension of the computations above allow to prove that in fact, Γε

converges in Lp(U ; Cγ
1 (Ω)) for any p > 1.

5.2. Convergence of Lévy’s area. Consider a two-dimensional analytic fBm Γ =
(Γ(1), Γ(2)) with independent components, and the associated approximation Γε = (Γε(1),
Γε(2)). We then set

Γ2,ε(j1, j2) =

∫

[s,t]

dΓε
u1

(j1)

∫

[s,u1]

dΓε
u2

(j2), for j1, j2 ∈ {1, 2}, s, t ∈ Ω, (67)

where the above iterated integral is understood in the Riemann sense. This section is
devoted to prove that Γ2,ε is a convergent sequence in L1(U ; C2γ

2 (Ω)), and that its limit
Γ2 satisfies δΓ2 = δB⊗ δB as in Hypothesis 2. we shall study the convergence for j1 = j2

and j1 6= j2 separately.

Proposition 5.4. The increments Γ2,ε(1, 1) and Γ2,ε(2, 2) converge in L1(U ; C2γ
2 (Ω)).

Proof. For notational sake, we shall write C2γ
2 , C2γ

3 instead of C2γ
2 (Ω), C2γ

3 (Ω) in the se-
quel. In order to prove that Γ2,ε(1, 1) is a Cauchy sequence in L1(U ; C2γ

2 (Ω)), we invoke
Proposition 4.4, which can be read here as:

N [Γ2,ε(1, 1) − Γ2,η(1, 1); C2γ
2 ]

. U2γ,p(Γ
2,ε(1, 1) − Γ2,η(1, 1)) + N [δΓ2,ε(1, 1) − δΓ2,η(1, 1); C2γ

3 ] ≡ A1 + A2.

In order to estimate the term A1 above, notice first that, since Γε is a regular path, we
have: Γ2,ε

ts (1, 1) = 1
2
[δΓε

ts(1)]2. Hence,

A1 =
1

2

(
∫

Ω

∫

Ω

|[δΓε
ts(1)]2 − [δΓη

ts(1)]2|2p

|t − s|4γp+4
dsdt

)1/2p

.

This integral can now be bounded as in Lemma 5.2, by means of an inequality similar to
(66).

Let us turn now to the evaluation of the term A2. Owing to the fact that Γ2,ε is defined
by (67), where Γε is a regular process, the following particular case of (3) is readily checked:

[

δΓ2,ε(1, 1) − δΓ2,η(1, 1)
]

tus
= δΓε

tu(1) δΓε
us(1) − δΓη

tu(1) δΓη
us(1).

Hence, for an arbitrary coefficient ρ ∈ (0, 1) and 0 < γ < γ̂ < α, we end up with:

∣

∣

[

δΓ2,ε(1, 1) − δΓ2,η(1, 1)
]

tus

∣

∣ ≤
[

(N [Γε; C γ̂
1 ] + N [Γη; C γ̂

1 ]) |t − u|γ̂|u − s|γ̂
]ρ

×
[

δΓε
tu(1) (δΓε

us(1) − δΓη
us(1)) + (δΓε

tu(1) − δΓη
tu(1)) δΓη

us(1)
]1−ρ

,



26 S. TINDEL AND J. UNTERBERGER

and thus, a standard application of the Cauchy-Schwarz inequality yields:

E[A2] = E
[

N [δΓ2,ε(1, 1) − δΓ2,η(1, 1); C2γ
3 ]
]

. E1/2
[

N 2[Γε(1); C γ̂
1 ] + N 2[Γη(1); C γ̂

1 ]
]

E1/2
[

N 2(1−ρ)[Γε(1) − Γη(1); C γ̂
1 ]
]

. |ε − η|β,

for a certain β > 0, according to Remark 5.3. Our claim is now easily deduced from our
estimates on A1 and A2.

�

Let us begin the preliminary steps for the convergence of the crossed terms Γ2,ε(1, 2)
and Γ2,ε(2, 1), for which the following notation will be needed:

Notation 5.5. For ε1, ε2 > 0 and (x, ȳ) ∈ Π̄+ × Π̄−, we set

Fǫ1,ǫ2(x, ȳ) := (−ı(x − ȳ) + ǫ1 + ǫ2)
2α−2.

With this notation in hand, one can estimate the increments of Γ2,ε as follows:

Lemma 5.6. For any s, t ∈ Ω and ρ ∈ (0, 1), there exists a positive constant cρ > 0 such
that

E[|(Γ2,ε(1, 2) − Γ2,η(1, 2))ts|
2] ≤ cρ|t − s|2α(1−ρ)|ε − η|2αρ.

Proof. According to identity (48), we have:

E[|(Γ2,ε(1, 2) − Γ2,η(1, 2))ts|
2]

= E

[

(
∫

[s,t]

dΓu1+ıε(1)

∫

[s,u1]

dΓu2+ıε(2) −

∫

[s,t]

dΓu1+ıη(1)

∫

[s,u1]

dΓu2+ıη(2)

)

×

(
∫

[s,t]

dΓ̄v1+ıε(1)

∫

[s,v1]

dΓ̄v2+ıε(2) −

∫

[s,t]

dΓ̄v1+ıη(1)

∫

[s,v1]

dΓ̄v2+ıη(2)

)

]

=

∫

[s,t]

du1

∫

[s,u1]

du2

∫

[s̄,t̄]

dv̄1

∫

[s̄,v̄1]

dv̄2 F (2)
ε,η (u1, v̄1; u2, v̄2),

where, recalling Notation 5.5, the function F
(2)
ε,η is defined by:

F (2)
ε,η (u1, v̄1; u2, v̄2)

= Fε,ε(u1, v̄1)Fε,ε(u2, v̄2) + Fη,η(u1, v̄1)Fη,η(u2, v̄2) − 2Fε,η(u1, v̄1)Fε,η(u2, v̄2)

= Fε,ε(u1, v̄1) [Fε,ε(u2, v̄2) − Fε,η(u2, v̄2)] + Fε,η(u2, v̄2) [Fε,ε(u1, v̄1) − Fε,η(u1, v̄1)]

+ Fη,η(u1, v̄1) [Fη,η(u2, v̄2) − Fη,ε(u2, v̄2)] + Fη,ε(u2, v̄2) [Fη,η(u1, v̄1) − Fη,ε(u1, v̄1)] .

We now have to control a sum made of many terms exhibiting the same level of difficulty.
We shall thus focus on one of them, namely:

I
(2)
1 ,

∫

[s,t]

du1

∫

[s,u1]

du2

∫

[s̄,t̄]

dv̄1

∫

[s̄,v̄1]

dv̄2 Fε,η(u2, v̄2) [Fε,ε(u1, v̄1) − Fε,η(u1, v̄1)] .

For the control of I
(2)
1 , as in Lemma 4.7, we introduce the contour of integration

γ := γ1 ∪ γ2 ∪ γ3 =
[

s, s + ı|t − s|
]

∪
[

s + ı|t − s|, t + ı|t − s|
]

∪
[

t + ı|t − s|, t
]

.
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If z ∈ γ, let γ(z) be the section of the path γ comprised between s and z. Then (by
Cauchy’s theorem)

I
(2)
1 =

∫

γ

dz1

∫

γ(z1)

dz2

∫

γ̄

dw̄1

∫

γ(w1)

dw̄2 Fε,η(z2, w̄2) [Fε,ε(z1, w̄1) − Fε,η(z1, w̄1)] .

As in Lemma 4.7, 9 terms should be controlled in order to achieve the desired bound. We
shall treat the most divergent of them, that is:

J
(2)
1 =

∫

γ1

dz1

∫

γ(z1)

dz2

∫

γ̄1

dw̄1

∫

γ(w1)

dw̄2 Fε,η(z2, w̄2) [Fε,ε(z1, w̄1) − Fε,η(z1, w̄1)] .

On γ1, the change of variable z1 = s+ ıu1 for 0 ≤ u1 ≤ |t−s|, z2 = s+ ıu2 for 0 ≤ u2 ≤ u1,
and the same kind of transformations for w̄1, w̄2, yield:

J
(2)
1 =

∫ |t−s|

0

du1

∫ u1

0

du2

∫ |t−s|

0

dv1

∫ v1

0

dv2

[

(2ℑs + u1 + v1 + 2ε)2α−2 − (2ℑs + u1 + v1 + ε + η)2α−2
]

(2ℑs + u2 + v2 + 2ε)2α−2,

and hence:

|J (2)
1 | ≤

∫ |t−s|

0

du1

∫ |t−s|

0

dv1

∣

∣(u1 + v1 + 2ε)2α−2 − (u1 + v1 + ε + η)2α−2
∣

∣

×

∫ |t−s|

0

du2

∫ |t−s|

0

dv2

∣

∣(u2 + v2 + 2ε)2α−2
∣

∣ .

As in Lemma 4.7, we can now easily conclude, for an arbitrary constant 0 < ρ < 1, that:

|J (2)
1 | . |ε − η|4αρ(t − s)4α(1−ρ).

We may now treat the other terms appearing in the analysis of I
(2)
1 (and more generally

of F (2)) in the same way, which ends the proof.
�

We are now ready to analyze the convergence of the crossed terms Γ2,ε(1, 2) and
Γ2,ε(2, 1):

Proposition 5.7. The increments Γ2,ε(1, 2) and Γ2,ε(2, 1) converge in L1(U ; C2γ
2 (Ω)).

Proof. The beginning of the proof goes exactly along the same lines as for Proposition
5.4. Let us write C2γ

2 , C2γ
3 for C2γ

2 (Ω), C2γ
3 (Ω). In order to prove that Γ2,ε(1, 2) is a Cauchy

sequence in L1(U ; C2γ
2 (Ω)), we invoke Proposition 4.4:

N [Γ2,ε(1, 2) − Γ2,η(1, 2); C2γ
2 ]

. U2γ,p(Γ
2,ε(1, 2) − Γ2,η(1, 2)) + N [δΓ2,ε(1, 2) − δΓ2,η(1, 2); C2γ

3 ] ≡ A1 + A2.

The term A2 can now be bounded as in Proposition 5.4, owing to the fact that δΓ2,ε(1, 2) =
δΓε(1) δΓε(2). We thus get

E[A2] . |ε − η|β,

for a certain β > 0.

The term A1 can be handled in the following way: by definition, we have

A1 =

(
∫

Ω

∫

Ω

|Γ2,ε
ts (1, 2) − Γ2,η

ts (1, 2)|2p

|t − s|4γp+4
dsdt

)1/2p

.
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We can now apply Jensen’s inequality as in Lemma 5.2. Furthermore, Γ2,ε
ts (1, 2) is a

random variable in the second chaos of the fractional Brownian motion Γ, and since all
the Lp norms on any given fixed chaos are equivalent, we obtain:

E[A1] .

∫

Ω

∫

Ω

Ep
[

|Γ2,ε
ts (1, 2) − Γ2,η

ts (1, 2)|2
]

|t − s|4γp+4
dsdt.

As in Lemma 5.2, we are now reduced to an estimate of the form

E[|(Γ2,ε − Γ2,η)ts|
2] ≤ c|t − s|2γ̂|ε − η|β,

for a certain β > 0 and γ < γ̂ < α. But this estimate stems directly from Lemma 5.6,
and gathering our estimates on A and B, we have thus proved our claim:

E
[

N [Γ2,ε(1, 2) − Γ2,η(1, 2); C2γ
2 ]
]

. |ε − η|β.

�

Remark 5.8. As in Section 5.1, the Lp-convergence of Γ2,ε(i, j) in C2γ
2 (Ω) can also be ob-

tained here for i, j ∈ {1, 2}, by slightly adapting our computations for the L1-convergence.

Putting together the results we have obtained so far, we can now state the following
existence result for a rough path of order 2 based on Γ, for any value of the Hurst parameter
α ∈ (0, 1/2):

Theorem 5.9. Let Γ be an analytic fractional Brownian motion with Hurst parameter
α ∈ (0, 1/2), and Γε its regular approximation. Let also Γ2,ε be the regularized Lévy area
given by formula (67), and consider 0 < γ < α. Then:

(1) For any p ≥ 1, the couple (Γε,Γ2,ε) converges in Lp(U ; Cγ
1 (Ω; Rd)× C2γ

2 (Ω; Rd,d)) to a
couple (Γ,Γ2), where Γ is the analytic fractional Brownian motion mentioned above.

(2) The Lévy area Γ2 is an element of C2γ
2 (Ω; Rd,d) ∩ Cm,γ

2 (Ω; Rd,d).

(3) The increment Γ2 satisfies the multiplicative and geometric algebraic relations pre-
scribed in Hypothesis 3, namely:

δΓ2(i, j) = δΓ(i) δΓ(j), and Γ2(i, j) + Γ2(j, i) = δΓ(i) ◦ δΓ(j),

for i, j = 1, . . . , d.

Proof. The first part of our assertion is trivially deduced from Propositions 5.2, 5.4 and
5.7. The fact that Γ2 is an element of Cm,γ

2 (Ω; Rd,d)) can be shown thanks to a limiting
procedure along the same lines as Propositions 5.4 and 5.7, except that one has to replace
the use of Proposition 4.4 by Lemma 4.3.

As far as the third part of our claim is concerned, it is sufficient to notice that, since
Γ2,ε is a smooth process, the relation

δΓ2,ε(i, j) = δΓε(i) δΓε(j), and Γ2,ε(i, j) + Γ2,ε(j, i) = δΓε(i) ◦ δΓε(j),

is automatically satisfied, by some algebraic manipulations involving only usual Riemann
integrals. The desired result is then obtained by taking limits on both sides of the identity
above, and taking into account that Γε converges in any Lq(U ; Cγ

1 (Ω; Rd)), for q ≥ 1.
�
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5.3. Multidimensional estimates. Let Γ = (Γ(1), . . . , Γ(d)) be an d-dimensional ana-
lytic fractional Brownian motion. This section is a generalization of the previous one to
the case of multiply iterated integrals of any order. As a result, we finally obtain a rough-
path lying above Γ, which implies the possibility to solve analytic stochastic differential
equations driven by Γ as in equation (5). Let us consider then our fixed bounded neigh-
borhood Ω of 0 and the analytic approximation Γε of Γ. For s, t ∈ Ω, n ≤ N = ⌊1/α⌋,
and any tuple (i1, . . . , in) ∈ {1, . . . , d}n, the natural approximation of Γn

ts(i1, . . . , in) is
given by the Riemann iterated integral:

Γn,ε
ts (i1, . . . , in) :=

∫

[s,t]

dΓε
u1

(i1)

∫

[s,u1]

dΓε
u2

(i2) · · ·

∫

[s,un−1]

dΓε
un

(in). (68)

In particular, we shall denote by Vǫ
ts the following Lévy ’hypervolume’:

Vǫ
ts = Γn,ε

ts (1, . . . , n).

As in the case of Section 5.2, an important preliminary step in order to obtain the
convergence of Γn,ε is the following bound:

Lemma 5.10. Let Ω be a fixed bounded neighborhood of 0 in Π̄+, and p ≥ 1. For
every ρ ∈ (0, 2α), there exists a constant Cρ such that for every n ≥ 3 and any n-uple
(i1, . . . , in) ∈ {1, . . . , d}n, we have:

E
[

|Γn,ε
ts (i1, . . . , in) − Γn,η

ts (i1, . . . , in)|2p
]

≤ Cρ|ǫ − η|pρ|t − s|p(2nα−ρ), s, t ∈ Ω. (69)

Proof. First of all, since we are dealing with random variables in the nth chaos of the
Gaussian process Γ, it is enough to prove inequality (69) for p = 1. Next, the following
lines prove that it is enough to estimate E[|Vε

ts − Vη
ts|

2]. Namely, suppose that some of
the indices (i1, . . . , in) coincide, and let ΣI ⊂ Σd be the subgroup of permutations σ ∈ Σd

such that iσ(j) = ij for all j = 1, . . . , n. Then

E
[

|Γn,ε
ts (i1, . . . , in) − Γn,η

ts (i1, . . . , in)|2
]

=
∑

σ∈ΣI

E
[

(

Γn,ε
ts (1, . . . , n) − Γn,η

ts (1, . . . , n)
)

(Γn,ε
ts (σ(1), . . . , σ(n)) − Γn,η

ts (σ(1), . . . , σ(n)))
]

,

(70)

and it is easily seen by the Cauchy-Schwarz inequality that this last term is bounded by
|ΣI |E[|Vε

ts − Vη
ts|

2]. In order to justify equation (70), let us just take the example n = 3
and (i1, i2, i3) = (1, 1, 2). Then the computation of E[|Γ3,ε

ts (1, 1, 2)−Γ3,η
ts (1, 1, 2)|2] involves

products of the form:

E
[(

Γ′
z1

(1)Γ′
z2

(1)Γ′
z3

(2)
) (

Γ̄′
w1

(1)Γ̄′
w2

(1)Γ̄′
w3

(2)
)]

,

which, invoking Wick’s formula, are equal to

E
[

Γ′
z1

(1)Γ̄′
w1

(1)
]

E
[

Γ′
z2

(1)Γ̄′
w2

(1)
]

E
[

Γ′
z3

(2)Γ̄′
w3

(2)
]

+ E
[

Γ′
z1

(1)Γ̄′
w2

(1)
]

E
[

Γ′
z2

(1)Γ̄′
w1

(1)
]

E
[

Γ′
z3

(2)Γ̄′
w3

(2)
]

. (71)

These two terms correspond to σ =Id or σ = τ12 in the right-hand side of (70), and one
can check that expression (71) is equal to

E
[(

Γ′
z1

(1)Γ′
z2

(2)Γ′
z3

(3)
) (

Γ̄′
w1

(1)Γ̄′
w2

(2)Γ̄′
w3

(3) + Γ̄′
w1

(2)Γ̄′
w2

(1)Γ̄′
w3

(3)
)]

.

The general case can be treated along the same lines, up to some cumbersome notations.
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Hence all we need is to obtain a bound of the form:

E
[

|Vε
ts − Vη

ts|
2
]

≤ Cρ|ǫ − η|ρ|t − s|2nα−ρ, s, t ∈ Ω. (72)

As in the Lévy area case of the previous section (see Lemma 5.6), a straightforward
application of identity (48) yields

E
[

|Vε
ts − Vη

ts|
2
]

=

(
∫

[s,t]

dx1

∫

[s,x1]

dx2 · · ·

∫

[s,xn−1]

dxn

)

(
∫

[s̄,t̄]

dȳ1

∫

[s̄,ȳ1]

dȳ2 · · ·

∫

[s̄,x̄n−1]

dȳn

)

F (n)
ε,η (x1, ȳ1, . . . , xn, ȳn),

where, recalling Notation 5.5, the function F
(d)
ε,η is defined by

F (n)
ε,η (x1, ȳ1, . . . , xn, ȳn) =

n
∏

j=1

Fε,ε(xj , ȳj) +
n
∏

j=1

Fη,η(xj , ȳj) − 2
n
∏

j=1

Fε,η(xj , ȳj).

Observe that the latter function can be further decomposed into:

F (n)
ε,η (x1, ȳ1, . . . , xn, ȳn) =

d
∑

j=1

Gj
ε,η(x1, ȳ1, . . . , xn, ȳn) + Gj

η,ε(x1, ȳ1, . . . , xn, ȳn),

where the functions Gj are defined by:

Gj
ε,η(x1, ȳ1, . . . , xn, ȳn) = Fε,ε(x1, ȳ1) · · ·Fε,ε(xj−1, ȳj−1)[Fε,ε(xj , ȳj) − Fε,η(xj , ȳj)]

× Fǫ,η(xj+1, ȳj+1) · · ·Fǫ,η(xn, ȳn)

We have thus proved that E [|Vε
ts − Vη

ts|
2] =

∑d
j=1 Ij

ε,η + Ij
η,ε, where

Ij
ε,η =

(
∫

[s,t]

dx1

∫

[s,x1]

dx2 · · ·

∫

[s,xn−1]

dxn

)

(
∫

[s̄,t̄]

dȳ1

∫

[s̄,ȳ1]

dȳ2 · · ·

∫

[s̄,x̄n−1]

dȳn

)

Gj
ε,η(x1, ȳ1, . . . , xn, ȳn),

In order to show relation (72), it is thus sufficient to prove that, for all j = 1, . . . , n, we
have |Ij

ε,η| ≤ Cρ|ǫ − η|ρ|t − s|2nα−ρ. Observe now that we may cast the term Ij
ε,η into the

following form:

Ij
ε,η =

(

∫

[s,t]

dx1

∫

[s,x1]

dx2 · · ·

∫

[s,xj−1]

dxj

)(

∫

[s̄,t̄]

dȳ1

∫

[s̄,ȳ1]

dȳ2 · · ·

∫

[s̄,x̄j−1]

dȳj

)

Fǫ,ǫ(x1, ȳ1) · · ·Fǫ,ǫ(xj−1, ȳj−1) [Fǫ,ǫ(xj , ȳj) − Fǫ,η(xj, ȳj)] φ(xj , ȳj; s),

where

φ(xj , ȳj; s) =

(

∫

[s,xj ]

dxj+1 · · ·

∫

[s,xn−1]

dxn

)(

∫

[s̄,ȳj ]

dȳj+1 · · ·

∫

[s̄,ȳn−1]

dȳn

)

Fǫ,η(xj+1, ȳj+1) · · ·Fǫ,η(xd, ȳd).

It is thus readily checked that the function φ(xj , ȳj; s) is an analytic iterated integral in
the sense of Lemma 4.6, bounded by a constant times |t− s|2α(n−j). Hence it satisfies the
hypothesis of Lemma 4.7. As in the proof of the latter result, let γ := [s, s + ı|t − s|] ∪
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[s + ı|t − s|, t + ı|t − s|] ∪ [t + ı|t − s|, t] be a complex deformation of the contour [s, t],
and, if z ∈ γ, let γ(z) be the section of the path γ comprised between s and z. Then

Ij
ε,η =

(

∫

γ

dx1

∫

γ(x1)

dx2 . . .

∫

γ(xj−1)

dxj

)(

∫

γ̄

dȳ1

∫

γ(y1)

dȳ2 . . .

∫

γ(yj−1)

dȳj

)

Fǫ,ǫ(x1, ȳ1) · · ·Fǫ,ǫ(xj−1, ȳj−1) [Fǫ,ǫ(xj , ȳj) − Fǫ,η(xj, ȳj)] φ(xj , ȳj; s),

and thus

|Ij
ε,η| ≤

(
∫

γ

|dx1|

∫

γ

|dx2| . . .

∫

γ

|dxj|

)(
∫

γ̄

|dȳ1|

∫

γ̄

|dȳ2| . . .

∫

γ̄

|dȳj|

)

|Fǫ,ǫ(x1, ȳ1)| · · · |Fǫ,ǫ(xj−1, ȳj−1)||Fǫ,ǫ(xj , ȳj) − Fǫ,η(xj , ȳj)||φ(xj, ȳj; s)|.

Now the multiple integral factorizes, and one is left with an expression of the form Aj−1
1 A2,

where

A1 =

∫

γ

|dx|

∫

γ̄

|dȳ||(−ı(x − ȳ) + 2ǫ)2α−2| . |t − s|2α (73)

by Lemma 4.5, and

A2 =

∫

γ

|dxj |

∫

γ̄

|dȳj||φ(xj, ȳj; s)| (74)

which is bounded as in Lemma 4.7 by a constant times |t − s|2α(n−j)+2α−ρ|ǫ − η|ρ for any
ρ ∈ (0, 2α). The above estimates now yield easily the desired bound |Ij

ε,η| ≤ Cρ|ǫ−η|ρ|t−
s|2nα−ρ.

�

The rough-path convergence of the multiplicative functional (Γǫ, . . . ,Γn,ε) to order n is
a consequence from the above computations and may be stated as follows:

Theorem 5.11. Let Γ be an analytic fractional Brownian motion with Hurst parameter
α ∈ (0, 1/2), and Γε its regular approximation. Let also n = ⌊1/α⌋, Γk,ε, k = 2, . . . , n be
the regularized iterated integrals given by formula (68), and consider 0 < γ < α. Then:

(1) For any p ≥ 1, the truncated multiplicative functional (Γε,Γ2,ε, . . . ,Γn,ε) converges
in Lp(U ; Cγ

1 (Ω; Rd) × . . . × Cnγ
2 (Ω; (Rd)⊗n)) to an n-uple (Γ,Γ2, . . . ,Γn), where Γ is the

analytic fractional Brownian motion defined in section 4.

(2) The iterated integral Γk, k = 2, . . . , n is an element of Ckγ
2 (Ω; (Rd)⊗k)), and it also

belongs to Cm,γ
2 (Ω; (Rd)⊗k)).

(3) The truncated multiplicative functional (Γε,Γ2,ε, . . . ,Γn,ε) satisfies the multiplicative
and geometric algebraic relations prescribed in Hypothesis 3.

Proof. Similar to that of Theorem 5.9.
�
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