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Rigidity Results for Geodesic Spheres in Space Forms

Julien Roth

Laboratoire d’Analyse et de Mathḿatiques Appliquées, Université Paris-Est

5, boulevard Descartes, Cité Descartes, 77454 Marne-la-Vallée cedex 2, France

We prove that a hypersurface of a space form with almost constant mean

curvature and almost constant scalar curvature is close to a geodesic sphere.
In the case of Euclidean space, we deduce new characterizations of geodesic

spheres.
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1. Introduction

The well-Known Alexandrov theorem (1) claims that any compact without
boundary hypersurface embedded into the Euclidean space Rn+1 with con-
stant mean curvature (CMC) is a geodesic sphere. Later, A. Ros (2) proved
that the result also holds for hypersurfaces of the hyperbolic space Hn+1

and the open half sphere Sn+1
+ .

In these results, the assumption that the hypersurface is embedded is
crucial. Indeed, the results are false for immersed hypersurfaces. For in-
stance, the so-called Wente’s torus (see3) is an example of (non-embedded)
immersed surface in R3 with constant mean curvature which is not a
geodesic sphere. Other examples of higher genus are known (4).

For surfaces in R3, Hopf (5) proved that CMC immersed spheres are
geodesic spheres. Here again, the result is not true in general since, we
know examples of CMC spheres in higher dimension which are not geodesic
spheres (see6).

The goal of this article is to find an alternating assumption to the em-
bedding such that under this assumption, CMC hypersurfaces are geodesic
spheres. It is a well-known fact that if the mean curvature H and the
scalar curvature Scal are both constant, then the hypersurface is a geodesic
sphere. We will show a stability result associated to this assertion. Namely,
we have the following result which was proved for δ = 0 in (7). The cases
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δ > 0 and δ < 0 are new.

Theorem 1.1. Let (Mn, g) be a compact without boundary, connected and
oriented Riemannian manifold, isometrically immersed into the simply con-
nected space form Mn+1

δ of constant sectional curvature δ. Let R be the
extrinsic radius of M . If δ > 0, we assume that R < π

4
√
δ
. Let h > 0 and

θ ∈]0, 1[. Then, there exists ε(n, h,R, θ) > 0 such that if

• |H − h| < ε and
• |Scal − s| < ε for a constant s,

then
∣∣∣h2 − s

n(n−1) + δ
∣∣∣ 6 Aε, for a positive constant A depending on n, h, δ

and R, and M is diffeomorphic and θ-almost isometric to a geodesic sphere
in Mn+1

δ of radius t−1
δ

(
1
h

)
, where tδ is the function defined in Section 2.

Remark 1.1. By θ-almost isometric, we mean that there exists a diffeo-
moprhism F from M into a geodesic sphere of appropriate radius such that∣∣|dFx(u)|2 − 1

∣∣ ≤ θ,
for any x ∈M and any unit vector u ∈ TxM .

Remark 1.2. The extrinsic radius of M is the radius of the smallest closed
ball in Mn+1

δ containing M .

Then, from this stability result, we will deduce a new characterization of
geodesic spheres in Rn+1 with a weaker assumption on the scalar curvature
(see Section 4).

2. Preliminaries

Let (Mn, g) be a n-dimensional compact, connected, oriented Rieman-
nian manifold without boundary, isometrically immersed into the (n + 1)-
dimensional Euclidean space (Rn+1, can). The (real-valued) second funda-
mental form B of the immersion is the bilinear symmetric form on Γ(TM)
defined for two vector fields X,Y by

B(X,Y ) = −g
(
∇Xν, Y

)
,

where ∇ is the Riemannian connection on Rn+1 and ν a normal unit vector
field on M . When M is embedded, we choose ν as the inner normal field.

From B, we can define the mean curvature,

H =
1
n

tr (B).
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Now, we recall the Gauss formula. For X,Y, Z,W ∈ Γ(TM),

R(X,Y, Z,W ) = R(X,Y, Z,W )+〈AX,Z〉 〈AY,W 〉−〈AY,Z〉 〈AX,W 〉 (1)

where R and R are respectively the curvature tensor of M and Mn+1
δ , and

A is the Weingarten operator defined by AX = −∇Xν.
By taking the trace and for W = Y , we get

Ric(Y ) = Ric(Y )−R(ν, Y, ν, Y ) + nH 〈AY, Y 〉 −
〈
A2Y, Y

〉
(2)

Since, the ambient space is of constant sectional curvature δ, by taking the
trace a seconde time, we have

Scal = n(n− 1)δ + n2H2 − |A|2, (3)

or equivalently

Scal = n(n− 1)
(
H2 + δ

)
− |τ |2, (4)

where τ = B −HId is the umbilicity tensor.
Now, we define the higher order mean curvatures, for k ∈ {1, · · · , n},

by

Hk =
1(
n

k

)σk(κ1, · · · , κn),

where σk is the k-th elementary symmetric polynomial and κ1, · · · , κn are
the principal curvatures of the immersion.

From the definition, it is obvious that H1 is the mean curvature H. We
also remark from the Gauss formula (1) that

H2 =
1

n(n− 1)
Scal − δ. (5)

On the other hand, we have the well-known Hsiung-Minkowski formula∫
M

Hk+1 〈Z, ν〉+ cδ(r)Hk = 0, (6)

where r(x) = d(p0, x) is the distance function to a base point p0, Z is the
position vector defined by Z = sδ(r)∇r, and the functions cδ and sδ are
defined by

sδ(t) =


cos(
√
δt) if δ > 0

1 if δ = 0
cosh(

√
−δt) if δ < 0

and sδ(t) =


1√
δ

sin(
√
δt) if δ > 0

t if δ = 0
1√
−δ sinh(

√
−δt) if δ < 0
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Finally, we define the function tδ = sδ

cδ
.

We finish this section of preliminaries by the following recalls about the
first eigenvalue of the Laplacian. In (8), Heintze proved the following upper
bound for λ1(∆)

λ1(∆) 6 n(||H||2∞ + δ), (7)

with equality for geodesic sphere. Grosjean (9) proved a stability result
associated to Heintze’s estimate. Precisely, he proved the following

Theorem 2.1 (Grosjean, 2007). Let M be compact without boundary,
connected and oriented hypersurface of Mn+1

δ . If δ > 0, we assume that M
is contained in an open ball of Mn+1

δ of radius π
4
√
δ
. Let θ ∈]0, 1[, then there

exitst a constant Cθ(n, ||B||∞, V (M), δ) > 0 such that if

n(||H||2∞ + δ)− Cθ < λ1(∆),

then M is diffeomorphic and θ-almost-isometric to a geodesic sphere of
radius

√
n
λ1

.

Now, we have all the ingredients to prove Theorem 1.1.

3. Proof of Theorem 1.1

We begin the proof of Theorem 1.1 by the following lemma.

Lemma 3.1. Let h and s be two positive constants. If the mean curvature
and the scalar curvature satisfy

• |H − h| < ε and
• |Scal − s| < ε,

for some positive ε, then∣∣∣h2 − s

n(n− 1)
+ δ
∣∣∣ 6 Aε,

where A is a positive constante depending on h, R, n and δ.

Proof. The proof of this lemma comes directly from the Hisung-Minkowski
formula (6). Indeed, the Hisung-Minkowski formula for k = 1 is the follow-
ing ∫

M

(
H2 〈Z, ν〉+ cδ(r)H

)
= 0. (8)
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Since we assume that |Scal − s| < ε, we get easily from (5) that∣∣∣∣∣H2 −
(

s

n(n− 1)
− δ
) ∣∣∣∣∣ < 1

n(n− 1)
ε. (9)

For more convenience, we will denote h2 = s
n(n−1) − δ. Then, from (8)

0 =
∫
M

(
H2 〈Z, ν〉+ cδ(r)H

)
=
∫
M

(
h2 〈Z, ν〉+ cδ(r)H

)
+
∫
M

(H2 − h2) 〈Z, ν〉

=
h2

h

∫
M

h 〈Z, ν〉+
∫
M

cδ(r)H +
∫
M

(H2 − h2) 〈Z, ν〉

=
h2

h

∫
M

H 〈Z, ν〉+
h2

h

∫
M

(h−H) 〈Z, ν〉+
∫
M

cδ(r)h+
∫
M

cδ(r)(H − h)

+
∫
M

(H2 − h2) 〈Z, ν〉

Now, we use the Hsiung-Minkowski formula for k = 1, that is∫
M

(
H 〈Z, ν〉+ cδ(r)

)
= 0, (10)

to get

0 = −h2

h

∫
M

cδ(r) +
h2

h

∫
M

(h−H) 〈Z, ν〉+
∫
M

cδ(r)h+
∫
M

cδ(r)(H − h)

+
∫
M

(H2 − h2) 〈Z, ν〉

=
(
h− h2

h

)∫
M

cδ(r) +
h2

h

∫
M

(h−H) 〈Z, ν〉+
∫
M

cδ(r)(H − h)

+
∫
M

(H2 − h2) 〈Z, ν〉

Then, since sδ is an increasing function, we deduce∣∣∣h− h2

h

∣∣∣ ∫
M

cδ(r) 6
h2

h
ε

∫
M

sδ(R) + ε

∫
M

cδ(r) +
ε

n(n− 1)

∫
M

sδ(R)

Using the fact that |H2| 6 H2, we deduce from the assumptions on h and
h2 that

|h2| 6 h2 +A1(n, h, δ)ε,
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and then we have∣∣∣h− h2

h

∣∣∣ ∫
M

cδ(r) 6 ε

∫
M

cδ(r) +A2(n, h, δ)
∫
M

sδ(R)

We conclude using the fact that V(M) 6
∫
M
cδ(r) 6 A3(n, δ,R)V(M),

which yields

|h2 − h2| 6 A4(n, h,R, δ)ε,

which gives the wanted assertion.

Let 0 < ε < 1. We will precise this ε later. We assume |H − h| < ε and
|Scal − s| < ε, then from (3) and Lemma 3.1, we have

|τ |2 = n(n− 1)H2 − Scal (11)

6 A′(n, h,R, δ)ε.

This means that M is almost umbilical. Moreover, since |H − h| 6 ε, In-
equality (11) is equivalent to

|B − hId | 6 A′′(n, h,R, δ)ε. (12)

This last inequality combining with the Gauss formula (2) yields∣∣∣Ric(Y )− (n− 1)(h2 + δ)|Y |2
∣∣∣ 6 A′′′(n, h,R, δ)ε. (13)

Now, we use the Lichnerowicz formula (10) to obtain the following lower
bound of the first eigenvalue of the Laplacian on M

λ1(∆) > n(h2 + δ)− α1(ε), (14)

or equivalently

λ1(∆) > n(||H||2∞ + δ)− α2(ε), (15)

where the positive fonctions α1 and α2 depend on n, h,R and δ and tend to
0 when ε tends to 0. Now, since we fix θ ∈]0, 1[. Since α2 tends to 0 when
ε tends to 0, there exists ε1(n, h,R, δ) > 0, such that α2(ε1) 6 θ

2 . Then, we
use Theorem 2.1 to conclude that M is diffeomorphic and θ

2 -quasi-isometric

to a geodesic sphere of radius
√

n
λ1

. Moreover, because of the pinching of

λ1(∆), the raddi 1
h and

√
n
λ1

are close. So, there exists ε2(n, h,R, δ) > 0

such that geodesic spheres of radii 1
h and

√
n
λ1

are θ
2 -quasi-isometric. Then,

we take ε = inf{ε1, ε2} and then M is θ-quasi-isometric to a geodesic
sphere of radius 1

h . �
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4. Rigidity results in the Euclidean space

For the Euclidean case, that is δ = 0, we can obtain form Theorem 1.1 new
characterizations of geodesic spheres. Namely, we have the following

Corollary 4.1. Let (Mn, g) be a compact, connected and oriented Rieman-
nian manifold without boundary isometrically immersed into Rn+1. Let h
be a positive constant. Then, there exists ε(n, h) > 0 such that if

(1) H = h and
(2) |Scal − s| 6 ε,

for some constant s, then M is a geodesic sphere of radius 1
h .

Remark 4.1. Note that in this result, ε does not depend on the extrinsic
radius R. Indeed, since the mean curvature is constant, from (10), we have∫
M
〈Z, ν〉 = 1

hV(M). So we do not have to control the extrinsic radius.

Proof. This corollary is a direct consequence of Theorem 1.1. Indeed, we
know that there exists a diffeomorphism F from M to Sn

(
1
h

)
. But, in the

Euclidean space, this diffeomorphism is explicit. Namely,

F (x) =
1
h

φ(x)
|φ(x)|

,

where φ is the immersion on M into Rn+1. See (11) to get this expression.
The fact that F is a diffeomorphism implies that the immersion φ is

necessarly a one-to-one map, that is an embedding. Since M is embedded
with constant mean curvature, it is a geodesic sphere by the Alexandrov
theorem.

Now, we state a second characterization of geodesic spheres.

Corollary 4.2. Let (Mn, g) be a compact, connected and oriented Rieman-
nian manifold without boundary isometrically immersed into Rn+1. Let s
be a positive constant. Then, there exists ε(n, s) > 0 such that if

(1) Scal = s

(2) |H − h| 6 ε,

for some constant h, then M is a geodesic sphere of radius
√

n(n−1)
s .

Proof. The proof is the same, using an Alexandrov type theorem for the
scalar curvature due to Ros (2).
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This second corollary gives a partial answer to a conjecture by Yau which
states that the only immersed hypersurfaces of the Euclidean space with
constant scalar curvature are geodesic spheres.
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