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We prove that a hypersurface of a space form with almost constant mean curvature and almost constant scalar curvature is close to a geodesic sphere. In the case of Euclidean space, we deduce new characterizations of geodesic spheres.

Introduction

The well-Known Alexandrov theorem ( 1 ) claims that any compact without boundary hypersurface embedded into the Euclidean space R n+1 with constant mean curvature (CMC) is a geodesic sphere. Later, A. Ros ( 2 ) proved that the result also holds for hypersurfaces of the hyperbolic space H n+1 and the open half sphere S n+1 + . In these results, the assumption that the hypersurface is embedded is crucial. Indeed, the results are false for immersed hypersurfaces. For instance, the so-called Wente's torus (see 3 ) is an example of (non-embedded) immersed surface in R 3 with constant mean curvature which is not a geodesic sphere. Other examples of higher genus are known ( 4 ).

For surfaces in R 3 , Hopf ( 5 ) proved that CMC immersed spheres are geodesic spheres. Here again, the result is not true in general since, we know examples of CMC spheres in higher dimension which are not geodesic spheres (see 6 ).

The goal of this article is to find an alternating assumption to the embedding such that under this assumption, CMC hypersurfaces are geodesic spheres. It is a well-known fact that if the mean curvature H and the scalar curvature Scal are both constant, then the hypersurface is a geodesic sphere. We will show a stability result associated to this assertion. Namely, we have the following result which was proved for δ = 0 in ( 7 ). The cases δ > 0 and δ < 0 are new. Theorem 1.1. Let (M n , g) be a compact without boundary, connected and oriented Riemannian manifold, isometrically immersed into the simply connected space form M n+1 δ of constant sectional curvature δ. Let R be the extrinsic radius of M . If δ > 0, we assume that R < π

4 √ δ . Let h > 0 and θ ∈]0, 1[. Then, there exists ε(n, h, R, θ) > 0 such that if • |H -h| < ε and • |Scal -s| < ε for a constant s, then h 2 -s n(n-1) + δ
Aε, for a positive constant A depending on n, h, δ and R, and M is diffeomorphic and θ-almost isometric to a geodesic sphere in M n+1 δ of radius t -1 δ 1 h , where t δ is the function defined in Section 2.

Remark 1.1. By θ-almost isometric, we mean that there exists a diffeomoprhism F from M into a geodesic sphere of appropriate radius such that Then, from this stability result, we will deduce a new characterization of geodesic spheres in R n+1 with a weaker assumption on the scalar curvature (see Section 4).
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Preliminaries

Let (M n , g) be a n-dimensional compact, connected, oriented Riemannian manifold without boundary, isometrically immersed into the (n + 1)dimensional Euclidean space (R n+1 , can). The (real-valued) second fundamental form B of the immersion is the bilinear symmetric form on Γ(T M ) defined for two vector fields X, Y by

B(X, Y ) = -g ∇ X ν, Y ,
where ∇ is the Riemannian connection on R n+1 and ν a normal unit vector field on M . When M is embedded, we choose ν as the inner normal field.

From B, we can define the mean curvature,

H = 1 n tr (B). Now, we recall the Gauss formula. For X, Y, Z, W ∈ Γ(T M ), R(X, Y, Z, W ) = R(X, Y, Z, W )+ AX, Z AY, W -AY, Z AX, W (1) 
where R and R are respectively the curvature tensor of M and M n+1 δ , and A is the Weingarten operator defined by AX = -∇ X ν.

By taking the trace and for W = Y , we get

Ric(Y ) = Ric(Y ) -R(ν, Y, ν, Y ) + nH AY, Y -A 2 Y, Y (2) 
Since, the ambient space is of constant sectional curvature δ, by taking the trace a seconde time, we have

Scal = n(n -1)δ + n 2 H 2 -|A| 2 , (3) 
or equivalently

Scal = n(n -1) H 2 + δ -|τ | 2 , (4) 
where τ = B -HId is the umbilicity tensor. Now, we define the higher order mean curvatures, for k ∈ {1, • • • , n}, by

H k = 1 n k σ k (κ 1 , • • • , κ n ),
where σ k is the k-th elementary symmetric polynomial and κ 1 , • • • , κ n are the principal curvatures of the immersion.

From the definition, it is obvious that H 1 is the mean curvature H. We also remark from the Gauss formula (1) that

H 2 = 1 n(n -1) Scal -δ. (5) 
On the other hand, we have the well-known Hsiung-Minkowski formula

M H k+1 Z, ν + c δ (r)H k = 0, (6) 
where r(x) = d(p 0 , x) is the distance function to a base point p 0 , Z is the position vector defined by Z = s δ (r)∇r, and the functions c δ and s δ are defined by

s δ (t) =    cos( √ δt) if δ > 0 1 if δ = 0 cosh( √ -δt) if δ < 0 and s δ (t) =      1 √ δ sin( √ δt) if δ > 0 t if δ = 0 1 √ -δ sinh( √ -δt) if δ < 0
Finally, we define the function t δ = s δ c δ . We finish this section of preliminaries by the following recalls about the first eigenvalue of the Laplacian. In ( 8), Heintze proved the following upper bound for λ 1 (∆)

λ 1 (∆) n(||H|| 2 ∞ + δ), (7) 
with equality for geodesic sphere. Grosjean ( 9) proved a stability result associated to Heintze's estimate. Precisely, he proved the following Theorem 2.1 (Grosjean, 2007). Let M be compact without boundary, connected and oriented hypersurface of

M n+1 δ . If δ > 0, we assume that M is contained in an open ball of M n+1 δ of radius π 4 √ δ . Let θ ∈]0, 1[, then there exitst a constant C θ (n, ||B|| ∞ , V (M ), δ) > 0 such that if n(||H|| 2 ∞ + δ) -C θ < λ 1 (∆),
then M is diffeomorphic and θ-almost-isometric to a geodesic sphere of radius n λ1 .

Now, we have all the ingredients to prove Theorem 1.1.

Proof of Theorem 1.1

We begin the proof of Theorem 1.1 by the following lemma.

Lemma 3.1. Let h and s be two positive constants. If the mean curvature and the scalar curvature satisfy

• |H -h| < ε and • |Scal -s| < ε,
for some positive ε, then

h 2 - s n(n -1) + δ Aε,
where A is a positive constante depending on h, R, n and δ.

Proof. The proof of this lemma comes directly from the Hisung-Minkowski formula (6). Indeed, the Hisung-Minkowski formula for k = 1 is the following

M H 2 Z, ν + c δ (r)H = 0. ( 8 
)
Since we assume that |Scal -s| < ε, we get easily from ( 5) that

H 2 - s n(n -1) -δ < 1 n(n -1) ε. (9) 
For more convenience, we will denote h 2 = s n(n-1) -δ. Then, from ( 8)

0 = M H 2 Z, ν + c δ (r)H = M h 2 Z, ν + c δ (r)H + M (H 2 -h 2 ) Z, ν = h 2 h M h Z, ν + M c δ (r)H + M (H 2 -h 2 ) Z, ν = h 2 h M H Z, ν + h 2 h M (h -H) Z, ν + M c δ (r)h + M c δ (r)(H -h) + M (H 2 -h 2 ) Z, ν
Now, we use the Hsiung-Minkowski formula for k = 1, that is

M H Z, ν + c δ (r) = 0, (10) 
to get

0 = - h 2 h M c δ (r) + h 2 h M (h -H) Z, ν + M c δ (r)h + M c δ (r)(H -h) + M (H 2 -h 2 ) Z, ν = h - h 2 h M c δ (r) + h 2 h M (h -H) Z, ν + M c δ (r)(H -h) + M (H 2 -h 2 ) Z, ν
Then, since s δ is an increasing function, we deduce

h - h 2 h M c δ (r) h 2 h ε M s δ (R) + ε M c δ (r) + ε n(n -1) M s δ (R)
Using the fact that |H 2 | H 2 , we deduce from the assumptions on h and h 2 that

|h 2 | h 2 + A 1 (n, h, δ)ε,
and then we have

h - h 2 h M c δ (r) ε M c δ (r) + A 2 (n, h, δ) M s δ (R)
We conclude using the fact that V(M) M c δ (r)

A 3 (n, δ, R)V(M), which yields |h 2 -h 2 | A 4 (n, h, R, δ)ε,
which gives the wanted assertion.

Let 0 < ε < 1. We will precise this ε later. We assume |H -h| < ε and |Scal -s| < ε, then from (3) and Lemma 3.1, we have

|τ | 2 = n(n -1)H 2 -Scal (11) A (n, h, R, δ)ε.
This means that M is almost umbilical. Moreover, since |H -h| ε, Inequality ( 11) is equivalent to

|B -hId | A (n, h, R, δ)ε. (12) 
This last inequality combining with the Gauss formula (2) yields

Ric(Y ) -(n -1)(h 2 + δ)|Y | 2 A (n, h, R, δ)ε. (13) 
Now, we use the Lichnerowicz formula ( 10) to obtain the following lower bound of the first eigenvalue of the Laplacian on M

λ 1 (∆) n(h 2 + δ) -α 1 (ε), (14) 
or equivalently

λ 1 (∆) n(||H|| 2 ∞ + δ) -α 2 (ε), (15) 
where the positive fonctions α 1 and α 2 depend on n, h, R and δ and tend to 0 when ε tends to 0. Now, since we fix θ ∈]0, 1[. Since α 2 tends to 0 when ε tends to 0, there exists ε 1 (n, h, R, δ) > 0, such that α 2 (ε 1 ) θ 2 . Then, we use Theorem 2.1 to conclude that M is diffeomorphic and θ 2 -quasi-isometric to a geodesic sphere of radius n λ1 . Moreover, because of the pinching of λ 1 (∆), the raddi 1 h and n λ1 are close. So, there exists ε 2 (n, h, R, δ) > 0 such that geodesic spheres of radii 1 h and n λ1 are θ 2 -quasi-isometric. Then, we take ε = inf {ε 1 , ε 2 } and then M is θ-quasi-isometric to a geodesic sphere of radius 1 h .

Rigidity results in the Euclidean space

For the Euclidean case, that is δ = 0, we can obtain form Theorem Proof. This corollary is a direct consequence of Theorem 1.1. Indeed, we know that there exists a diffeomorphism F from M to S n 1 h . But, in the Euclidean space, this diffeomorphism is explicit. Namely,

F (x) = 1 h φ(x) |φ(x)| ,
where φ is the immersion on M into R n+1 . See ( 11) to get this expression. The fact that F is a diffeomorphism implies that the immersion φ is necessarly a one-to-one map, that is an embedding. Since M is embedded with constant mean curvature, it is a geodesic sphere by the Alexandrov theorem. Now, we state a second characterization of geodesic spheres. Corollary 4.2. Let (M n , g) be a compact, connected and oriented Riemannian manifold without boundary isometrically immersed into R n+1 . Let s be a positive constant. Then, there exists ε(n, s) > 0 such that if (1) Scal = s (2) |H -h| ε, for some constant h, then M is a geodesic sphere of radius n(n-1) s .

Proof. The proof is the same, using an Alexandrov type theorem for the scalar curvature due to Ros ( 2 ).

This second corollary gives a partial answer to a conjecture by Yau which states that the only immersed hypersurfaces of the Euclidean space with constant scalar curvature are geodesic spheres.
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 12 for any x ∈ M and any unit vector u ∈ T x M . The extrinsic radius of M is the radius of the smallest closed ball in M n+1 δ containing M .

  Note that in this result, ε does not depend on the extrinsic radius R. Indeed, since the mean curvature is constant, from (10), we have
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M Z, ν = 1 h V(M). So we do not have to control the extrinsic radius.
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