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Iterations of the Sawtooth Map as a Dynamical Model for
CVD/CVI SiC Polytype Growth

Gérard L. Vignoles
Laboratoire des Composites Thermostructuraux (UMR 47 CNRS-SEP-UB1),
Domaine Universitaire, 3, Allée La Boétie, F33600 Pessac

Abstract.

In order to describe silicon carbide polytype growth in
CVD/CVI conditions, a dynamical model based on the iterations of the
sawtooth map has been studied. A two-parameter bifurcation diagram has
been computed for a simple logistic-like family, and its structure has been
studied in more detail by means of kneading theory and study of the
skeleton. All the routes to chaos are shown to derive from the application of
a central theorem involved in the construction of the skeleton. Comparison,
under a combinatorial point of view, between this mathematical model and
the reported data on known SiC polytypes is achieved and discussed.
Indeed, the model is able to generate any periodic or chaotic polytypic

sequence.
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Introduction.

The study of silicon carbide polytypism in far-from-
equilibrium growth conditions, such as CVD and CVI from halogenosilane-
hydrogen mixtures, has recently led to the formulation of a dynamical
model based on the iterations of a one-dimensional mapping [Vignoles,
1992]. The aim of the present contribution is to analyse on a more

theoretical point of view the properties of this dynamical system.

Using experimental data on the deformations of atomic Si-C
bilayers [Cheng et al., 1990] and linking them with their relative
orientations, a relation has been found between the relative deformation &,
= (L, 1)1, (L, and 1, being respectively the interlayer and intralayer bond
lengths) of any layer n, and the deformation §,; of the next layer n+1, as a
function £:3, > ,,,, whose plot is shown in Fig. 1. Its shape is characteristic
: there is a critical value $* in the interval so that the function is
continuous and increasing in both of the subintervals defined by 8*. The
discontinuity at 5* makes the graph look like a sawtooth, so the name
"sawtooth map" will be used to refer to such an endomorphism. Each of
the two subintervals is related to one of the two possible orientations of the
bilayer (namely, h and k for hexagonal and cubic packing), and the iteration
of the mapping generates orientation sequences deduced from the position
of the variable 8, relatively to &* According to the particular shape of the
graph of f, these sequences may converge to some steady state, or to a
periodic regime, OTr exhibit a chaotic behavior, a fact that accounts
qualitatively for the diversity of SiC polytypism [Verma & Krishna, 1966 ;
Fisher & Barnes, 1990].

1t is of a particular interest to characterize these orientation
suites, to classify them, to compare them with the suites experimentally

encountered in the polytypes of SiC or other similar materials, to relate
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them with control parameters, and to prove the onset of chaos, so as to
account for the existence of both periodic and chaotic polytypes of SiC.

This can only be made through a better understanding of the mathematical

properties of the model.

To do so, a study will first be made on a "model family" of
sawtooth maps, in order to recognize all the possible permanent regimes
obtained by variations of the shape of the plot. This will be done by drawing
a two-parameter bifurcation map of the model family. Secondly, it will be
attempted to highlight the combinatorial properties of this family and to
show to which extent they are common to all the sawtooth maps, by means
of the algebra of the itineraries and of the kneading theory [Milnor &
Thurston, 1988]. The main results of this part are that (i) any sequence
occurs by a two-parameter variation of the function, and (ii) a boundary for
topological chaos is determined. A comparison with the reality of polytypism

is then made.
1. Study of a Model Family of Sawtooth Maps.
1.1. Definition of the model family.

For sake of simplicity, and without loss of generality, an
example family of functions will be studied, with a particularly simple
mathematical expression, inspired from the well-known logistic function
[May, 1976], and aiming at having a complete family, as defined by [Collet
& Eckmann, 1980]. Its expression is the following :

T 0,11 =10, 1

fulx) =40 x(1-x) x<05 5 4y 0] eY)
Falx)=1-4h,x(1-x) ifx>0.5

As the expression in (1) depends on two parameters, A, and A,

it is said to define a 2-parameter family of mappings of the unit segment
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[0,1]. The plot of f Ay is made of two parabolic curves of opposite curvature,
as shown in Fig. 2. The parameters monitor the height of these curves in an

independent but symmetric fashion.

In order to modelize analog-to-digital signal converters,

functions of the class of fll’;\? have already been studied in [Leonov, 1959 &
1960] and [Mira, 1978], namely :

W0t XES {Tl(x)=v+k1x ifx<0

T,(x)=-1+A,x ifx>0 2

The three-parameter study of this family has led to introduce
the notion of degree of complexity of itineraries [Fournier-Prunaret, 1991],

which will be used in the discussion.

Another study, in [Feely & Chua, 1992], concerning the

following function :

Uyt 12 A,x+ X, —sgn(x) (3)

1)

where A1 > 1 has been performed in order to complete Leonov's

results. A complete discussion of the admissibility of periodic (unstable)

itineraries in the (A1,\2) parameter space has been given.

From an initial value, the function fMJ»z allows to generate a
suite x, = f(xo), X, = fx)), X3 = f&x), X =f,): The set I K, O -
the trajectory of x, under the action of f;m)\?. The iteration of f constitutes
a discrete dynamical system, in which a variable evolves with time, here

represented by the integer index n.

It has already been pointed out that the left part of f
corresponds to the orientation h, and the right part to k ; thus, a trajectory
has an underlying h-k sequence. This suits well the mathematical

definition of itineraries [Sharkovskii, 1964 ; Stefan, 1977 ; Metropolis et
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al., 1973]. Let us recall first the definition of an itinerary suitable to this

case : at each iteration, the position of x, is considered in relation with the

discontinuity x* and a letter U, is attributed in each case :
U, =Lifx, e [0x*;
U, =Cifx, =x*; 4)
U, =Rifx, e Ix*1].

The U, suite is called itinerary of the point xo. From a physical
point of view, the letters L and R match respectively with the orientations k
and h, and the letter C is physically unlikely to occur. Other conventions
have already been used to describe itineraries. Leonov [1960] uses directly
the expression T1 when the left hand of the graph is used and Tg for the
converse case. Many authors [e. g., Feely & Chua, 1992 ; Isola & Politi,
1990] use the numbers 0 for left and 1 for right, a convention which leads to

the build-up of a sequence algrebra, as shown in later sections.
1.2. Discussion of the two-parameter bifurcation diagram.

Attention will be only paid to the permanent part of the
trajectories, since the phenomenon intended to be accounted for is a crystal

layer-by-layer growth on a possibly large number of layers.
1.2.1. Computer simulation.

It is possible, by means of an extremely simple computer
program, to sketch the long-time behavior of the mapping according to the
two parameter values. Any mapping will be represented as a point in a
discretized (A,,A,) parameter plane. For each couple of parameters, a large
number of initial iterations are performed. An arbitrary initial value of 0.3
has been taken for all calculations. Then, periodicity is detected on a sample

trajectory up to some limit. As the aim is to deal with orientation sequences,
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a parallel production of such sequences is produced by the computer and
used to determine periodicity through an autocorrelation criterion
computation. Consequently, this method does not focus on the true
periodicity of the mappings, which can be different from the periodicity of
the derived sequences. Associating a color to the period p found for each
point from a 158-color palette, one obtains the two-parameter bifurcation

diagram shown in Fig. 3a. At first sight, some remarks have to be made.

First of all, the diagram exhibits axial symmetry relative to the
first diagonal of equation A, = A,,which is not surprising in relation to the
symmetric role of the two parameters. Secondly, the diagram is neatly
divided in two parts : one steady-state (period 1) part for 4, < 0.5 or A, < 0.5,
and a very complicated part consisting of points of periodic (1 < p < 156) and
"aperiodic" (p > 156) behavior.

1.2.2. Steady-state behavior.

The steady-state regimes correspond to the existence of
attractive points on the graph. For example, if A, < 0.5, there exists an x €
[0,0.5] so that f(x) = x and that \ f'(x)] < 1, as depicted in Fig. 4a. The iterates
of f tend to converge towards this point. When both A and A, are inferior to
0.5, two stable attractors coexist, each one attracting the points in its

respective basin of [0,11.

The loss of stability for the steady states occur when any of the
two parameters gets superior to 0.5. For example, when A1 passes through

this value, the intersection of the first part of the curve and the diagonal

(with \ fa ;\Ql < 1) collides with the discontinuity and then disappears.
1

1.2.3. Direct and inverse cascades.

The most interesting part of the graph is obviously the most

complicated one, located in the square [0.5,1] x [0.5,1], illustrated in Fig. 3b.
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The largest periodic zone is a fish-like symmetrical zone made
of a body and two tails, further called a "fish" for sake of abbreviation. This
zone corresponds to stable period-2 regimes, of repeated sequence hk, as
illustrated in Fig. 4b. The boundaries of the body of this fish correspond to
the crossing of one of the two periodic points through the value 0.5. As a
matter of fact, the exact analytical expression of these curves can be found

by solving the following equations :

F2(1/27) = 1/2 (5a)

f2(1/2+)=1/2 (5b)

Eq. (5a) and (5b) mean that a two-period cycle collides into the
discontinuity respectively by the left side and by the right side. The

expression of 2(x) is the following :

N L. Ffx)(1-f(x)) if f(x)<1/2
FO=1 a0 - £) i £()>1/2
161, 2x(1— x)(1— 4A,x(1- x)) if f(x)<1/2andx<1/2
1- 160 x(1-x)(1-4Ax(1-x))  if f(x)>1/2 andx<1/2 -
T 1604, (1 42, x(1— x))x(1 - x) if f(x)<1/2 andx>1/2
1-160,7(1- 4h,x(1-x))x(1-x)  if f(x)>1/2 andx>1/2
1/2- belongs to the second case ; the resolution is then very simple :
f5)=1
o 1—16117L2x%(1—4k, x%):%
oel-m01-1)=4
earl-1)=Y%
1
Sy (7a)
< )"2 87"1(1_ 7‘1)
In the same way, (5b) leads to :
% s 1 (Tb)
)}

) 87‘2(1 - 7‘2)
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(7a) and (7b) are the equations of two hyperbolic-like curves in
the (A;,Ay) plane limiting the body of the period-2 fish. This calculation
shows the critical importance of the trajectories of the critical points 1/2-

and 1/2+. Indeed, they will be used in a further section for the combinatorial

study of the bifurcations.

On each side of the period-2 zone are located other fish-like
zones of period 3, 4, 5, 6, etc... building up a direct cascade of bifurcations
when one of the parameters is increased. As the sequences series are hk,
hkk, hkkk, ... and hk, hhk, hhhk, ..., they are the exact equivalent of
Mira's "boxes" of first degre of complexity in the "boxes-in-files" bifurcation

structure described for Leonov's mapping [Gumowski & Mira, 1980].

A closer glance permits to see that between any of the fishes,
there are smaller ones, whose period is the sum of its two bigger neighbors,
e. g. a period 5 fish is located between fishes of period 2 and 3. This remark

may be translated into a "fish reproduction rule" [Leonov, 1959] :

e Rule R1 : Between two fishes of same degree of complexity and of
period p and g, there always exists a fish of period (p + Q).

An illustration of R1 is shown in Fig. 5a. More precisely, R1
can be expressed by means of a "+" operation between two fishes of the

same complexity :
(RL)~ + (RLL)* = (RLRLL)" (8)

This relation may be translated using the traditional polytype

notations :
_ h-k notation [Jagodzinski, 1949] : hk + hkk = hkhkk (8"

_ Zhdanov notation [Zhdanov, 1945] : (2) + (3) =(23) (8"
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— Ramsdell notation [Ramsdell, 1947] : 4H + 6H = 15R. (8"

As a matter of fact, the period-2 fish lies between two "period-
1" (i. e. steady-state) zones and is itself a consequence of that construction
rule, but applied to "fishes" of degree 0. Moreover, between period 2 and
period 1, one finds a period 2+1 = 3, between 3 and 1, there is a fish of

period 3 + 1 = 4, and so on... : the direct cascade is deduced from rule R1.

Looking closer at the disposition of the fishes between the
period-2 and period-5 ones, the following order can be seen : 2-...-13-11-9-7-
5, which corresponds to an inverse cascade. So rule R1 gives rise to both
direct and inverse cascades, which are indeed intricate in a recursive
fashion : it is always possible to find an inverse cascade between two terms
of a given direct cascade, and to find a direct cascade between two terms of

an inverse one. Some consequences appear :

— Any fish body is an accumulation locus for direct and inverse

cascades on both sides [Leonov, 1959].

— Two fishes of a same degree of complexity are disjointed [Leonov,

1959].

_ The intrication of cascades is in some sense equivalent to the

structure of the devil's staircase [Feely & Chua 1992].

This gives a larger understanding of the similar recent results
obtained for the "gap map" [De Souza Vieira et al., 1987 ; Chia & Tan,
1992].

All the fishes constructed by means of rule R1 have their nose
in common. For example, the period-2, -3, -4, etc... fishes already mentioned
share a common nose at (0.5,0.5). It can be said that a complete "boxes in

files" bifurcation structure hangs to this nose.
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1.2.4. Subharmonic cascades.

Between the two tails of the period-2 fish lies a smaller one of
period 4, then another still smaller of period 8, and so on.... These fishes
accumulate along the first diagonal up to a point where A, =X, = A(=) < 1.
Past this point, no periodicity is detected. This phenomenon is a
subharmonic cascade. Its mechanism is different of the cascade first
described by Myrberg [1963] and, in the case of the logistic map, by [May,
1976 ; Collet & Eckmann, 1980; Feigenbaum, 1978], because it is linked to
the presence of a discontinuity rather than to the passing through the value
-1 of the eigenvalue. However, the same "boxes in boxes" structure
[Gumowski & Mira, 1980] is displayed. The figure 5b illustrates this
phenomenon. It is even possible to determine the convergence rate
[Feigenbaum, 1978] along the main diagonal, expressed as :

where A stands for the parameter value where the period n cycle
appears. In this case, §; is found to converge to 4,699..., that is, exactly the
Feigenbaum constant determined on the logistic map case. The value of the
accumulation point AL is equal to the value found for the logistic map too.
This is a striking fact, as the sawtooth map does not have the same number
of critical points as the logistic map, and not the same bifurcation
mechanism. Indeed, the only common point between the two maps is the

use of quadratic expressions.

One finds smaller fishes not only between the two tails of a
bigger fish, but also at the crossing of tails of two different fishes, which
may have different degrees of complexity. In this case, it has been verified
that the period of the smaller fish is the sum of the periods of the bigger

ones, which leads to the expression of a second rule, illustrated in Fig. bc:
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e Rule R2 : At the crossing of two fish tails of period p and ¢, there
lies a fish of period (p + q).

Because of the first rule, there is not only one fish at the

crossing of two tails, but a whole "boxes in files" structure, produced by

direct and inverse cascades.

Focusing attention on itineraries, it can be seen that the
obtained sequence is not a simple concatenation of the starting sequences :
indeed, the last term of the first itinerary and the first term of the second
itinerary are inverted, i. e. transformed in R if it is L and L if it is R. For
example, the fish that lies below the intersection of the tails of (RL)~ and
(RLL)> has periodic itinerary (RRLLL)™. This may again be expressed with

a "L" operation :
(RL).. L (RLL),, = (RRLLL)., 9

and translated again into other notations as :

hk | hkk = hhkkk (99
(2)L(3)=(14) 9"
4H 1 6H = 15T 9"

(note that the 15T sequence has never been mentioned in studies on

SiC polytypism).

This operation is not commutative : to obtain the appropriate
result, one has to describe the itineraries by placing first the largest
number possible of R, and set as a first operand the itinerary of the fish
closest to the first diagonal ; this is for the case where the intersection lies
in the part where there are more R's than L's in the itineraries, and the

symmetrical procedure is made in the converse case.
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The series of itineraries for the period-doubling cascade arising
from the hk fish is : hk, hhkk, hhkhkhKk, ..., a series for which Myrberg's
ordering law [Myrberg, 1963 ; Metropolis et al... 1973 ; Mira, 1984], does
not hold. It is an illustration of the fundamental difference between this

cascade and the period-doubling cascade of the logistic map.

The infinite application of rules R1 and R2 leads to the fractal
appearance of the diagram, that is, its self-similarity [Mandelbrot, 1989]. A
close-up of Fig. 3b is shown in Fig. 3¢, illustrating this fact.

The two-dimensional point of view permits to understand
better the structure of the routes to chaos observed in one-dimensional
families. Indeed, these are obtained by following any curve inside the (A1,A2)
plane. A striking fact is that the 2-dimensional regularity is lost when the
curve is not a particular one : sudden interruptions appear, giving rise to

irregular cascades where the rules R1 and R2 appear to be hidden.
1.2.5. Coexistence of stable periodic regimes.

It is easy to see that, in Fig. 3¢, the intersection of two fish tails
of different periods p and g has itself a complex structure where the
period-g points form a fractal ensemble inside the crossing area. This is
actually due to the fact that the same initial value is taken for all the
calculations, in a region where two periodic cycles are stable together,
possibly with intertwined fractal-shaped attraction basins, as shown in
[Grebogi et al..., 1987] for some two-humped 1D endomorphisms. A

consequence of this fact is that all the fish tails, in contrast with the bodies,

have a fractal structure.
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1.2.6. Characterization of chaotic behavior.

The algorithm described above is not sufficient to settle any
evidence of chaos, so another one has been used, based on the criterion of
sensitivity to initial conditions [Guckenheimer, 1979], expressed by the

positiveness of the largest Lyapunov exponent, given by the following

formula [Collet & Eckmann, 1980] :

_m 21 df(x

(10)

=2,

Accordingly, a computation of j1; has been made for each point
of the discretized (A1,A2) plane, and a black pixel has been associated to the
points where p; is positive. The result is shown in Fig. 6. The dark zone
satisfying the chaoticity criterion is very similar to the zone of period > 156
in Fig. 3b, to the extent of computer precision. It exhibits a fractal contour
whose dimension can be measured, for example following the approach of
Richardson & Kaye [1989]. In this case, the value is found to be #1.63, i.e.,
to the computation's precision, the ratio In(4)/In(3), exactly as for von Koch's
snowflake [Mandelbrot, 1989]. Indeed, Mira [1988] has already pointed out
that the construction of the boxes-in-files structure is in some sense a

"geometrical inverse” of Von Koch's construction.
2. Symbolic Dynamics and Kneading Theory.

In order to deal with the combinatorial properties of the
sawtooth maps regardless to any particular analytic expression, attention
will be paid to the itineraries associated to trajectories, and more precisely
to those of x_ = 1‘m;1<x'f(x) and x,= 1x1r§1>x‘f(x) called kneading
sequences [Milnor & Thurston, 1988]. It will be seen that they are of

particular interest in the characterization of the various cascades and in the

proof of chaos. Some definitions are needed prior to any further study.
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2.1. Admissible sequences.

A simple question is : does any sequence of R's, L's, and C's
represent an itinerary of a sawtooth map? In other words, what are the
criterions for a sequence to be admissible as an itinerary? Two cases may
occur :

— the sequence is made of an infinite suite of R's and L's only ;
— the sequence includes the letter C at a given index.

In the first case, there is no particular restriction in the choice
of letter, while in the second case, what follows the letter C is the itinerary
of either x| or x*, according to the particular definition of the function. For
this reason, it is preferred to "cut’ the sequence after the letter C, which
leads to the following admissibility criterion [Collet & Eckmann, 1980 ;
Metropolis et al., 1973] :

e A sequence is admissible as an itinerary if and only if it is
constituted of either an infinite sequence of R and L, or of a sequence of R

and L followed by the letter C.
9.2. Numerical representation of itineraries.

It can be seen to which extent this definition suits the case of
sawtooth maps by establishing a 1-1 correspondence between itineraries

and real numbers of the unit interval, inspired from [Isola & Politi, 1990] :

e Given an admissible sequence I = U,U,UUs..., the real number r

associated to I is the following, in binary notation :

4 =0ifU;=L

_ - (11)
r=T(1)=0.ddd,d;....d;.... With {d.- e
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Thus, sequence C corresponds to 0.1 in binary notation or 1/2
or 0.5 in common representations ; LC corresponds to 0.01 or 1/4 or 0.25 ;
RC corresponds to 0.11 or 1/2+1/4 or 0.75, etc.... T'is a 1-to-1 relation, whose

reciprocal transformation is defined as follows :

e Let r be a real number of [0,1] such that its decimal part is

0.d,d,d,d,....d, ,1000.... in binary notation. Then the associated itinerary is :

U.=Lifd =0
1=S(r)=U,UU,U,...U,_C with{ '
(r) oViY2Ms w1 W1 {Ui=Rifd‘.=1 (12)

If the decimal part is infinite, the letter C is never encountered. Note
that the number 1 can be equivalently represented as 0.111111... and has

associated itinerary R
2.3. The shift operator.

If I = UyU,UyUs.... is the itinerary associated to the real x, then
the itinerary associated to f(x)is I' = U, GUgUy.... = o(D). The operation G is

simply a rightwards shift operation.

Let us examine how this operation is translated in terms of

binary representation of numbers, by comparing r = 0.dyd,d,d,.... and
T(0(S(r))) = 0.didydsdls.- Two cases can occur :
_If r < 0.1, then it is written 0.0d,d,d;..... The effect of o is to

move from :

(0+0x Y5+, x Y+ dyx Yo+
to:
(0+4, x%+d2x%+....),

which is nothing else than multiply r by 2.
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—If r 2 0.1, then it is written 0.1d,d,d,..... The effect of ¢ is to

move from :

(0+1xy2+d,x%+d2><%+....)

(0+d1 x ) +d, x%+....),

which is the same thing as remove 1/2 to r, and multiply the
result by 2.

Finally, the equivalent of o for real numbers is the following

function :
g[0;1] - [0;1]

r}—){ 2rsir<y2 (13)
2

r—yz) sirZ%

The scheme below shows the relations between ¢ and g:

___S_>
] - r
l T
Y g
S (14)
I ————
I
T

The function g = ToooS is the simplest possible sawtooth map,

whose graph is made of two line segments, as shown in Fig. 7. It is related

to the functions defined in (1) by a transformation which is continuous,

derivable and increasing on [0,1/2[ and on 11/2,1] — a fact that does not

ensure topological conjugacy with these functions.
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2.4. A natural ordering of itineraries.

The letters L, C and R are related to values of x respectively
inferior, equal and superior to x*. As a consequence, it is natural to

introduce an ordering between these letters :

L<C<R (15)

In a more general way, an ordering can be applied to sequences
of any length, based on the fact that f is increasing everywhere it is

continuous :

o If I = UyU;UyUs.... and J = V(VV,V3.... are two sequences and i the
first index for which U; # V;,, thenI>J & U; > V;,.

This relation is simpler than the one defined for itineraries of

the logistic mapping, as this function is decreasing past x*.

A useful remark has to be made then : as there exists a 1-1
relation between itineraries and real numbers of [0,1], the ordering defined
above is directly a transposition of the usual ordering of real numbers, so

that :
e If I and J are two itineraries, then 1<J o T < TJ).
2.5. The kneading sequences.

Two itineraries are particularly interesting for a given function
f : the itinerary of f(x:), with x_ = Hl;i'n,lq' f(x), hereafter denoted by K_, and
the one of f (x:), with x; = x_'111_113”‘ f(x)’, denoted by K,, and called kneading
sequences because they rep'resent in some sense a maximum and a
minimum for the possible sequences [Milnor & Thurston, 1988]. In the case
of the functions f, it is evident that, when o\ € [0,5,11x[0,5,1], K. begins

with an R and K, begins with an L.
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The following developments are essentially inspired from the
works of [Zheng & Lu, 1991] concerning the gap map [De Souza Vieira, et
al., 1987, Chia & Tan, 1992]. The main idea is that a given endomorphism
is characterized by its kneading sequences. Indeed, the "kneading
character” leads to a condition for any itinerary I to be admissible for the

map, written in terms of K, and K :

e L(D <K_and R(D) > K,, where L(D) = {Y|I =XLY)
(16)

and R(D = (Y|I =XRY)
L(I) is the set of subsequences of I that follow the letter L, and
R(D) is similarly defined.

2.6. The skeleton of the bifurcation diagram.

Applying criterion (16) to K, and K_themselves, it is possible to
determine systematically which couples (K K,) do actually represent a
sawtooth map. Indeed, they have to knead themselves and each other,

which can be translated into the following conditions :
L(K_K,) <K and REK_ K,) > K, an

In particular, (17) implies that K, has to be minimal, i.e.

inferior to any of its shifts, and that K_has to be maximal.

Focusing the interest on finite (superstable) kneading
sequences, which are in some sense boundaries for regions of periodic
behavior, a skeleton is drawn in Fig. 8, where lines in a (K,K,) plane stand
for allowed sequences of length up to 6. Any crossings between these lines
satisfy the conditions (17) ; the contact points satisfy only L(K,) < K. and

R(K) = K,. These contacts do represent maps if the following additional

condition is satisfied :
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* Let (K ,K,) be equal to (XC,YC), with L(YC) < XC and R(XC)

> YC. This couple represents a map if and only if R(XLY*) > YC or L((YR)=)
<XC.

The diagram in Fig. 8 displays a striking similarity with Fig.
3b, which confirms the interest of the kneading theory in the understanding
of the bifurcations of the sawtooth map. As an example, the limiting curves
of the body of the period-2 fish correspond to the collision of one of the two
points of the periodic orbit (of sequence (LR)~) with the discontinuity, i. e.,

where :
K =RC, (18a)
or K, =LC. (18b)

(18a) and (18b) are the exact counterparts of Egs. (7a) and (7b) in the
(K_K,) plane. Keeping in mind this relationship between the skeleton and
the bifurcation diagram of the family (1), the properties of the former will be

exploited to have a more precise insight of the latter.
9.7. Generation of contacts and crossings in the skeleton.

The structure of the skeleton is owed essentially to a main

property, described in the following fundamental theorem :

e Theorem T1 : If (KK, =(XCYC)isa contact, then (XRYC,YC) and

(XC, YLXC) are also contacts.

The proof, as inspired from [Zheng & Lu, 1991], is reported to
Appendix A.1. An immediate consequence of T1 is that a third contact — in
fact, a crossing — is generated : (XRYC, YLXC). The four couples enclose a
rectangle [XC ,XRYC]X[YLXC,YC], hereafter referred to as the direct
shadow of the crossing (XRYC,YLXO). The area defined by K- < XRYC and



20
The Sawtooth Map and the growth of SiC polytypes

K, > YLXC, which contains the direct shadow, will be merely called the
shadow of (XRYC,YLXC) [Zheng & Lu, 1991]. Inside a direct shadow, there
is no other contact between finite sequences, as proved in Appendix A.2.
From this proof, it is also seen that the only possible couple of kneading
sequences inside this area is (XRYL)>,(YLXR)~). Even though, there are
normally many possible itineraries for the latter map, because any itinerary
admissible for a contact belonging to the shadow of a crossing is also
admissible for that top crossing. It should be kept in mind that all these
itineraries can correspond to stable or unstable orbits for a particular form
of the mapping. Determining which periodic orbits are stable and which are
not is beyond the scope of this paper. However, it can be pointed out, as the
direct shadows are the counterparts of the fish bodies in Fig. 3b, that the
only stable periodic orbit inside a fish body corresponding to the direct
shadow of (XRYC,YLXC) appears to be XRYL)>.

On the basis of this last remark, the skeleton of Fig. 8 has been
colored in the same way as the bifurcation diagram of Fig. 3b, allowing to
enhance further the similarity between them. The zones equivalent to the
fish tails appear then as the strips enclosed between the line corresponding
to the curve limiting the body and the inside of the tails, and the
accumulation locus of the lines corresponding to the cascade closest to the
tail. For example, the period-2 fish is represented by the direct shadow of
(RC,LC) for its body, by the lines K. = RC and K, = LC for the inside limit of
its tails, and by the accumulation loci of the families of lines K. = (RL)"C
and K, = (LR)"C. Indeed, it is easy to prove that (RL)> is admissible if K- <
RC or K, = LC ; however, (1) this itinerary coexists only with R% and L> —
which are unstable — inside the direct shadow of (RC,LC), and (i) it coexists
with many other periodic orbits — possibly stable too — outside this region.

This latter fact will be used in the demonstration of topological chaos.
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Another consequence of theorem T1 is an explanation of the
rules R1 and R2 in the bifurcation diagram. The generation of a direct
shadow by T1 out of a crossing implies the character of additivity of rules
R1 and R2. Namely, if [(X) is the length of X and I(Y) the length of Y, then
IXRYC) = (YLXC) = I(XC) + I(YC) = IX) + [Y) + 2. If (XC,YC) is a contact,
then T1 leads to rule R1, and if it is a crossing, then it corresponds to rule
R2. This follows from the fact that if (XC,YC) is a contact, then it is adjacent
to some direct shadow, while if it is a crossing, it is not adjacent to any

direct shadow and consequently represents the intersection of two tails.
2.8. Self-similarity of the diagram.

The repetition ad infinitum of theorem T1 (or of rules R1 and
R2) leads to the self-similar structure of the skeleton, and of the
bifurcation diagram related to it. Indeed, it is possible to recognize some
transformations of the (K.,K}) plane which relate parts of the diagram with
smaller ones ; they can be very useful for a study of the renormalizations

associated to the bifurcations.

For instance, the direct and inverse cascade may be described

in terms of the two following transformations :

F :R->RL
L>L (19a)
C->C

and @ :L->LR
R->R (19b)
CcC->C

As in [Zheng & Lu, 1991], it is easy to see that & and § are
order preserving, and that, if (K_,K4) is a contact, then (F (K), LF (K})) and
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(RG(K)), 9(K,)) are contacts too. As a matter of fact, the band defined by C<
K_<RC and K, < C has an image by & in the band defined by C < K. <RLC
and K, < LC. In particular, the direct shadow of (RC,LC) (body of the
period-2 fish) is transformed into the direct shadow of (RLC,LLC) (body of
one period-3 fish). The iterated action of (¥ ,LF) is displayed in Fig. 9.

(R9,9) acts in a symmetrical way. & and 9 are related to the building and

ordering of Farey sequences.

The period doublings may be described in terms of the

following transformation :

H R ->RL
L->LR (20)
C->C.

&N preserves the ordering, and it can be seen that if (K ,Ky)is a
contact (or crossing), then (RO(K),LH(K,)) is another one. So, the image by
(RO, LD) of (RC,LC) is (RRLC,LLRC) : this corresponds to the subharmonic

cascade mentioned above.

The above three transformations do not allow to deduce all the
parts of the diagram out of the equivalent of the period-2 fish. Indeed, the
fishes generated by rule R2, with exception of the p = g case, are forgotten.
To be more complete, other more complicated transformations, but with

similar properties, should be defined.
2.9. The boundary of chaos.

The skeleton is made of zones which are the direct shadows of
crossings, and zones which are not. The first kind is directly related to fish
bodies, and the second to tails. A glance in Figs. 3b and 3c indicates that
chaos is more especially linked to the structure of the tails. Accordingly, a

demonstration on the onset of topological chaos will be made for a crossing
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which has no direct shadow. If (XC,YC) is a contact, then (XRYRYC,YLXC)
is such a crossing — actually, a crossing between two fish tails. As proved in
the appendix A.3, any itinerary I = S1S2...Sy..., where S; is either XRYL =
E1L or XRYRYL = EgL is admissible for this crossing. A consequence is that

the number of periodic points of a given length n has the following property :
N,>N,_, +N,, (21)
where I1 and I are the respective lengths of EjL and EoL. This

implies that N, 22N, _, , and, going further, that N, 2 24 The topological
entropy [Grassberger & Procaccia, 1984] is defined as :

. N
h(f)=lim—= (22)

noe n

In this case, A(f)=lim H, > lLog(2y" ), or h(f)2 llLog(2) >0. The
n

ae ]
positiveness of h(f) ensures the presence of topological chaos. Thus, all
points whose shadows contain a crossing between two fish tails exhibit
topological chaos. Remember that it is only a prerequisite for "observable"
chaos. As a matter of fact, Fig. 6 seems to show that the fish tails are not
chaotic regions ; however, it is recalled that the algorithm used to generate
it involves only one initial value, while the tails are possibly domains of
coexistence of cycles. If the calculations were carried on many initial values,

the chaotic domain would extend itself to the union of all the fish tails.
3. Comparison with Experimental Data on Polytypism.

Two main questions arise concerning the adequation of the

model with the reality of polytypism, on the combinatorial level :

(i) Is the sawtooth map model able to describe all the known

polytypes ?
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(ii) Do the known polytypic sequences settle themselves

according to some regularity inside the bifurcation diagram ?

The first question has a positive answer since for any integer
number n all sequences of length < n are produced by the model. In other
words, the bifurcation diagram contains domains of stability for all
imaginable periodic sequences — and when the period is of infinite length,

these are aperiodic sequences. A demonstration is sketched below.

Let (P)= be a periodic itinerary of period p. There always exists
an m < p such as (6™(P))~ = (M)~ is maximal and an n < p such as (6™(P))*
= (Q)~ is minimal. Because of the periodicity of the sequences, we have
L(Q) =LM) <M and R@Q) = R(M) 2 Q. Consequently, (M)=,(Q)°) = (K1,K2)

is a couple of kneading sequences for which (P)~ is admissible.

(M)~ and (Q)= differ only by a certain number of shifts, i. e.
o(m-n)mod p(Q) = M. Suppose that m < n (the converse case is similar) and
call U the sequence PpPma+1... P,.1. and V the sequence
PnPn+1...PpP1P2...Pm.1. Then Kj = (UV)~ and Kg = (VU)=. There remains
to show that U=XRand V = YL, where XC et YC are respectively maximal

and minimal and are in contact.

If (UV)*= is maximal and non-trivial, then it begins with an R.
In this case, V ends up with an L, because otherwise oP-1((UV)*) would
begin with an extra R and would be superior to (UV)~, contradicting its
maximality. The same demonstration is used to prove that U ends with an
R. So, in general, there are always an X and a Y so that U=XRand V =YL
(K1,Kg) can be written (XRYL)>,(YLXR)™). Furthermore, L(XRYL)>) €
(XRYL)> implies that L(XC) < XC (again, the opposite would lead to
contradict the maximality of (XRYL)=). This is enough to prove that XC is

maximal ; similarly, one proves that YC is minimal, that R(XC) > YC, and
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that L(YC) < XC. Theorem T1 may then be applied to generate the direct
shadow of (XRYC,YLXC), within which (P)~ is admissible. This shadow is
directly related to the body of the period-p fish exhibiting sequence (P)~.
This suggests a systematic method to locate the direct shadow and the fish

body associated to any periodic polytype, as a tool to answer the second

question.

Let I = (P)>. Determine the maximal and minimal shifted

sequences :

(M) = maxo'(I) and (Q)= = min o'(I).

O<i<p O<i<p
Replacing the last letter of M and Q by C gives the co-ordinates

of the crossing (XRYC,YLXC). The numerical translation T helps to locate

them accurately.

This method is easily transposable for the "fish diagram",
because a direct shadow has a counterpart in a fish body. The equations of

the curves limiting the body of the (P)~ fish are :
fMp—l o fMP_Zo...oj"M1 ° fL(%_) = yZ’

and fQ,,_,°fQ,,_z°"'°fQ1°fR(y2+)=y2’

where p is the length of M and Q, and fs() = 4Ax(1-x) if S =L and
fsbn) = 1 - [4hox(1-0]if S=R.

Figure 10 is the result of a program designed to display in color
the only fishes that correspond to all the known polytypes of SiC with
period < 50, as listed in [Gmelin Handbook, 1989]. The majority of the
polytypes lie in the part where Ag > A1 : this is due to the fact that most of
them include more k layers than h ones. There is no real contiguity

between different polytypes in the diagram. In the part generated by direct
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and inverse cascades, there appears approximately only one every two
polytypes. Actually, most of them are made of "basic sequences" like (22),
(23), (83), etc... in Zhdanov notation [Zhdanov, 1945], while the sawtooth
map cascades involve simpler basic sequences like (2), (3), (4), etc....
Finally, some polytypes are represented by very small fishes. It is to be
pointed out that, as the precise connection of A1 and Ag with physical
parameters such as pressure and temperature is not known, the diagram of
Fig. 3a is not intended to account of the relative abundance of the known
polytypes. Simple changes in parameter dependencies in (1) may
dramatically change the shape and relative size of the fishes. However, the
most frequent polytypes (k)~, (hkk)=, (hkhkk)=, and (hk)= correspond to

large areas in the diagram.
Conclusion.

A dynamical model based on the iteration of sawtooth
maps has been proposed to describe the physical phenomenon of
polytypism in CVD/CVI SiC growth. As it involves only one dynamical
variable, it is believed to be a very simple approximation to the physical
reality ; however, it is enough to account for the growth of any periodic or
chaotic sequence. Further applicability of this model relies on more accurate
determination of layer deformation in polytypes of SiC or other materials

[Verma & Krishna, 1966 ; Baronnet, 1980].

The sawtooth map has also an interest from a more theoretical
point of view, as it has a very simple underlying kneading theory. The main
result is that all routes to chaos seem to derive from the repeated
application of theorem T1 ; the two-dimensional representation has helped
to a clearer understanding of these routes. Maybe is it an appropriate tool
for studies in renormalization theory and other topics in dynamics of

discrete systems.
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Appendices.

A. 1. Demonstration of theorem T1.

Let it be proved for (K'.,K;) = (XRYC,YC) only : The other case
is analogous. The following conditions have to be fulfilled by the couple :

K, is minimal, i. e. : K, < 6(K,),i>0;
K' is maximal, i.e. : K > oi(K'),i>0; (1.1)
LK, <K_and RK')2K,.

The first condition is realized by hypothesis. L(K,) < K' is true
since K'_ > K (that is, XRYC > XC). It remains to show that LK )<K,
which implies the maximality of K', and that R(KK') 2 K,.

Let the first of these relations be proved first. For the elements
of L(XRYC) also belonging to L(YC), it is evident, since L(YC) < YC. In the
remaining cases, let X be written under the form ALB. The concerned
elements of LXRYC) have the form BRYC. But BRYC < XRYC is equivalent
to B < X, which is true because BC e L(XC) < XC.

The second relation is true for the elements of R(XRYC)
belonging also to R(YC), and for YC itself (because it belongs to RGXRYC)).
The remainder of the elements are all superior to those of R(XC),
themselves superior to YC from the hypotheses ; this closes the

demonstration.
A.2.About the direct shadow.

If there were such a couple of finite itineraries, called (UC,VC),

it would fulfil the following conditions :

XC < U <XRYC (IL.1)
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YC>V>YLXC (I1.2)
L(U,V) < XRYC (I1.3)
R(U,V) > YLXC (I1.4)

From (IL1) it is seen that U = XRWC. But (IL.1) and (I1.4)
imply that YC > W SYLXC, so W = YLXRW', or U = XRYLXRW'. W' has
then the same constraint as W, so by induction one obtains U = XRYL)>,

which is not finite. Two conclusions are drawn :

(i) The rectangle of the form [XC,XRYCIX[YLXC,YC] does not

contain any other finite contact.

(ii) The couple of infinite kneading sequences

(XRYL)>=,(YLXR)>) is admissible within this rectangle.
A.3. Demonstration of topological chaos.

Following a demonstration of [Zheng & Lu, 1991], let I=
S1S2...Sn..., where S; is either XRYL = E1L or XRYRYL = EgL. To do so, it
is enough to show that L(I) < XRYRYC = E2C and R(I) > YLXC.

First, the elements of L(I) having the form S;Si+1... are obviously
inferior to XRYRYC. The proof remains to be done for the elements of L(I) of

the form L(S;)Si+1Si+2.... Two cases occur :

(1) L(D) = L(EDLSi+1Si+2. - Here, L(I) < L(E1)C, itself equal to
L(E1C) and thus inferior to E1C and a fortiori to E2C.

(ii) L) = L(E2)LS;+18i+2.... Here, L(I) < L(E2)C = L(E2C) <
EoC.

The same demonstration is used for R(I) > YLXC, using the
equivalent sequences FiR = YLXR and FgR = YLXRYR.
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Figure Captions.

Fig. 1. First return map of the deformations 3, (in %), using values
from the ab-initio calculations of [Cheng et al., 1990]. The plain line is a
guess of the function f. The thick shaded lines of equations 8, = 8* and J,,,;
= &* separate the domains of 8 where the orientations U, and U,,; areh
and k.
Fig. 2. The example family of sawtooth maps as defined by relation
(1.
Fig. 3. a) Two-parameter bifurcation diagram of family (1).
b) Zoom on the [0.5,1]x[0.5,1] region, where no stable steady
state exists.
¢) Detail of Fig. 3a) showing the structure of the crossing of
two "tails".
Fig 4. a) Sawtooth map with attracting (stable) steady state.
b) Sawtooth map with attracting (stable) period-2 orbit.
Fig. 5. a) Illustration of rule R1 : between two fish bodies of same
degree of complexity and with a common nose lies another one.
b) Subharmonic cascade along the first diagonal.
¢) Tlustration of rule R2 : between two fish tails lies another
fish.
Fig. 6. Zone of sensitivity to initial conditions (in black). Some non-
symmetrical points are artifacts due to very long chaotic transitory regimes.
Fig. 7. Plot of the function g = ToooS, numerical traduction of the shift
function.
Fig. 8. Skeleton of the sawtooth maps drawn in the plane of kneading
sequences: Crossings between two lines or solid contacts (thick dots)
represent sawtooth maps with finite (superstable) kneading sequences.

Fig. 9. Tterated action of the transformation (F ,LF).
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Fig. 10. Location of known periodic polytypes of sequence length < 50

in the bifurcation diagram.
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