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On a symmetric space attached to polyzeta values.

Olivier Mathieu

ABSTRACT
Quickly converging series are given to compute polyzeta numbers ζ(r1, . . . , rk). The

formulas involve an intricate combination of (generalized) polylogarithms at 1/2. However,
the combinatoric has a very simple geometric interpretation: it corresponds with the map
p 7→ p2 on a certain symmetric space P .

Introduction:
Let k ≥ 1. For a k-uple (r1, r2, . . . , rk) of positive integers, set ζ(r1, . . . , rk) =∑

0<n1...<nk
1/nr1

1 ...nrk

k . We have ζ(r1, . . . , rk) < ∞ if and only if rk ≥ 2. By definition,
the polyzeta values are the Q-linear combinations of the finite numbers ζ(r1, . . . , rk).

Using the definition of ζ(r1, . . . , rk), the evaluation of a polyzeta value up to the

Nth digit requires to take into account something like O(10N ) terms. Therefore it is a
very slow computation. A similar computational problem arises with the classical series
log 2 = −∑

n>0(−1)n/n and π/4 =
∑

n≥0(−1)n1/(2n + 1), which converge very slowly.
However, we easily notice that:

log 2 = − log(1 − 1/2) =
∑

n>0 2−n/n.
A remarkable series for π has been discovered by Bailey, Borwein and Plouffe [BBP]:

π =
∑

n≥0 1/24n[4/(8n + 1) − 2/(8n + 4) − 1/(8n + 5) − 1/(8n + 6)]

Now to evaluate log 2 or π up to the Nth digit, one only needs the first O(N)-terms of the
series and therefore log 2 and π can be computed very quickly. The goal of the paper is to
provide similar identities for all polyzeta values.

To do so, one needs to use the functions Lr1,...,rk
(z) =

∑
0<n1...<nk

1/nr1

1 ...nrk

k znk ,
where r1, . . . , rk are positive integers. By definition, a Q-linear combinations of the func-
tions Lr1,...,rk

(z) is called a polylogarithmic function. The obvious identity ζ(r1, . . . , rk) =
Lr1,...,rk

(1) does not help to quickly evaluate polyzeta values. However, the series defining

polylogarithms at 1/2 converges very quickly: to evaluate Lr1,...,rk
(1/2) up to the Nth

digit, one only needs to sum O(Nk)-terms, and this can be done in polynomial time. This
remark suggests the following result:
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MAIN STATEMENT: Any polyzeta value is the value of a certain polylogarithmic
function at 1/2.

In order to get a useful statement, the corresponding polylogarithmic function is de-
scribed explicitly: see Theorem 7 for a precise statement. At first glance, the combinatorics
involved in Theorem 7 looks intricated and therefore no details are given in the introduc-
tion. However, we can precisely formulate the main statement in terms of very simple
geometric notions.

Let F (2) be the free group on two generators α and β and let s be the involution
exchanging the generators. Let Γ = Q⊗F2 be the Malcev completion of Γ (see Section 4 for
an alternative definition of Γ). The involution s extends to Γ and there is a decomposition
Γ = P.K where K is the subgroup of fixed points of s and where P = {g ∈ Γ|s(g) = g−1}.
The group Γ is proalgebraic over Q and the symmetric space P is a pro-algebraic variety
over Q.

In section (4.8), all polyzeta values are naturally indexed by rational functions on
P . Similarly, some polylogarithmic functions are naturally indexed by rational functions
on P . So for φ ∈ Q[P ], denote by ζ(φ) and Lφ(z) the corresponding polyzeta value and
polylogarithmic function.

Now the square map ⊓⊔ : P → P, p 7→ p2 induces an algebra morphism ⊓⊔ : Q[P ] →
Q[P ]. The geometric formulation of the main result is as follows:

MAIN THEOREM: For any φ ∈ Q[P ], ζ(φ) = L⊓⊔φ(1/2).

We also express polyzeta values as values of polylogarithmic functions at ρ±1 = exp±iπ/3.
The geometric interpretation of this case is a bit more complicate because it involves an
order 3 automorphism of Γ, see section 4, Theorem 18.

Acknowlegements: A special thank to Wadim Zudilin. Section 5 has been suggested
by him.

Summary:
1. Polylogarithms and polyzeta values.
2. Polylogarithmic function at 1/2 and at ρ±1.
3. Explicit expressions for ζ(r).
4. Geometric interpretation of Theorem 7.
5. Other expressions for zeta values.
6. Conclusion.

1. Polylogarithms and polyzeta values.
This section is devoted to main definitions and conventions. The definitions of polyzeta

values and polylogarithmic functions are not standard: see the subsections (1.14) for more
comments. Moreover in this section we adopt some conventions to renormalize infinite
quantities like ζ(1) or

∫ z

0
dt/t.

(1.1) Shuffles: For N ≥ 0, denote by SN the symmetric group, i.e. the set of all
bijections σ : {1, . . . , N} → {1, . . . , N}. Given n and m two non-negative integers, let
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Sn,m be the set of all φ ∈ Sn+m such that φ is increasing on the subset {1, . . . , n} and on
the subset {n + 1, . . . , n + m}. The elements of Sn,m are called schuffles.

(1.2) Shuffle product: Let W be the set of words into the letters a and b. By conven-
tion, W contains the empty word ∅. Set H = QW, i.e. H is the Q-vector space with basis
W. For any two words w = x1 . . . xn and w′ = xn+1 . . . xn+m, where each xi ∈ {a, b} is a
letter, define the product w ∗ w′ ∈ H by the formula:

w ∗ w′ =
∑

σ∈Sn,m

xσ(1) . . . xσ(n+m)

By convention, we have ∅ ∗ w = w ∗ ∅ = w for all word w. The product ∗ is called the
shuffle product. With respect to this product, H is a commutative associative algebra, and
∅ is its unit.

(1.3) Subalgebras of H: Let W+ be the set of words whose first letter is not b.
Equivalently, a word w belongs to W+ if w = ∅ or if w starts with a. Similarly, let W++

be the set of words whose first letter is not b and the last letter is not a. Set H+ = QW+

and H++ = QW++. It is easy to prove that H+ and H++ are subalgebras of H.

LEMMA 1: There are isomorphisms of algebras: H = H+[b] and H = H++[a, b].

Proof: For each n ≥ 0, let Wn be the set of words of the form bnw with w ∈ W+ ,
and set Hn = ⊕0≤k≤n QWi. We have b ∗Hn ⊂ Hn+1. Moreover we have b ∗w = (n+1)bw
modulo Hn for any w ∈ Wn. It follows easily by induction that Hn = ⊕0≤k≤n H+ ∗ bk, i.e.
Hn is the space of all polynomials in b wih coefficients in H+ and degree ≤ n. Therefore
the first assertion follows.

The proof of the second assertion is similar.

(1.4) The bijection λ : W+ → Λ:

Let N be the set of positive integer. For clarity, a word into the letters 1, 2, . . . ∈ N
will be called a sequence of positive integers. Let Λ the set of sequence (r1 . . . rk) of positive
integers. By convention, Λ contains the empty sequence ∅.

Any word w ∈ W+ can be uniquely factorized as: w = abt1abt2 . . . abtk , where k is the
number of occurence of a in w and where the ti are non-negative integers. Then, the map
w ∈ W+ 7→ (1 + t1, 1 + t2, . . . , 1 + tk) ∈ Λ defines a natural bijection λ : W+ → Λ.

(1.5) Polylogarithmic functions and polyzeta values:

Let k ≥ 1 and let r1 . . . rk be a sequence of k positive integers. Consider the following
series in the complex variable z:

Lr1,...,rk
(z) =

∑
0<n1<...<nk

n−r1

1 . . . n−rk

k znk

In the infinite sum, the indices n1, . . . nk are integers. The functions Lr1,...,rk
(z) are called

polylogarithms. Set D = {z ∈ C| |z| < 1}, D = {z ∈ C| |z| ≤ 1}. The two points of interest
for the paper are the following:

(i) if rk ≥ 2, the series is absolutely convergent on D and therefore Lr1,...,rk
(z) extends

to a continous function on D.
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(ii) if rk = 1, the series converges on D and Lr1,...,rk
(z) extends to a continous function

on D \ {1}.
Indeed Lr1,...,rk

(z) extends to a multivalued function, see e.g. [C] and Proposition 2 below.
For rk ≥ 2, set

ζ(r1, . . . , rk) =
∑

0<n1<...<nk

n−r1

1 . . . n−rk

k

In the paper, the numbers ζ(r1, . . . , rk) will be called polyzeta values. Indeed the
polyzeta value is both the value at z = 1 of the polylogathm Lr1,...,rk

(z) and a value of
the polyzeta function ζ(s1, . . . , sk) =

∑
0<n1<...<nk

n−s1

1 . . . n−sk

k .

(1.6) New notations: Let w ∈ W+ and set (r1, . . . , rk) = λ(w). It is convenient to
denote the function L(r1,...,rk)(z) by Lw(z). Similarly set ζ(w) = ζ(r1, . . . , rk) if w ∈ W++.

(1.7) The one-forms ωa and ωb: Define the following one-forms on C:

ωa(z) =
dz

1 − z
and ωb(z) =

dz

z

For an element c = xa + yb ∈ Qa ⊕ Qb, set ωc(z) = xωa(z) + yωb(z). Given a smooth

path γ : [0, 1] → C, t 7→ γ(t), recall that γ∗ωa(t) = γ′(t)
1−γ(t) dt, γ∗ωb(t) = γ′(t)

γ(t) dt. and

γ∗ωc(t) = xγ∗ωa(t) + yγ∗ωb(t).

(1.8) Kontsevitch formula: For a positive integer n, set ∆n = {(x1, x2 . . . , xn) ∈
Rn|0 ≤ x1 ≤ x2 . . . ≤ xn ≤ 1}. Let w = c1 . . . cn ∈ W+ be a word, where each ci is a
letter. The following formula is due to Kontsevitch (see [Z]).

PROPOSITION 2: Let w = c1 . . . cn ∈ W+ be a word, let z ∈ D, and let γ : [0, 1] → D
be a path with γ(0) = 0 and γ(1) = z.

Assume that w ∈ W++ or that γ does not meet 1. Then we have:

Lw(z) =

∫
∆n

γ∗ωc1
(x1)γ

∗ωc2
(x2) . . . γ∗ωcn

(xn)

.

In [Z], Kontsevitch formula is stated for the straight path t 7→ zt, but it is easy to
see that the integral is homotopy invariant as long γ stay in D (and γ stay D \ {1} if
w /∈ W++).

(1.9) Products: Let n,m be non negative integers and let c1, c2, . . . , cn+m ∈ {a, b} be
letters with c1 = cn+1 = a. Set u = c1 . . . cn and v = cn+1 . . . cn+m. For σ ∈ Sn,m, set
wσ = cσ(1) . . . cσ(n+m).

COROLLARY 3: For u, v ∈ W+, we have Lu(z)Lv(z) =
∑

σ∈Sn,m
Lwσ

(z) for all

z ∈ D. Moreover for u, v ∈ W++, we have ζ(u)ζ(v) =
∑

σ∈Sn,m
ζ(wσ).

Proof: Set
ω′ = ωc1

(zx1)ωc2
(zx2) . . . ωcn

(zxn),
ω” = ωcn+1

(zxn+1)ωcn+2
(zxn+2) . . . ωcn+m

(zxn+m),
∆m = {(xn+1, xn+2 . . . , xn+m) ∈ Rn|0 ≤ x1 ≤ x2 . . . ≤ xn ≤ 1},

and for σ ∈ Sn,m, set
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∆σ = {(x1, . . . , xn+m) ∈ Rn+m|xσ(1) ≤ xσ(2) ≤ . . . ≤ xσ(n+m)}.
Since ∆n×∆m = ∪σ∈Sn,m

∆σ, we get
∫
∆n

ω′
∫
∆m

ω” =
∫
∆n×∆m

ω′∧ω” =
∑

σ

∫
∆σ

ω′∧ω”.

By Proposition 2, this identity is equivalent to Lu(z)Lv(z) =
∑

σ∈Sn,m
Lwσ

(z). At z = 1,

one gets the second identity ζ(u)ζ(v) =
∑

σ∈Sn,m
ζ(wσ). Q.E.D.

(1.10) Final definitions and notations for polylogarithmic functions: Up to now, the
polylogarithms Lw(z) are defined for w ∈ W+. In order to extend the definition to all
w ∈ W, a renormalization procedure is used.

Set Ω = D\] − 1, 0] and let Hol(Ω) be the algebra of holomorphic functions on Ω.
Since ω is simply connected, let denote by log z the holomorphic function on Ω whose
restriction to ]0, 1[ is the usual logarithmic function.

LEMMA 4: There is a unique algebra morphism Φ : H → Hol(Ω) such that Φ(w) =
Lw(z) for w ∈ H+ and Φ(b) = log z.

Proof: This follows from Lemmma 1 and corollary 3. Q.E.D.

For any h ∈ H, set Lh(z) = Φ(h). When h is a word w in W+, this new notation
agrees with the previous one. Corollary 3 can be restated as: Lu(z)Lv(z) = Lu∗v(z). By
definition the polylogarithmic functions are the functions Lh(z) whith h ∈ H.

This definition is a slighty different from the introduction. However, we will only
use polylogarithmic functions Lh(z) with h ∈ H+, which are the polylogaritmic functions
defined in introduction.

(1.11) Final definitions and notations for polyzeta values: Up to now, the polyzeta
values ζ(w) are defined for w ∈ W++. In order to extend the definition to all w ∈ W, we
will use a renormalization procedure as follows.

LEMMA 5: There are three algebra morphisms ψ, ψ+, ψ− : H → C uniquely defined
by the following requirements:

ψ(w) = ψ+(w) = ψ−(w) = ζ(w) if w ∈ H++

ψ(a) = 0, ψ+(a) = iπ, ψ−(a) = −iπ
ψ(b) = ψ+(b) = ψ−(b) = 0.

Proof: This follows from Lemmma 1 and corollary 3.

Similarly, this allows to define ζ(h) = ψ(h), ζ±(h) = ψ±(h) for any h ∈ H. By
definition the polyzeta values are the numbers ζ(h) whith h ∈ H. Corollary 3 can be
restated as: ζ(u)ζ(v) = ζ(u ∗ v) and ζ±(u)ζ±(v) = ζ±(u ∗ v) for any u, v ∈ H.

Set Z = ζ(H) and Z± = ζ(H±). By definition, Z and Z± are subrings of C, and Z
is the space of all polyzeta values. It is easy to compare the three algebras Z and Z+ and
Z−.

LEMMA 6:
(i) As a Q vector space, Z is generated by all ζ(w) with w ∈ W++.
(ii) We have Z ⊂ R.
(iii) Z± = Z ⊕ iπZ.

Proof: The assertions (i) and (ii) follow from Lemma 1. Moreover it follows that Z±

is the Q-algebra generated by Z and ζ±(b) = ±iπ. However (ζ±(b))2 = −π2 = −6ζ(2),
therefore (ζ±(b))2 belongs to Z and assertion (6.3) follows.
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(1.12) Hopf algebra structure: Define the linear maps η : H → Q, ι : H → H and
∆ : H → H⊗H as follows. For any word w = c1 . . . cn ∈ W, set

η(w) = 1 ifw = ∅ and η(w) = 0 otherwise

ι(w) = (−1)n cncn−1 . . . cn

∆(w) =
∑

0≤i≤n

c1 . . . ci ⊗ ci+1 . . . cn

The map η, ι and ∆ are algebra morphisms. Indeed H is a Hopf algebra with co-unit η,
inverse map ι and coproduct ∆.

(1.13) Concatenation product: For two words w = c1 . . . cn and w′ = cn+1 . . . cn+m,
their concatenation is the word ww′ = c1 . . . cncn+1 . . . cn+m. This induces another struc-
ture of algebra on H, for which the product of two elements h, h′ is simply denoted by
hh′.

(1.14) Remarks on references and on the terminology:
In the classical litterature, only the functions Lk(z) =

∑
n>0 zn/nk are called poly-

logarithms, see [L] [Oe]. We did not find a standard name for the L(r1,...,rk)(z). They are
defined in the Bourbaki’s talk [C], where the title suggests to call them again polyloga-
rithms.

It seems that some polyzeta values, like ζ(1, 3), were already known by Euler, see
[C]. The general definition of ζ(r1, . . . , rk) appears explicitely around 1990 in [H] and [Z].
These numbers are also called multiple zeta values in [Z], multiple harmonic sums in [H],
multizeta numbers in [E], Euler-Zagier numbers in [BB] and polyzetas numbers in [C].

The fact that polyzeta values are naturally indexed by words has been observed by
many authors, see [H], [H-P] and [C]. Lemma 1 and corollary 3 are well-known. Proofs
are given for the convenience of the reader.

2. Polylogaritmic functions at 1/2 and at ρ±1:
Define two linear maps σ, τ : H → H as follows. First set σ(a) = b, σ(b) = a,

τ(a) = a + b and τ(b) = −a. For any word w = c1 . . . cn ∈ W, set σ(w) = σ(cn) . . . σ(c1)
and τ(w) = τ(cn) . . . τ(c1). It is easy to see that σ and τ are algebra morphisms relative
to the shuffle product ∗ (they are anti-morphism relative to the concatenation product).

Define now the two operators ⊓⊔,∇ : H → H as the following composite maps:

⊓⊔ : H ∆→ H⊗H id⊗σ−→ H⊗H ∗→ H

∇ : H ∆→ H⊗H id⊗τ−→ H⊗H ∗→ H

Set ρ = eiπ/3.
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THEOREM 7: For any h ∈ H, we have:

ζ(h) = L⊓⊔(h)(1/2)

ζ±(h) = L∇(h)(ρ
±1)

Proof: Note that ⊓⊔(a) = ⊓⊔(b) = a+b, La(z) = log 1/(1−z) and Lb(z) = log z, therefore
La(1/2)+ Lb(1/2) = 0 = ζ(a) = ζ(b). Similarly, ∇(a) = 2a + b and ∇(b) = 0, and we have
L∇(a)(ρ±1) = −2 log(1 − ρ±1) + log(ρ±1) = ±iπ = ζ±(a) and L∇(b)(ρ±1) = 0 = ζ±(b).

Since ⊓⊔ and ∇ are algebra morphisms, and since the algebra H is generated by a, b
and W++, it is enough to show the formulas when h is a non empty word w in W++. So
let w ∈ W++ be a word of length n ≥ 2. Set w = c1 . . . cn where ci ∈ {a, b} are letters
with c1 = a and cn = b.

Let γ : [0, 1] → D, t 7→ t be the straight path from 0 to 1. Choose two smooth paths
γ± : [0, 1] → D with the following properties: γ±(0) = 0, γ±(1) = 1, γ±(1/2) = ρ±1 =
1/2 ± i

√
3/2 and Re γ±(t) ≥ 1/2 for all t ∈ [1/2, 1]. Set ∆n = {(x1, x2 . . . , xn) ∈ Rn|0 ≤

x1 ≤ x2 . . . ≤ xn ≤ 1}. By Proposition 2, we have:

ζ(w) =

∫
∆n

η∗ωc1
(x1) η∗ωc2

(x2) . . . η∗ωcn
(xn)

where η is the path γ, or γ+ or γ−.
For 0 ≤ i ≤ n, set ∆′

i = {(x1, x2 . . . , xi) ∈ Rn|0 ≤ x1 ≤ x2 . . . ≤ xi ≤ 1/2} and ∆”i =
{(xi+1, xi+2 . . . , xn) ∈ Rn|1/2 ≤ xi+1 ≤ xi+2 . . . ≤ xn ≤ 1}. From the decomposition:
∆ = ∪0≤i≤n ∆′

i × ∆”i, it follows that ζ(w) =
∑

0≤i≤n L′
i L”i =

∑
0≤i≤n L′±

i L”±i , where

the numbers L′
i, L”i, L′±

i , Li”
± are the following integrals:

L′
i =

∫
∆′

i

γ∗ωc1
(x1) γ∗ωc2

(x2) . . . γ∗ωci
(x1)

L”i =

∫
∆”i

γ∗ωci+1
(xi+1) γ∗ωci+2

(xi+2) . . . γ∗ωcn
(xn)

L′±
i =

∫
∆′

i

γ∗
±ωc1

(x1) γ∗
±ωc2

(x2) . . . γ∗
±ωci

(x1)

L”±i =

∫
∆”i

γ∗
±ωci+1

(xi+1) γ∗
±ωci+2

(xi+2) . . . γ∗
±ωcn

(xn)

Using Kontsevitch formula, we get L′
i = Lw′

i
(1/2) and L′±

i = Lw′

i
(ρ±1), where w′

i =
c1 . . . ci. To evaluate L”i, one needs to introduce some new notations. Define by S, T :
C → C the rational maps: S(z) = 1− z and T (z) = 1− 1/z. Define the new paths δ, δ± :
[0, 1/2] → C by δ(t) = 1−γ(1− t) = S ◦γ(1− t) and δ±(t) = 1−1/γ±(1− t) = T ◦γ(1− t).
Clearly, δ is the straight path from 0 to 1/2. Since T (ρ±1) = ρ±1 and T (1) = 0, δ± is
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a path from 0 to ρ±1. Since Re γ±(t) ≥ 1/2 for all t ∈ [1/2, 1], it follows that δ± lies in
D \ {1}.

With the convention of (1.7), we get:

γ∗ωc(t) = δ∗ωσ(c)(1 − t) and γ∗
±ωc(t) = δ∗±ωτ(c)(1 − t)

for any c ∈ Qa ⊕ Qb. Using the new variables yj = 1 − xj , we thus get:

L”i =

∫
∆”i

δ∗ωσ(cn)(yn)δ∗ωσ(cn−1)(yn−1) . . . δ∗ωσ(ci+1)(yi+1)

L”±i =

∫
∆”i

δ∗±ωτ(cn)(yn)δ∗±ωτ(cn−1)(yn−1) . . . δ∗±ωτ(ci+1)(yi+1)

where ∆”i = {(yn, yn−1, . . . , yi+1) ∈ Rn|0 ≤ yn ≤ yn+1 . . . ≤ yi+1 ≤ 1/2}. It follows from
Proposition 2 that L”i = Lσ(w”i)(1/2) and L”±i = Lτ(w”i)(ρ

±1) where w”i is the word
ci+1 . . . cn. Therefore we get

ζ(w) =
∑

0≤i≤n

Lw′

i
(1/2)Lσ(w”i)(1/2), and

ζ(w) =
∑

0≤i≤n

Lw′

i
(ρ±1)Lτ(w”i)(ρ

±1).

Since ∆(w) =
∑

0≤i≤n w′
i ⊗w”i, it is clear that ⊓⊔ (w) =

∑
0≤i≤n w′

i ∗ σ(w”i) and ∇(w) =∑
0≤i≤n w′

i ∗ τ(w”i), and therefore the formula follows from Corollary 3. Q.E.D.

3. Explicit expressions for ζ(r).
Theorem 7 provides a combinatorial way to express any polyzeta value as a polylog-

arithmic functions at 1/2 or at ρ or at ρ. In this section, Theorem 10 and Corollary 12
provided closed formulas for zeta values ζ(r), where r ≥ 2 is a given integer. The for-
mulas are derived from Theorem 7. However, for general polyzeta values ζ(r1, . . . , rk) the
combinatorics seem too intricate to find a simple combinatorial formula.

The concatenation product hh’, which is not commutative, should not be confused
with the commutative schuffle product h ∗ h′. The following conventions will be used.
First, for h ∈ H and n ≥ 1, the notation hn will be the nth power of h with respect to
the concatenation product. Moreover, the concatenation product takes precedence of the
schufle product. For example, the expression hh′ ∗ h” should be understood as (hh′) ∗ h”.

LEMMA 8: We have:

⊓⊔ (abr−1) = 2ar−1(a + b) +
∑

1≤j≤r−2

aj(a + b)r−j

∇(abr−1) = (−1)r+13ar +
∑

1≤j≤r−2

(−1)j+1aj(b − a)r−j
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Proof: We have:
⊓⊔ (abr−1) = σ(abr−1) +

∑
0≤j≤r−1

abj ∗ σ(br−1−j)

= ar−1b +
∑

u+v=r−1
abu ∗ av.

Similarly, we have:
∇(abr−1) = τ(abr−1) +

∑
0≤j≤r−1

abj ∗ τ(br−1−j)

= (−1)r+1ar−1(a + b) +
∑

u+v=r−1
(−1)vabu ∗ av.

Use now the formula, cw ∗ av =
∑

i+j=v

ajc(w ∗ ai), which holds for any word w and

any letter c. Thus we have abu ∗ av =
∑

i+j=v

aj+1(bu ∗ ai) and we get:

⊓⊔ (abr−1) = ar−1b +
∑

j+u+v=r−1

aj+1(bu ∗ av), and

∇(abr−1) = (−1)r+1ar−1(a + b) +
∑

j+u+v=r−1

(−1)j+v aj+1(bu ∗ av).

Using now the formulas:
(a + b)N =

∑
u+v=N

au ∗ bv and (b − a)N =
∑

u+v=N

(−1)u au ∗ bv

we get:
⊓⊔ (abr−1) = ar−1b +

∑
0≤j≤r−1 aj+1(a + b)r−1−j

= ar−1b +
∑

1≤j≤r aj(a + b)r−j

= ar−1b + ar +
∑

1≤j≤r−1 aj(a + b)r−j

= ar−1(a + b) +
∑

1≤j≤r−1 aj(a + b)r−j

= 2ar−1(a + b) +
∑

1≤j≤r−2 aj(a + b)r−j .
We also get:
∇(abr−1) = (−1)r+1ar−1(a + b) + +

∑
0≤j≤r−1

(−1)jaj+1(b − a)r−1−j

= (−1)r+1ar−1(a + b) +
∑

1≤j≤r

(−1)j+1aj(b − a)r−j

= (−1)r+1ar−1(a + b) + (−1)r+1ar + (−1)rar−1(b − a)
+

∑
1≤j≤r−2

(−1)j+1aj(b − a)r−j

= (−1)r+13ar +
∑

1≤j≤r−2(−1)j+1aj(b − a)r−j . Q.E.D.

Let Wr be the set of words of lenght r. Any w ∈ Wr can be written as w = aju,
where u does not start with a. Let k be the number of occurence of a in w. Set j(w) = j,
k(w) = k and define the numbers c(w) and c±(w) as follows.

(i) If w = ar, set c(w) = r and c±(w) = (−1)r+1(r + 1).
(ii) If w = ar−1b, set c(w) = r and c±(w) = (−1)r(r − 2).
(iii) Otherwise, set c(w) = j and c±(w) = (−1)k+1j.

LEMMA 9: We have:

⊓⊔ (abr−1) =
∑

w∈Wr

c(w)w

9



∇(abr−1) =
∑

w∈Wr

c±(w)w

Proof: The first identity of Lemma 8 can be written as:

⊓⊔ (abr−1) = ar−1b +
∑

1≤i≤r

ai(a + b)r−i

.
Since (a + b)r−i =

∑
u∈Wr−i

u, we thus get

⊓⊔ (abr−1) = ar−1b +
∑

1≤i≤r

∑
u∈Wr−i

aiu

The word w = aj(w)v belongs to aiWr−i for all i ≤ j(w). Therefore∑
1≤i≤r ai(a+b)r−i =

∑
w∈Wr

j(w)w. Since c(ar−1b) = j(ar−1b)+1 and c(w) = j(w)

otherwise, the formula ⊓⊔ (abr−1) =
∑

w∈Wr
c(w)w is now proved.

Set a = −a and b = b. For a word w = c1 . . . cn, set w = c1 . . . cr and for a general
element h =

∑
cww in H set h =

∑
cww. Since the involution h 7→ h is a morphism

relative to the concatenation product, it follows from Lemma 8 that:
−∇(abr−1) = 3ar +

∑
1≤i≤r−2 ai(b + a)r−i

= ar − ar−1b +
∑

1≤i≤r ai(b + a)r−i

It follows from the previous proof that
∑

1≤i≤r ai(a + b)r−i =
∑

w∈Wr
j(w)w. There-

fore, one gets:
−∇(abr−1) = ar − ar−1b +

∑
w∈Wr

j(w)w.

Note that w = (−1)k(w) w for all words w. Thus:
∇(abr−1) = (−1)r+1ar − (−1)rar−1b +

∑
w∈Wr

(−1)(1+k(w))j(w)w

Since c±(ar) = (−1)r+1(j(ar + 1), c±(ar−1b) = (−1)r(j(ar−1b) − 1) and c±(w) =
(−1)1+k(w) j(w) otherwise, the formula ∇(abr−1) =

∑
w∈Wr

c±(w)w is now proved. Q.E.D.

Let r ≥ 2 be an integer. Let Λr be the set of all m = (m1, . . .mk) ∈ Λ with
m1 + . . .+mk = r. For m = (m1, . . . mk) ∈ Λr, set k(m) = k and define the integers j(m),
b(m) and b±(m) as follows.

(i) If m1 = m2 = . . . = mr = 1, set j(m) = r, b(m) = r and b±(m) = (−1)r+1(r + 1).
Otherwise, let j(m) = j be the index such that m1 = m2 = . . . = mj−1 = 1 and mj ≥ 2.

(ii) If m1 = m2 = . . . = mr−2 = 1 and mr+1 = 2, set b(m) = r and b±(m) =
(−1)r(r − 2).

(iii) Otherwise, set b(m) = j and b±(m) = (−1)k+1j, where j = j(m) and k = k(m).

THEOREM 10: For r ≥ 2, we have:

ζ(r) =
∑

m∈Λr

b(m)Lm(1/2)

10



ζ(r) =
∑

m∈Λr

b±(m)Lm(ρ±1)

Proof: It is clear that c(w) and c±(w) vanish if w /∈ W+. Therefore it follows from
Theorem 7 and Lemma 9 that

ζ(r) =
∑

w∈W
+
r

c(w)Lw(1/2)

ζ(r) =
∑

w∈W
+
r

c±(w)Lw(ρ±1)

where W+
r = W+ ∩Wr. Note that the map λ of section 1.4 provides a bijection λ : W+

r →
Λr. It is easy to check that j(w) = j(λ(w)) and k(w) = k(λ(w)) for all w ∈ W+

r , and
therefore

c(w) = b(λ(w)) and c±(w) = b±(λ(w))

for all w ∈ W+
r . Therefore Theorem 10 is proved. Q.E.D.

For 1 ≤ i ≤ r − 1, set

Ci = {n = (n1 . . . nk) ∈ Zr|0 < n1 < ... < ni ≤ ni+1 ≤ . . . ≤ nk}.

Also, set Cr = Cr−1.

LEMMA 11: We have:

ζ(r) =
∑

1≤i≤r

∑
n∈Ci

2−nr

n1n2 . . . nr

.

Proof: Set c = a + b. For any word w = d1 . . . dr into the letters a, b and c, let Cw be
the set of all n = (n1 . . . nk) ∈ Zr satisfying the following property:

0R1n1R2n2 . . .Rrnr

where Ri stands for the symbol < if di = a, Ri stands for the symbol = if di = b and Ri

stands for the symbol ≤ if di = c. So if w is a word into the letters a, b and c, we get
Lw(z) =

∑
n∈Cw

znr

n1...nr
.

By Lemma 8, we have:

⊓⊔ (abr−1) = ar−1(a + b) +
∑

1≤j≤r−1

aj(a + b)r−j

Since Ci = Caicr−i for all i ≤ r − 1, and Cr = Car−1c, we get

11



L⊓⊔(abr−1)(z) =
∑

1≤i≤r

∑
n∈Ci

z−nr

n1n2 . . . nr

Therefore, Lemma 11 follows from Theorem 7. Q.E.D.

Set

C = {n = (n1 . . . nr) ∈ Zr|0 < n1 ≤ n2 . . . ≤ nr}.
For n = (n1 . . . nr) ∈ C, define the number a(n) as follows. If we have 0 < n1 < . . . < nr−1

set a(n) = k. Otherwise, there exist an index i ≤ r−2 such that 0 < n1 < n2 . . . ni = ni+1.
In such a case, set a(n) = i. Note that a(n) does not depend on the last component nr of
n, and the function n 7→ a(n) takes value in the set {1, 2, . . . , r − 2, r}

COROLLARY 12: We have:

ζ(r) =
∑
n∈C

a(n)
2−nr

n1n2 . . . nr

.

Proof: It is easy to check that a(n) is precisely the number of indices i, 1 ≤ i ≤ r
such that n belongs to Ci. Therefore the formula of Corollary 7 follows from Lemma 11.
Q.E.D.

Examples: For r = 2, then a((m,n)) = 2 for all (m,n) ∈ C. Therefore, we get

ζ(2) = 2
∑

0<m≤n

2−n

nm
= 2L2(1/2) + log2 2

Accordingly to [C], this formula is due to Euler.
For r = 5, we have a((k, l, m, n, p)) = 1 if k = l, a((k, l,m, n, p)) = 2 if k < l = m

a((k, l, m, n, p)) = 3 if k < l < m = n and a((k, l, m, n, p)) = 5 if k < l < m < n.
Therefore, we get the following expansion for ζ(5)

∑
0<l≤m≤n≤p

2−p

l2mnp
+ 2

∑
0<l<m≤n≤p

2−p

lm2np
+ 3

∑
0<l<m<n≤p

2−p

lmn2p
+ 5

∑
0<k<l<m<n≤p

2−p

klmnp

4. Geometric interpretation of Theorem 7.
Theorem 7 provides a combinatorial way to exress any polyzeta value as the value of

a polylogarithmic functions at 1/2 or at ρ±1. The combinatorics seem very intricate: e.g.
the explicit formulas for zeta values ζ(r) of Section 3 are difficult to extend for general
polyzeta values ζ(r1, . . . , rk).

In this section, Theorem 7 is reformulated in terms of simple geometric notions.

(4.1) First, the free pro-algebraic group on two generators Γ and its Lie algebra g are
defined.

12



Let F be the free Lie Q-algebra with two generators α and β, let CnF be its central
descending series and set g = lim

←
F/CnF . Since F/CnF is a nilpotent Lie algebra, the

Campbell-Hausdorf series defines a structure of algebraic group on F/CnF , denoted by
Γn. Then Γ = lim

←
Γn is a proalgebraic group (an alternative definition of Γ is given in

the introduction). As pro-algebraic varieties, g and Γ are identical, and the corresponding
isomorphism is denoted by exp : g → Γ.

Let F = ⊕n≥1 Fn be the grading of F such that F1 = Qα ⊕ Qβ. Then we have
g =

∏
n≥1

Fn, so any x ∈ g can be written as the series x =
∑

i>0 xi where xi ∈ Fi. The

multiplicative group Q∗ acts linearly on g as follows: t.x =
∑

i>0 ti xi, for any t ∈ Q∗.

LEMMA 13: Let Φ : g → g be a morphism of pro-algebraic varieties. Assume that Φ
is Q∗-invariant and that dΦ0 is invertible, then Φ is an isomorphism.

Proof: One can assume that dΦ0 is the identity. Then choose a basis of F consisting
of homogenous elements (en)n≥1 with dn ≤ dm if n < m, where dn is the degree of en.
Accordingly, we have Φ(

∑
n≥1 xnen) =

∑
n≥1 Φn(x)en, where each Φn is a polynomial in

x = (x1, x2, . . .). By hypothesis, the linear part of Φn(x) is xn and for any monomial
xi1 . . . xik

occuring in Φn(x) we have di1 + . . . dik
= dn. It follows that Φn(x) − xn de-

pends only on x1, . . . , xn−1, so we can write: Φn(x) = xn + Hn(x1, . . . , xn−1). Since Φ is
triangular, it is an isomorphism.

(4.2) There is an isomorphism of Hopf algebras Q[Γ] ≃ H, see [P]. A natural group
isomorphism ψ : Γ → SpecH is now described.

For t ∈ Q, define two points φa(t) and φb(t) in SpecH as follows. Since words w ∈ W
are functions on SpecH, one needs to evaluate w at the points φa(t) and φb(t). The rule
is as follows:

w(φa(t)) = tn/n! if w = an and w(φa(t)) = 0 if b occurs in w.
w(φb(t)) = tn/n! if w = bn and w(φb(t)) = 0 if a occurs in w.
Then it is clear that φa(t) and φb(t) are two one-parameter groups in SpecH. Since

Γ is freely generated (as a proalgebraic group) by the two one-parameter groups exp Qα
and exp Qβ , the isomorphism ψ is prescribed by the requirements ψ(exp tα) = φa(t) and
ψ(exp tβ) = φb(t) for all t ∈ Q.

(4.3) From now on, we identify H and Q[Γ]. Since H = Q[Γ], any function φ ∈ Q[Γ]
defines a polylogarithmic function Lφ(z) and the polyzeta value ζ(φ) and the numbers
ζ±(φ).

(4.4) The maps σ, τ : H → H are anti-isomorphisms of Hopf algebras, and therefore
they induce two anti-isomorphisms of Γ and of its Lie algebra g. These are again denoted
by σ and τ . They are uniquely characterized by the requirements:

σ exp tα = exp tβ and σ exp tβ = exp tα
τ exp tα = exp t(α + β) and τ exp tβ = exp −tα,

for all t ∈ Q. We have σ2(g) = g and τ3(g) = g−1 for any g ∈ G.

(4.5) Since H = Q[Γ], the maps ⊓⊔, ∇ occuring in Theorem 7 are now identified with
some algebra morphisms ⊓⊔,∇ : Q[Γ] → Q[Γ].

LEMMA 14: Let φ ∈ Q[Γ]. Then for any g ∈ Γ, we have
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⊓⊔ φ(g) = φ(gσ(g)) and ∇φ(g) = φ(gτ(g))

Proof: Using their definitions, ⊓⊔ and ∇ are the composition of the following maps:

Γ
diag→ Γ × Γ

id×σ−→ Γ × Γ
µ→ Γ

Γ
diag→ Γ × Γ

id×τ−→ Γ × Γ
µ→ Γ

where diag(g) = (g, g) and µ(g1, g2) = g1.g2. Therefore we have
⊓⊔ φ(g) = φ(g.σ(g)) and ∇φ(g) = φ(g.τ(g)).

(4.6) In this subsection, the symmetric space associated with σ is defined.
Set k = {x ∈ g|σ(x) = −x}, K = {g ∈ Γ|σ(g) = g−1}, p = {x ∈ g|σ(x) = x}

P = {p ∈ Γ|σ(g) = g}.
Since σ is an anti-involution, K is a subgroup in Γ and k is its a Lie algebra. Obviously

we have g = k ⊕ p. Since Γ is a pro-unipotent group, we have K = exp k, P = exp p

and Γ = P.K. So any element g ∈ Γ can be written as g = p.k, where k ∈ K and p ∈ P .
Moreover P ≃ Γ/K is a symmetric space.

LEMMA 15: Let φ ∈ Q[Γ]. Then for any g = p.k ∈ Γ, we have

⊓⊔ φ(p.k) = φ(p2)

In particular, ζ(φ) = 0 if φ|P ≡ 0.

Proof: This follows from Lemma 14 and Theorem 7.

(4.7) Note that τ is not an involution, but an ”ordrer three” anti-isomorphism, i.e.
τ3(g) = g−1. In this sub-section, we introduce a space Q which is analogous to a symmetric
space.

Set l = {x ∈ g|τ(x) = −x}, L = {g ∈ Γ|τ(g) = g−1}, q = {x ∈ g|τ2(x)−τ(x)+x = 0}.
Also define Q as the image of the map g ∈ Γ 7→ gτ(g). Note that L is a subgroup with Lie
algebra l.

LEMMA 16: The subset Q is a closed subvariety of Γ and the natural map: Q×L →
Γ, (q, l) 7→ ql is a isomorphism of pro-algebraic varieties.

Proof It is easy to prove that Γ = expq.L. For g = exp q.l, with q ∈ q and l ∈ L, we
have gτ(g) = exp q exp τ(q), therefore Q is the set all exp q exp τ(q) for q ∈ q.

Let Φ : q⊕l → Γ be define by Φ(q, l) = exp q exp τ(q) exp l. Note that dΦ0 is the linear
map from g to g which is the identity on l and whose restriction to q is 1 + τ . Therefore,
dΦ0 is invertible. By Lemma 13 that Φ is an isomorphism and Lemma 16 follows easily.
Q.E.D.

The definition of Q is slighty more complicated than the definition of P because
Q 6= exp q. However, the map q → Q, q 7→ exp q exp τ(q) is an isomorphism from q to Q.
Any element g ∈ Γ can be written as g = q.l, where l ∈ L and q ∈ Q

14



LEMMA 17: Let ψ ∈ Q[Γ]. Then for any g = q.l ∈ Γ, we have

∇ψ(q.l) = ψ(qτ(q))

In particular, ζ(ψ) = 0 if ψ|Q ≡ 0.

Proof: This follows from Lemma 14 and Theorem 7.

(4.8) Let φ ∈ Q[P ] be a rational function on P . The notations ζ(φ) and Lφ(z) are

now defined. Set ζ(φ) = ζ(φ̂) where φ̂ is any function on Γ extending φ. By Lemma 15,
ζ(φ) is well defined. Since P ≃ Γ/K, φ can be uniquely extended to a right K-invariant
function Φ on Γ. Then set Lφ(z) = LΦ(z).

Similarly, for ψ ∈ Q[Q], the notations ζ±(ψ) and Lψ(z) are defined as follows. Set

ζ±(ψ) = ζ±(ψ̂) where ψ̂ is any function on Γ extending ψ. By Lemma 17, ζ±(ψ) is well
defined. By Lemma 16, we have Q ≃ Γ/L, therfore ψ can be uniquely extended to a right
L-invariant function Ψ on Γ. Then set Lψ(z) = LΨ(z).

Define the algebra morphisms ⊓⊔ : Q[P ] → Q[P ] and ∇ : Q[Q] → Q[Q] by

⊓⊔ φ(p) = φ(p2), forφ ∈ Q[P ]

∇ψ(q) = ψ(qτ(q)), forψ ∈ Q[Q]

These operators are simply the restrictions to P and to Q of the already defined
operators ⊓⊔,∇ : Q[Γ] → Q[Γ]. So using the same notations should not bring confusions.

THEOREM 18: For any φ ∈ Q[P ] and ψ ∈ Q[Q], we have

ζ(ψ) = L⊓⊔(ψ)(1/2) and ζ±(ψ) = L∇(ψ)(ρ
±)

Proof: It follows immediately from Theorem 7, and Lemmas 15 and 17.

5. Other expressions for zeta values.
In this section, we follow a suggestion of W. Zudilin

(5.1) Theorem 7 shows that any polyzeta value is the value of a polylogarithmic
function at 1/2 or at ρ±. However, there is a much more simple way to express the zeta
values ζ(r) as a value of polylogarithmic functions at 1/2 or at ρ±, see Corollary 20. It is
surprizing that the two approaches give different expressions, except for ζ(2). Moreover,
this simpler approach does not generalize to polyzeta values.

(5.2) Let σ′ : H → H be the linear map defined as follows. Set σ′(a) = −a and σ′(b) =
a + b. For a word w = c1 . . . cn, where ci ∈ {a, b} are letters, set σ′(w) = σ′(c1) . . . σ′(cn).
It is easy to prove that σ′ is an algebra morphism relative to the schuffle product and that
σ′(H+) = H+.

LEMMA 19 For any h ∈ H+, we have:
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Lh(−1) = Lσ′(h)(1/2) and Lh(ρ) = Lσ′(h)(ρ).

Proof: One can assume that h is a word w = c1 . . . cn ∈ W+. Set F = {z ∈ C| |z| ≤
1 and Imz ≤ 1/2} and choose a two paths γ, γ− : [0, 1] → F with γ(0) = γ−(0) = 0,
γ(1) = −1 and γ−(1) = ρ. By Proposition 2, we have:

Lw(−1) =

∫
∆n

γ∗ωc1
(x1)γ

∗ωc2
(x2) . . . γ∗ωcn

(xn)

Lw(ρ) =

∫
∆n

γ∗
−ωc1

(x1)γ
∗
−ωc2

(x2) . . . γ∗
−ωcn

(xn)

For z ∈ F , set S′(z) = z/(z − 1) and set δ = S′ ◦ γ and δ− = S′ ◦ γ−. We have
S′∗ωσ′(c) = ωc for c = a or b, and therefore we get γ∗ωc = δ∗−ωσ′(c) and γ∗

−ωc = δ∗−ωσ′(c)

It follows that

Lw(−1) =

∫
∆n

δ∗ωσ′(c1)(x1)δ
∗ωσ′(c2)(x2) . . . δ∗ωσ′(cn)(xn)

Lw(ρ) =

∫
∆n

δ∗−ωσ′(c1)(x1)δ
∗
−ωσ′(c2)(x2) . . . δ∗−ωσ′(cn)(xn)

We have S′(F ) = F , S′(0) = 0, S′(−1) = 1/2 and S′(ρ) = ρ. Therefore δ is a path
from 0 to 1/2 and δ− is a path from o to ρ. Thus, these integrals can be identified by
Proposition 2, and we get Lh(−1) = Lσ′(h)(1/2), and Lh(ρ) = Lσ′(h)(ρ). Q.E.D.

LEMMA 20: Let r ≥ 1. We have

ζ(r + 1) =
−1

1 − 2−r
Lr+1(−1)

ζ(r + 1) =
1

(1 − 2−r)(1 − 3−r)
[Lr+1(ρ) + Lr+1(ρ)]

Proof: For each positive integer a, set δa(n) = 1 if a divides n and δa(n) = 0 otherwise.
From the formula (−1)n = −δ1(n) + 2δ2(n), we get
Lr+1(−1) =

∑
n>0

(−1)n/nr+1

= − ∑
n>0

1/nr+1 + 2
∑
n>0

1/(2n)r+1

= (−1 + 2−r) ζ(r)
from which the first formula follows.

From the formula ρn + ρn = δ1(n) − 2δ2(n) − 3δ3(n) + 6δ6(n) we get
Lr+1(ρ) + Lr+1(ρ) =

∑
n>0

[ρn + ρn]/nr+1

=
∑
n>0

1/nr+1−2
∑
n>0

1/(2n)r+1−3
∑
n>0

1/(3n)r+1+6
∑
n>0

1/(6n)r+1

= (1 − 2−r − 3−r + 6−r) ζ(r + 1)
= (1 − 2−r)(1 − 3−r) ζ(r + 1),

from which the second formula follows.
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COROLLARY 21: Let r ≥ 1. We have

ζ(r + 1) =
2r

(2r − 1)
La(a+b)r (1/2)

ζ(r + 1) =
6r

(2r − 1)(3r − 1)
[Labr (ρ) − La(a+b)r (ρ)]

Proof: The corollary follows from Lemmas 18 and 19.

Examples:

ζ(2) = 2
∑

0<m≤n

2−n

nm

ζ(3) = 8/7
∑

0<l≤m≤n

2−n

lnm

The expression for ζ(2) is the same as in section 3. However for all other zeta values
ζ(r) with r ≥ 3, the expressions are different: e.g., the formula of corollary 20 uses non
integral coefficients. Moreover, this simpler approach only concerns zeta values but not
the polyzeta values.

6. Conclusion: Polyzeta values are mixed periods [G], [T], [Z]. In the philosophy
of motives, there is a proalgebraic group G and periods should be regular functions on G:
more precisely, the algebra of periods should be a Q-form of C[G], modulo conjectures.
Here polyzeta values are attached to some symmetric space. Does there is a motivic
interpretation of this construction? Note however that the map Q[P ] → Z is not injective.
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