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Quickly converging series are given to compute polyzeta numbers ζ(r 1 , . . . , r k ). The formulas involve an intricate combination of (generalized) polylogarithms at 1/2. However, the combinatoric has a very simple geometric interpretation: it corresponds with the map p → p 2 on a certain symmetric space P . Now to evaluate log 2 or π up to the N th digit, one only needs the first O(N )-terms of the series and therefore log 2 and π can be computed very quickly. The goal of the paper is to provide similar identities for all polyzeta values.

To do so, one needs to use the functions L r 1 ,...,r k (z) = 0<n 1 ...<n k 1/n r 1 1 ...n r k k z n k , where r 1 , . . . , r k are positive integers. By definition, a Q-linear combinations of the functions L r 1 ,...,r k (z) is called a polylogarithmic function. The obvious identity ζ(r 1 , . . . , r k ) = L r 1 ,...,r k (1) does not help to quickly evaluate polyzeta values. However, the series defining polylogarithms at 1/2 converges very quickly: to evaluate L r 1 ,...,r k (1/2) up to the N th digit, one only needs to sum O(N k )-terms, and this can be done in polynomial time. This remark suggests the following result

Introduction:

Let k ≥ 1. For a k-uple (r 1 , r 2 , . . . , r k ) of positive integers, set ζ(r 1 , . . . , r k ) = 0<n 1 ...<n k 1/n r 1 1 ...n r k k . We have ζ(r 1 , . . . , r k ) < ∞ if and only if r k ≥ 2. By definition, the polyzeta values are the Q-linear combinations of the finite numbers ζ(r 1 , . . . , r k ).

Using the definition of ζ(r 1 , . . . , r k ), the evaluation of a polyzeta value up to the N th digit requires to take into account something like O(10 N ) terms. Therefore it is a very slow computation. A similar computational problem arises with the classical series log 2 = -n>0 (-1) n /n and π/4 = n≥0 (-1) n 1/(2n + 1), which converge very slowly.

However, we easily notice that: log 2 =log(1 -1/2) = n>0 2 -n /n. A remarkable series for π has been discovered by Bailey, Borwein and Plouffe [BBP]: π = n≥0 1/2 4n [4/(8n + 1) -2/(8n + 4) -1/(8n + 5) -1/(8n + 6)]

MAIN STATEMENT: Any polyzeta value is the value of a certain polylogarithmic function at 1/2.

In order to get a useful statement, the corresponding polylogarithmic function is described explicitly: see Theorem 7 for a precise statement. At first glance, the combinatorics involved in Theorem 7 looks intricated and therefore no details are given in the introduction. However, we can precisely formulate the main statement in terms of very simple geometric notions.

Let F (2) be the free group on two generators α and β and let s be the involution exchanging the generators. Let Γ = Q⊗F 2 be the Malcev completion of Γ (see Section 4 for an alternative definition of Γ). The involution s extends to Γ and there is a decomposition Γ = P.K where K is the subgroup of fixed points of s and where P = {g ∈ Γ|s(g) = g -1 }. The group Γ is proalgebraic over Q and the symmetric space P is a pro-algebraic variety over Q.

In section (4.8), all polyzeta values are naturally indexed by rational functions on P . Similarly, some polylogarithmic functions are naturally indexed by rational functions on P . So for φ ∈ Q [P ], denote by ζ(φ) and L φ (z) the corresponding polyzeta value and polylogarithmic function.

Now the square map ⊓ ⊔ : P → P, p → p 2 induces an algebra morphism ⊓ ⊔ : Q[P ] → Q [P ]. The geometric formulation of the main result is as follows:

MAIN THEOREM: For any φ ∈ Q [P ], ζ(φ) = L ⊓ ⊔φ (1/2).

We also express polyzeta values as values of polylogarithmic functions at ρ ±1 = exp ±iπ/3. The geometric interpretation of this case is a bit more complicate because it involves an order 3 automorphism of Γ, see section 4, Theorem 18.
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Polylogarithms and polyzeta values.

This section is devoted to main definitions and conventions. The definitions of polyzeta values and polylogarithmic functions are not standard: see the subsections (1.14) for more comments. Moreover in this section we adopt some conventions to renormalize infinite quantities like ζ(1) or z 0 dt/t.

(1.1) Shuffles: For N ≥ 0, denote by S N the symmetric group, i.e. the set of all bijections σ : {1, . . . , N } → {1, . . . , N }. Given n and m two non-negative integers, let S n,m be the set of all φ ∈ S n+m such that φ is increasing on the subset {1, . . . , n} and on the subset {n + 1, . . . , n + m}. The elements of S n,m are called schuffles.

(1.2) Shuffle product: Let W be the set of words into the letters a and b. By convention, W contains the empty word ∅. Set H = QW, i.e. H is the Q-vector space with basis W. For any two words w = x 1 . . . x n and w ′ = x n+1 . . . x n+m , where each x i ∈ {a, b} is a letter, define the product w * w ′ ∈ H by the formula:

w * w ′ = σ∈S n,m x σ(1) . . . x σ(n+m)
By convention, we have ∅ * w = w * ∅ = w for all word w. The product * is called the shuffle product. With respect to this product, H is a commutative associative algebra, and ∅ is its unit.

(1.3) Subalgebras of H: Let W + be the set of words whose first letter is not b. Equivalently, a word w belongs to W + if w = ∅ or if w starts with a. Similarly, let W ++ be the set of words whose first letter is not b and the last letter is not a. Set H + = QW + and H ++ = QW ++ . It is easy to prove that H + and H ++ are subalgebras of H.

LEMMA 1: There are isomorphisms of algebras:

H = H + [b] and H = H ++ [a, b].
Proof: For each n ≥ 0, let W n be the set of words of the form b n w with w ∈ W + , and set

H n = ⊕ 0≤k≤n QW i . We have b * H n ⊂ H n+1 . Moreover we have b * w = (n + 1)bw modulo H n for any w ∈ W n . It follows easily by induction that H n = ⊕ 0≤k≤n H + * b k , i.e.
H n is the space of all polynomials in b wih coefficients in H + and degree ≤ n. Therefore the first assertion follows.

The proof of the second assertion is similar.

(1.4) The bijection λ : W + → Λ: Let N be the set of positive integer. For clarity, a word into the letters 1, 2, . . . ∈ N will be called a sequence of positive integers. Let Λ the set of sequence (r 1 . . . r k ) of positive integers. By convention, Λ contains the empty sequence ∅.

Any word w ∈ W + can be uniquely factorized as: w = ab t 1 ab t 2 . . . ab t k , where k is the number of occurence of a in w and where the t i are non-negative integers. Then, the map w ∈ W + → (1 + t 1 , 1 + t 2 , . . . , 1 + t k ) ∈ Λ defines a natural bijection λ : W + → Λ.

(1.5) Polylogarithmic functions and polyzeta values: Let k ≥ 1 and let r 1 . . . r k be a sequence of k positive integers. Consider the following series in the complex variable z:

L r 1 ,...,r k (z) = 0<n 1 <...<n k n -r 1 1 . . . n -r k k z n k
In the infinite sum, the indices n 1 , . . . n k are integers. The functions L r 1 ,...,r k (z) are called polylogarithms. Set D = {z ∈ C| |z| < 1}, D = {z ∈ C| |z| ≤ 1}. The two points of interest for the paper are the following:

(i) if r k ≥ 2, the series is absolutely convergent on D and therefore L r 1 ,...,r k (z) extends to a continous function on D.

(ii) if r k = 1, the series converges on D and L r 1 ,...,r k (z) extends to a continous function on D \ {1}. Indeed L r 1 ,...,r k (z) extends to a multivalued function, see e.g. [C] and Proposition 2 below. For r k ≥ 2, set

ζ(r 1 , . . . , r k ) = 0<n 1 <...<n k n -r 1 1 . . . n -r k k
In the paper, the numbers ζ(r 1 , . . . , r k ) will be called polyzeta values. Indeed the polyzeta value is both the value at z = 1 of the polylogathm L r 1 ,...,r k (z) and a value of the polyzeta function

ζ(s 1 , . . . , s k ) = 0<n 1 <...<n k n -s 1 1 . . . n -s k k .
(1.6) New notations: Let w ∈ W + and set (r 1 , . . . , r k ) = λ(w). It is convenient to denote the function

L (r 1 ,...,r k ) (z) by L w (z). Similarly set ζ(w) = ζ(r 1 , . . . , r k ) if w ∈ W ++ .
(1.7) The one-forms ω a and ω b : Define the following one-forms on C:

ω a (z) = dz 1 -z and ω b (z) = dz z For an element c = xa + yb ∈ Qa ⊕ Qb, set ω c (z) = xω a (z) + yω b (z). Given a smooth path γ : [0, 1] → C, t → γ(t), recall that γ * ω a (t) = γ ′ (t) 1-γ(t) dt, γ * ω b (t) = γ ′ (t) γ(t) dt. and γ * ω c (t) = xγ * ω a (t) + yγ * ω b (t).
(1.8) Kontsevitch formula: For a positive integer n, set

∆ n = {(x 1 , x 2 . . . , x n ) ∈ R n |0 ≤ x 1 ≤ x 2 . . . ≤ x n ≤ 1}. Let w = c 1 . . . c n ∈ W + be
a word, where each c i is a letter. The following formula is due to Kontsevitch (see [Z]).

PROPOSITION 2: Let w = c 1 . . . c n ∈ W + be a word, let z ∈ D, and let γ : [0, 1] → D be a path with γ(0) = 0 and γ(1) = z.

Assume that w ∈ W ++ or that γ does not meet 1. Then we have:

L w (z) = ∆ n γ * ω c 1 (x 1 )γ * ω c 2 (x 2 ) . . . γ * ω c n (x n )
.

In [Z], Kontsevitch formula is stated for the straight path t → zt, but it is easy to see that the integral is homotopy invariant as long γ stay in D (and γ stay D \ {1} if w / ∈ W ++ ).

(1.9) Products: Let n, m be non negative integers and let c 1 , c 2 , . . . , c n+m ∈ {a, b} be letters with

c 1 = c n+1 = a. Set u = c 1 . . . c n and v = c n+1 . . . c n+m . For σ ∈ S n,m , set w σ = c σ(1) . . . c σ(n+m) . COROLLARY 3: For u, v ∈ W + , we have L u (z)L v (z) = σ∈S n,m L w σ (z) for all z ∈ D. Moreover for u, v ∈ W ++ , we have ζ(u)ζ(v) = σ∈S n,m ζ(w σ ). Proof: Set ω ′ = ω c 1 (zx 1 )ω c 2 (zx 2 ) . . . ω c n (zx n ), ω" = ω c n+1 (zx n+1 )ω c n+2 (zx n+2 ) . . . ω c n+m (zx n+m ), ∆ m = {(x n+1 , x n+2 . . . , x n+m ) ∈ R n |0 ≤ x 1 ≤ x 2 . . . ≤ x n ≤ 1}, and for σ ∈ S n,m , set ∆ σ = {(x 1 , . . . , x n+m ) ∈ R n+m |x σ(1) ≤ x σ(2) ≤ . . . ≤ x σ(n+m) }. Since ∆ n ×∆ m = ∪ σ∈S n,m ∆ σ , we get ∆ n ω ′ ∆ m ω" = ∆ n ×∆ m ω ′ ∧ω" = σ ∆ σ ω ′ ∧ω". By Proposition 2, this identity is equivalent to L u (z)L v (z) = σ∈S n,m L w σ (z). At z = 1, one gets the second identity ζ(u)ζ(v) = σ∈S n,m ζ(w σ ). Q.E.D.
(1.10) Final definitions and notations for polylogarithmic functions: Up to now, the polylogarithms L w (z) are defined for w ∈ W + . In order to extend the definition to all w ∈ W, a renormalization procedure is used.

Set Ω = D\] -1, 0] and let Hol(Ω) be the algebra of holomorphic functions on Ω. Since ω is simply connected, let denote by log z the holomorphic function on Ω whose restriction to ]0, 1[ is the usual logarithmic function.

LEMMA 4: There is a unique algebra morphism Φ :

H → Hol(Ω) such that Φ(w) = L w (z) for w ∈ H + and Φ(b) = log z.
Proof: This follows from Lemmma 1 and corollary 3. Q.E.D.

For any h ∈ H, set L h (z) = Φ(h). When h is a word w in W + , this new notation agrees with the previous one. Corollary 3 can be restated as:

L u (z)L v (z) = L u * v (z). By definition the polylogarithmic functions are the functions L h (z) whith h ∈ H.
This definition is a slighty different from the introduction. However, we will only use polylogarithmic functions L h (z) with h ∈ H + , which are the polylogaritmic functions defined in introduction.

(1.11) Final definitions and notations for polyzeta values: Up to now, the polyzeta values ζ(w) are defined for w ∈ W ++ . In order to extend the definition to all w ∈ W, we will use a renormalization procedure as follows.

LEMMA 5: There are three algebra morphisms ψ, ψ + , ψ -: H → C uniquely defined by the following requirements:

ψ(w) = ψ + (w) = ψ -(w) = ζ(w) if w ∈ H ++ ψ(a) = 0, ψ + (a) = iπ, ψ -(a) = -iπ ψ(b) = ψ + (b) = ψ -(b) = 0.
Proof: This follows from Lemmma 1 and corollary 3.

Similarly, this allows to define 

ζ(h) = ψ(h), ζ ± (h) = ψ ± (h)
(u)ζ(v) = ζ(u * v) and ζ ± (u)ζ ± (v) = ζ ± (u * v) for any u, v ∈ H. Set Z = ζ(H) and Z ± = ζ(H ± )
. By definition, Z and Z ± are subrings of C, and Z is the space of all polyzeta values. It is easy to compare the three algebras Z and Z + and

Z -. LEMMA 6: (i) As a Q vector space, Z is generated by all ζ(w) with w ∈ W ++ . (ii) We have Z ⊂ R. (iii) Z ± = Z ⊕ iπZ.
Proof: The assertions (i) and (ii) follow from Lemma 1. Moreover it follows that Z ± is the Q-algebra generated by Z and Z and assertion (6.3) follows.

ζ ± (b) = ±iπ. However (ζ ± (b)) 2 = -π 2 = -6ζ(2), therefore (ζ ± (b)) 2 belongs to
(1.12) Hopf algebra structure: Define the linear maps η : H → Q, ι : H → H and ∆ : H → H ⊗ H as follows. For any word w

= c 1 . . . c n ∈ W, set η(w) = 1 if w = ∅ and η(w) = 0 otherwise ι(w) = (-1) n c n c n-1 . . . c n ∆(w) = 0≤i≤n c 1 . . . c i ⊗ c i+1 . . . c n
The map η, ι and ∆ are algebra morphisms. Indeed H is a Hopf algebra with co-unit η, inverse map ι and coproduct ∆.

(1.13) Concatenation product: For two words w = c 1 . . . c n and w ′ = c n+1 . . . c n+m , their concatenation is the word ww ′ = c 1 . . . c n c n+1 . . . c n+m . This induces another structure of algebra on H, for which the product of two elements h, h ′ is simply denoted by h h ′ .

(1.14) Remarks on references and on the terminology: In the classical litterature, only the functions L k (z) = n>0 z n /n k are called polylogarithms, see [L] [Oe]. We did not find a standard name for the L (r 1 ,...,r k ) (z). They are defined in the Bourbaki's talk [C], where the title suggests to call them again polylogarithms.

It seems that some polyzeta values, like ζ(1, 3), were already known by Euler, see [C]. The general definition of ζ(r 1 , . . . , r k ) appears explicitely around 1990 in [H] and [Z]. These numbers are also called multiple zeta values in [Z], multiple harmonic sums in [H], multizeta numbers in [E], Euler-Zagier numbers in [BB] and polyzetas numbers in [C].

The fact that polyzeta values are naturally indexed by words has been observed by many authors, see [H], [H-P] and [C]. Lemma 1 and corollary 3 are well-known. Proofs are given for the convenience of the reader.

2. Polylogaritmic functions at 1/2 and at ρ ±1 : Define two linear maps σ, τ :

H → H as follows. First set σ(a) = b, σ(b) = a, τ (a) = a + b and τ (b) = -a. For any word w = c 1 . . . c n ∈ W, set σ(w) = σ(c n ) . . . σ(c 1 ) and τ (w) = τ (c n ) . . . τ (c 1 )
. It is easy to see that σ and τ are algebra morphisms relative to the shuffle product * (they are anti-morphism relative to the concatenation product).

Define now the two operators ⊓ ⊔, ∇ : H → H as the following composite maps:

⊓ ⊔ : H ∆ → H ⊗ H id⊗σ -→ H ⊗ H * → H ∇ : H ∆ → H ⊗ H id⊗τ -→ H ⊗ H *

→ H

Set ρ = e iπ/3 . THEOREM 7: For any h ∈ H, we have:

ζ(h) = L ⊓ ⊔(h) (1/2) ζ ± (h) = L ∇(h) (ρ ±1 ) Proof: Note that ⊓ ⊔(a) = ⊓ ⊔(b) = a+b, L a (z) = log 1/(1-z) and L b (z) = log z, therefore L a (1/2) + L b (1/2) = 0 = ζ(a) = ζ(b).
Similarly, ∇(a) = 2a + b and ∇(b) = 0, and we have

L ∇ (a)(ρ ±1 ) = -2 log(1 -ρ ±1 ) + log(ρ ±1 ) = ±iπ = ζ ± (a) and L ∇ (b)(ρ ±1 ) = 0 = ζ ± (b).
Since ⊓ ⊔ and ∇ are algebra morphisms, and since the algebra H is generated by a, b and W ++ , it is enough to show the formulas when h is a non empty word w in W ++ . So let w ∈ W ++ be a word of length n ≥ 2. Set w = c 1 . . . c n where c i ∈ {a, b} are letters with c 1 = a and c n = b.

Let γ : [0, 1] → D, t → t be the straight path from 0 to 1. Choose two smooth paths γ ± : [0, 1] → D with the following properties:

γ ± (0) = 0, γ ± (1) = 1, γ ± (1/2) = ρ ±1 = 1/2 ± i √ 3/2 and Re γ ± (t) ≥ 1/2 for all t ∈ [1/2, 1]. Set ∆ n = {(x 1 , x 2 . . . , x n ) ∈ R n |0 ≤ x 1 ≤ x 2 . . . ≤ x n ≤ 1}
. By Proposition 2, we have:

ζ(w) = ∆ n η * ω c 1 (x 1 ) η * ω c 2 (x 2 ) . . . η * ω c n (x n )
where η is the path γ, or γ + or γ -.

For 0

≤ i ≤ n, set ∆ ′ i = {(x 1 , x 2 . . . , x i ) ∈ R n |0 ≤ x 1 ≤ x 2 . . . ≤ x i ≤ 1/2} and ∆" i = {(x i+1 , x i+2 . . . , x n ) ∈ R n |1/2 ≤ x i+1 ≤ x i+2 . . . ≤ x n ≤ 1}. From the decomposition: ∆ = ∪ 0≤i≤n ∆ ′ i × ∆" i , it follows that ζ(w) = 0≤i≤n L ′ i L" i = 0≤i≤n L ′± i L" ± i
, where the numbers L ′ i , L" i , L ′± i , L i " ± are the following integrals:

L ′ i = ∆ ′ i γ * ω c 1 (x 1 ) γ * ω c 2 (x 2 ) . . . γ * ω c i (x 1 ) L" i = ∆" i γ * ω c i+1 (x i+1 ) γ * ω c i+2 (x i+2 ) . . . γ * ω c n (x n ) L ′± i = ∆ ′ i γ * ± ω c 1 (x 1 ) γ * ± ω c 2 (x 2 ) . . . γ * ± ω c i (x 1 ) L" ± i = ∆" i γ * ± ω c i+1 (x i+1 ) γ * ± ω c i+2 (x i+2 ) . . . γ * ± ω c n (x n )
Using Kontsevitch formula, we get

L ′ i = L w ′ i (1/2) and L ′± i = L w ′ i (ρ ±1 )
, where w ′ i = c 1 . . . c i . To evaluate L" i , one needs to introduce some new notations. Define by S, T : C → C the rational maps:

S(z) = 1 -z and T (z) = 1 -1/z. Define the new paths δ, δ ± : [0, 1/2] → C by δ(t) = 1 -γ(1 -t) = S • γ(1 -t) and δ ± (t) = 1 -1/γ ± (1 -t) = T • γ(1 -t).
Clearly, δ is the straight path from 0 to 1/2. Since T (ρ ±1 ) = ρ ±1 and T (1) = 0, δ ± is a path from 0 to ρ ±1 . Since Re γ ± (t) ≥ 1/2 for all t ∈ [1/2, 1], it follows that δ ± lies in D \ {1}.

With the convention of (1.7), we get:

γ * ω c (t) = δ * ω σ(c) (1 -t) and γ * ± ω c (t) = δ * ± ω τ (c) (1 -t) for any c ∈ Qa ⊕ Qb.
Using the new variables y j = 1x j , we thus get:

L" i = ∆" i δ * ω σ(c n ) (y n )δ * ω σ(c n-1 ) (y n-1 ) . . . δ * ω σ(c i+1 ) (y i+1 ) L" ± i = ∆" i δ * ± ω τ (c n ) (y n )δ * ± ω τ (c n-1 ) (y n-1 ) . . . δ * ± ω τ (c i+1 ) (y i+1 )
where

∆" i = {(y n , y n-1 , . . . , y i+1 ) ∈ R n |0 ≤ y n ≤ y n+1 . . . ≤ y i+1 ≤ 1/2}. It follows from Proposition 2 that L" i = L σ(w" i ) (1/2) and L" ± i = L τ (w" i ) (ρ ±1
) where w" i is the word c i+1 . . . c n . Therefore we get

ζ(w) = 0≤i≤n L w ′ i (1/2)L σ(w" i ) (1/2), and 
ζ(w) = 0≤i≤n L w ′ i (ρ ±1 )L τ (w" i ) (ρ ±1 ). Since ∆(w) = 0≤i≤n w ′ i ⊗ w" i , it is clear that ⊓ ⊔ (w) = 0≤i≤n w ′ i * σ(w" i ) and ∇(w) = 0≤i≤n w ′ i * τ (w" i )
, and therefore the formula follows from Corollary 3. Q.E.D.

Explicit expressions for ζ(r).

Theorem 7 provides a combinatorial way to express any polyzeta value as a polylogarithmic functions at 1/2 or at ρ or at ρ. In this section, Theorem 10 and Corollary 12 provided closed formulas for zeta values ζ(r), where r ≥ 2 is a given integer. The formulas are derived from Theorem 7. However, for general polyzeta values ζ(r 1 , . . . , r k ) the combinatorics seem too intricate to find a simple combinatorial formula.

The concatenation product hh', which is not commutative, should not be confused with the commutative schuffle product h * h ′ . The following conventions will be used. First, for h ∈ H and n ≥ 1, the notation h n will be the n th power of h with respect to the concatenation product. Moreover, the concatenation product takes precedence of the schufle product. For example, the expression hh ′ * h" should be understood as (hh ′ ) * h".

LEMMA 8: We have:

⊓ ⊔ (ab r-1 ) = 2a r-1 (a + b) + 1≤j≤r-2 a j (a + b) r-j ∇(ab r-1 ) = (-1) r+1 3a r + 1≤j≤r-2 (-1) j+1 a j (b -a) r-j Proof: We have: ⊓ ⊔ (ab r-1 ) = σ(ab r-1 ) + 0≤j≤r-1 ab j * σ(b r-1-j ) = a r-1 b + u+v=r-1 ab u * a v .
Similarly, we have: ∇(ab r-1 ) = τ (ab r-1 ) + 0≤j≤r-1

ab j * τ (b r-1-j ) = (-1) r+1 a r-1 (a + b) + u+v=r-1 (-1) v ab u * a v .
Use now the formula, cw * a v = i+j=v a j c(w * a i ), which holds for any word w and any letter c. Thus we have ab u * a v = i+j=v a j+1 (b u * a i ) and we get:

⊓ ⊔ (ab r-1 ) = a r-1 b + j+u+v=r-1 a j+1 (b u * a v ), and 
∇(ab r-1 ) = (-1) r+1 a r-1 (a + b) + j+u+v=r-1 (-1) j+v a j+1 (b u * a v ).
Using now the formulas:

(a + b) N = u+v=N a u * b v and (b -a) N = u+v=N (-1) u a u * b v we get: ⊓ ⊔ (ab r-1 ) = a r-1 b + 0≤j≤r-1 a j+1 (a + b) r-1-j = a r-1 b + 1≤j≤r a j (a + b) r-j = a r-1 b + a r + 1≤j≤r-1 a j (a + b) r-j = a r-1 (a + b) + 1≤j≤r-1 a j (a + b) r-j = 2a
r-1 (a + b) + 1≤j≤r-2 a j (a + b) r-j . We also get: ∇(ab r-1 ) = (-1) r+1 a r-1 (a + b) + + 0≤j≤r-1

(-1) j a j+1 (b -a) r-1-j = (-1) r+1 a r-1 (a + b) + 1≤j≤r (-1) j+1 a j (b -a) r-j = (-1) r+1 a r-1 (a + b) + (-1) r+1 a r + (-1) r a r-1 (b -a) + 1≤j≤r-2 (-1) j+1 a j (b -a) r-j = (-1) r+1 3a r + 1≤j≤r-2 (-1) j+1 a j (b -a) r-j . Q.E.D.
Let W r be the set of words of lenght r. Any w ∈ W r can be written as w = a j u, where u does not start with a. Let k be the number of occurence of a in w. Set j(w) = j, k(w) = k and define the numbers c(w) and c ± (w) as follows.

(i) If w = a r , set c(w) = r and c ± (w) = (-1) r+1 (r + 1).

(ii) If w = a r-1 b, set c(w) = r and c ± (w) = (-1) r (r -2).

(iii) Otherwise, set c(w) = j and c ± (w) = (-1) k+1 j.

LEMMA 9: We have:

⊓ ⊔ (ab r-1 ) = w∈W r c(w)w ∇(ab r-1 ) = w∈W r c ± (w)w
Proof: The first identity of Lemma 8 can be written as:

⊓ ⊔ (ab r-1 ) = a r-1 b + 1≤i≤r a i (a + b) r-i . Since (a + b) r-i = u∈W r-i u, we thus get ⊓ ⊔ (ab r-1 ) = a r-1 b + 1≤i≤r u∈W r-i a i u
The word w = a j(w) v belongs to a i W r-i for all i ≤ j(w). Therefore 1≤i≤r a i (a+b) r-i = w∈W r j(w)w. Since c(a r-1 b) = j(a r-1 b)+1 and c(w) = j(w) otherwise, the formula ⊓ ⊔ (ab r-1 ) = w∈W r c(w)w is now proved.

Set a = -a and b = b. For a word w = c 1 . . . c n , set w = c 1 . . . c r and for a general element h = c w w in H set h = c w w. Since the involution h → h is a morphism relative to the concatenation product, it follows from Lemma 8 that:

-∇(ab r-1 ) = 3a r + 1≤i≤r-2 a i (b + a) r-i = a ra r-1 b + 1≤i≤r a i (b + a) r-i It follows from the previous proof that 1≤i≤r a i (a + b) r-i = w∈W r j(w)w. Therefore, one gets:

-∇(ab r-1 ) = a ra r-1 b + w∈W r j(w)w.

Note that w = (-1) k(w) w for all words w. Thus: ∇(ab r-1 ) = (-1) r+1 a r -(-1) r a r-1 b + w∈W r (-1) (1+k(w)) j(w)w Since c ± (a r ) = (-1) r+1 (j(a r + 1), c ± (a r-1 b) = (-1) r (j(a r-1 b) -1) and c ± (w) = (-1) 1+k(w) j(w) otherwise, the formula ∇(ab r-1 ) = w∈W r c ± (w)w is now proved. Q.E.D. (i

) If m 1 = m 2 = . . . = m r = 1, set j(m) = r, b(m) = r and b ± (m) = (-1) r+1 (r + 1). Otherwise, let j(m) = j be the index such that m 1 = m 2 = . . . = m j-1 = 1 and m j ≥ 2. (ii) If m 1 = m 2 = . . . = m r-2 = 1 and m r+1 = 2, set b(m) = r and b ± (m) = (-1) r (r -2).
(iii) Otherwise, set b(m) = j and b ± (m) = (-1) k+1 j, where j = j(m) and k = k(m).

THEOREM 10: For r ≥ 2, we have:

ζ(r) = m∈Λ r b(m)L m (1/2) ζ(r) = m∈Λ r b ± (m)L m (ρ ±1 )
Proof: It is clear that c(w) and c ± (w) vanish if w / ∈ W + . Therefore it follows from Theorem 7 and Lemma 9 that

ζ(r) = w∈W + r c(w)L w (1/2) ζ(r) = w∈W + r c ± (w)L w (ρ ±1 )
where W + r = W + ∩ W r . Note that the map λ of section 1.4 provides a bijection λ : W + r → Λ r . It is easy to check that j(w) = j(λ(w)) and k(w) = k(λ(w)) for all w ∈ W + r , and therefore

c(w) = b(λ(w)) and c ± (w) = b ± (λ(w)) for all w ∈ W + r . Therefore Theorem 10 is proved. Q.E.D. For 1 ≤ i ≤ r -1, set C i = {n = (n 1 . . . n k ) ∈ Z r |0 < n 1 < ... < n i ≤ n i+1 ≤ . . . ≤ n k }. Also, set C r = C r-1 .
LEMMA 11: We have:

ζ(r) = 1≤i≤r n∈C i 2 -n r n 1 n 2 . . . n r . Proof: Set c = a + b.
For any word w = d 1 . . . d r the letters a, b and c, let C w be the set of all n = (n 1 . . . n k ) ∈ Z r satisfying the following property:

0R 1 n 1 R 2 n 2 . . . R r n r where R i stands for the symbol < if d i = a, R i stands for the symbol = if d i = b and R i stands for the symbol ≤ if d i = c. So if w is a word into the letters a, b and c, we get L w (z) = n∈C w z n r n 1 ...n r .
By Lemma 8, we have:

⊓ ⊔ (ab r-1 ) = a r-1 (a + b) + 1≤j≤r-1 a j (a + b) r-j Since C i = C a i c r-i for all i ≤ r -1, and C r = C a r-1 c , we get L ⊓ ⊔(ab r-1 ) (z) = 1≤i≤r n∈C i z -n r n 1 n 2 . . . n r
Therefore, Lemma 11 follows from Theorem 7. Q.E.D. Set

C = {n = (n 1 . . . n r ) ∈ Z r |0 < n 1 ≤ n 2 . . . ≤ n r }.
For n = (n 1 . . . n r ) ∈ C, define the number a(n) as follows. If we have 0 < n 1 < . . . < n r-1 set a(n) = k. Otherwise, there exist an index i ≤ r -2 such that 0 < n 1 < n 2 . . . n i = n i+1 . In such a case, set a(n) = i. Note that a(n) does not depend on the last component n r of n, and the function n → a(n) takes value in the set {1, 2, . . . , r -2, r} COROLLARY 12: We have:

ζ(r) = n∈C a(n) 2 -n r n 1 n 2 . . . n r .
Proof: It is easy to check that a(n) is precisely the number of indices i, 1 ≤ i ≤ r such that n belongs to C i . Therefore the formula of Corollary 7 follows from Lemma 11. Q.E.D.

Examples: For r = 2, then a((m, n)) = 2 for all (m, n) ∈ C. Therefore, we get

ζ(2) = 2 0<m≤n 2 -n nm = 2L 2 (1/2) + log 2 2
Accordingly to [C], this formula is due to Euler. In this section, Theorem 7 is reformulated in terms of simple geometric notions. (4.1) First, the free pro-algebraic group on two generators Γ and its Lie algebra g are defined.

Let F be the free Lie Q-algebra with two generators α and β, let C n F be its central descending series and set g = lim ← F/C n F . Since F/C n F is a nilpotent Lie algebra, the Campbell-Hausdorf series defines a structure of algebraic group on F/C n F , denoted by Γ n . Then Γ = lim ← Γ n is a proalgebraic group (an alternative definition of Γ is given in the introduction). As pro-algebraic varieties, g and Γ are identical, and the corresponding isomorphism is denoted by exp : g → Γ.

Let F = ⊕ n≥1 F n be the grading of F such that F 1 = Qα ⊕ Qβ. Then we have g = n≥1 F n , so any x ∈ g can be written as the series x = i>0 x i where x i ∈ F i . The multiplicative group Q * acts linearly on g as follows: t.x = i>0 t i x i , for any t ∈ Q * .

LEMMA 13: Let Φ : g → g be a morphism of pro-algebraic varieties. Assume that Φ is Q * -invariant and that dΦ 0 is invertible, then Φ is an isomorphism.

Proof: One can assume that dΦ 0 is the identity. Then choose a basis of F consisting of homogenous elements (e n ) n≥1 with d n ≤ d m if n < m, where d n is the degree of e n . Accordingly, we have Φ( n≥1 x n e n ) = n≥1 Φ n (x)e n , where each Φ n is a polynomial in x = (x 1 , x 2 , . . .). By hypothesis, the linear part of Φ n (x) is x n and for any monomial

x i 1 . . . x i k occuring in Φ n (x) we have d i 1 + . . . d i k = d n .
It follows that Φ n (x)x n depends only on x 1 , . . . , x n-1 , so we can write: Φ n (x) = x n + H n (x 1 , . . . , x n-1 ). Since Φ is triangular, it is an isomorphism.

(4.2) There is an isomorphism of Hopf algebras Q[Γ] ≃ H, see [P]. A natural group isomorphism ψ : Γ → Spec H is now described.

For t ∈ Q, define two points φ a (t) and φ b (t) in Spec H as follows. Since words w ∈ W are functions on Spec H, one needs to evaluate w at the points φ a (t) and φ b (t). The rule is as follows:

w(φ a (t)) = t n /n! if w = a n and w(φ a (t)) = 0 if b occurs in w. w(φ b (t)) = t n /n! if w = b n and w(φ b (t)) = 0 if a occurs in w.

Then it is clear that φ a (t) and φ b (t) are two one-parameter groups in Spec H. Since Γ is freely generated (as a proalgebraic group) by the two one-parameter groups exp Qα and exp Qβ , the isomorphism ψ is prescribed by the requirements ψ(exp tα) = φ a (t) and ψ(exp tβ) = φ b (t) for all t ∈ Q. (4.4) The maps σ, τ : H → H are anti-isomorphisms of Hopf algebras, and therefore they induce two anti-isomorphisms of Γ and of its Lie algebra g. These are again denoted by σ and τ . They are uniquely characterized by the requirements:

σ exp tα = exp tβ and σ exp tβ = exp tα τ exp tα = exp t(α + β) and τ exp tβ = exp -tα, for all t ∈ Q. We have σ 2 (g) = g and τ 3 (g) = g -1 for any g ∈ G.

(4.5) Since H = Q[Γ], the maps ⊓ ⊔, ∇ occuring in Theorem 7 are now identified with some algebra morphisms ⊓ ⊔, ∇ : Q

[Γ] → Q[Γ]. LEMMA 14: Let φ ∈ Q[Γ]. Then for any g ∈ Γ, we have LEMMA 17: Let ψ ∈ Q[Γ]. Then for any g = q.l ∈ Γ, we have ∇ ψ(q.l) = ψ(qτ (q)) In particular, ζ(ψ) = 0 if ψ| Q ≡ 0.
Proof: This follows from Lemma 14 and Theorem 7. 

⊔ : Q[P ] → Q[P ] and ∇ : Q[Q] → Q[Q] by ⊓ ⊔ φ(p) = φ(p 2 ), forφ ∈ Q[P ] ∇ψ(q) = ψ(qτ (q)), forψ ∈ Q[Q]
These operators are simply the restrictions to P and to Q of the already defined operators ⊓ ⊔, ∇ :

Q[Γ] → Q[Γ]
. So using the same notations should not bring confusions.

THEOREM 18: For any φ ∈ Q

[P ] and ψ ∈ Q[Q], we have ζ(ψ) = L ⊓ ⊔(ψ) (1/2) and ζ ± (ψ) = L ∇(ψ) (ρ ± )
Proof: It follows immediately from Theorem 7, and Lemmas 15 and 17.

Other expressions for zeta values.

In this section, we follow a suggestion of W. Zudilin (5.1) Theorem 7 shows that any polyzeta value is the value of a polylogarithmic function at 1/2 or at ρ ± . However, there is a much more simple way to express the zeta values ζ(r) as a value of polylogarithmic functions at 1/2 or at ρ ± , see Corollary 20. It is surprizing that the two approaches give different expressions, except for ζ(2). Moreover, this simpler approach does not generalize to polyzeta values.

(5.2) Let σ ′ : H → H be the linear map defined as follows. Set σ ′ (a) = -a and σ ′ (b) = a + b. For a word w = c 1 . . . c n , where c i ∈ {a, b} are letters, set σ ′ (w) = σ ′ (c 1 ) . . . σ ′ (c n ). It is easy to prove that σ ′ is an algebra morphism relative to the schuffle product and that σ ′ (H + ) = H + .

LEMMA 19 For any h ∈ H + , we have: 

L w (-1) = ∆ n δ * ω σ ′ (c 1 ) (x 1 )δ * ω σ ′ (c 2 ) (x 2 ) . . . δ * ω σ ′ (c n ) (x n ) L w (ρ) = ∆ n δ * -ω σ ′ (c 1 ) (x 1 )δ * -ω σ ′ (c 2 ) (x 2 ) . . . δ * -ω σ ′ (c n ) (x n )
We have S ′ (F ) = F , S ′ (0) = 0, S ′ (-1) = 1/2 and S ′ (ρ) = ρ. Therefore δ is a path from 0 to 1/2 and δ -is a path from o to ρ. Thus, these integrals can be identified by Proposition 2, and we get L h (-1) = L σ ′ (h) (1/2), and L h (ρ) = L σ ′ (h) (ρ). Q.E.D.

LEMMA 20: Let r ≥ 1. We have = (1 -2 -r -3 -r + 6 -r ) ζ(r + 1) = (1 -2 -r )(1 -3 -r ) ζ(r + 1), from which the second formula follows.

  Let r ≥ 2 be an integer. Let Λ r be the set of all m = (m 1 , . . . m k ) ∈ Λ with m 1 + . . . + m k = r. For m = (m 1 , . . . m k ) ∈ Λ r , set k(m) = k and define the integers j(m), b(m) and b ± (m) as follows.

  For r = 5, we have a((k, l, m, n, p)) = 1 if k = l, a((k, l, m, n, p)) = 2 if k < l = m a((k, l, m, n, p)) = 3 if k < l < m = n and a((k, l, m, n, p)) = 5 if k < l < m < n.Therefore, we get the following expansion for ζ(5) interpretation of Theorem 7.Theorem 7 provides a combinatorial way to exress any polyzeta value as the value of a polylogarithmic functions at 1/2 or at ρ ±1 . The combinatorics seem very intricate: e.g. the explicit formulas for zeta values ζ(r) of Section 3 are difficult to extend for general polyzeta values ζ(r 1 , . . . , r k ).

  (4.3) From now on, we identify H and Q[Γ]. Since H = Q[Γ], any function φ ∈ Q[Γ]defines a polylogarithmic function L φ (z) and the polyzeta value ζ(φ) and the numbers ζ ± (φ).

  (4.8) Let φ ∈ Q[P ] be a rational function on P . The notations ζ(φ) and L φ (z) are now defined. Set ζ(φ) = ζ( φ) where φ is any function on Γ extending φ. By Lemma 15, ζ(φ) is well defined. Since P ≃ Γ/K, φ can be uniquely extended to a right K-invariant function Φ on Γ. Then set L φ (z) = L Φ (z). Similarly, for ψ ∈ Q[Q], the notations ζ ± (ψ) and L ψ (z) are defined as follows. Set ζ ± (ψ) = ζ ± ( ψ) where ψ is any function on Γ extending ψ. By Lemma 17, ζ ± (ψ) is well defined. By Lemma 16, we have Q ≃ Γ/L, therfore ψ can be uniquely extended to a right L-invariant function Ψ on Γ. Then set L ψ (z) = L Ψ Define the algebra morphisms ⊓

L

  h (-1) = L σ ′ (h) (1/2) and L h (ρ) = L σ ′ (h) (ρ). Proof: One can assume that h is a word w = c 1 . . . c n ∈ W + . Set F = {z ∈ C| |z| ≤ 1 and Imz ≤ 1/2} and choose a two paths γ, γ -: [0, 1] → F with γ(0) = γ -(0) = 0, γ(1) = -1 and γ -(1) = ρ. By Proposition 2, we have:L w (-1) = ∆ n γ * ω c 1 (x 1 )γ * ω c 2 (x 2 ) . . . γ * ω c n (x n ) L w (ρ) = ∆ n γ * -ω c 1 (x 1 )γ * -ω c 2 (x 2 ) . . . γ * -ω c n (x n ) For z ∈ F , set S ′ (z) = z/(z-1) and set δ = S ′ • γ and δ -= S ′ • γ -. We have S ′ * ω σ ′ (c) = ω c for c = a or b, and therefore we get γ * ω c = δ * -ω σ ′ (c) and γ * -ω c = δ * -ω σ ′ (c) It follows that

  2 -r )(1 -3 -r ) [L r+1 (ρ) + L r+1 (ρ)] Proof: For each positive integer a, set δ a (n) = 1 if a divides n and δ a (n) = 0 otherwise. From the formula (-1) n = -δ 1 (n) + 2δ 2 (n), we get L r+1 (-12 -r ) ζ(r)from which the first formula follows.From the formulaρ n + ρ n = δ 1 (n) -2δ 2 (n) -3δ 3 (n) + 6δ 6 (n) we get L r+1 (ρ) + L r+1 (ρ) = n>0 [ρ n + ρ n ]/n r+1

 

⊓ ⊔ φ(g) = φ(gσ(g)) and ∇ φ(g) = φ(gτ (g))

Proof: Using their definitions, ⊓ ⊔ and ∇ are the composition of the following maps:

where diag(g) = (g, g) and µ(g 1 , g 2 ) = g 1 .g 2 . Therefore we have ⊓ ⊔ φ(g) = φ(g.σ(g)) and ∇ φ(g) = φ(g.τ (g)).

(4.6) In this subsection, the symmetric space associated with σ is defined.

Since σ is an anti-involution, K is a subgroup in Γ and k is its a Lie algebra. Obviously we have g = k ⊕ p. Since Γ is a pro-unipotent group, we have K = exp k, P = exp p and Γ = P.K. So any element g ∈ Γ can be written as g = p.k, where k ∈ K and p ∈ P .

Proof: This follows from Lemma 14 and Theorem 7.

(4.7) Note that τ is not an involution, but an "ordrer three" anti-isomorphism, i.e. τ 3 (g) = g -1 . In this sub-section, we introduce a space Q which is analogous to a symmetric space.

Set l = {x ∈ g|τ (x) = -x}, L = {g ∈ Γ|τ (g) = g -1 }, q = {x ∈ g|τ 2 (x)-τ (x)+x = 0}. Also define Q as the image of the map g ∈ Γ → gτ (g). Note that L is a subgroup with Lie algebra l.

LEMMA 16: The subset Q is a closed subvariety of Γ and the natural map: Q × L → Γ, (q, l) → ql is a isomorphism of pro-algebraic varieties.

Proof It is easy to prove that Γ = exp q.L. For g = exp q.l, with q ∈ q and l ∈ L, we have gτ (g) = exp q exp τ (q), therefore Q is the set all exp q exp τ (q) for q ∈ q.

Let Φ : q⊕l → Γ be define by Φ(q, l) = exp q exp τ (q) exp l. Note that dΦ 0 is the linear map from g to g which is the identity on l and whose restriction to q is 1 + τ . Therefore, dΦ 0 is invertible. By Lemma 13 that Φ is an isomorphism and Lemma 16 follows easily. Q.E.D.

The definition of Q is slighty more complicated than the definition of P because Q = exp q. However, the map q → Q, q → exp q exp τ (q) is an isomorphism from q to Q. Any element g ∈ Γ can be written as g = q.l, where l ∈ L and q ∈ Q COROLLARY 21: Let r ≥ 1. We have

Proof: The corollary follows from Lemmas 18 and 19.

Examples:

The expression for ζ(2) is the same as in section 3. However for all other zeta values ζ(r) with r ≥ 3, the expressions are different: e.g., the formula of corollary 20 uses non integral coefficients. Moreover, this simpler approach only concerns zeta values but not the polyzeta values.
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