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Numerical Solution of an Inverse Problem in Size-Structured

Population Dynamics

Marie Doumic ∗‡ Benôıt Perthame†‡ Jorge Zubelli§

October 8, 2008

Abstract

We consider a size-structured model for cell division and address the question of determining
the division (birth) rate from the measured stable size distribution of the population. We propose a
new regularization technique based on a filtering approach. We prove convergence of the algorithm
and validate the theoretical results by implementing numerical simulations, based on classical tech-
niques. We compare the results for direct and inverse problems, for the filtering method and for
the quasi-reversibility method proposed in [1].

1 Introduction

The use of size-structured models to describe biological systems has attracted the interest of many
authors and has a long standing tradition. In particular, the use of size structures was very well
documented and compared to experiments in the 70’s. This led to the survey book [2] and subsequent
mathematical analysis (see also the references in [3]). Needless to say, in such models it is crucial for
the analysis, computer simulation and prediction to calibrate the corresponding model parameters so
as to obtain good quantitative results. Indeed, in the inverse problem literature, a number of authors
have addressed the calibration of certain structured population models. See for example [4, 5, 6, 7]
and references therein.

In this article, we consider theoretical and numerical aspects of the inverse problem of determining
the division rate coefficient B = B(x) in the following specific size-structured model for cell division:





∂
∂tn(t, x) + ∂

∂xn(t, x) + B(x)n(t, x) = 4B(2x)n(t, 2x), x > 0, t > 0,

n(t, x = 0) = 0, t > 0,

n(0, x) = n0(x) ≥ 0.

(1)
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Here, the cell density is represented by n(t, x) at time t and size x. The division rate B expresses the
division of cells of size 2x into two cells of size x.

By making use of flux cytometry technologies for instance, it is possible to determine cell populations
with certain properties as protein content on a large scale of tenths of thousands of cells. In other
applications, like coagulation fragmentation equation [8, 9, 10, 11, 12], or prion aggregation and
fragmentation [13, 14, 15], similar equations arise, and much less is known on aggregate size repartition.
The division rate B(x), on the contrary, is not directly measurable.

The long time behavior of solutions is well known. Indeed, it was proved in [16, 17] that under fairly
general conditions on the coefficients, there is a unique solution (N,λ0) to the following eigenvalue
problem 




∂
∂xN + (λ0 + B(x))N = 4B(2x)N(2x), x > 0,

N(x = 0) = 0,

N(x) > 0 for x > 0,
∫ ∞

0 N(x)dx = 1,

(2)

where λ0 > 0 and Neµx ∈ L∞ ∩ L1 for all µ < λ0.
It was shown in [18, 16]

n(t, x)e−λ0t
−−−−→
t→∞

m0N(x), in L1(R+, φ(x)dx),

where the weight φ is the unique solution to the adjoint problem





− ∂
∂xφ + (λ0 + B(x))φ = 2B(x)φ(x

2 ), x > 0,

φ(x) > 0,
∫ ∞

0 φ(x)N(x)dx = 1.

(3)

In other words, λ0 is the growth rate of such a system and is usually called “Malthus parameter” in
population biology. From [18, 16, 3] we also know that λ0 is related to N by the relation

λ0 =

∫ ∞

0 Ndx∫ ∞

0 xNdx
. (4)

The question we address here is the following: How can we estimate the division rate B from the
knowledge of the steady dynamics N and λ0 ? The inverse problem thus consists of finding B a
solution to

4B(2x)N(2x) − B(x)N(x) = L(x) :=
∂

∂x
N(x) + λ0N(x), x > 0, (5)

assuming that (N,λ0) is known, or thanks to (4) that N is known. As seen in [1], this problem is
well-posed if N satisfies strong regularity properties such as ∂

∂xN(x) ∈ Lp(R+) for some p > 1.
However, in practical applications we have only an approximate knowledge of (N,λ0), given by noisy

data (Nε, λε), with Nε ∈ L2
+(R+) for instance. 1 This means that we have no way of controlling ∂

∂xNε,
so we cannot control the precision of a solution Bε to problem (5) when a perturbed Nε replaces N .
Furthermore, it is not even clear whether such a Bε exists.

1Actually, our knowledge of λ0 is presumably an order of precision higher than that of N , since the rate λ0 can be

estimated independently by means of time information.
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The question we focus on is then: How to approximate the problem (5) in order to get a solution
Bε as close as possible to the exact division rate B?

We remark that, in the context of noisy data, the inverse problem under consideration is ill-posed [1]
and thus regularization would be required. A natural tool to be invoked from the inverse problem
literature would be some kind of Tikhonov regularization method [19, 20]. However, this would lead to
computationally intensive problems. Indeed, for each forward problem evaluation a dilation-differential
equation of the form (2) would have to be solved.

In [1], two of the present authors proposed a method of regularization consisting in the solution of
the following approximate problem:





α ∂
∂y (Bε,αNε) + 4Bε,α(y)Nε(y) = Bε,α

(y
2

)
Nε

(y
2

)
+ λ0Nε

(y
2

)
+ 2 ∂

∂y

(
Nε

(y
2

))
, y > 0,

(Bε,αNε)(0) = 0,

where α is a regularizing parameter. It was shown that a convergence rate of order
√

ε could be
obtained, for α = O(

√
ε), where ε is the error on the data N in an appropriate norm.

The above method of the solution to the inverse problem will be called quasi reversibility in accor-
dance with the general spirit of the terminology of [21, 22]. The main goal of this work is to investigate
the numerics of such approach, to consider an alternative technique based on filtering ideas and to
compare the performance of the different methods. The alternative technique is also analyzed from
the theoretical point of view and estimates are presented.

In this work, we have modified slightly the original regularization equation by writing λε,α instead
of λ0 for the reasons we shall explain in the sequel. Thus, we work with





α ∂
∂y (Bε,αNε) + 4Bε,α(y)Nε(y) = Bε,α

(y
2

)
Nε

(y
2

)
+ λε,αNε

(y
2

)
+ 2 ∂

∂y

(
Nε

(y
2

))
, y > 0,

(Bε,αNε)(0) = 0.

(6)

Indeed, in order to conserve regularity properties of the solution H = BN to the inverse problem, we
want it to be both in L1(R+) and in L1(R+, xdx) in order to express that both the total number of
cells and the total biomass are finite. Hence, formal integration of Equation (6) gives

λε,α

∫ ∞

0
Nεdx =

∫ ∞

0
Bε,αNεdx, (7)

and integration against the weight x gives

−α

∫ ∞

0
Bε,αNεdx = 4λε,α

∫ ∞

0
xNεdx − 4

∫ ∞

0
Nεdx. (8)

Hence, we have to choose, according to the eigenvalue theory:

λε,α =

∫ ∞

0 Nεdx∫ ∞

0 xNεdx + α
4

∫ ∞

0 Nεdx
. (9)

The choice of λε,α can be understood as a compatibility condition when α > 0 and for α = 0 it tells us
that (N,λ0) is overdetermined data for the inverse problem. Therefore, if we have a priori knowledge
on λ0, we could verify its distance to λǫ,α as a way of checking the error of the inverse problem solution.
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The plan of this work is the following: In Section 2, we propose yet another method to regularize
the inverse problem, and obtain a convergence rate. The convergence rate turns out to be as good as
the one in [1]. In Section 3 we give a numerical method to solve it, and in Section 4 we show some
numerical simulations so as to compare the accuracy of the different methods.

2 Regularization by Filtering

2.1 Filtering approach

Taking a closer look at Equation (5), we see that all the difficulties come from the differential term
∂
∂xN. In [1], the choice was to add an equivalent derivative α ∂

∂x(B N) to the equation; here on the
contrary, we choose to regularize it by a convolution method.

For α > 0, we use the notation

ρα(x) =
1

α
ρ(

x

α
), ρ ∈ C∞

c (R),

∫ ∞

0
ρ(x) dx = 1, ρ > 0, Supp(ρ) ⊂ [0, 1], (10)

and we replace in (5) the term ∂
∂xNε + λ0Nε by

( ∂

∂x
Nε + λε,αNε

)
∗ ρα(x) = Nε ∗

( ∂

∂x
ρα + λε,αρα

)
(x) =

∫ ∞

0
Nε(x

′)
( ∂

∂x
ρα + λε,αρα

)
(x − x′)dx′.

We now use the notation
Nε,α = Nε ∗ ρα.

In this way, we obtain a smooth term in L2(R+). Furthermore, Nε,α converges to Nε in L2(R+) when
α tends to zero. We now have to consider the following problem:
Find Bε,α solution of

4Bε,α(2x)Nε,α(2x) + Bε,α(x)Nε,α(x) =
∂

∂x
Nε,α + λε,αNε,α(x), x > 0 . (11)

As in Equation (6), for the quasi-reversibility method, we need to choose λε,α appropriately. Indeed,
we perform the same manipulations leading to Equation (9) to get

λε,α =

∫ ∞

0 Nε,α(x)dx∫ ∞

0 xNε,α(x)dx
. (12)

By Theorem A.3 (see the Appendix), we know that the problem in Equation (11) has a unique
solution Bε,α ∈ L2(R+, N2

ε,αdx).

2.2 Estimates for the filtering approach

The main result of this section establishes an estimate for the regularization of the inverse problem
by means of the filtering method described above.

Theorem 2.1 Suppose that N ∈ H2(R+) and B ∈ L∞(R+), B > 0 verify (2). Let ε > 0 and
Nε ∈ L2(R+), Nε(x) > 0 for x > 0, such that

||Nε − N ||L2(R+) 6 ε||N ||L2(R+).
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Let Bε,α ∈ L2(R+, N2
ε,αdx) be the unique solution of (10) and (11). We have the following estimate:

||Bε,α − B||L2(N2
ε dx) 6 C(α + |λε,α − λ0|)||N ||H2(R+) +

C

α
||Nε,α − N ||L2(R+), (13)

where C is a constant depending only on ||B||L∞ , ||Bε,α||L∞ and the regularizing function ρ.

This theorem relies on a first estimate.

Proposition 2.2 Using the same notations as in Theorem 2.1, we have

||Bε,αNε,α−B N ||2L2(dx) 6 C
(
1 + λ2

0

) (
1 +

1

α2

)
||Nε−N ||2L2(dx)+C(α2+|λε,α−λ0|2)||N ||2H2(R+) , (14)

where C depends only on the regularizing function ρ.

Proof of Prop. 2.2: Denote by Q = Bε,αNε,α − BN, R = Nε,α − N and δ = λε,α − λ0. From
Equations (2) and (11), Q verifies:





∂
∂xR(x) + λ0R(x) + δNε,α(x) + Q(x) = 4Q(2x), x > 0,

Q(x = 0) = 0.

(15)

(Since Nε,α ∈ H1(R+), the definition of Q(x = 0) is not ambiguous.) Multiplying this equation by
Q(2x) and integrating on the interval (0, y) yields

4

y∫

0

Q(2x)2dx =

y∫

0

Q(2x)
∂

∂x
R(x)dx + λ0

y∫

0

Q(2x)R(x)dx

+ δ

y∫

0

Q(2x)Nε,α(x)dx +

y∫

0

Q(2x)Q(x)dx.

From the Cauchy-Schwarz inequality, after the change of variables x → 2x, we have

4

y∫

0

Q(2x)2dx 6
1

2

y∫

0

(
∂

∂x
R

)2

(x)dx +
1

2

y∫

0

Q(2x)2dx +
λ0

2

y∫

0

CR(x)2dx +
λ0

2

y∫

0

Q(2x)2

C
dx

+
|δ|2
2

y∫

0

Nε,α(x)2dx +
1

2

y∫

0

Q(2x)2dx +
1

2

y∫

0

Q(2x)2dx +

y

2∫

0

Q(2x)2dx.

We take, for instance, C = λ0. We obtain

||Bε,αNε,α −BN ||2L2 6 ||Nε ∗
∂

∂x
ρα − ∂

∂x
N ||2L2 + λ2

0||Nε ∗ ρα −N ||2L2 + |λε,α − λ0|2||Nε ∗ ρα||2L2 . (16)

The last two terms of this inequality are easy to estimate, writing

||Nε ∗ ρα − N ||L2 6 ||Nε ∗ ρα − N ∗ ρα||L2 + ||N ∗ ρα − N ||L2 6 C (||Nε − N ||L2 + α||N ||H1) ,
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and
||Nε ∗ ρα||L2 6 C||N ||L2 .

It remains to evaluate the first term on the right-hand side of inequality (16). We write

||Nε ∗
∂

∂x
ρα − ∂

∂x
N ||2L2 6 2||Nε ∗

∂

∂x
ρα − N ∗ ∂

∂x
ρα||2L2 + 2||N ∗ ∂

∂x
ρα − ∂

∂x
N ||2L2 .

By a convolution estimate we evaluate the first term as

||Nε ∗
∂

∂x
ρα − N ∗ ∂

∂x
ρα||2L2(R+,dx) 6 ||Nε − N ||2L2(R+,dx)||

∂

∂x
ρα||2L1 .

Since
∫ ∞

0 | ∂
∂xρα(x)|dx = 1

α

∫ ∞

0 | ∂
∂xρ(y)|dy, we have

||Nε ∗
∂

∂x
ρα − ∂

∂x
N ||2L2(R+,dx) 6

C(ρ)

α2
||Nε − N ||2L2(R+,dx) + 2||N ∗ ∂

∂x
ρα − ∂

∂x
N ||2L2(R+,dx) .

To evaluate the last term ||N ∗ ∂
∂xρα − ∂

∂xN ||2L2 , we extend to R the functions N and ∂
∂xN by zero and

consider their Fourier transforms. We denote f̂(ξ) the Fourier transform of f ∈ L2(R+) at ξ, where f
is extended as zero on R−. We obtain by Fourier analysis

||N ∗ ∂

∂x
ρα − ∂

∂x
N ||2L2(R+,dx) = ||iξN̂ ρ̂α − iξN̂ ||2L2(R+,dx) 6

∫ ∞

−∞

|N̂(ξ)|2|ξ|4 |ρ̂α(ξ) − 1|2
|ξ|2 dξ.

Using that

| |ρ̂α(ξ) − 1|2
ξ2

| 6 C(ρ)α2, (17)

where C(ρ) only depends on the regularization function ρ, we have that

||N ∗ ∂

∂x
ρα − ∂

∂x
N ||2L2(R+,dx) 6 C(ρ)α2||N ||2H2(R+) .

Going back to (16), this concludes the proof of Proposition 2.2.

We can now deduce the proof of Theorem 2.1. We write:

||Bε,α −B||L2(N2
ε dx) 6 ||Bε,αNε −Bε,α Nε,α||L2(R+) + ||Bε,α Nε,α −B N ||L2(R+) + ||B N −B Nε||L2(R+).

Using Proposition 2.2, and the fact that

||Nε − Nε,α||L2 6 2||Nε − N ||L2 + α||N ||H1 ,

this inequality gives the result.

3 Numerical Solution of the Inverse Problem

This section is concerned with the numerical aspects of the solution of the inverse problem. In order
to do that we start with a description of the solution to the direct one in Subsection 3.1.
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3.1 Direct Problem

In the direct problem, we assume we know the proliferation rate B, we look for N and λ0 > 0 solutions
of (2). For this purpose, we solve the time-dependent problem (1) and look for a steady dynamics. As
already said, this problem is well-posed (see for instance [3]) and it was proved in [18] that solutions
grow at an exponential rate towards ρN(x)eλ0t with ρ =

∫ ∞

0 n(0, x)φ(x)dx, recalling the notation in
(3). Furthermore, under more restrictive conditions it was shown in [16] that there exists constants
µ > 0 and C(n0) > 0, such that

||n(t, x)e−λ0t − ρN(x)||L1(R+,φ(x)dx) 6 Ce−µt.

To solve it numerically, we discretize the problem (1) along a regular grid, denote by ∆t the time step
and by ∆x = L/I the spatial step, where I denotes the number of points and L the computational
domain length: xi = i∆x, 0 6 i 6 I.

We use an upwind finite volume method (cf. [23, 24, 25])

nk
i =

1

∆x

x
i+ 1

2∫

x
i− 1

2

n(k∆t, y)dy,
1

∆t

∆t∫

0

n(k∆t + s, xi+ 1

2

)ds ≈ nk
i .

For the time discretization, we use a marching technique. We choose the time step ∆t so as to satisfy
the largest possible CFL stability criteria θ := ∆t

∆x = 1.
The numerical scheme is given, for i = 1, ..., I, by nk

0 = 0 and

nk+1
i − nk

i

∆t
+

nk
i − nk

i−1

∆x
+ Bin

k+1
i = B2i−1n

k
2i−1 + 2B2in

k
2i + B2i+1n

k
2i+1 , (18)

with the convention that nj = 0 for j > I. For stability reasons, we have used an implicit method for
the division term in the left hand side and explicit for the right hand side of the equation. The specific
form for the right hand side is simply motivated by the need of also dividing cells of odd labels.

According to the power algorithm, we do not keep nk+1 from (18) but rather renormalize it as

ñk+1 =
nk

∆x
I∑

j=1
nk

j

.

It is standard, for these positive matrices arising in (18), that

ñk+1 −→
k→∞

N,

I∑

i=1

Ni = 1, Ni > 0,

where N is the dominant eigenvector for the problem

Ni − Ni−1

∆x
+ (λ0 + Bi)Ni = B2i−1N2i−1 + 2B2iN2i + B2i+1N2i+1.

One can also find the dominant eigenvalue as

λ0 = lim
k→∞

1

∆t
log

(
I∑

i=1
nk+1

i

I∑
i=1

nk
i

)
.
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For matrices with one dominant eigenvalue and a corresponding one-dimensional eigenspace, it is
known that the power algorithm is fast and in fact converges with exponential rate [26]. In practice
we can stop the iterations when the relative error on the normalized quantity

1

∆t

( I∑

i=1

ñk+1
i −

I∑

i=1

ñk
i

)

is small enough, say of the order of 10−10.

3.2 Inverse Problem: General Strategy

In the sequel, we denote by H the product B.N and its approximations. Indeed, from Equations (6)
or (11), we have to search for the product H = Bε,αNε or H = Bε,αNε,α before computing Bε,α. In
particular, we cannot avoid a loss of information where Nε is small, i.e., for x ≈ 0 or x ≫ 1.

The inverse problem (5), as well as (11), can be written as

4H(2x) − H(x) = L(x), (19)

with different expressions for H and L. We may think of two possible numerical approaches.

Strategy 1. Compute H(2x) from H(x): This means that we re-write Equation (19) with the new
variable y = 2x, and arrive at

4H(y) − H(
y

2
) = L(

y

2
). (20)

The scheme departs from zero, and one deduces the values of Hi step by step, from the knowledge of
Hj for j 6 i − 1.

Strategy 2. Compute H(x) from H(2x): The scheme departs from the largest point x = L of our
simulation domain. We suppose that for x > L we have H(x) = H(L) = 0 (it is relevant since we
suppose that N vanishes for x large: see below), and then deduce the smaller values Hi step by step,
from the knowledge of Hj for j > i + 1.

The two approaches do not necessarily lead to the same result because the continuous equation

4H(2x) − H(x) = 0 (21)

has infinitely many solutions. This issue is interesting on its own and is related to the construction of
wavelets, see [27]. It is discussed in Proposition A.1 of the Appendix.

By imposing H ∈ L2(R+), we select a unique solution, as shown in Theorem A.3. The question is
then: Which numerical strategy should we use to select the correct solution, i.e. the one in L2(R+) ?

Among the solutions of Equation (19), we single out two, defined by the power series:

H(1)(x) =
+∞∑

n=1

2−2nL(2−nx) and H(2)(x) = −
+∞∑

n=0

22nL(2nx) , ∀ x > 0.

Proposition A.1 shows that for L ∈ L2(R+, xpdx), there is a unique solution in L2(R+, xpdx), given
by H(1) if p < 3 and by H(2) if p > 3 (and the power series converge in the corresponding spaces).

For B > 0 smooth and bounded from above and from below, we know that N is smooth and
vanishes at x ≈ 0 and x ≈ ∞, and BN inherits these properties. For instance, we know that
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H ∈ L2(dx) ∩ L2(x4dx). By uniqueness of a solution in each space, Proposition A.1 implies that
H(2) = H(1), or equivalently:

+∞∑

n=−∞

22nL(2nx) = 0, ∀ x > 0.

This very particular property cannot be verified at the discrete level. Hence, the two strategies
generally give two different approximations of the same solution of (19). The first strategy selects an
approximation of the solution H(1) whereas the second selects an approximation of the solution H(2).
In the case of a very regular data N , then H(2) will perform better around infinity, whereas H(1) will
be better around zero. However, if N is a solution of Equation (2), when we increase the number of
points, the two approaches converge to the same solution since H(2) = H(1).

Since our simulation domain [0, L] is bounded and contains zero, we prefer the first strategy. This
choice is confirmed by all the numerical tests we have performed: the second approach has always
lead to a solution exploding around zero. However, for the sake of completeness, we also describe the
scheme we used for the second approach.

3.3 Inverse Problem: Filtering Approach

According to strategies 1 and 2, we now present two approaches to handle the numerical solution of the
inverse problem regularized with the filtering approach. Both need to first compute the convolution
terms arising in (11). To do so we first take the Fast Fourier Transform F of Nε, multiply it by iξρ̂α(ξ),
and then take the inverse Fast Fourier Transform F

∗. We choose and define the regularization function
ρα by its Fourier transform:

ρ̂α(ξ) =
1√

1 + α2ξ2
.

This leads us to the numerical approximation

∂

∂x
Nε,α ≈ dNα = F

∗

(
iξρ̂α(ξ)F(Nε)(ξ)

)
. (22)

We also impose dNα,0 = 0 for compatibility with the continuous equation and further use.
As mentioned earlier, there are two alternatives, either starting from zero or coming from infinity.

The Filtering Approach Starting from Zero (strategy 1). We solve Equation (11) considered
as an equation in the variable y = 2x, that is to say (20), in order to compute its solution H(1)(x).
At the discrete level, we use the notations

Hf
i ≈ BiNi, Lf

i = dNα,i + λε,αNi, Lf
0 = 0.

The discrete version of (20) reads

4Hf
i = Hf

i
2

+ Lf
i
2

, ∀ 0 6 i 6 I, (23)

and we need to define the quantities G i
2

. We choose

G i
2

=





G i
2

when i is even,

1
2

(
G i−1

2

+ G i+1

2

)
when i is odd.

(24)
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In particular, we have Hf
0 = 0.

Summing up all the terms in (23) for 1 6 i 6 I, we find (with I even to simplify):

4

I∑

i=0

Hf
i = 2

I
2∑

i=0

(Hf
i + Lf

i ) − 1

2
(Hf

I/2 + Lf
I/2).

Since we have assumed that N has exponential decay for x ≫ 1, it follows that

I∑

i=0

Hf
i =

I∑

i=1

Lf
i + EI , with |EI | 6 2

I∑

i= I
2

|Hi|. (25)

Multiplying (23) by xi and summing up again, we find

I
2∑

i=1

xiL
f
i = FI , with |FI | 6

I∑

i= I
2

xi|Hi|. (26)

As a consequence, we can choose:

λε,α = −
∑

xidNα,i∑
xiNi

, (27)

as the discrete version of the relations (4) or (12).

The Filtering Approach Starting from Infinity (strategy 2). Another method is to discretize

the formulation (19) in order to compute its solution H(2)(x). We define the extension Hf
i = 0 for

i > I + 1, and for 2 ≤ i ≤ I, we define by backward iterations

Hf∞
i = 2Hf∞

2i + Hf∞
2i+1 + Hf∞

2i−1 − Lf
i . (28)

This however does not apply to the indices i = 0, 1 and we set Hf
0 =

Lf
0

3 = 0 and Hf
1 = 4Hf

2 − Lf
1 .

By summing up all the terms in (28), we find balance properties equivalent to (25)–(26), but with
remainders EI and FI depending on H1 and H2 instead of Hi>I

2

. One has to check a posteriori that

these last quantities are very small ; it is not the case in a standard calculation, but becomes true
when the precision of the direct problem scheme increases.

3.4 Inverse problem: Quasi-Reversibility Approach

In this section, we present a numerical scheme for the regularized inverse problem proposed in [1].
This problem leads to solving (6) taken at y = 2x, that is





α ∂
∂y (Bε,αNε) + 4Bε,α(y)Nε(y) = Bε,α

(y
2

)
Nε

(y
2

)
+ λε,αNε

(y
2

)
+ 2 ∂

∂y

(
Nε

(y
2

))
, y > 0,

(Bε,αNε)(0) = 0,

where α > 0 is the regularizing parameter and λε,α is defined by (9). This gives, in a discretized
version, after dropping the index ε,

λε,α =

∑
Ni∑

xiNi + α
4

∑
Ni

. (29)
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For the numerical discretization we set HQ
−1 = 0 and also recall that N0 = 0 and assume that the

data satisfies NI+1 = 0. We use a standard upwind scheme for the differential term:

α

∆x
(HQ

i − HQ
i−1) + 4HQ

i = HQ
i
2

+ LQ
i
2

, (30)

where we have defined the fractional indices as in the filtering approach by (24), and here

LQ
i = λεNi +

Ni+1 − Ni

∆x
.

If we neglect the terms HQ

i>I
2
+1

, we can easily verify a discrete version of the balance laws (7) and (9),

equivalent to (25)–(26).

4 Numerical Tests

As input data, we take the values of the function N obtained by the numerical solution of the direct
problem in Section 3.1, we add a random noise uniformly distributed in [− ε

2 , ε
2 ], and we enforce

nonnegativity of the data
Nε = max(N + ε r, 0).

We solve the direct problem on a regular grid of I + 1 points, on an interval [0, 2L]. We need L large
enough, such that it is possible to assume that N(x > L) ≈ 0 and we have checked it a posteriori.
Indeed, we have seen that this property is essential when we use the inverse schemes on a domain
[0, L] in order to verify the balance laws (7)–(9). In other words, we solve the direct problem on a
domain twice larger than for the inverse problem. In the numerical tests we take L = 4, and we show
the numerical solution N only on the interval [0, L] since it is uniformly small on [L, 2L].

We solve the inverse problem by the different methods on a regular grid of I1 + 1 points on [0, L],
with ∆x1 = L/I1. This grid is taken ten times finer than the grid used for the direct problem, i.e. we
take I1 = 10I. Since we have chosen L large enough so that N(x > L) ≈ 0, we have always obtained
that indeed H(x > L) ≈ 0.

As before, we denote by HQ and Hf the solution data H obtained respectively by the quasi-
reversibility method of Section 3.4 and by the first filtering approach (from zero) of Section 3.3. We
also define a solution HfQ by mixing both methods, i.e. by solving the following equation:





α ∂
∂x (Bε,αNε)(y) + 4Bε,α(y)Nε(y) − Bε,α(x)Nε(x) =

(
∂
∂xNε + λε,αNε

)
∗ ρα(x), x > 0,

Bε,α(x = 0)Nε(x = 0) = 0,

(31)

where λε,α is defined by

λε,α =

∫ ∞

0 Nε ∗ ραdx∫ ∞

0 xNε ∗ ραdx + α
4

∫ ∞

0 Nε ∗ ραdx
. (32)

The relative error is measured, as seen in Theorem 2.1 and in Theorem 5.1 of [1], by

δQ =
||BNε − HQ||2l2

||Nε||l2
, δf =

||BNε − Hf ||2l2
||Nε||l2

, δfQ =
||BNε − HfQ||2l2

||Nε||l2
.
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We have divided by ||Nε||L2 and not by ||N ||H2 because in practice we only know the entry data with
noise.

In order to illustrate the accuracy of our method, we also compare it to a naive way (brute force) of
considering the equation. Namely, we approximate ∂

∂xN(x) by a second-order Euler scheme without
regularization. It gives a solution Hb by the same formula (30), where we simply take α = 0.

The Direct Problem. We have first tested the direct problem for various division rates B. Three
different solutions N for three given division rates B are depicted in Figure 1 with 800 grid points.

In the particular case when B is constant, we can go further and evaluate the computational error.
Then, we know that λ = B and the exact solution Nexact can be explicitly calculated, as shown in
[16, 3], by the formula:

Nexact(x) = N̄

∞∑

n=0

αne−2nBx, (33)

where the coefficients are defined recursively by α0 = 1 and αn = (−1)n 2αn−1

2n−1 , and N̄ is chosen to
ensure the mass one normalization. We take B = 1 and obtain the continuous curve of Figure 1. We
can measure here the relative error by

δD =
‖N − Nexact‖l1

‖Nexact‖l1
,

where N represents the numerical solution of Section 3.1. We choose this norm because for B constant,
the solution of the adjoint problem is φ = 1 and the General Relative Entropy Principle ([18, 3]) gives
us that this quantity decreases along the time iterations. Still for 800 points, we obtain δD = 7.7.10−3.

Figure 1: Solutions N (left) obtained by the numerical resolution of Section 3.1 for the direct problem
with three different division rates B (right).

The noiseless case (ε = 0). In the simplest case where the data is perfectly known, i.e. for ε = 0,
we verify that the different schemes allow us to recover B. Since the precision of the data is directly

12



linked to the number of points used in the scheme, we run the codes with 1.000 points for the direct
problem (below, we will take only 100 points).

We test several values of α and we use the three functions B of Figure 1 for each method for the
inverse problem. The error estimate is found to depend on the method used but not significantly on
the division rate B. Therefore we have drawn in Figure 2 the average error estimates for the three
division rates B. In Figure 3 we have depicted the products B.N in the case B = 1 and α = 0.01
(other cases are similar): it shows that the precision obtained is satisfactory. In Figures 4, 5 and 6 we
have drawn the approximations of B in each of the three cases, calculated only for N > 0.01 (indeed,
for N too small the division leads to insignificant results on B).

Not surprisingly, the brute force method reveals to be satisfactory, with an error estimate of δb =
1.3.10−2, since we are in the case where N is very regular. The filtering method can reach this level of
error for α = 10−2 but cannot go further. However, both the quasi reversibility method and the mixed
method given by Equation (31) improve it with minimum values δQ = 6.9.10−3 and δfQ = 6.5.10−3

reached for α = 10−2.

Figure 2: For ε = 0, numerical errors obtained
with the different methods for the inverse prob-
lem.

Figure 3: Numerical reconstruction of B.N ob-
tained by each method for the inverse problem
when B = 1, ε = 0 and α = 0.01.

Link between the noise level ε and the regularization parameter α. For noise levels ε = 0.01,
ε = 0.05 and ε = 0.1 respectively, the Figures 7, 8 and 9 give the curves ε as a function of α for the
three inverse methods. We compare the reconstructed division rates B in Figures 10 and 11.

Each of the error curves presents a minimum for an optimal value of α, as expressed by estimate
(13) for instance. In Figures 12, 13, 14 and 15, we have compared three curves, drawn in a log-log
scale:

√
ε to serve as a reference curve, f(ε) = min

α
δ(α, ε), and g(ε) = argmin

α
δ(α, ε). One can see

that for each method, these three curves have comparable slopes (1
2 on a log-log scale): they show that

even though the combination of filtering and quasi-reversibility method improves the optimal errors
in absolute value, it does not change the order of convergence of the approximation, which remains
of order O(

√
ε). Figure 15 gives also the convergence of the filtering method for much smaller values
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Figure 4: Reconstructed division rate B using
the three inverse methods, for ε = 0, α = 0.01
with N computed from B = 1.

Figure 5: Reconstructed division rate B, for
ε = 0, α = 0.01 and a jump B = 1 to 5 as in
Figure 1

of ε (for which an increased number of 500 points has been taken, in order to avoid numerical bias):
the comparison with

√
ǫ is there particularly evident, and we have obtained similar curves for the

two other methods. The speed of convergence is though in complete accordance with the theoretical
estimate (13).

Influence of the choice of λ0 instead of λε,α. To evaluate the influence of the error term due to
the distance |λε,α − λ0|, we compare the curves obtained respectively by taking on the inverse code
the exact λ0 or the value λε,α expressed by the balance laws. They are drawn in Figure 13 for the
quasi-reversibility method. They show that even though the a priori knowledge of λ0 improves the
error in absolute value, it does not change the order of convergence of the scheme. Thus it is in
complete accordance with Estimate (13).

5 Conclusions

We have considered size-structured equations connected to several areas of biology from cell division
to prion proliferation by aggregation and fragmentation. We have addressed the numerical efficiency
of some inverse problem solution methods to tackle the problem of recovering the division rate from
the size distribution of cells. The latter involves a dilation equation with a singular right-hand side
that needs regularization for actual implementation. For that purpose, we have introduced a filtering
method and proved its convergence for noisy data. This method brings in an operator that has a
non-trivial kernel and we have selected a numerical approximation that is able to recover the natural
solution we want to reach.

The implementation of the inverse algorithm, based on the filtering method, confirms the conver-
gence analysis. In particular, there is an optimal regularization parameter as can be seen in the
graphs of Figures 7, 8 or 9 for instance. Comparison with a quasi-reversibility method introduced
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Figure 6: Reconstructed division rate B, for
ε = 0, α = 0.01 and B = 1 + exp(−8(x − 2)2).

Figure 7: Numerical error when ε = 0.01 for
the different methods.

earlier leads to the conclusion that a combination of filtering and quasi-reversibility methods seems to
be more efficient because the oscillations are reduced, but without improving the rate of convergence.

We also analyzed the impact of using the exact value of λ0 or the λε on the different solutions of the
inverse problem. In our simulations, the difference between using λ0 or λε seemed to be immaterial as
far as the accuracy of method is concerned. This is in perfect accordance with the theoretical estimate
(13).

The above remarks open several directions for continuation and extension of the present work. On
the practical side, the present work sets the stage for the use of experimental data either from the
existing literature or from more recent biological experiments. On the theoretical side, the possibility
of improving the convergence by combining the filtering and quasi-reversibility methods should be
investigated further.

Finally, we point out that although the Tikhonov method is more standard, we did not study it
so far because it seems more time consuming. Indeed, iterations are needed to solve both the direct
problem and the inverse one. To overcome such difficulty a completely new theory has to be developed
so as to suit the particular structure of our model. This provides yet another direction for future work.
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Figure 8: Numerical error when ε = 0.05. Figure 9: Numerical error when ε = 0.1.

A Well-Posedness of Functional Equation Associated to the Inverse

Problem.

We have seen that the regularization method for the inverse problem relies mostly on solving the
equation

4H(2x) − H(x) = L(x), x ≥ 0. (34)

Eventhough this equation is formally very simple, its analysis reveals some complexity. It may admit
several solutions in general. Among them, we can mention two with simple representation formulas
(we leave to the reader to check they are indeed formally solutions)

H(1)(x) =

+∞∑

n=1

2−2nL(2−nx). (35)

H(2)(x) = −
+∞∑

n=0

22nL(2nx), (36)

To clarify this issue and motivate our choice of a solution, we first state general results concerning
solutions to (34) and then come back to our original problem (5).

We first mention the following

Proposition A.1 Let L ∈ L2(R+, xpdx), with p 6= 3, then there exists a unique solution H ∈
L2(R+, xpdx) to (34) and
• for p < 3, this solution is given explicitly by the formula (35). Furthermore, for 1 ≤ q ≤ ∞, if
L ∈ Lq(R+) then H(1) ∈ Lq(R+).
• for p > 3, this solution is given explicitly by the formula (36).

Because we look for an integrable function H (the number of cells is supposedly finite), the function
H(1) is preferable (take q = 1). It also behaves better near x ≈ 0 because the weight p < 3 imposes
that H(1) vanishes at 0 as we expect.
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Figure 10: In the case ε = 0.01, α = 0.05, B = 1 + e−8(x−2)2 , numerical solution B.N (left) and B
(right) by the different methods.

From the point of view of exact solutions of the direct problem, we find that H = BN and L belong
to all spaces L2(R+, xpdx) for all p ∈ R. Therefore, the two solutions coincide and in principle we
could choose any of them. In practice, errors on the data L are better handled by H(1) than by H(2)

for the afore mentioned reason. Notice indeed that these two solutions are different in general. One
can check for instance that for L = 0, there is a singular distributional solution δ′x=0. Furthermore,

Lemma A.2 The solutions to (34) with L = 0 in D′(0,∞) have the form f(log(x))
x2 with f ∈ D′(R) a

log(2)− periodic distribution.

Proof of Proposition A.1: We consider the Hilbert space X = L2(R+, xpdx) and we simply apply
the Lax-Milgram theorem to a properly chosen bilinear form.

Case 1, p < 3. We solve the equation in the variable y = 2x that is (20). and consider the bi-
linear form a(u, v) on X × X defined by

a(u, v) = 4

∫ ∞

0
u(y)v(y)ypdy −

∫ ∞

0
u(

y

2
)v(y)ypdy.

This form is obviously continuous and it remains to prove that it is coercive. We have

a(u, u) = 4

∫ ∞

0
u(y)2ypdy −

∫ ∞

0
u(

y

2
)u(y)ypdy > (4 − 2

p+1

2 )

∫ ∞

0
u(y)2ypdy,

and it is indeed coercive as long as α = 4 − 2
p+1

2 is positive which holds true for p < 3. The Lax-
Milgram Theorem asserts that there is a unique H ∈ X such that a(H, ·) = (L, ·), where (·, ··) denotes
the inner product in X, that is a solution of (20).

Case 2, p > 3. We work in the variable x and consider the continuous bilinear form b(u, v) on
X × X defined by

b(u, v) = −4

∫ ∞

0
u(2x)v(x)xpdx +

∫ ∞

0
u(x)v(x)xpdx.
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Figure 11: In the case ε = 0.1
and B = 1, the numerical solu-
tion B.N by the different methods.

Figure 12: Filtering and quasi-reversibility
method: minimal error as a function of the
noise level ε for the optimal value α, with a
comparison to the theoretical curve

√
ε.

The same calculation leads us to:

b(u, u) > α

∫ ∞

0
u(x)2xpdx, with α = 1 − 2

3−p

2 > 0,

and the same conclusion holds.

To check formulae (36) and (35), it remains to prove that these solutions belong to the corresponding
spaces:

‖H(1)‖L2(R+,xpdx) 6

∞∑

n=1

2−2n||L(2−nx)||L2(R+,xpdx) =

∞∑

n=1

2
n
2
(p−3)||L(x)||L2(R+,xpdx).

This sum converges iff p > 3. In the same way, we write:

||H(2)||L2(xpdx) 6

∞∑

n=0

22n||L(2nx)||L2(R+,xpdx) =

∞∑

n=0

2
n
2
(3−p)||L(x)||L2(R+,xpdx),

which converges iff p > 3.

Proof of Lemma A.2: When L = 0, we first define H ∈ D′(0,∞) as the second antiderivative of H,
and notice that it should verify

H(2x) = H(x).

We perform the change of variables y = log(x) and notice that, if H ∈ D′(0,∞), it is equivalent to
look for solutions f ∈ D′(R) of

f
(
y + log(2)

)
= f(y). (37)
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Figure 13: Quasi-reversibility method, with (left) λε,α given by relation (9) or (right) a priori knowl-
edge of λ0 : minimal error and optimal regularization parameter α as functions of the noise level ε,
with a comparison to the theoretical curve

√
ε. We see that the a priori knowledge of λ0 does not

improve the speed of convergence of the scheme.

Hence, all the solutions in D′(0,∞) are given by
f
(

log(x)
)

x2 , where f ∈ D′(R).

To conclude this Appendix, we come back to our original problem (5) and draw the consequences
in terms of B, not H.

Theorem A.3 Let N ∈ L2(R+), with N(x) > 0 for x > 0. Let L ∈ L2(R+). There exists a unique
B ∈ L2(R+, N2dx) solution of

4B(2x)N(2x) − B(x)N(x) = L(x). (38)

Proof: The theorem follows directly from Proposition A.1 for p = 0, and since N > 0, we can define
B = H/N for B ∈ L2(R+, N2dx).

This theorem shows that we can find a solution B of (5) for all N and all λ, this is the basis of our
algorithm. However, if we want that the solution B belongs to the space L1(R+;xN(x)dx), integration
of (38) multiplied by x shows that L has to satisfy the condition

∫ ∞

0
xL(x)dx = 0.

Applying this to Equation (5), we recover that λ0 =
∫ ∞

0 N(x)dx/
∫ ∞

0 xN(x)dx. In the case of Equa-
tions (6) and (11) respectively, we get formulae (9) and (12), which discrete versions are expressed by
(29) and (27).

In view of these considerations, it is better to use a discrete scheme defined by a matrix A that
preserves a similar discrete property. Namely, for all H = (Hi), we should have

∑
i

i(AH)i = 0, in

other words the vector of components i belongs to the kernel of the adjoint of A. Indeed, this property
yields the (discrete) regularity H ∈ L1(R+;xdx).
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Figure 14: Filtering method for standard levels
of noise.

Figure 15: Filtering method for smaller values
of ε and increased number of points.
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