Marie Doumic 
email: doumic@dma.ens.fr
  
Benoît Perthame 
email: perthame@ann.jussieu.fr
  
Jorge Zubelli 
email: zubelli@impa.br
  
  
  
Numerical Solution of an Inverse Problem in Size-Structured Population Dynamics

.

Introduction

The use of size-structured models to describe biological systems has attracted the interest of many authors and has a long standing tradition. In particular, the use of size structures was very well documented and compared to experiments in the 70's. This led to the survey book [START_REF] Metz | Formulating models for structured populations[END_REF] and subsequent mathematical analysis (see also the references in [START_REF] Perthame | Transport equations arising in biology[END_REF]). Needless to say, in such models it is crucial for the analysis, computer simulation and prediction to calibrate the corresponding model parameters so as to obtain good quantitative results. Indeed, in the inverse problem literature, a number of authors have addressed the calibration of certain structured population models. See for example [START_REF] Engl | A regularization scheme for an inverse problem in age-structured populations[END_REF][START_REF] Gyllenberg | The inverse problem of linear agestructured population dynamics[END_REF][START_REF] Rundell | Determining the birth function for an age structured population[END_REF][START_REF] Pilant | Determining a coefficient in a first-order hyperbolic equation[END_REF] and references therein.

In this article, we consider theoretical and numerical aspects of the inverse problem of determining the division rate coefficient B = B(x) in the following specific size-structured model for cell division:

           ∂ ∂t n(t, x) + ∂
∂x n(t, x) + B(x)n(t, x) = 4B(2x)n(t, 2x), x 0, t 0, n(t, x = 0) = 0, t > 0, n(0, x) = n 0 (x) ≥ 0.

(

) 1 
Here, the cell density is represented by n(t, x) at time t and size x. The division rate B expresses the division of cells of size 2x into two cells of size x. By making use of flux cytometry technologies for instance, it is possible to determine cell populations with certain properties as protein content on a large scale of tenths of thousands of cells. In other applications, like coagulation fragmentation equation [START_REF] Carrillo | A numerical study on large-time asymptotics of the Lifshitz-Slyozov system[END_REF][START_REF] Collet | The Beker-Döring system and its Lifshitz-Slyozov limit[END_REF][START_REF] Collet | Some remarks on large-time asymptotic of the Lifshitz-Slyozov equations[END_REF][START_REF] Laurençot | Convergence to self-similar solutions for a coagulation equation[END_REF][START_REF] Laurençot | Liapunov functionals for Smoluchowski's coagulation equation and convergence to self-similarity[END_REF], or prion aggregation and fragmentation [START_REF] Calvez | Bimodality, prion aggregates infectivity and prediction of strain phenomenon[END_REF][START_REF] Masel | Quantifying the kinetic parameters of prion replication[END_REF][START_REF] Greer | A mathematical analysis of the dynamics of prion proliferation[END_REF], similar equations arise, and much less is known on aggregate size repartition. The division rate B(x), on the contrary, is not directly measurable.

The long time behavior of solutions is well known. Indeed, it was proved in [START_REF] Perthame | Exponential decay for the fragmentation or cell-division equation[END_REF][START_REF] Michel | Existence of a solution to the cell division eigenproblem[END_REF] that under fairly general conditions on the coefficients, there is a unique solution (N, λ 0 ) to the following eigenvalue problem

           ∂ ∂x N + (λ 0 + B(x))N = 4B(2x)N (2x), x 0, N (x = 0) = 0, N (x) > 0 for x > 0, ∞ 0 N (x)dx = 1, (2) 
where λ 0 > 0 and N e µx ∈ L ∞ ∩ L1 for all µ < λ 0 . It was shown in [START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF][START_REF] Perthame | Exponential decay for the fragmentation or cell-division equation[END_REF] n(t, x)e -λ 0 t ----→ t→∞ m 0 N (x), in L 1 (R + , φ(x)dx),

where the weight φ is the unique solution to the adjoint problem

   -∂ ∂x φ + (λ 0 + B(x))φ = 2B(x)φ( x 2 ), x 0, φ(x) > 0, ∞ 0 φ(x)N (x)dx = 1. (3) 
In other words, λ 0 is the growth rate of such a system and is usually called "Malthus parameter" in population biology. From [START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF][START_REF] Perthame | Exponential decay for the fragmentation or cell-division equation[END_REF][START_REF] Perthame | Transport equations arising in biology[END_REF] we also know that λ 0 is related to N by the relation

λ 0 = ∞ 0 N dx ∞ 0 xN dx . ( 4 
)
The question we address here is the following: How can we estimate the division rate B from the knowledge of the steady dynamics N and λ 0 ? The inverse problem thus consists of finding B a solution to 4B(2x)N (2x) -B(x)N (x) = L(x) := ∂ ∂x N (x) + λ 0 N (x), x 0, [START_REF] Gyllenberg | The inverse problem of linear agestructured population dynamics[END_REF] assuming that (N, λ 0 ) is known, or thanks to (4) that N is known. As seen in [START_REF] Perthame | On the inverse problem for a size-structured population model[END_REF], this problem is well-posed if N satisfies strong regularity properties such as ∂ ∂x N (x) ∈ L p (R + ) for some p 1. However, in practical applications we have only an approximate knowledge of (N, λ 0 ), given by noisy data (N ε , λ ε ), with N ε ∈ L 2 + (R + ) for instance. 1 This means that we have no way of controlling ∂ ∂x N ε , so we cannot control the precision of a solution B ε to problem (5) when a perturbed N ε replaces N . Furthermore, it is not even clear whether such a B ε exists.

The question we focus on is then: How to approximate the problem [START_REF] Gyllenberg | The inverse problem of linear agestructured population dynamics[END_REF] in order to get a solution B ε as close as possible to the exact division rate B?

We remark that, in the context of noisy data, the inverse problem under consideration is ill-posed [START_REF] Perthame | On the inverse problem for a size-structured population model[END_REF] and thus regularization would be required. A natural tool to be invoked from the inverse problem literature would be some kind of Tikhonov regularization method [START_REF] Baumeister | Topics in inverse problems. Publicações Matemáticas do IMPA[END_REF][START_REF] Engl | of Mathematics and its Applications[END_REF]. However, this would lead to computationally intensive problems. Indeed, for each forward problem evaluation a dilation-differential equation of the form (2) would have to be solved.

In [START_REF] Perthame | On the inverse problem for a size-structured population model[END_REF], two of the present authors proposed a method of regularization consisting in the solution of the following approximate problem:

       α ∂ ∂y (B ε,α N ε ) + 4B ε,α (y)N ε (y) = B ε,α y 2 N ε y 2 + λ 0 N ε y 2 + 2 ∂ ∂y N ε y 2 , y > 0, (B ε,α N ε )(0) = 0,
where α is a regularizing parameter. It was shown that a convergence rate of order √ ε could be obtained, for α = O( √ ε), where ε is the error on the data N in an appropriate norm.

The above method of the solution to the inverse problem will be called quasi reversibility in accordance with the general spirit of the terminology of [START_REF] Lattès | Non-well-set problems and the method of quasi reversibility[END_REF][START_REF] Lattès | Méthode de quasi-réversibilité et applications[END_REF]. The main goal of this work is to investigate the numerics of such approach, to consider an alternative technique based on filtering ideas and to compare the performance of the different methods. The alternative technique is also analyzed from the theoretical point of view and estimates are presented.

In this work, we have modified slightly the original regularization equation by writing λ ε,α instead of λ 0 for the reasons we shall explain in the sequel. Thus, we work with

       α ∂ ∂y (B ε,α N ε ) + 4B ε,α (y)N ε (y) = B ε,α y 2 N ε y 2 + λ ε,α N ε y 2 + 2 ∂ ∂y N ε y 2 , y > 0, (B ε,α N ε )(0) = 0. (6) 
Indeed, in order to conserve regularity properties of the solution H = BN to the inverse problem, we want it to be both in L 1 (R + ) and in L 1 (R + , xdx) in order to express that both the total number of cells and the total biomass are finite. Hence, formal integration of Equation [START_REF] Rundell | Determining the birth function for an age structured population[END_REF] gives

λ ε,α ∞ 0 N ε dx = ∞ 0 B ε,α N ε dx, (7) 
and integration against the weight x gives

-α ∞ 0 B ε,α N ε dx = 4λ ε,α ∞ 0 xN ε dx -4 ∞ 0 N ε dx. (8) 
Hence, we have to choose, according to the eigenvalue theory:

λ ε,α = ∞ 0 N ε dx ∞ 0 xN ε dx + α 4 ∞ 0 N ε dx . ( 9 
)
The choice of λ ε,α can be understood as a compatibility condition when α > 0 and for α = 0 it tells us that (N, λ 0 ) is overdetermined data for the inverse problem. Therefore, if we have a priori knowledge on λ 0 , we could verify its distance to λ ǫ,α as a way of checking the error of the inverse problem solution.

The plan of this work is the following: In Section 2, we propose yet another method to regularize the inverse problem, and obtain a convergence rate. The convergence rate turns out to be as good as the one in [START_REF] Perthame | On the inverse problem for a size-structured population model[END_REF]. In Section 3 we give a numerical method to solve it, and in Section 4 we show some numerical simulations so as to compare the accuracy of the different methods.

Regularization by Filtering

Filtering approach

Taking a closer look at Equation ( 5), we see that all the difficulties come from the differential term ∂ ∂x N. In [START_REF] Perthame | On the inverse problem for a size-structured population model[END_REF], the choice was to add an equivalent derivative α ∂ ∂x (B N ) to the equation; here on the contrary, we choose to regularize it by a convolution method.

For α > 0, we use the notation

ρ α (x) = 1 α ρ( x α ), ρ ∈ C ∞ c (R), ∞ 0 ρ(x) dx = 1, ρ 0, Supp(ρ) ⊂ [0, 1], (10) 
and we replace in (5) the term

∂ ∂x N ε + λ 0 N ε by ∂ ∂x N ε + λ ε,α N ε * ρ α (x) = N ε * ∂ ∂x ρ α + λ ε,α ρ α (x) = ∞ 0 N ε (x ′ ) ∂ ∂x ρ α + λ ε,α ρ α (x -x ′ )dx ′ .
We now use the notation

N ε,α = N ε * ρ α .
In this way, we obtain a smooth term in L 2 (R + ). Furthermore, N ε,α converges to N ε in L 2 (R + ) when α tends to zero. We now have to consider the following problem:

Find B ε,α solution of 4B ε,α (2x)N ε,α (2x) + B ε,α (x)N ε,α (x) = ∂ ∂x N ε,α + λ ε,α N ε,α (x), x 0 . ( 11 
)
As in Equation ( 6), for the quasi-reversibility method, we need to choose λ ε,α appropriately. Indeed, we perform the same manipulations leading to Equation (9) to get

λ ε,α = ∞ 0 N ε,α (x)dx ∞ 0 xN ε,α (x)dx . (12) 
By Theorem A.3 (see the Appendix), we know that the problem in Equation ( 11) has a unique solution B ε,α ∈ L 2 (R + , N 2 ε,α dx).

Estimates for the filtering approach

The main result of this section establishes an estimate for the regularization of the inverse problem by means of the filtering method described above.

Theorem 2.1 Suppose that N ∈ H 2 (R + ) and B ∈ L ∞ (R + ), B 0 verify (2). Let ε > 0 and N ε ∈ L 2 (R + ), N ε (x) > 0 for x > 0, such that ||N ε -N || L 2 (R + ) ε||N || L 2 (R+) . Let B ε,α ∈ L 2 (R + , N 2
ε,α dx) be the unique solution of ( 10) and [START_REF] Laurençot | Convergence to self-similar solutions for a coagulation equation[END_REF]. We have the following estimate:

||B ε,α -B|| L 2 (N 2 ε dx) C(α + |λ ε,α -λ 0 |)||N || H 2 (R + ) + C α ||N ε,α -N || L 2 (R + ) , ( 13 
)
where C is a constant depending only on ||B|| L ∞ , ||B ε,α || L ∞ and the regularizing function ρ.

This theorem relies on a first estimate.

Proposition 2.2 Using the same notations as in Theorem 2.1, we have

||B ε,α N ε,α -B N || 2 L 2 (dx) C 1 + λ 2 0 1 + 1 α 2 ||N ε -N || 2 L 2 (dx) +C(α 2 +|λ ε,α -λ 0 | 2 )||N || 2 H 2 (R + ) , (14) 
where C depends only on the regularizing function ρ. 2) and ( 11), Q verifies:

Proof of Prop. 2.2: Denote by Q = B ε,α N ε,α -BN, R = N ε,α -N and δ = λ ε,α -λ 0 . From Equations (
   ∂ ∂x R(x) + λ 0 R(x) + δN ε,α (x) + Q(x) = 4Q(2x), x 0, Q(x = 0) = 0. ( 15 
) (Since N ε,α ∈ H 1 (R + )
, the definition of Q(x = 0) is not ambiguous.) Multiplying this equation by Q(2x) and integrating on the interval (0, y) yields

4 y 0 Q(2x) 2 dx = y 0 Q(2x) ∂ ∂x R(x)dx + λ 0 y 0 Q(2x)R(x)dx + δ y 0 Q(2x)N ε,α (x)dx + y 0 Q(2x)Q(x)dx.
From the Cauchy-Schwarz inequality, after the change of variables x → 2x, we have

4 y 0 Q(2x) 2 dx 1 2 y 0 ∂ ∂x R 2 (x)dx + 1 2 y 0 Q(2x) 2 dx + λ 0 2 y 0 CR(x) 2 dx + λ 0 2 y 0 Q(2x) 2 C dx + |δ| 2 2 y 0 N ε,α (x) 2 dx + 1 2 y 0 Q(2x) 2 dx + 1 2 y 0 Q(2x) 2 dx + y 2 0 Q(2x) 2 dx.
We take, for instance, C = λ 0 . We obtain

||B ε,α N ε,α -BN || 2 L 2 ||N ε * ∂ ∂x ρ α - ∂ ∂x N || 2 L 2 + λ 2 0 ||N ε * ρ α -N || 2 L 2 + |λ ε,α -λ 0 | 2 ||N ε * ρ α || 2 L 2 . ( 16 
)
The last two terms of this inequality are easy to estimate, writing

||N ε * ρ α -N || L 2 ||N ε * ρ α -N * ρ α || L 2 + ||N * ρ α -N || L 2 C (||N ε -N || L 2 + α||N || H 1 ) ,
and

||N ε * ρ α || L 2 C||N || L 2 .
It remains to evaluate the first term on the right-hand side of inequality [START_REF] Perthame | Exponential decay for the fragmentation or cell-division equation[END_REF]. We write

||N ε * ∂ ∂x ρ α - ∂ ∂x N || 2 L 2 2||N ε * ∂ ∂x ρ α -N * ∂ ∂x ρ α || 2 L 2 + 2||N * ∂ ∂x ρ α - ∂ ∂x N || 2 L 2 .
By a convolution estimate we evaluate the first term as

||N ε * ∂ ∂x ρ α -N * ∂ ∂x ρ α || 2 L 2 (R + ,dx) ||N ε -N || 2 L 2 (R + ,dx) || ∂ ∂x ρ α || 2 L 1 . Since ∞ 0 | ∂ ∂x ρ α (x)|dx = 1 α ∞ 0 | ∂ ∂x ρ(y)|dy, we have ||N ε * ∂ ∂x ρ α - ∂ ∂x N || 2 L 2 (R + ,dx) C(ρ) α 2 ||N ε -N || 2 L 2 (R + ,dx) + 2||N * ∂ ∂x ρ α - ∂ ∂x N || 2 L 2 (R + ,dx) .
To evaluate the last term

||N * ∂ ∂x ρ α -∂ ∂x N || 2 L 2
, we extend to R the functions N and ∂ ∂x N by zero and consider their Fourier transforms. We denote f (ξ) the Fourier transform of f ∈ L 2 (R + ) at ξ, where f is extended as zero on R -. We obtain by Fourier analysis

||N * ∂ ∂x ρ α - ∂ ∂x N || 2 L 2 (R + ,dx) = ||iξ N ρα -iξ N || 2 L 2 (R + ,dx) ∞ -∞ | N (ξ)| 2 |ξ| 4 |ρ α (ξ) -1| 2 |ξ| 2 dξ.
Using that

| |ρ α (ξ) -1| 2 ξ 2 | C(ρ)α 2 , (17) 
where C(ρ) only depends on the regularization function ρ, we have that

||N * ∂ ∂x ρ α - ∂ ∂x N || 2 L 2 (R + ,dx) C(ρ)α 2 ||N || 2 H 2 (R + ) .
Going back to [START_REF] Perthame | Exponential decay for the fragmentation or cell-division equation[END_REF], this concludes the proof of Proposition 2.2.

We can now deduce the proof of Theorem 2.1. We write:

||B ε,α -B|| L 2 (N 2 ε dx) ||B ε,α N ε -B ε,α N ε,α || L 2 (R + ) + ||B ε,α N ε,α -B N || L 2 (R + ) + ||B N -B N ε || L 2 (R + ) .
Using Proposition 2.2, and the fact that

||N ε -N ε,α || L 2 2||N ε -N || L 2 + α||N || H 1 ,
this inequality gives the result.

Numerical Solution of the Inverse Problem

This section is concerned with the numerical aspects of the solution of the inverse problem. In order to do that we start with a description of the solution to the direct one in Subsection 3.1.

Direct Problem

In the direct problem, we assume we know the proliferation rate B, we look for N and λ 0 > 0 solutions of (2). For this purpose, we solve the time-dependent problem (1) and look for a steady dynamics. As already said, this problem is well-posed (see for instance [START_REF] Perthame | Transport equations arising in biology[END_REF]) and it was proved in [START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF] that solutions grow at an exponential rate towards ρN (x)e λ 0 t with ρ = ∞ 0 n(0, x)φ(x)dx, recalling the notation in (3). Furthermore, under more restrictive conditions it was shown in [START_REF] Perthame | Exponential decay for the fragmentation or cell-division equation[END_REF] that there exists constants µ > 0 and C(n 0 ) > 0, such that

||n(t, x)e -λ 0 t -ρN (x)|| L 1 (R + ,φ(x)dx) Ce -µt .
To solve it numerically, we discretize the problem (1) along a regular grid, denote by ∆t the time step and by ∆x = L/I the spatial step, where I denotes the number of points and L the computational domain length:

x i = i∆x, 0 i I.
We use an upwind finite volume method (cf. [START_REF] Bouchut | Nonlinear stability of finite volume methods for hyperbolic conservation laws, and well-balanced schemes for sources[END_REF][START_REF] Leveque | Finite Volume Methods for Hyperbolic Problems[END_REF][START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF])

n k i = 1 ∆x x i+ 1 2 x i-1 2 n(k∆t, y)dy, 1 ∆t ∆t 0 n(k∆t + s, x i+ 1 2 )ds ≈ n k i .
For the time discretization, we use a marching technique. We choose the time step ∆t so as to satisfy the largest possible CFL stability criteria θ := ∆t ∆x = 1. The numerical scheme is given, for i = 1, ..., I, by n k 0 = 0 and

n k+1 i -n k i ∆t + n k i -n k i-1 ∆x + B i n k+1 i = B 2i-1 n k 2i-1 + 2B 2i n k 2i + B 2i+1 n k 2i+1 , (18) 
with the convention that n j = 0 for j > I. For stability reasons, we have used an implicit method for the division term in the left hand side and explicit for the right hand side of the equation. The specific form for the right hand side is simply motivated by the need of also dividing cells of odd labels.

According to the power algorithm, we do not keep n k+1 from ( 18) but rather renormalize it as

n k+1 = n k ∆x I j=1 n k j .
It is standard, for these positive matrices arising in [START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF], that

n k+1 -→ k→∞ N, I i=1 N i = 1, N i > 0,
where N is the dominant eigenvector for the problem

N i -N i-1 ∆x + (λ 0 + B i )N i = B 2i-1 N 2i-1 + 2B 2i N 2i + B 2i+1 N 2i+1 .
One can also find the dominant eigenvalue as

λ 0 = lim k→∞ 1 ∆t log I i=1 n k+1 i I i=1 n k i .
For matrices with one dominant eigenvalue and a corresponding one-dimensional eigenspace, it is known that the power algorithm is fast and in fact converges with exponential rate [START_REF] Serre | Matrices: Theory and Applications[END_REF]. In practice we can stop the iterations when the relative error on the normalized quantity

1 ∆t I i=1 n k+1 i - I i=1 n k i
is small enough, say of the order of 10 -10 .

Inverse Problem: General Strategy

In the sequel, we denote by H the product B.N and its approximations. Indeed, from Equations ( 6) or [START_REF] Laurençot | Convergence to self-similar solutions for a coagulation equation[END_REF], we have to search for the product

H = B ε,α N ε or H = B ε,α N ε,α before computing B ε,α .
In particular, we cannot avoid a loss of information where N ε is small, i.e., for x ≈ 0 or x ≫ 1.

The inverse problem (5), as well as [START_REF] Laurençot | Convergence to self-similar solutions for a coagulation equation[END_REF], can be written as

4H(2x) -H(x) = L(x), (19) 
with different expressions for H and L. We may think of two possible numerical approaches.

Strategy 1. Compute H(2x) from H(x):
This means that we re-write Equation ( 19) with the new variable y = 2x, and arrive at

4H(y) -H( y 2 ) = L( y 2 ). (20) 
The scheme departs from zero, and one deduces the values of H i step by step, from the knowledge of H j for j i -1.

Strategy 2. Compute H(x) from H(2x): The scheme departs from the largest point x = L of our simulation domain. We suppose that for x L we have H(x) = H(L) = 0 (it is relevant since we suppose that N vanishes for x large: see below), and then deduce the smaller values H i step by step, from the knowledge of H j for j i + 1.

The two approaches do not necessarily lead to the same result because the continuous equation

4H(2x) -H(x) = 0 (21) 
has infinitely many solutions. This issue is interesting on its own and is related to the construction of wavelets, see [START_REF] Strang | Wavelets and dilation equations: a brief introduction[END_REF]. It is discussed in Proposition A.1 of the Appendix.

By imposing H ∈ L 2 (R + ), we select a unique solution, as shown in Theorem A.3. The question is then: Which numerical strategy should we use to select the correct solution, i.e. the one in L 2 (R + ) ?

Among the solutions of Equation ( 19), we single out two, defined by the power series:

H (1) (x) = +∞ n=1 2 -2n L(2 -n x) and H (2) (x) = - +∞ n=0 2 2n L(2 n x) , ∀ x > 0.
Proposition A.1 shows that for L ∈ L 2 (R + , x p dx), there is a unique solution in L 2 (R + , x p dx), given by H (1) if p < 3 and by H (2) if p > 3 (and the power series converge in the corresponding spaces). For B > 0 smooth and bounded from above and from below, we know that N is smooth and vanishes at x ≈ 0 and x ≈ ∞, and BN inherits these properties. For instance, we know that H ∈ L 2 (dx) ∩ L 2 (x 4 dx). By uniqueness of a solution in each space, Proposition A.1 implies that H (2) = H (1) , or equivalently:

+∞ n=-∞ 2 2n L(2 n x) = 0, ∀ x 0.
This very particular property cannot be verified at the discrete level. Hence, the two strategies generally give two different approximations of the same solution of [START_REF] Baumeister | Topics in inverse problems. Publicações Matemáticas do IMPA[END_REF]. The first strategy selects an approximation of the solution H (1) whereas the second selects an approximation of the solution H (2) . In the case of a very regular data N , then H (2) will perform better around infinity, whereas H (1) will be better around zero. However, if N is a solution of Equation ( 2), when we increase the number of points, the two approaches converge to the same solution since H (2) = H (1) .

Since our simulation domain [0, L] is bounded and contains zero, we prefer the first strategy. This choice is confirmed by all the numerical tests we have performed: the second approach has always lead to a solution exploding around zero. However, for the sake of completeness, we also describe the scheme we used for the second approach.

Inverse Problem: Filtering Approach

According to strategies 1 and 2, we now present two approaches to handle the numerical solution of the inverse problem regularized with the filtering approach. Both need to first compute the convolution terms arising in [START_REF] Laurençot | Convergence to self-similar solutions for a coagulation equation[END_REF]. To do so we first take the Fast Fourier Transform F of N ε , multiply it by iξ ρα (ξ), and then take the inverse Fast Fourier Transform F * . We choose and define the regularization function ρ α by its Fourier transform:

ρα (ξ) = 1 1 + α 2 ξ 2 .
This leads us to the numerical approximation

∂ ∂x N ε,α ≈ dN α = F * iξ ρα (ξ)F(N ε )(ξ) . (22) 
We also impose dN α,0 = 0 for compatibility with the continuous equation and further use. As mentioned earlier, there are two alternatives, either starting from zero or coming from infinity.

The Filtering Approach Starting from Zero (strategy 1). We solve Equation ( 11) considered as an equation in the variable y = 2x, that is to say [START_REF] Engl | of Mathematics and its Applications[END_REF], in order to compute its solution H (1) (x). At the discrete level, we use the notations

H f i ≈ B i N i , L f i = dN α,i + λ ε,α N i , L f 0 = 0.
The discrete version of (20) reads

4H f i = H f i 2 + L f i 2 , ∀ 0 i I, (23) 
and we need to define the quantities G i

2

. We choose

G i 2 =    G i 2 when i is even, 1 2 G i-1 2 + G i+1 2 when i is odd. (24) 
In particular, we have H f 0 = 0. Summing up all the terms in ( 23) for 1 i I, we find (with I even to simplify):

4 I i=0 H f i = 2 I 2 i=0 (H f i + L f i ) - 1 2 (H f I/2 + L f I/2 ).
Since we have assumed that N has exponential decay for x ≫ 1, it follows that

I i=0 H f i = I i=1 L f i + E I , with |E I | 2 I i= I 2 |H i |. (25) 
Multiplying ( 23) by x i and summing up again, we find

I 2 i=1 x i L f i = F I , with |F I | I i= I 2 x i |H i |. ( 26 
)
As a consequence, we can choose:

λ ε,α = - x i dN α,i x i N i , (27) 
as the discrete version of the relations (4) or [START_REF] Laurençot | Liapunov functionals for Smoluchowski's coagulation equation and convergence to self-similarity[END_REF].

The Filtering Approach Starting from Infinity (strategy 2). Another method is to discretize the formulation [START_REF] Baumeister | Topics in inverse problems. Publicações Matemáticas do IMPA[END_REF] in order to compute its solution H (2) (x). We define the extension H f i = 0 for i I + 1, and for 2 ≤ i ≤ I, we define by backward iterations

H f ∞ i = 2H f ∞ 2i + H f ∞ 2i+1 + H f ∞ 2i-1 -L f i . (28) 
This however does not apply to the indices i = 0, 1 and we set

H f 0 = L f 0 3 = 0 and H f 1 = 4H f 2 -L f 1 .
By summing up all the terms in (28), we find balance properties equivalent to (25)-( 26), but with remainders E I and F I depending on H 1 and H 2 instead of H i I

2

. One has to check a posteriori that these last quantities are very small ; it is not the case in a standard calculation, but becomes true when the precision of the direct problem scheme increases.

Inverse problem: Quasi-Reversibility Approach

In this section, we present a numerical scheme for the regularized inverse problem proposed in [START_REF] Perthame | On the inverse problem for a size-structured population model[END_REF]. This problem leads to solving [START_REF] Rundell | Determining the birth function for an age structured population[END_REF] 

taken at y = 2x, that is        α ∂ ∂y (B ε,α N ε ) + 4B ε,α (y)N ε (y) = B ε,α y 2 N ε y 2 + λ ε,α N ε y 2 + 2 ∂ ∂y N ε y 2 , y > 0, (B ε,α N ε )(0) = 0,
where α > 0 is the regularizing parameter and λ ε,α is defined by ( 9). This gives, in a discretized version, after dropping the index ε,

λ ε,α = N i x i N i + α 4 N i . ( 29 
)
For the numerical discretization we set H Q -1 = 0 and also recall that N 0 = 0 and assume that the data satisfies N I+1 = 0. We use a standard upwind scheme for the differential term:

α ∆x (H Q i -H Q i-1 ) + 4H Q i = H Q i 2 + L Q i 2 , (30) 
where we have defined the fractional indices as in the filtering approach by [START_REF] Leveque | Finite Volume Methods for Hyperbolic Problems[END_REF], and here

L Q i = λ ε N i + N i+1 -N i ∆x .
If we neglect the terms

H Q i I 2 +1
, we can easily verify a discrete version of the balance laws ( 7) and ( 9), equivalent to ( 25)-( 26).

Numerical Tests

As input data, we take the values of the function N obtained by the numerical solution of the direct problem in Section 3.1, we add a random noise uniformly distributed in [-ε 2 , ε 2 ], and we enforce nonnegativity of the data N ε = max(N + ε r, 0).

We solve the direct problem on a regular grid of I + 1 points, on an interval [0, 2L]. We need L large enough, such that it is possible to assume that N (x L) ≈ 0 and we have checked it a posteriori. Indeed, we have seen that this property is essential when we use the inverse schemes on a domain [0, L] in order to verify the balance laws ( 7)- [START_REF] Collet | The Beker-Döring system and its Lifshitz-Slyozov limit[END_REF]. In other words, we solve the direct problem on a domain twice larger than for the inverse problem. In the numerical tests we take L = 4, and we show the numerical solution N only on the interval [0, L] since it is uniformly small on [L, 2L].

We solve the inverse problem by the different methods on a regular grid of I 1 + 1 points on [0, L], with ∆x 1 = L/I 1 . This grid is taken ten times finer than the grid used for the direct problem, i.e. we take I 1 = 10I. Since we have chosen L large enough so that N (x L) ≈ 0, we have always obtained that indeed H(x L) ≈ 0.

As before, we denote by H Q and H f the solution data H obtained respectively by the quasireversibility method of Section 3.4 and by the first filtering approach (from zero) of Section 3.3. We also define a solution H f Q by mixing both methods, i.e. by solving the following equation:

       α ∂ ∂x (B ε,α N ε )(y) + 4B ε,α (y)N ε (y) -B ε,α (x)N ε (x) = ∂ ∂x N ε + λ ε,α N ε * ρ α (x), x 0, B ε,α (x = 0)N ε (x = 0) = 0, (31) 
where λ ε,α is defined by

λ ε,α = ∞ 0 N ε * ρ α dx ∞ 0 xN ε * ρ α dx + α 4 ∞ 0 N ε * ρ α dx . ( 32 
)
The relative error is measured, as seen in Theorem 2.1 and in Theorem 5.1 of [START_REF] Perthame | On the inverse problem for a size-structured population model[END_REF], by

δ Q = ||BN ε -H Q || 2 l 2 ||N ε || l 2 , δ f = ||BN ε -H f || 2 l 2 ||N ε || l 2 , δ f Q = ||BN ε -H f Q || 2 l 2 ||N ε || l 2 .
We have divided by ||N ε || L 2 and not by ||N || H 2 because in practice we only know the entry data with noise.

In order to illustrate the accuracy of our method, we also compare it to a naive way (brute force) of considering the equation. Namely, we approximate ∂ ∂x N (x) by a second-order Euler scheme without regularization. It gives a solution H b by the same formula (30), where we simply take α = 0.

The Direct Problem. We have first tested the direct problem for various division rates B. Three different solutions N for three given division rates B are depicted in Figure 1 with 800 grid points.

In the particular case when B is constant, we can go further and evaluate the computational error. Then, we know that λ = B and the exact solution N exact can be explicitly calculated, as shown in [START_REF] Perthame | Exponential decay for the fragmentation or cell-division equation[END_REF][START_REF] Perthame | Transport equations arising in biology[END_REF], by the formula:

N exact (x) = N ∞ n=0 α n e -2 n Bx , ( 33 
)
where the coefficients are defined recursively by α 0 = 1 and α n = (-1) n 2α n-1 2 n -1 , and N is chosen to ensure the mass one normalization. We take B = 1 and obtain the continuous curve of Figure 1. We can measure here the relative error by

δ D = N -N exact l 1 N exact l 1 ,
where N represents the numerical solution of Section 3.1. We choose this norm because for B constant, the solution of the adjoint problem is φ = 1 and the General Relative Entropy Principle ( [START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF][START_REF] Perthame | Transport equations arising in biology[END_REF]) gives us that this quantity decreases along the time iterations. Still for 800 points, we obtain δ D = 7.7.10 -3 . The noiseless case (ε = 0). In the simplest case where the data is perfectly known, i.e. for ε = 0, we verify that the different schemes allow us to recover B. Since the precision of the data is directly linked to the number of points used in the scheme, we run the codes with 1.000 points for the direct problem (below, we will take only 100 points).

We test several values of α and we use the three functions B of Figure 1 for each method for the inverse problem. The error estimate is found to depend on the method used but not significantly on the division rate B. Therefore we have drawn in Figure 2 the average error estimates for the three division rates B. In Figure 3 we have depicted the products B.N in the case B = 1 and α = 0.01 (other cases are similar): it shows that the precision obtained is satisfactory. In Figures 4, 5 and6 we have drawn the approximations of B in each of the three cases, calculated only for N > 0.01 (indeed, for N too small the division leads to insignificant results on B).

Not surprisingly, the brute force method reveals to be satisfactory, with an error estimate of δ b = 1.3.10 -2 , since we are in the case where N is very regular. The filtering method can reach this level of error for α = 10 -2 but cannot go further. However, both the quasi reversibility method and the mixed method given by Equation (31) improve it with minimum values δ Q = 6.9.10 -3 and δ f Q = 6.5.10 -3 reached for α = 10 -2 . Link between the noise level ε and the regularization parameter α. For noise levels ε = 0.01, ε = 0.05 and ε = 0.1 respectively, the Figures 7, 8 and9 give the curves ε as a function of α for the three inverse methods. We compare the reconstructed division rates B in Figures 10 and11.

Each of the error curves presents a minimum for an optimal value of α, as expressed by estimate (13) for instance. In Figures 12,13, 14 and 15, we have compared three curves, drawn in a log-log scale:

√ ε to serve as a reference curve, f (ε) = min α δ(α, ε), and g(ε) = arg min α δ(α, ε). One can see that for each method, these three curves have comparable slopes ( 1 2 on a log-log scale): they show that even though the combination of filtering and quasi-reversibility method improves the optimal errors in absolute value, it does not change the order of convergence of the approximation, which remains of order O( √ ε). Figure 15 gives also the convergence of the filtering method for much smaller values Figure 5: Reconstructed division rate B, for ε = 0, α = 0.01 and a jump B = 1 to 5 as in Figure 1 of ε (for which an increased number of 500 points has been taken, in order to avoid numerical bias): the comparison with √ ǫ is there particularly evident, and we have obtained similar curves for the two other methods. The speed of convergence is though in complete accordance with the theoretical estimate [START_REF] Calvez | Bimodality, prion aggregates infectivity and prediction of strain phenomenon[END_REF].

Influence of the choice of λ 0 instead of λ ε,α . To evaluate the influence of the error term due to the distance |λ ε,α -λ 0 |, we compare the curves obtained respectively by taking on the inverse code the exact λ 0 or the value λ ε,α expressed by the balance laws. They are drawn in Figure 13 for the quasi-reversibility method. They show that even though the a priori knowledge of λ 0 improves the error in absolute value, it does not change the order of convergence of the scheme. Thus it is in complete accordance with Estimate (13).

Conclusions

We have considered size-structured equations connected to several areas of biology from cell division to prion proliferation by aggregation and fragmentation. We have addressed the numerical efficiency of some inverse problem solution methods to tackle the problem of recovering the division rate from the size distribution of cells. The latter involves a dilation equation with a singular right-hand side that needs regularization for actual implementation. For that purpose, we have introduced a filtering method and proved its convergence for noisy data. This method brings in an operator that has a non-trivial kernel and we have selected a numerical approximation that is able to recover the natural solution we want to reach. The implementation of the inverse algorithm, based on the filtering method, confirms the convergence analysis. In particular, there is an optimal regularization parameter as can be seen in the graphs of Figures 7,[START_REF] Carrillo | A numerical study on large-time asymptotics of the Lifshitz-Slyozov system[END_REF] earlier leads to the conclusion that a combination of filtering and quasi-reversibility methods seems to be more efficient because the oscillations are reduced, but without improving the rate of convergence.

We also analyzed the impact of using the exact value of λ 0 or the λ ε on the different solutions of the inverse problem. In our simulations, the difference between using λ 0 or λ ε seemed to be immaterial as far as the accuracy of method is concerned. This is in perfect accordance with the theoretical estimate [START_REF] Calvez | Bimodality, prion aggregates infectivity and prediction of strain phenomenon[END_REF].

The above remarks open several directions for continuation and extension of the present work. On the practical side, the present work sets the stage for the use of experimental data either from the existing literature or from more recent biological experiments. On the theoretical side, the possibility of improving the convergence by combining the filtering and quasi-reversibility methods should be investigated further.

Finally, we point out that although the Tikhonov method is more standard, we did not study it so far because it seems more time consuming. Indeed, iterations are needed to solve both the direct problem and the inverse one. To overcome such difficulty a completely new theory has to be developed so as to suit the particular structure of our model. This provides yet another direction for future work. A Well-Posedness of Functional Equation Associated to the Inverse Problem.

We have seen that the regularization method for the inverse problem relies mostly on solving the equation 4H

(2x) -H(x) = L(x), x ≥ 0. (34) 
Eventhough this equation is formally very simple, its analysis reveals some complexity. It may admit several solutions in general. Among them, we can mention two with simple representation formulas (we leave to the reader to check they are indeed formally solutions)

H (1) (x) = +∞ n=1 2 -2n L(2 -n x). (35) 
H (2) (x) = - +∞ n=0 2 2n L(2 n x), (36) 
To clarify this issue and motivate our choice of a solution, we first state general results concerning solutions to (34) and then come back to our original problem [START_REF] Gyllenberg | The inverse problem of linear agestructured population dynamics[END_REF]. We first mention the following Proposition A.1 Let L ∈ L 2 (R + , x p dx), with p = 3, then there exists a unique solution H ∈ L 2 (R + , x p dx) to (34) and • for p < 3, this solution is given explicitly by the formula (35). Furthermore, for 1 ≤ q ≤ ∞, if L ∈ L q (R + ) then H (1) ∈ L q (R + ).

• for p > 3, this solution is given explicitly by the formula (36).

Because we look for an integrable function H (the number of cells is supposedly finite), the function H (1) is preferable (take q = 1). It also behaves better near x ≈ 0 because the weight p < 3 imposes that H (1) vanishes at 0 as we expect. From the point of view of exact solutions of the direct problem, we find that H = BN and L belong to all spaces L 2 (R + , x p dx) for all p ∈ R. Therefore, the two solutions coincide and in principle we could choose any of them. In practice, errors on the data L are better handled by H (1) than by H (2) for the afore mentioned reason. Notice indeed that these two solutions are different in general. One can check for instance that for L = 0, there is a singular distributional solution δ ′ x=0 . Furthermore, Lemma A.2 The solutions to (34) with L = 0 in D ′ (0, ∞) have the form f (log(x))

x 2 with f ∈ D ′ (R) a log(2)-periodic distribution.
Proof of Proposition A.1: We consider the Hilbert space X = L 2 (R + , x p dx) and we simply apply the Lax-Milgram theorem to a properly chosen bilinear form.

Case 1, p < 3. We solve the equation in the variable y = 2x that is [START_REF] Engl | of Mathematics and its Applications[END_REF]. and consider the bilinear form a(u, v) on X × X defined by

a(u, v) = 4 ∞ 0 u(y)v(y)y p dy - ∞ 0 u( y 2 )v(y)y p dy.
This form is obviously continuous and it remains to prove that it is coercive. We have is positive which holds true for p < 3. The Lax-Milgram Theorem asserts that there is a unique H ∈ X such that a(H, •) = (L, •), where (•, ••) denotes the inner product in X, that is a solution of (20). To check formulae (36) and (35), it remains to prove that these solutions belong to the corresponding spaces: This sum converges iff p > 3. In the same way, we write: We perform the change of variables y = log(x) and notice that, if H ∈ D ′ (0, ∞), it is equivalent to look for solutions f ∈ D ′ (R) of f y + log(2) = f (y). (37)

a(u, u) = 4 ∞ 0 u(y) 2 y p dy - ∞ 0 u( y 2 )u(y)y p dy (4 -2 p+1 
H (1)
||H (2) || L 2 (x p dx) ∞ n=0 2 2n ||L(2 n x)|| L 2 (R + ,x p dx) = ∞
Figure 13: Quasi-reversibility method, with (left) λ ε,α given by relation ( 9) or (right) a priori knowledge of λ 0 : minimal error and optimal regularization parameter α as functions of the noise level ε, with a comparison to the theoretical curve √ ε. We see that the a priori knowledge of λ 0 does not improve the speed of convergence of the scheme.

Hence, all the solutions in D ′ (0, ∞) are given by f log(x)

x 2

, where f ∈ D ′ (R).

To conclude this Appendix, we come back to our original problem [START_REF] Gyllenberg | The inverse problem of linear agestructured population dynamics[END_REF] and draw the consequences in terms of B, not H. (38)

Proof: The theorem follows directly from Proposition A.1 for p = 0, and since N > 0, we can define B = H/N for B ∈ L 2 (R + , N 2 dx).

This theorem shows that we can find a solution B of (5) for all N and all λ, this is the basis of our algorithm. However, if we want that the solution B belongs to the space L 1 (R + ; xN (x)dx), integration of (38) multiplied by x shows that L has to satisfy the condition ∞ 0 xL(x)dx = 0.

Applying this to Equation (5), we recover that λ 0 = ∞ 0 N (x)dx/ ∞ 0 xN (x)dx. In the case of Equations ( 6) and ( 11) respectively, we get formulae ( 9) and [START_REF] Laurençot | Liapunov functionals for Smoluchowski's coagulation equation and convergence to self-similarity[END_REF], which discrete versions are expressed by (29) and [START_REF] Strang | Wavelets and dilation equations: a brief introduction[END_REF].

In view of these considerations, it is better to use a discrete scheme defined by a matrix A that preserves a similar discrete property. Namely, for all H = (H i ), we should have i i(AH) i = 0, in other words the vector of components i belongs to the kernel of the adjoint of A. Indeed, this property yields the (discrete) regularity H ∈ L 1 (R + ; xdx). 
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 1 Figure 1: Solutions N (left) obtained by the numerical resolution of Section 3.1 for the direct problem with three different division rates B (right).
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 2 Figure 2: For ε = 0, numerical errors obtained with the different methods for the inverse problem.
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 3 Figure 3: Numerical reconstruction of B.N obtained by each method for the inverse problem when B = 1, ε = 0 and α = 0.01.
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 4 Figure 4: Reconstructed division rate B using the three inverse methods, for ε = 0, α = 0.01 with N computed from B = 1.

  or 9 for instance. Comparison with a quasi-reversibility method introduced
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 6 Figure 6: Reconstructed division rate B, for ε = 0, α = 0.01 and B = 1 + exp(-8(x -2) 2 ).
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 7 Figure 7: Numerical error when ε = 0.01 for the different methods.
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 8 Figure 8: Numerical error when ε = 0.05.
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 9 Figure 9: Numerical error when ε = 0.1.

Figure 10 :

 10 Figure 10: In the case ε = 0.01, α = 0.05, B = 1 + e -8(x-2) 2 , numerical solution B.N (left) and B (right) by the different methods.
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Case 2 ,

 2 p > 3. We work in the variable x and consider the continuous bilinear form b(u, v) on X × X defined byb(u, v) = -4 ∞ 0 u(2x)v(x)x p dx + ∞ 0 u(x)v(x)x p dx.
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 11 Figure 11: In the case ε = 0.1 and B = 1, the numerical solution B.N by the different methods.

Figure 12 :

 12 Figure 12: Filtering and quasi-reversibility method: minimal error as a function of the noise level ε for the optimal value α, with a comparison to the theoretical curve √ ε.
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 222 R + ,x p dx) ∞ n=1 2 -2n ||L(2 -n x)|| L 2 (R + ,x p dx) = ∞ n=1 (p-3) ||L(x)|| L 2 (R + ,x p dx) .

n=0 2 n 2

 22 (3-p) ||L(x)|| L 2 (R + ,x p dx) , which converges iff p > 3.Proof of Lemma A.2: When L = 0, we first define H ∈ D ′ (0, ∞) as the second antiderivative of H, and notice that it should verify H(2x) = H(x).

Theorem A. 3

 3 Let N ∈ L 2 (R + ), with N (x) > 0 for x > 0. Let L ∈ L 2 (R + ). There exists a unique B ∈ L 2 (R + , N 2 dx) solution of 4B(2x)N (2x) -B(x)N (x) = L(x).

Figure 14 :

 14 Figure 14: Filtering method for standard levels of noise.

Figure 15 :

 15 Figure 15: Filtering method for smaller values of ε and increased number of points.

Actually, our knowledge of λ0 is presumably an order of precision higher than that of N , since the rate λ0 can be estimated independently by means of time information.

Acknowledgments

The authors were supported by the CNPq-INRIA agreement INVEBIO. JPZ was supported by CNPq under grants 302161/2003-1 and 474085/2003-1. JPZ and BP are thankful to the RICAM special semester and to the International Cooperation Agreement Brazil-France. Part of this work was conducted during the Special Semester on Quantitative Biology Analyzed by Mathematical Methods, October 1st, 2007 -January 27th, 2008, organized by RICAM, Austrian Academy of Sciences.