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Using CART to Detect Multiple Change Points in
the Mean for large samples

Servane Gey∗, Emilie Lebarbier†

Abstract

A procedure is provided to detect multiple change-points in the mean
of very large Gaussian signals. From an algorithmical point of view, vis-
iting all possible con�gurations of change-points cannot be performed on
large samples. The proposed procedure runs CART �rst in order to re-
duce the number of con�gurations of change-points by keeping the relevant
ones, and then runs an exhaustive search on these change-points in order
to obtain a convenient con�guration. A simulation study compares the
di�erent algorithms in terms of theoretical performance and in terms of
computational time.

Keyword : Change-points detection � Dynamic Programming � Model Selection
� CART Algorithm.

1 Introduction

The aim of this paper is to propose a procedure which can be easily implemented
to detect multiple change-points in the mean of a large Gaussian signal. How-
ever this procedure can be easily extended to density estimation by maximum
likelihood. The main motivation comes from a practical point of view, as the
detection of homogeneous areas in DNA sequence, which number of data can
reach one million (see (Lebarbier 2002) for the application on DNA sequence).
We take place in the now classical framework of penalized least-squares crite-
rion, �rstly developed by (Mallows 1974) and (Akaike 1973), (Akaike 1974). In
this particular context, (Yao 1988), (Miao and Zhao 1993) estimate the num-
ber of change-points via the Schwarz's criterion (Schwarz 1978). More recently
(Lavielle and Moulines 2000) propose to detect and estimate consistenly all those
change points. In addition to this asymptotic point of view, (Lebarbier 2003)
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adopts a nonasymptotic model selection approach based on the works of (Birgé
and Massart 2001a). This procedure, called here exhaustive search, proposes to
select the best con�guration of change-points in term of quadratic risk among
all possible con�gurations of change-points. In an algorithmical point of view,
a dynamic programming is used to reduce the computational complexity of the
exhaustive search from O(nD) for a �xed number of change-points D to O(n2)
where n is the length of the observed signal. While this procedure performs well
for moderatly sized signals, n 6 5000 with our machine, it cannot be performed
on much larger signals.

We propose a procedure which can extend the exhaustive search on large
signals. Our aim is to reduce drastically the computational complexity without
altering too much the accuracy of the estimation. Recall that the exhaustive
search consider all possible con�gurations of change-points. Naturally some
considered con�gurations are not relevant. Thus our idea is �rst to reduce the
number of con�guration of change-points by keeping the relevant ones and then
to perform the exhaustive search on these change-points. In the literature, we
can �nd fast procedures based on binary segmentation. The idea is to split at
each step a segment into two segments by minimizing a criterion, and to stop
when the criterions of the two obtained segments are lower than a threshold
(see (Braun and Müller 1998) for example). The main di�culty of this kind of
procedure is the choice of the threshold. A second drawback is that, unlike the
exhaustive search, it only provides a local optimal segmentation : if a change-
point is added or wrongly detected, i.e. if the procedure adds a false alarm, this
false alarm has to be kept in the �nal con�guration.

We propose a procedure combining CART (Classi�cation And Regression
Tree) developed by (Breiman et al. 1984), which is based on binary segmenta-
tion, and the exhaustive search. We call it the hybrid procedure. More precisely,
it is performed in the two following steps :

1. First CART is applied. This gives some potential con�gurations of change-
points instants that are revisited by the second stage of the procedure.
It permits to reduce the collection of con�gurations of change-points by
keeping the relevant ones. Let us note that we do not use the general
methods proposed by Breiman et. al, which are based on test-sample or
cross-validation (see (Breiman et al. 1984)). Indeed, since we work on a
�xed regular grid, it would not be relevant to split the sample to obtain a
test sample. Moreover, in term of computational time the cross-validation
is considerably longer than the adaptive method proposed by (Birgé and
Massart 2001b) that we use in this paper. Let us note that, unlike the
above mentioned binary segmentation methods, CART avoids the problem
of the choice of a threshold. This procedure is computationally faster
than the exhaustive search (often of order O(n log(n))). Nevertheless,
as mentioned above about sequential algorithm, it may add some false
alarms.
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2. The role of the second step is to remove the false alarms which can be
added by the CART procedure by performing the exhaustive search on
the con�guration of change-points provided by CART.

The paper is organized as follows. Section 2 describes the model and the
notations and recall basics about penalized least-squares model selection from
Birgé and Massart's context. Section 3 deals with the exhaustive search and
CART procedures; its gives for each the considered collection of partitions and
the penalized criterion. The hybrid procedure is presented in Section 4 while
a simulation study is performed in Section 5 to involve its expected behaviour.
Sections 6 and 7 are appendices, on the one hand, highlighting the method used
to calibrate the penalty constant for each penalized criterion and, on the other
hand, giving the proofs of the computational complexities of the exhaustive
search and CART procedures.

2 Preliminaries and Notations

Let us consider the following change-points detection problem : the observed
sequence (y1, . . . , yn) is supposed to be of the form

yt = f(t) + εt, for t = 1, . . . , n, (2.1)

where f is assumed to be piecewise constant :

f =
K∑

k=1

sk1l]τk−1,τk], (2.2)

with for each k, sk ∈ R, and 1lI(x) = 1 if x ∈ I and 0 otherwise. Errors (εt) are
supposed to be zero-mean, identically distributed unobservable Gaussian inde-
pendent random variables of common variance σ2. In a change-points detection
issue, the (τk) represent the so-called change-point instants, K − 1 their num-
ber and the (sk) the means between the change-points. These parameters are
supposed to be unknown and our goal is to estimate them via the estimation of
f from (y1, . . . , yn) by

f̂ =
K̂∑

k=1

ŝk1l]τ̂k−1,τ̂k].

The estimated change-points correspond to the points of discontinuity (τ̂k) of
f̂ . Hence we will assimilate the estimator of the function f and the estimator
of the con�guration of change-points.

The estimation method we adopt here takes place in the now classical context
of penalized least-squares minimization. For a sake of completeness, let us
introduce some notations used in the sequel and recall shortly the basics of the
method.
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Let us consider some collectionMn of partitions of {1, . . . , n}, each partition
m in Mn having Dm pieces corresponding to a con�guration of Dm − 1 change-
points. Then for each m the minimum least-squares estimator of f is

f̂m = argmin
{u ; u=

P
I∈m

uI1lI}

1

n

n∑

t=1

(yt − u(t))2 =
∑

I∈m

yI1lI ,

where yI is the empirical mean of y on I. Then we have at hand a collection
of estimators (f̂m)m∈Mn

and the goal is to select a �nal estimator f̃ among
this collection. This is done by choosing some partition m̂ and setting f̃ = f̂m̂,
where m̂ minimizes the penalized least-squares criterion

critn(m) =
1

n

∑

I∈m

∑

t∈I

(yt − yI)
2 + penn(Dm), (2.3)

where penn is a penalty function, positive and nondecreasing of Dm.

We recall the result of (Birgé and Massart 2001a) in the Gaussian case in
order to highlight the penalties used in the two methods we consider in the next
section : if penn veri�es for each m ∈ Mn

penn(Dm) > Kσ2 Dm

n

(
1 +

√
2Lm

)2
, (2.4)

with K > 1 and (Lm)m∈Mn
such that
∑

{m∈Mn ; Dm>0}

e−LmDm < +∞, (2.5)

then the quadratic risk of f̃ , E

[
‖f − f̃‖2

]
, is close to infm∈Mn

E

[
‖f − f̂m‖2

]
,

where ‖.‖ is the L
2([1, n])-norm. The weights (Lm)m∈Mn

in the penalty are
generally chosen in such a way that they only depend on the dimension Dm.
Then the condition (2.5) can also be written as

∑

D≥1

#{m ; Dm = D}e−LDD < +∞.

From this point of view, penn heavily depends on n and on the size of the
subsets {m ∈ Mn ; Dm = D}, D ≥ 1. Moreover, since the penalty depends on
the partition only via its dimension, the selection of m̂ can be done in 2 steps.
For a �xed dimension D, compute

m̂D = argmin
{m∈Mn ; Dm=D}

1

n

∑

I∈m

∑

t∈I

(yt − yI)
2, (2.6)

that leads to the subfamily M̃n = {m̂D ; 1 6 D 6 n} of Mn, containing at
most one partition per dimension. Then f̃ is obtained as f̃ = f̂m̂

D̂
, where

D̂ = argmin
{D ; m̂D∈fMn}


 1

n

∑

I∈m̂D

∑

t∈I

(yt − yI)
2 + penn(D)


 .
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3 Two Procedures

We propose to use two procedures to estimate the function f . The �rst one is an
exhaustive search based on the natural idea to consider all possible partitions
of {1, . . . , n} (see (Lebarbier 2003) for the Gaussian case). The second one
is CART, proposed by (Breiman et al. 1984), that considers some relevant
subcollection of partitions. We will see that M̃n depends on the procedure, so
we denote this quantity by M̃

(es)
n and M̃

(cart)
n for the exhaustive search and for

CART respectively. We give here a short summary of these two procedures.

3.1 Exhaustive Search

Let M(es)
n be the family of all possible partitions of the grid {1, . . . , n} where n

is the size of the sample. Remark that M(es)
n is the maximal family of partitions

of {1, . . . , n}. For a given dimension D, the best D-dimensional partition among
M

(es)
n is constructed using dynamic programming to reduce the computational

load from O(nD) to O(n2), leading to the expected family M̃
(es)
n (for example

see (Kay 1998) for an overview of dynamic programming). The next step is
to determine a penalty function that leads to a �nal estimator f̃ convenient in
terms of quadratic risk. (Lebarbier 2003) shows that the penalty function

penn(Dm) =
Dm

n
σ2

(
2 log

n

Dm

+ 5

)
(3.7)

performs well in a theoretical point of view. The two �ne tuned constants 2 and
5 are obtained via numerical simulations. The log (n/Dm) term comes from the
fact that

#{m ; Dm = D} =

(
n − 1

D − 1

)
,

so taking LD = log (n/D) satis�es (2.5), and leads to this form of penalty by
(2.4). In practice the noise variance σ2 is unknown and an alternative method
is recalled in Section 6 to avoid its estimation.

3.2 CART for Regression

The CART procedure (Breiman et al. 1984) is primarily computed in two steps.

• The �rst step, called the growing procedure, is sequential. It consists in
splitting at each step the considered segment into two segments by minimiz-
ing the sum of the least-squares criterions of the segments. The split stops
when less than lmin points are left in each resulting segment. This collection
is called maximal tree and is usually represented by a binary tree, where each
node corresponds to a split. For example, see the bottom of Figure 1 : the �rst
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change-point is detected at time 17 and corresponds to the root of the tree; then
the two following change-points are detected at times 15 and 30 and correspond
to the left and right following nodes of the tree respectively. And so on until all
the points are visited (here lmin = 1).

0 5 10 15 20 25 30 35 40
−1

0

1

2

3

(f
)

0 5 10 15 20 25 30 35 40
−10

−8

−6

−4

−2

0

(T
)

Figure 1: Example of a signal (f) and its associated CART tree (T).

Then the collection of partitions obtained from the maximal tree, M(cart)
n , is

included inM
(es)
n and a partition ofM(cart)

n corresponds to a pruned subtree, that
is any binary subtree of the maximal one containing its root. In the example,
the partition de�ned by the points at times 17, 15 and 30 is a subtree pruned
from the maximal one, but the partition de�ned by the points at times 15 and
30 is not, since the root at time 17 must belong to the subtree.

• The second step, called the pruning procedure, avoids the computation of
all D-dimensional pruned subtrees by selecting directly the relevant partitions.
This procedure is closely related to the penalty function

penn(m) = β
Dm

n
,

where β is an unknown constant. This penalty comes from the fact that the
number of pruned subtrees of dimension D is of the order of (en/2)2D (see
(Gey and Nedelec 2001) for more details). The general strategy of the pruning
procedure is then to make β increase in the corresponding penalized criterion
(2.3) so that Dm decreases (see (Breiman et al. 1984) for more details). This
leads to a collection of nested trees (mi)16i6KT

, with mKT
= [1, n], associated

with an increasing sequence of (βi)16i6KT
, with β1 = 0.
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In order to choose a tree among the collection (mi)16i6KT
, i.e. to reach a

suitable value of β, we use the method given in Section 6.

4 The Hybrid Procedure

4.1 Motivation

We focus here on the advantages and drawbacks of the two above mentioned
procedures to motivate the hybrid procedure. We �rst give the computational
complexities of each procedure in order to cast some light on the interest of our
approach.

Proposition 4.1. Assume that we have at hand a sample of size n. Then the
complexity C(n) of the exhaustive search procedure by dynamic programming is

C(n) = O(n2). (4.8)

Proposition 4.2. Assume that we have at hand a sample of size n. Let us
denote nt 6 n the number of nodes of the deepest tree constructed during the
�rst step of the CART procedure. Let C1(n, nt) and C2(nt) be the respective
complexities of the growing and pruning procedures. Then we have

O(n log2 nt) 6 C1(n, nt) 6 O(nnt), (4.9)

O(nt) 6 C2(nt) 6 O(n2
t ). (4.10)

The proofs of Propositions 4.1 and 4.2 are given in Section 7.

Remark 1. Let us notice that C2 only depends on the number nt of nodes
of the deepest tree, whereas C1 depends on nt and n, what is expected since
the pruning procedure is performed on the maximal �xed tree. Actually, what
is really important is the sum of these two computational complexities. Fur-
thermore, let us remark that the largest computational complexity for the two
combined procedures used to construct a suitable tree is the same as the one of
the exhaustive search. To reach this computational complexity with CART, it
is necessary to obtain a complete thread-like binary tree having exactly n nodes
after the growing procedure. In this case, it is clear that we do not improve
the computation time and we lose in accuracy. However, during the simulations
we have done in practice, this case has never been observed (see Section 5 for
numerical results).

From the procedures and their computational complexities given above, we
can make the following observations.
On one hand, it is shown in (Lebarbier 2003) that the exhaustive search leads to
an estimator of f optimal in term of risk. Nevertheless, as shown by Proposition

7
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4.1, its computational complexity of order O(n2) does not allow to perform this
procedure on too large samples. Typically, in our framework, the size of the
sample cannot be larger than n = 5000.
On the other hand, Proposition 4.2 suggests to use CART on large samples since
its computational complexity is of order O(n log n). Nevertheless, CART may
add some nonexistant change-points, or false alarms, in the estimated change-
points, as shown on Figure 1 for the �rst change-point at time 17. Indeed, to
catch the true change-points at times 10, 15 and 30 detected further in the tree,
CART will be forced to keep the �rst one in the �nal estimator.

So the principle of the hybrid procedure is to �rst perform CART on the
signal to fastly obtain a relevant con�guration of change-points, and then to run
the exhaustive search in order to remove the false alarms.

4.2 Description

First let us give a precise description of the hybrid procedure computed in three
steps :

1. CART is performed and a partition of dimension D̂c is obtained by the
heuristic given in Section 6.

2. We consider the vD̂c-dimensional subtree in the sequence (mi)16i6KT
,

where v is an integer greater than one. The corresponding change-points
are then identi�ed to a new family L of potential change-points.

3. We have at hand the collection of partitions Mn,L = P(L) obtained from
the new grid L. The exhaustive search is performed on this collection and
provides the �nal estimator f̃ .

Remark 2. We take the subtree having vD̂c leaves in order to catch relevant
change-points instants that could be eventually missed or shifted by the �rst
selection. Let us notice that if the ratio D̂c/n is small, according to the expected
value of D̂c, one can choose for example v = 4. On the other hand, it is clear
that if the ratio is close to one or if the value D̂c is larger than the expected
value, then setting v = 1 is natural. Let us remark that this value should not
be chosen too large to keep the interest of performing CART in a �rst step.

We propose an illustration of the di�erent steps of this procedure and then
compare its performance with the two other ones.

4.3 Illustration

A sequence of y = (y1, . . . , yn) is simulated from (2.1) with n = 1000 according
to a function f1 plotted in Figure 2, and a noise variance σ2 = 1. The observed
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serie is plotted in Figure 3.

Remark 3. We take for this simulation n = 1000, which allows us to
perform the exhaustive search in order to compare its performances with the
ones of the hybrid procedure. However, the interest of the hybrid procedure is
obviously to be run on larger samples.

0 100 200 300 400 500 600 700 800 900 1000
−10

−8

−6

−4

−2

0

2

4

6

8

10

(f1)

Figure 2: Function f1.

We apply the three proposed procedures on this realization. The penalized
estimators are plotted in Figures 3 and 4. To show the dynamic of the hybrid
procedure, we give a short description of the di�erent results : �rst, the pe-
nalized estimator obtained by CART is plotted in Figure 3-(a). The dimension
of its associated partition is D̂c = 15. We take v = 4 and the corresponding
subtree is displayed in Figure 3-(c). Then an exhaustive search is performed on
the new associated grid and its penalized estimator is plotted in Figure 3-(b).
The symbols represented on the tree in Figure 3-(c) (o, ∗ and +) correspond
respectively to the change-points removed, kept and added after running the
exhaustive search on the tree given by CART.

First of all, we can notice on this example that the hybrid procedure behaves
as expected, i.e. that the exhaustive search allows to remove the change-points
added by CART and to catch the missed or shifted ones : for example, CART
detects two change-points at 209 and 404 and then keeps the 15-dimensional tree
to reach the true change-points at 200 and 400. Then the exhaustive search re-
moves the change-points at 209 and 404 and keeps the two other ones. Moreover
four change-points at times 75, 564, 636 and 876 selected by CART are then
shifted to 79, 560, 663 and 880, which are closer to the true ones. Furthermore,
let us remark that the hybrid procedure selects exactly the same change-points
as the exhaustive search, except one in the neighborhood of 660.

On the other hand, if we compute the loss ‖f1− f̃1‖
2 of each penalized estimator

f̃1 provided by the three procedures, we �nd 0.11, 0.04 and 0.038 respectively
for CART, hybrid and exhaustive search. So the hybrid procedure improves
the performance of CART and does not really alter the ones of the exhaustive
search on this example. Let us notice that the penalized estimators obtained by
the hybrid and the exhaustive search are the penalized estimators of minimal
loss among the corresponding and respective collections of partitions.
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Figure 3: Penalized estimators of f1 obtained respectively by (a) CART and (b) hybrid
procedures. On (c), the tree on which the exhaustive search is performed in the hyvrid
procedure, where o : removed change-points, ∗ : kept change-points and + : added change-
points

5 Simulation Studies

The purpose of this section is to compare the performance of the three considered
procedures. This performance is evaluated by the risk function of each penalized
estimator and the computational time needed by each procedure. Let us denote
by

• R(.) the quadratic risk of the estimator f̃ provided by the procedure (.) :
R(.) = E

[
‖f − f̃(.)‖

2
]
. Since exact value of this risk can not be reached an-

alytically, it is estimated via a Monte Carlo method, averaging the values
of ‖f − f̃(.)‖

2 over N samples. Furthermore, since R(es) is the minimum
of the risks in the cases where the true function is piecewise constant, we
take it as a reference for the other risks.

• cput(.) the average computation time of the (.) procedure, given in seconds.
In a same way, it is estimated by 1

N

∑N
j=1 cput

(j)
(.) where cput

(j)
(.) is the

computation time of the procedure (.) for the jth sample.

This simulation study is performed with Matlab6 scienti�c software on an Ultra
10-440 MHz SUN workstation. We take the following parameters : n = 1000,

10
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Figure 4: Penalized estimator of f1 obtained by exhaustive search.

σ2 = 1 and 3 functions f1, f2 and f3 respectively plotted in Figures 2 and 5.
Let us remark that the function f3 is not piecewise constant.

Concerning the free parameters, lmin = 1 in CART to ensure that close
change-points will be detected, and the regression used in the heuristic method
for CART (see Section 6) is made on dimensions from 20 to 40. Furthermore, we
set v = 4 in the hybrid procedure. Moreover, the number of simulated samples
to estimate the considered values is N = 300.
The results are given in Table 1.

f1 f2 f3

R(cart)/R(es) 1.28 1.198 0.986
R(hyb)/R(es) 1.085 1.007 1.017
cput(cart) 2.42 2.5 2.44
cput(hyb) 3.01 2.83 2.79
cput(es) 26.5 25.95 26.14

Table 1: Estimations of the penalized estimators risk and of the computational time of each
procedure for the three proposed functions.

One observes the following :

1. The estimators obtained by the hybrid procedure are close in terms of
risk from the estimators obtained by an exhaustive search on the whole
sample,

2. the hybrid procedure takes much less operations in an procedureical point
of view than an exhaustive search,

3. let us notice that the CART estimator of f3 has a smaller risk than the one
of the exhaustive search. This phenomenon can be explained by the fact
that CART acts locally while the others search in a more global way; so
CART will add some change points to better approximate the polynomial
part of the function, while the others will lose in approximation to gain
in variance in a more global way. However, the risk of the estimators are
closer.
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Figure 5: Functions f2 and f3

Acknowledgements

We would like to thank Marc Lavielle for his help on programming issues. We are
also grateful to Jean-Michel Poggi and Pascal Massart for helpful discussions.

6 Appendix 1

6.1 Calibration of the Penalty

When the penalty has the general form

penα,n(D) = αfn(D), D > 1,

where fn(D) is well de�ned (fn(D) = D/n (2 log(n/D) + 5) for the exhaustive
search and fn(D) = D/n for CART), the problem is to �nd a suitable value for
α.
We use a heuristic method, based on the work (Birgé and Massart 2001b), that
is recalled here. The idea of the heuristic is that when the considered partition is
high-dimensional, its approximation error is close to zero, so the corresponding
criterion will represent an estimation of the penalty. The basic principle is to
�t a linear regression of γn(f̂m̂D

) = (1/n)
∑

I∈m̂D

∑
t∈I(yt − yI)

2 with respect
to fn(D) for large D and use the estimated regression coe�cient −α̂ as an
estimator of α. Then, in order to get a convenient penalty, it su�ces to take
pen2α̂,n.

However, it may be di�cult to choose the dimensions between which the linear
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regression of γn(f̂m̂D
) with respect to fn(D) is done, so this heuristic cannot

be performed so easily. Through theoretical results and some practical obser-
vations (see (Birgé and Massart 2001b)), the following heuristic method can be
performed : for a �xed α, consider the partition of dimension D̂α de�ned by

D̂α = argminD>1

{
γn(f̂m̂D

) + penα,n(D)
}

.

Then the idea is to increase slowly α from 0 and compute the corresponding
models of dimensions (D̂α)α>0. One can observe a big jump in the dimensions
when α reaches a threshold α̂. The penalty function will then be taken as
pen2α̂,n.

6.2 Application to each Procedure

Application to the exhaustive search

According to the previous paragraph, we compute the function α → D̂α

(plotted in the left side of Figure 6) and choose α̂ as the one associated with
the big jump of dimensions. The user should choose the maximal dimension, i.e
a minimal value of α to perform this method (see (Lebarbier 2003)).

Application to CART

Up to now, general methods used in CART to choose a tree among the sequence
(mi)16i6KT

are based on test-sample or cross-validation (see (Breiman et al.
1984)). However, in our framework, since we are working on a �xed grid, it
would not be relevant to use a method splitting the sample as the one based
on test-sample. Moreover, in term of computational time, the cross-validation
based method is considerably longer than the heuristic proposed above.
In practice, for large n, we observe that, beyond some dimension, nγn(f̂mi

)
becomes an a�ne function of the number of segments (see Figure 6). The choice
of the dimensions between which we �t the regression is not really important as
long as they are after the relevant point where nγn(f̂mi

) becomes linear. That
is why this choice is let to the user.

7 Appendix 2

Complexity of the exhaustive search procedure 4.8:

The complexity of the procedure is the sum of the three complexities :

1. The collection of estimators {f̂m̂D
, D = 1, . . . , n} is obtained from a dy-

namic programming which has a complexity of O(n2).

13
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Figure 6: left : Function α → D̂α, α > 0 (exhaustive search). Right : Function Di →

nγn(f̂mi
), i = 1, . . . , KT (CART).

2. The computational complexity of the function α → D̂α isO(n). Morevover
the estimation of α only needs one operation. Then its complexity is of
the order O(1).

3. Since the best partition is selected among the collection {m̂D, D = 1, . . . , n},
the complexity of this step is O(n).

The complexity of the exhaustive search is then O(n2).

Complexity of the growing procedure 4.9:

Since the complexity of this procedure depends on the form of the constructed
tree, it can not be written in a close form. However, it can be bounded by
considering two cases :

• In the best situation, the constructed tree is completely balanced. Let us
denote by h the depth of the deepest tree. Then nt = 1+2+3+. . .+2h−1 =
2h−1. Since this procedure is recursive we have the following relationship

C1(n, nt) = n + 2C1(
[n

2

]
,
[nt

2

]
)

with C1(j, 1) = j. We then obtain easily that C1(n, nt) = nh = n log2 nt − 1 =
O(n log2 nt).

• In the worst situation, the tree is a thread-like one. In other words, the
tree has one node at each depth. So, as above, we have the relationship

C1(n, nt) = n + C1(n − 1, nt − 1)

with C1(j, 1) = j. So C1(n, nt) =
∑nt+1

i=1 (n − i) = O(nnt).

14
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Complexity of the pruning procedure 4.10:

The pruning procedure depends only of the number of nodes in the deepest tree.
We have therefore the two extreme cases :

• In the best case, the �rst subtree pruned from the deepest one is the root.
So it is easy to see that in this case the complexity is reduced to the
number of nodes, i.e to O(nt).

• In the worst case, the pruning procedure goes leaf by leaf from the deepest
tree to the root, so the number of subtrees contained in the resulting
sequence is nt. Then, we have the following relationship

C2(nt) = nt + C2(nt − 1)

with C2(1) = 1.
So C2(nt) =

∑nt

i=1 i = O(n2
t ).
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