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; an application to the non-linear problem is also given, leading to robust subpolynomial growth of the total population.

Introduction 1.Presentation of the Model and Link with Other Models

Regulation of the cell division cycle governs the development of all organisms. Understanding it is central to the study of homeostasis, tumour growth and cancer, but is made particularly difficult due to the numerous phenomena that can have an influence on it (see for instance [START_REF] Whitfield | Identification of Genes Periodically Expressed in the Human Cell Cycle and Their Expression in Tumors[END_REF] and [START_REF] Chiorino | Desynchronization rate in cell populations: mathematical modeling and experimental data[END_REF], or [START_REF] Morgan | The Cell Cycle, Principles of Control[END_REF] for a general presentation of the cell cycle).

For these reasons, several models have been proposed usually structured by a single variable (age, size, etc) [START_REF] Diekmann | The Dynamics of Physiologically Structured Populations[END_REF]. But modern biology offers more accurate structuring variables as proteins or molecular content [START_REF] Ribba | A multiscale mathematical model of cancer, and its use in analyzing irradiation therapies[END_REF].

In order to investigate qualitatively the long-time behaviour of a cell population, we consider here a general model structured both in age, represented by the variable a, and in another aggregated variable x. Namely:

           ∂ ∂t n + ∂ ∂a n + ∂ ∂x [Γ(a, x
)n] + B(a, x) n = 0, a 0, x 0, n(t, a = 0, x) = 2 b(a, x, y)n(t, a, y)dy da, Γ + (a, x = 0)n(t, a, x = 0) = 0 ∀ a 0.

(

) 1 
This variable x can represent one of the various proteins produced (cf. for instance [START_REF] Rosenfeld | Gene Regulation at the Single-Cell Level[END_REF] or [START_REF] Brikci | Analysis of a Molecular Structured Population Model with Possible Polynomial Growth for the Cell Division Cycle[END_REF]), the maturity of the cell (as in [START_REF] Adimy | A Mathematical Study of the Hematopoiesis Process With Applications to Chronic Myelogenous Leukemia[END_REF] and [START_REF] Adimy | Asymptotic Behaviour of a Singular Transport Equation Modelling Cell Division[END_REF] for instance), its size, its DNA content (as in [START_REF] Basse | A Mathematical Model for Analysis of the Cell Cycle in Cell Lines Derived from Human Tumors[END_REF] for instance) etc.

Our study can be generalized to the case when x ∈ R n + , that is, when several phenomena influencing the cell cycle are taken into account (see part 4.1) ; in part 4.3, we also investigate the possible application of this model to a non linear two cell-compartment model (to model proliferating and quiescent cells).

We have supposed here that age evolves like time, i.e. da dt = 1. The function Γ = da dx represents the rate at which the x content of a cell increases with age. The function B represents the total division rate, and b(a, x, y) is the repartition function of a mother cell of y-content to a daugther cell of xcontent. We impose for consistancy (see [START_REF] Brikci | Analysis of a Molecular Structured Population Model with Possible Polynomial Growth for the Cell Division Cycle[END_REF]) 

B(a, y) = b(a, x, y)dx, (2) yB(a 
It means conservation of the number of cells, conservation in the x variable and symmetry of the division, when x represents a molecular content.

We have taken the coefficients independent of time (see [START_REF] Clairambault | An Inequality for the Perron and Floquet Eigenvalues of Monotone Differential Systems and Age Structured Equations[END_REF] for a model with time-periodic coefficients). If we suppose that the coefficients Γ and B do not depend on x and that for the solution Γn vanishes for x = 0 and x = ∞, integrating equation [START_REF] Adimy | A Mathematical Study of the Hematopoiesis Process With Applications to Chronic Myelogenous Leukemia[END_REF] 

This is the classical linear McKendrick-Von Foerster equation, with a death term which is exactly half the birth term (see [START_REF] Perthame | Transport Equations in Biology[END_REF] for a complete study of this equation in the case whithout death term, and [START_REF] Michel | General Relative Entropy in a Non Linear McKendrick Model, Stochastic Analysis and Partial Differential Equations[END_REF] for extension of this equation to a non-linear case).

If we suppose that the coefficients Γ, B and b do not depend on the age variable a, that the integral

N (t, x) = ∞ 0
n(t, a, x)da converges and that lim a→∞ n(t, a, x) = 0, we can integrate (1) in a and find:

   ∂ ∂t N + ∂ ∂x [Γ(x)N ] + B(x) N (x) = 2 b(x, y
)N (t, y)dy, Γ(x = 0)N (t, x = 0) = 0 ∀ t 0.

(

) 5 
If Γ = 1, we find the pure size-structured model, which has been studied in [START_REF] Michel | Existence of a Solution to the Cell Division Eigenproblem[END_REF], [START_REF] Michel | General Relative Entropy Inequality: an Illustration on Growth Models[END_REF], [START_REF] Perthame | Exponential Decay for the Fragmentation or Cell-Division Equation[END_REF], [START_REF] Perthame | On the Inverse Problem for a Size-Structured Population Model[END_REF] for instance. In the case Γ = 1 or Γ = x µ , existence of a solution to the eigenvalue problem for a general b is proved in [START_REF] Michel | Existence of a Solution to the Cell Division Eigenproblem[END_REF] using approximation scheme.

A model describing the dynamics of a cell population divided into proliferative and quiescent compartments was presented in [START_REF] Brikci | Analysis of a Molecular Structured Population Model with Possible Polynomial Growth for the Cell Division Cycle[END_REF] and [START_REF] Brikci | An Age-and-Cyclin Structured Cell Population Model for Healthy and Tumoral Tissues[END_REF]. It can be written:

                   ∂ ∂t p + ∂ ∂a p + ∂ ∂x [Γ(a, x
)p] + B(a, x) + d 1 + L(a, x) p -G(N (t))q = 0, a 0, x 0, ∂ ∂t q + (G(N (t)) + d 2 )q = L(a, x)p, a 0, x 0, p(t, a = 0, x) = 2 b(a, x, y)p(t, a, y)dy da, p, q 0, p(t, a, x) + q(t, a, x) dx da = N (t).

(

) 6 
We will see in part 4.3 how it can be reduced to the study of problem [START_REF] Adimy | A Mathematical Study of the Hematopoiesis Process With Applications to Chronic Myelogenous Leukemia[END_REF].

The Eigenvalue Problem

In order to study the asymptotic behaviour of the solution of problem (1), we consider the eigenvalue problem (see [START_REF] Brikci | Analysis of a Molecular Structured Population Model with Possible Polynomial Growth for the Cell Division Cycle[END_REF] and [START_REF] Brikci | An Age-and-Cyclin Structured Cell Population Model for Healthy and Tumoral Tissues[END_REF]): find (λ 0 , N ) solution to

           ∂ ∂a N + ∂ ∂x [Γ(a, x)N ] + λ 0 + B(a, x) N = 0, a 0, x 0,
N (a = 0, x) = 2 b(a, x, y)N (a, y)dy da, N 0, N dx da = 1.

(

This is an original problem which can be seen as a usual Cauchy problem where the initial data is related to the "future".

It is useful also to study the adjoint problem:    -∂ ∂a φ -Γ(a, x) ∂ ∂x φ + λ 0 + B(a, x) φ = 2 b(a, y, x)φ(0, y)dy, a 0, x 0, φ 0, φN dx da = 1.

(

) 8 
Here we make the assumptions:

Γ(a, x) = x Γ(a, x), (9) 
with    Γ(a, x) > 0 for x ≈ 0, Γ(a, x) 0 for x x M .

(

) 10 
Then there is no need of boundary condition at x = 0 and conservation in the x variable is enforced according to the biophysical interpretation, when x represents a molecular content. The fact that Γ becomes negative beyond a maximum value x M means that the x-content of the cells remains bounded, but the results can be generalised to the case when Γ remains nonnegative everywhere. As a consequence of condition (2), integrating equation ( 7), we have for N vanishing at infinity

λ 0 = B(a, x)N (a, x)dx da,
(in words, the population number can only grow by cell division). Integrating the equation ( 7) against the weight x, as soon as lim a→∞ xN (a, x)dx = 0, we have, using (3)

λ 0 xN (a, x)dx da = Γ(a, x)N (a, x)dx da,
(in words, the total molecular content can only increase by the reaction term Γ). Integrating the equation against the weigth a, as soon as lim a→∞ aN (a, x)dx = 0, we have

λ 0 aN (a, x)dx da + aB(a, x)N (a, x)dx da = 1. (11) 
Also, we can do as in [START_REF] Michel | Existence of a Solution to the Cell Division Eigenproblem[END_REF] and for 0 < η < 1, if lim a→∞ e λ 0 ηa N (a, x)dx = 0, multiplying by e λ 0 ηa and integrating, we find

∀ 0 < η < 1, e λ 0 aη N (a, x)dxda 1 1 -η .
We can reduce the study to the solutions on the domain (a, x) ∈ R + × [0, x M ]. Indeed, using the method of characteristics based on the solution to the differential system parametrized by the Cauchy data (a, x) :

   d da X(a, x) = Γ a, X(a, x) , a 0, x 0, X(0, x) = x, x 0, (12) 
Cauchy-Lipschitz theorem gives us, as soon as Γ ∈ C 1 b (R + × R + ) for instance, the existence and uniqueness of the flow X(a, x). We denote Y (a, x) the inverse flow, defined by Y a, X(a, y) = y.

(

) 13 
We deduce from (10) that for all x x M , for all a 0, X(a, x) X(a, x M ) x M . The formula [START_REF] Farkas | Stability conditions for a nonlinear size-structured model[END_REF], proved below in lemma 1.1, shows that if the solution N verifies N (a = 0, x x M ) = 0, then N a 0, x X(a, x M ) = 0, and in particular N (a, x x M ) = 0. Thus, we add the following condition to problem [START_REF] Brikci | An Age-and-Cyclin Structured Cell Population Model for Healthy and Tumoral Tissues[END_REF]:

N (0, x x M ) = 0, (14) 
and it allows us to restrict our study to the compact set [0, x M ]. We could also exchange assumption [START_REF] Calsina | Asymptotic Stability of Equilibria of Selection-Mutation Equations[END_REF] with the following one:

N (a 0, x = 0) = 0, b(a 0, 0, y) = 0. ( 15 
)
Contrarily to the solution N, the solution of the adjoint problem [START_REF] Brù | The Universal Dynamics of tumor Growth[END_REF] does not necessarily have its support in [0, x M ], but we make the following assumption on the support of the function b (cf. the proof in section 2.3): b a, x, y X(a, x M ) = 0, [START_REF] Diekmann | The Dynamics of Physiologically Structured Populations[END_REF] which implies that b(a, x > x M , y) = 0, and thus, by formula [START_REF] Drasdo | A Single-Cell-Based Model of Tumor Growth In Vitro: Monolayers and Spheroids[END_REF] proved below, it implies [START_REF] Clairambault | An Inequality for the Perron and Floquet Eigenvalues of Monotone Differential Systems and Age Structured Equations[END_REF]. In all the following, if nothing is specified, we suppose assumptions ( 9), ( 10), ( 2) and (3) are satisfied. We denote X(a, x) the characteristic flow solution of [START_REF] Carrillo | Adaptive Dynamics via Hamilton-Jacobi Approach and Entropy Methods for a Juvenile-Adult Model[END_REF] and Y (a, x) the inverse flow defined by [START_REF] Chiorino | Desynchronization rate in cell populations: mathematical modeling and experimental data[END_REF].

Reformulation of the Problem with the Method of Characteristics

We first give the following formulae, on which the proofs are based. [START_REF] Clairambault | An Inequality for the Perron and Floquet Eigenvalues of Monotone Differential Systems and Age Structured Equations[END_REF] a solution N to [START_REF] Brikci | An Age-and-Cyclin Structured Cell Population Model for Healthy and Tumoral Tissues[END_REF] verifies the following formula (as soon as the integral converges):

Lemma 1.1 For Γ ∈ C 1 (R + ×[0, x M ]), under assumption
N (0, x) = 2 ∞ 0 x M 0 b a, x, X(a, y) N (0, y)e - a 0 λ 0 +B s,X(s,y) ds dyda, (17) 
and we can write:

N a, X(a, x) = N (0, x)e - a 0 λ 0 + ∂ ∂x Γ s,X(s,x) +B s,X(s,x) ds , (18) 
or also

N (a, y) = N (0, Y (a, y))e - a 0 λ 0 + ∂ ∂x Γ s,X s,Y (a,y) +B s,X s,Y (a,y) ds . ( 19 
)
Under assumption ( 16) a solution φ to ( 8) verifies (as soon as the integral converges):

φ(0, x) = 2 ∞ 0 x M 0 b a, y, X(a, x) φ(0, y)e - a 0 λ 0 +B s,X(s,x) ds dyda, (20) 
and as soon as the integral converges, we can write: 

φ(a, x) = 2
Proof. We set N (a, x) = N a, X(a, x) e a 0 λ 0 + ∂ ∂x Γ s,X(s,x) +B s,X(s,x) ds and rewrite equation [START_REF] Brikci | An Age-and-Cyclin Structured Cell Population Model for Healthy and Tumoral Tissues[END_REF]:

∂ ∂a N (a, x) = ∂ ∂a N + ∂ ∂x [ΓN ] + λ 0 + B N a, X(a, x) e a 0 λ 0 + ∂ ∂x Γ s,X(s,x) +B s,X(s,x) ds = 0.
This gives the equalitities ( 18) and [START_REF] Farkas | Stability conditions for a nonlinear size-structured model[END_REF]. We can rewrite the boundary condition of problem [START_REF] Brikci | An Age-and-Cyclin Structured Cell Population Model for Healthy and Tumoral Tissues[END_REF] as: , we find formula [START_REF] Drasdo | A Single-Cell-Based Model of Tumor Growth In Vitro: Monolayers and Spheroids[END_REF].

N (0, x) = 2 ∞ 0 x M 0 b(a, x, y)N 0, Y (a, y) e - a 0 λ 0 + ∂ ∂x Γ s,X s,Y (a,y) +B s,X s,Y (a,
In the same way, we set φ(a, x) = φ a, X(a, x) e -a 0 λ 0 +B s,X(s,x) ds and rewrite equation [START_REF] Brù | The Universal Dynamics of tumor Growth[END_REF] as

∂ ∂a φ(a, x) = ∂ ∂a φ + Γ ∂ ∂x φ -λ 0 + B φ a, X(a, x) e - a 0 λ 0 +B s,X(s,x) ds = -2 x M 0 b a, y, X(a, x) φ(0, y)e - a 0 λ 0 +B s,X(s,x) ds
dy.

Integrating along a on R + we get formula [START_REF] Gyllenberg | Quiescence as an Explanation of Gompertzian Tumor Growth[END_REF], and integrating from 0 to a we then find formula [START_REF] Gyllenberg | A Nonlinear Structured Population Model of Tumor Growth With Quiescence[END_REF].

Some Examples

Case 1: for the function Γ, we can take for instance Γ(a, x) = C 1 x(x Mx). We easily calculate that

X(a, x) = x • x M e x M C 1 a x M + x(e x M C 1 a -1)
, so for x ≈ 0, one has X(a, x) ≈ xe x M C 1 a . Case 2: another possible example is to take Γ(a, x) = C 1 x α (x Mx) β , with 0 < α < 1 and β > 0. For x > 0, we then have

X(a, x) ≈ x≈0 (Ca + x 1-α ) 1 1-α .
Case 3: biological considerations lead [START_REF] Brikci | G 1 /S Transition and Cell Population Dynamics[END_REF] and [START_REF] Brikci | Analysis of a Molecular Structured Population Model with Possible Polynomial Growth for the Cell Division Cycle[END_REF] to take for Γ (case illustrated in fig. 1):

Γ(a, x) = c 1 x 1 + x r 1 -r 2 e -c 4 a -c 2 x, r 1 , r 2 > 0, c 2 c 1 < r 1 -r 2 . ( 22 
)
In this case, x M = c 1 c 2 r 1 -1 and Γ(0, x 0 ) = 0 with

x 0 = c 1 c 2 (r 1 -r 2 ) -1 > 0.
Figure 1: Form of Γ defined by [START_REF] Huang | Symmetry of Initial Cell Divisions Among Primitive Hematopoietic Progenitors Is Independent of Ontogenic Age and Regulatory Molecules[END_REF], and its related characteristics.

For the division rate B, we can take

B(a, x) = C 2 x γ 1l A * a A 1 , γ 1, 0 A * < A 1 ∞. ( 23 
)
To define the repartition function b (see [START_REF] Huang | Symmetry of Initial Cell Divisions Among Primitive Hematopoietic Progenitors Is Independent of Ontogenic Age and Regulatory Molecules[END_REF], [START_REF] Stewart | Aging and Death in an Organism that Reproduces by Morphologically Symmetric Division[END_REF] and [START_REF] Sugimoto | A Cell Kinetic and Cytological Study on the Asymmetric Cell Division of Thymic Lymphoblasts of the Embryonic Rat, Development[END_REF] for biological motivations) we can choose a uniform repartition: b(a, x, y) = 1l x y B(a, y) y .

On the opposite, the classical example of equal mitosis is given by b(a, x, y) = δ x= y 2 B(a, y).

It is the case for instance if x represents the DNA-content of the cells. In this last case, formulae [START_REF] Drasdo | A Single-Cell-Based Model of Tumor Growth In Vitro: Monolayers and Spheroids[END_REF] and ( 20) of lemma 1.1 are no longer valid; see part 3.3 for an adaptation of the proof. A study of the link between the repartition function b and the proliferation rate λ 0 , for the pure size-structured model, can be found in [START_REF] Michel | Optimal Proliferation Rate in a Cell Division Model[END_REF].

We can also generalize the uniform repartition by b(a, x, y) = B(a,y) y(1-2η) 1l ηy x (1-η)y with 0 < η < 1 2 , or take a Poisson distribution for b.

2 Resolution of the Problem in a Regular Case

Main Results

In this part, we consider regular functions b and B in order to obtain strong compactness and regular solutions with non extinction, i.e., λ 0 0. We need the following assumptions.

Γ ∈ C 1 a (R + , C 2 x (R + )). ( 24 
)
This condition is used to prove the regularity of the solution N (else it can be weakened: see part 3.2).

B ∈ C R + × [0, x M ] , ∂ ∂x B ∈ C R + × [0, x M ] , B(a, 0) = 0, ( 25 
) b ∈ L ∞ (R 3 + ), b(a, ., y) ∈ C 1 b {x ∈ [0, x M ] ; x y . (26) 
The function b is not necessarily continuous for x ∈ R + since b(a, x > y, y) = 0, but it is necessary to suppose it is regular for x y in order to prove strong compactness. On the previous examples, except the case of equal mitosis, and with γ 1, the function b verifies assumption [START_REF] Michel | Optimal Proliferation Rate in a Cell Division Model[END_REF].

∞ 0 x M 0 e - a 0 B s,X(s,x) ds dx da < ∞. (27) 
This is a key assumption, which is used to obtain compactness and a solution N in L 1 (R 2 + ). We can give an equivalent formulation in terms of partial differential equations, as follows. Let v the solution of the following problem:

∂ ∂a v + ∂ ∂x [Γ(a, x)v] + B(a, x) v = 0, a 0, x M x 0, v(a = 0, x) = 1 0 x x M , (28) 
then [START_REF] Michel | General Relative Entropy Equations for Structured Population Models and Scattering[END_REF] means v ∈ L 1 (R 2 + ). Assumption [START_REF] Michel | General Relative Entropy Equations for Structured Population Models and Scattering[END_REF] can be replaced by slightly more general ones, allowing in particular B a, X(a, x) da to be finite: see for instance paragraph 3.2.

Finally, we need the following two assumptions to prove uniqueness of a solution.

∃A 1 A * > 0, ∀ A * a A 1 , ∀ y ∈ ]0, x M [, B(a, y) > 0, (29) 
∀ x ∈ ]0, x M [, ∀ y ∈ ]0, x M [, b a, x, X(a, y) da > 0. ( 30 
)
Assumption [START_REF] Morgan | The Cell Cycle, Principles of Control[END_REF] implies that Supp a (b) is unbounded and that lim a→∞

X(a, 0 < y < x M ) = x M .
Uniqueness could also be proved under other assumptions than ( 29) and [START_REF] Morgan | The Cell Cycle, Principles of Control[END_REF]: see for instance part 3.1.

In the previous examples, the function Γ verifies assumption [START_REF] Michel | Existence of a Solution to the Cell Division Eigenproblem[END_REF] but we need to regularize B in order to obtain [START_REF] Michel | General Relative Entropy in a Non Linear McKendrick Model, Stochastic Analysis and Partial Differential Equations[END_REF], and also to regularize b, in the case of equal mitosis, to ensure [START_REF] Michel | Optimal Proliferation Rate in a Cell Division Model[END_REF]. The positivity conditions ( 29) and (30) stand if A 1 = +∞ in the definition of B, but assumption [START_REF] Morgan | The Cell Cycle, Principles of Control[END_REF] is not true in the case of equal mitosis. It remains to check assumption [START_REF] Michel | General Relative Entropy Equations for Structured Population Models and Scattering[END_REF]. If Γ(a, x) = C 1 x(x Mx), we have to prove the convergence of e -a 0 C 2 X(s,x) γ ds dxda, or equivalently of

e -x γ e a dxda = e -x γ u u dxdu = e -X γ u 1+ 1 γ dXdu.
Since γ > 0, this integral converges, which gives us assumption [START_REF] Michel | General Relative Entropy Equations for Structured Population Models and Scattering[END_REF]. If Γ(a, x) ≈ x≈0 Cx α with 0 < α < 1, we have to study the convergence of

I = ∞ 0 e - a 0 (Cs+x 1-α ) γ 1-α ds dx da ≈ C ∞ e -a 1+ γ 1-α da.
Since 1 + γ 1-α > 0, this integral converges.

Theorem 2.1 Under assumptions ( 14), ( 24)-( 27), there exists a solution N ∈ C 1 b R 2 + to (7) for a λ 0 > 0. Moreover, N a, x X(a, x M ) = 0. Theorem 2.2 Under the assumptions of theorem 2.1, with the additional assumption [START_REF] Diekmann | The Dynamics of Physiologically Structured Populations[END_REF], there exists a solution φ ∈ C 1 b (R 2 + ) of ( 8) for a λ 0 > 0.

Theorem 2.3 Under the assumptions of theorem 2.1 and with the additional assumptions ( 16), ( 29) and [START_REF] Morgan | The Cell Cycle, Principles of Control[END_REF], the solutions (λ 0 , N, φ) of the eigenproblems [START_REF] Brikci | An Age-and-Cyclin Structured Cell Population Model for Healthy and Tumoral Tissues[END_REF] and (8) are unique.

Regularised Problem and Method of Characteristics

In order to apply Krein-Rutman theorem (refer to [START_REF] Dautray | [END_REF] for instance), we first have to consider a regularised problem, where the operator is strictly positive. We write

b ε (a, x, y) = b(a, x, y) + ε x M , B ε (a, y) = B(a, y) + ε, (31) 
for ε > 0. The functions b ε and B ε verify the same relation ( 2) than b and B. We consider the regularised problem:

           ∂ ∂a N ε + ∂ ∂x [Γ(a, x)N ε ] + λ + B ε (a, x) N ε = 0, a 0, 0 x x M , N ε (a = 0, x) = 2 b ε (a, x, y)N ε (a, y)dy da, 0 x x M , N ε 0, N ε dx da = 1, (32) 
and its adjoint:

   -∂ ∂a φ ε -Γ(a, x) ∂ ∂x φ ε + λ + B ε (a, x) φ ε = 2 φ ε (0, y)b ε (a, y, x)dy, 0 a, 0 x x M , φ ε 0, φ ε N ε dx da = 1. ( 33 
)
We can write the formula [START_REF] Drasdo | A Single-Cell-Based Model of Tumor Growth In Vitro: Monolayers and Spheroids[END_REF] for this regularised problem:

N ε (0, x) = 2 ∞ 0 x M 0 b ε a, x, X(a, y) N ε (0, y)e - a 0 λ+Bε s,X(s,y) ds dy da. (34) 
To find a solution to this equation, we consider the Banach space

E = C 1 b [0, x M ], R , ||f || E := ||f || L ∞ + || d dx f || L ∞ ,
and study the linear integral operator G ε λ defined on E by:

G ε λ (f )(x) = 2 b ε a, x, X(a, y) f (y)e - a 0
λ+Bε s,X(s,y) ds dy da.

Lemma 2.4 Under the assumptions of theorem 2.1, for all ε 0, λ 0, the operator G ε λ is compact.

Proof. In order to apply the Ascoli theorem, we evaluate, for an arbitrary

f ∈ E, ||f || E 1, the quantities ∆(x 1 , x 2 ) = G ε λ (f )(x 1 ) -G ε λ (f )(x 2 ) and ∆ ′ (x 1 , x 2 ) = d dx G ε λ (f )(x 1 ) -d dx G ε λ (f )(x 2 )
, and prove they tend to zero uniformally on x 1 , x 2 when |x 1x 2 | tends to zero. Supposing x 1 < x 2 , we can write:

∆ 2 ∞ 0 e - a 0 B s,X(s,y) ds x M Y (a,x 2 ) |b a, x 1 , X(a, y) -b a, x 2 , X(a, y) | + Y (a,x 2 ) Y (a,x 1 )
b a, x 1 , X(a, y) dyda.

For each term, thanks to assumption [START_REF] Michel | General Relative Entropy Equations for Structured Population Models and Scattering[END_REF] and to the fact that b ∈ L ∞ (R 3 + ), we first restrict the integral to a A where A is chosen such that the rest ∞ A be sufficiently small independantly of x 1 and x 2 . The first term may be bounded by C|x 1x 2 | thanks to [START_REF] Michel | Optimal Proliferation Rate in a Cell Division Model[END_REF]. The second term may be bounded as

O(|x 1 -x 2 |) since Y (a, x) is equicontinuous on [0, A] × [0, x M ]. We evaluate ∆ ′ (x 1 , x 2 ) in the same way, with the help of || d dx f || L ∞ [0,x M ]
. This proves the equicontinuity of the family

G ε λ (f ), for f ∈ E and ||f || E 1, therefore G ε λ is compact.
Lemma 2.5 For all ε > 0 and λ 0, under the assumptions of theorem 2.1, there exists a unique µ λ,ε > 0 and a unique

N 0 λ,ε ∈ E, N 0 λ,ε > 0, such that G ε λ (N 0 λ,ε ) = µ λ,ε N 0 λ,ε , ||N 0 λ,ε || E = 1.
Moreover, λ → µ λ,ε is a continuous decreasing function, vanishing when λ tends to infinity and taking the value 2 when λ = 0.

Proof. The compact operator G ε λ is strictly positive on E, thanks to the fact that ε > 0, so Krein-Rutman theorem gives existence and uniqueness of µ λ,ε > 0 and N 0 λ,ε > 0. The function λ → µ λ,ε decreases because G ε λ decreases with λ. It is continuous thanks to the uniqueness of the eigenvector and to the compactness of the family of operators G ε λ . For f ∈ E, f > 0 and ||f || E = 1, we have:

G ε λ (f )(x) 2 f (y)e -λa ||b ε || ∞ dy da = 2||b|| ∞ + 2ε/x M λ f (y)dy.
We evaluate this quantity in f = N 0 λ,ε , and integrate in x :

µ λ,ε 2||b|| ∞ x M + 2ε λ , (36) 
so lim λ→∞ µ λ,ε = 0. Integrating in x, we find

G ε λ (f )(x)dx = 2 f (y)e -λa d da -e - a 0
Bε s,X(s,y) ds dy da.

Integrating by parts, we get:

G ε λ (f )(x)dx = 2 f (y)dy -2 f (y)λe -(λ+ε)a e - a 0
B s,X(s,y) ds dy da,

so for λ = 0, G ε λ (f )(x)dx = 2 f (x)dx, so µ 0,ε = 2.

Proofs of the Main Theorems

Thanks to lemma 2.5, for all ε > 0, we can define λ ε > 0 as being the only λ > 0 such that µ λε,ε = 1. We denote N 0 ε the associated eigenvector, with

||N 0 ε || E = 1. Since N 0 ε = G ε λε (N 0 ε ), the family (N 0 ε ) 0 ε 1 is compact in E.
Indeed, as in lemma 2.4, we can show that it is an equicontinuous family of functions and apply the Ascoli theorem. Thanks to inequality [START_REF] Rosenfeld | Gene Regulation at the Single-Cell Level[END_REF], we know that λ ε is bounded so we can extract a subsequence (λ ε , N 0 ε ) tending to (λ 0 , N 0 ) ∈ R + × E, N 0 0, λ 0 0 and ||N 0 || E = 1. We have

N 0 ε (x) = 2 b a, x, X(a, y) N 0 ε (y) + ε x M N 0 ε (y) e - a 0
λε+ε+B s,X(s,y) ds dyda.

Under assumption [START_REF] Michel | General Relative Entropy Equations for Structured Population Models and Scattering[END_REF], the second term in this expression vanishes when ε → 0, so we have:

N 0 (x) = G 0 λ 0 (N 0 )(x) = 2 b a, x, X(a, y) N 0 (y)e - a 0 λ 0 +B s,X(s,y) ds dy da. (37) 
We define N by

N (a, y) = αN 0 (Y (a, y) e - a 0 λ 0 + ∂ ∂x Γ s,X s,Y (a,y) +B s,X s,Y (a,y) ds 1l y X(a,x M ) . (38) 
To state that the so-defined function N satisfies [START_REF] Brikci | An Age-and-Cyclin Structured Cell Population Model for Healthy and Tumoral Tissues[END_REF], it remains only to prove that N dadx < ∞, then we choose α such as N dadx = 1. We have N (a, y)dady = α N 0 (y)e -a 0 λ 0 +B s,X(s,y) ds dyda. Thanks to assumption [START_REF] Michel | General Relative Entropy Equations for Structured Population Models and Scattering[END_REF] and since N 0 ∈ L ∞ (R + ), this integral converges. As seen in part 1.2, integration of equation [START_REF] Brikci | An Age-and-Cyclin Structured Cell Population Model for Healthy and Tumoral Tissues[END_REF] gives λ 0 = BN dx da > 0, because if it were zero, that would imply

x M 0 N 0 (x)dx = 2 BN dx da = 0, so N 0 = 0, which is absurd since ||N 0 || E = 1.
The continuity and the continuous derivability of N at the points y = X(a, x M ) come straigthforward from formulae [START_REF] Stewart | Aging and Death in an Organism that Reproduces by Morphologically Symmetric Division[END_REF] and [START_REF] Sugimoto | A Cell Kinetic and Cytological Study on the Asymmetric Cell Division of Thymic Lymphoblasts of the Embryonic Rat, Development[END_REF], and from the assumptions of regularity ( 24)-( 26): it ends the proof of theorem 2.1.

In the same way than for the direct problem, formula [START_REF] Gyllenberg | Quiescence as an Explanation of Gompertzian Tumor Growth[END_REF] leads us to study the integral operator defined on the Banach space E by

G 0 * λ 0 (f )(x) = 2 ∞ 0 x M 0 b a, y, X(a, x) f (y)e - a 0 λ 0 +B s,X(s,x) ds
dady.

The previous study for G 0 λ 0 can be carried out in the same way, and we find an eigenvalue λ 1 > 0 and an associated eigenvector φ 0 ∈ E for the operator G 0 * λ 0 . We choose ||φ 0 || E = 1, and define φ(a, x) by the formula [START_REF] Gyllenberg | A Nonlinear Structured Population Model of Tumor Growth With Quiescence[END_REF]. It satisfies [START_REF] Brù | The Universal Dynamics of tumor Growth[END_REF], and it only remains to check that φN dadx < ∞. We have:

φN dadx = 4α ∞ 0 x M 0 ∞ a x M 0 φ 0 (y)b s, y, X s, Y (a, x) e -λ 1 a-λ 0 (s-a) N 0 Y (a, x) e - s 0 B σ,X σ,Y (a,x) dσ- a 0 ∂xΓ σ,X σ,Y (a,x) dσ
dx ds dy da.

Changing variables x → Y (a, x) as we did in part 2.2 and integrating according to the s-variable before the a-variable, one gets:

φN dadx = 4α ∞ 0 x M 0 x M 0 φ 0 (y)N 0 (x)b s, y, X(s, x) ( e -λ 0 s -e -λ 1 s λ 1 -λ 0 )e - s 0 B σ,X(σ,x) dσ dx dy ds.
This integral converges since λ 0 , λ 1 > 0 (we do not know yet if λ 0 = λ 1 ; if it is the case we just replace e -λ 0 s -e -λ 1 s λ 1 -λ 0 by se -λ 0 s ). We choose α such that φN dx da = 1. It ends the proof of theorem 2.2.

For uniqueness, assumption [START_REF] Morgan | The Cell Cycle, Principles of Control[END_REF] implies that for all x ∈ ]0, x M [, we have N (0, x) > 0 and φ(0, x) > 0. Thanks to Fredholm alternative, uniqueness of a solution to problem [START_REF] Brikci | An Age-and-Cyclin Structured Cell Population Model for Healthy and Tumoral Tissues[END_REF] implies that to problem [START_REF] Brù | The Universal Dynamics of tumor Growth[END_REF], so we only have to prove uniqueness for one of that two problems. Consider two solutions (λ 1 , N 1 ) and (λ 0 , φ) of ( 7) and ( 8). Then we have:

-λ 1 N 1 φ dx da = ∂ ∂a N 1 + ∂ ∂x [Γ(a, x)N 1 ] + B(a, x) N 1 φ dx da = -∂ ∂a φ -Γ(a, x) ∂ ∂x φ + B(a, x) φ -2 φ(0, y)b(a, y, x)dy N 1 dx da = -λ 0 N 1 φ dx da.
Thanks to assumption (30), we have N 1 φ dx da > 0, and it implies λ 1 = λ 0 .

Let us now suppose two solutions N 0 and N 1 of problem [START_REF] Brikci | An Age-and-Cyclin Structured Cell Population Model for Healthy and Tumoral Tissues[END_REF] for the same eigenvalue λ 0 . We use the following lemma (for a proof, we refer to [START_REF] Perthame | Transport Equations in Biology[END_REF], proposition 6.3.)

Lemma 2.6 Let f ∈ S ′ (R 2 + ) be a solution of ∂ ∂a f + ∂ ∂x [Γ(a, x)f ] + λ 0 + B(a, x) f = 0, a 0, x 0, ( 39 
)
then |f | satisfies the same equation.

We set N = |N -N 1 .| According to lemma 2.6, N verifies equation [START_REF] Whitfield | Identification of Genes Periodically Expressed in the Human Cell Cycle and Their Expression in Tumors[END_REF]. We take φ as a test function:

2 φ (0, x)b(a, x, y)|N -N 1 |(a, y)dx dy da = 2 φ(0, x) b(a, x, y)(N -N 1 )(a, y)dx dy da.
Thanks to the fact that φ(0, x) > 0 on ]0, x M [, it implies that b(a, x, y)(N -N 1 )(a, y) is of constant sign. We integrate in x and find that B(a, y)(N -N 1 )(a, y) is of constant sign. Using assumption (29

), N -N 1 is of constant sign on [A * , A 1 ]×]0, x M [. Formula of characteristics (19) then gives that (N -N 1 )(0, ]Y (A * , 0), Y (A * , x M )[) is of constant sign. Since Y (A * , 0) 0 and Y (A * , x M )
x M , we deduce that it is of constant sign on {0}×]0, x M [, thus, using once more the formula of characteristics, on R 2 + . Since (N -N 1 )dx da = 0, we deduce N = N 1 .

3 Various Generalizations of the Results

Division Rate With Compact Support

We have used previously strong assumptions on the support of b and B. Here we relax it and suppose:

∃ A > 0, Supp a (b, B) ⊂ [0, A]. (40) 
To illustrate this on a simple example, let us take, for B > 0 constant, B(a, x) = B1l a A . We integrate formula [START_REF] Ribba | A multiscale mathematical model of cancer, and its use in analyzing irradiation therapies[END_REF] and find, for any f ∈ E such that

x M 0 f (x)dx = 1 : x M 0 G λ (f )(x)dx = 2B A 0 x M 0 f (x)e -λa-Ba dx da = 2B λ + B (1 -e -(λ+B)A ) = µ λ .
It implies that there exists λ > 0 such that

µ λ = 1 iff µ λ=0 > 1, that is iff B > 1 A Log(2)
. As seen on this example, we need a condition to ensure that λ 0 0. Namely:

α = sup a,y b(a, x, y)e - a 0 B s,X(s,x) ds dx B(a, y) < 1 2 . ( 41 
)
(We can divide by B(a, y) without loss of generality since B(a, y) = 0 implies b(a, x, y) = 0.) Such a condition is not surprising and occurs always in structured population equations (see [START_REF] Perthame | Transport Equations in Biology[END_REF]). We check easily that it generalizes the condition of the example B(a, x) = B1l a A .

To have uniqueness of a solution and of a λ > 0, we need to replace assumption [START_REF] Morgan | The Cell Cycle, Principles of Control[END_REF]. Indeed, we have noticed in part 2.1 that it generally implies Supp a (b) unbounded. If we suppose X(A, x M ) < x M , for X(A, x M ) x < x M , if y < min 0 a A X(a, x M ), then for all 0 a A, one has X(a, y) < X 2 (A, x M ) X(A, x M ) < x, so (30) cannot be verified. We make the following restrictive assumption:

∀ 0 < a < x M , ∀ 0 < x < x M , Γ(a, x) > 0. ( 42 
)
Without assumption (42), we are unable to prove uniqueness of a solution. Refer to the proof of theorem 2.3: the fact that N φ dx da > 0 plays a central role, and here we would only be able to prove that N > 0 on an interval ]0, x L [ and φ > 0 on ]x L , x M [ where x L is such that X(A, x L ) = x L (this proof can be done recursively on the basis of formulae ( 17) and ( 20)). We complete assumption (29) by an assumption on Supp a (b) :

∀ x ∈]0, x M [, ∀ y ∈ [x, x M [, b(A * a A 1 , x, y)da > 0. ( 43 
)
Theorem 3.1 Under assumptions ( 16), ( 24)-( 26), ( 40), (41), there exists solutions (N, φ) ∈ C 1 (R 2 + ) respectively to problems (7) (8) for a λ 0 > 0; and Supp a φ ⊂ [0, A]. Under the additional assumptions ( 29), ( 42) and (43), the solution (λ 0 , N, φ) of the eigenproblem (7)( 8) is unique and λ 0 > 0.

Proof. We proceed in the same way than in part 2, so we let the details of the proof to the reader. We first take ε > 0 and consider the following regularization of the parameters, which is the symmetric of definition [START_REF] Perthame | Transport Equations in Biology[END_REF]

: b ε (a, x, y) = b(a, x, y) + ε x M 1l a A , B ε (a, y) = B(a, y) + ε1l a A .
With this definition, we carry out the same calculations and define the integral operator G ε λ by the same formula [START_REF] Ribba | A multiscale mathematical model of cancer, and its use in analyzing irradiation therapies[END_REF]. Lemma 3.2 Under assumptions ( 16), ( 24)-( 26), (40), for all ε 0, λ ∈ R, the operator G ε λ is compact.

The proof is the same than for lemma 2.4, even simpler since we do not have any difficulty with the convergence in the a-variable of the integrals. For this reason, we can now let λ < 0. Lemma 3.3 For all ε > 0 and λ ∈ R, under assumptions of lemma 3.2, there exists a unique µ λ,ε > 0 and a unique

N 0 λ,ε ∈ E, N 0 λ,ε > 0, such that G ε λ (N 0 λ,ε ) = µ λ,ε N 0 λ,ε , ||N 0 λ,ε || E = 1.
What is more, λ → µ λ,ε is a continuous decreasing function which vanishes when λ → +∞. For λ = 0, under assumption (41), we have µ 0,ε > 1 for ε small enough.

Proof. The proof is the same than for lemma 2.5, except that we can let λ < 0. It only remains to prove that µ 0,ε > 1. We denote by N 0 0,ε ∈ E the (unique up to a multiplicative constant) solution of

G ε 0 (N 0 0,ε ) = µ 0,ε N 0 0,ε .
Defining N 0,ε by the characteristic formula [START_REF] Farkas | Stability conditions for a nonlinear size-structured model[END_REF] with N 0 0,ε , B ε and b ε instead of N, B and b, the function N 0,ε is then solution to the following problem:

           ∂ ∂a N 0,ε + ∂ ∂x [Γ(a, x)N 0,ε ] + B ε (a, x) N 0,ε = 0, a 0, x 0, µ 0,ε N 0,ε (a = 0, x) = 2 b ε (a, x, y)N 0,ε (a, y)dy da, N 0,ε 0, N 0,ε (a = 0, x)dx = 1. ( 44 
)
Notice that we need ε > 0 in order to have convergence of the integral N 0,ε dadx : indeed, Supp a N 0,ε is not compact. We integrate this equation in a between 0 and A and in x, and find:

N 0,ε (A, x)dx + (1 - 2 µ 0,ε ) B ε (a, x)N 0,ε (a, x)dx da = 0. Since B ε N 0,ε dx da = µ 0,ε 2 , it can be written N 0,ε (A, x)dx = 1 - µ 0,ε 2 . Hence, µ 0,ε > 1 iff N 0,ε (A, x)dx < 1 2 .
The characteristic formula allows us to write:

N 0,ε (A, x)dx = N 0,ε (0, Y (a, x))e - A 0 ∂ ∂x Γ s,X s,Y (a,x) +Bε s,X s,Y (a,x) ds dx = N 0,ε (0, x)e - A 0 Bε s,X(s,x) ds dx = 2 µ 0,ε b ε (a, x, y)N 0,ε (a, y)e - A 0
Bε s,X(s,x) ds dx dy da.

Under assumption (41), which is also verified by b ε and B ε for ε small enough (to be more precise, if e -εA 1 2 ), it implies N 0,ε (A, x)dx

2 µ 0,ε 1 2 µ 0,ε 2 = 1
2 , and it ends the proof of lemma 3.3. We are now ready to prove theorem 3.1. Lemma 3.3 gives us a unique solution N 0 ε and a unique λ ε > 0 for which µ λε,ε = 1 and ||N 0

ε || E = 1. The family (N 0 ε , λ ε ) 0<ε<1 is compact, so we can extract a subsequence tending to a solution (N 0 , λ 0 ) of the equation

N 0 (x) = 2 b a, x, X(a, y) N 0 (y)e -λ 0 a- a 0 B s,X(s,y) ds dy da.
Defining N by [START_REF] Farkas | Stability conditions for a nonlinear size-structured model[END_REF], it remains to check that λ 0 > 0, which will imply N dx da < ∞. Since N 0 0 and N 0 = 0, we have N 0 (x)dx = 2 B(a, x)N (a, x) dx da > 0, so integrating equation ( 7) in x, and in a from 0 to A, one gets:

N (A, x)dx + λ 0 A 0 x M 0 N (a, x)dx da = B(a, x)N (a, x)dx da.
Using the preceding calculation done for N 0,ε (A, x)dx and assumption (41), we deduce:

λ 0 A 0 x M 0 N (a, x)dx da = B(a, y) -2 b(a, x, y)e -λ 0 A- A 0 B s,X(s,x) ds
dx N (a, y)dy da > 0, which implies λ 0 > 0. To prove uniqueness, and to find a solution for problem [START_REF] Brù | The Universal Dynamics of tumor Growth[END_REF], the proof is identical to the one of part 2.3, so we need to prove N φ dx da > 0.

Since N = 0, there exists y 1 ∈]0, x M [ such that N (0, y 1 ) > 0. Formula [START_REF] Farkas | Stability conditions for a nonlinear size-structured model[END_REF] and assumption (43) implies then N (0, x) > 0 for x X(A 1 , y). Recursively, it stands for x X n (A 1 , y) for all n ∈ N. Under assumption (42), X is increasing, so the sequence X n (A 1 , y) tends to a limit l that verifies X(A 1 , l) = l, so l = x M and N (0 < x < x M ) > 0. Hence, N φ dx da > 0.

Weak Theory When b(a, x, y) is Continuous in the x-Variable

In this section, we extend the previous results to a larger class of parameters. First, we can relax assumption [START_REF] Michel | General Relative Entropy Equations for Structured Population Models and Scattering[END_REF], and replace it by the two following conditions.

C 0 (x) = b(a, x, X(a, y))
birth term e -a 0 B(s,X(s,y))ds death term

dady ∈ C 0 [0, x M ] . ( 45 
)
This assumption is necessary to obtain compactness, independently of ε 0, and to apply Ascoli theorem in

E = C 0 [0, x M ] . ∞ 0 B(s, X(s, y))ds > ln(2), ∀y ∈]0, x M [. ( 46 
)
This condition means that there is enough birth along the characteristic curves. We check as in paragraph 2.1 that it is verified by the given examples of part 1.4. It is used to prove, with the preceding notations, that the eigenvalue µ 0,ε > 1 (as in paragraph 3.1 it is no more necessarily equal to 2) and hence that the eigenvalue λ 0 > 0.

We also relax the regularity assumptions on the coefficients, and we suppose:

B ∈ L ∞ loc (R 2 + ), Γ ∈ W 1,∞ (R 2 + ). ( 47 
)
We obtain the following theorems.

Theorem 3.4 Under assumptions ( 16), ( 45)-( 47), with the positivity assumptions ( 29) and ( 30), there exists unique solutions (λ 0 , N, φ) to the eigenproblems (7) (8), and λ 0 > 0. Moreover, for all 0 < η < 1, N e λ 0 ηa and φ e λ 0 ηa ∈ L 1 (R + × [0, x M ]).

Theorem 3.5 Under assumptions ( 16), ( 40) and ( 41), ( 45)-( 47), with the positivity assumptions (42) and ( 43), there exists unique solutions (λ 0 , N, φ) to the eigenproblems (7) (8), and λ 0 > 0.

Moreover, for all 0 < η < 1, N e λ 0 ηa ∈ L

1 (R + × [0, x M ]) and φ ∈ L ∞ (R 2 + ), Supp a φ ⊂ [0, A] × [0, x M ]).
Proof. Refer to proofs of theorems 2.1, 2.2, 2.3 and 3.1.

Case of Equal Repartition After Division

In this section, we consider the case

b(a, x, y) = δ x= y 2 B(a, y), (48) 
With B ∈ C(R 2 + ) and Γ verifying the Cauchy-Lipschitz conditions, B(a, x x M ) = 0. Our proof can be extended to the cases of unequal mitosis, i.e. if b is a sum of Dirac measures. We cannot use lemma 1.1 since its formulae are not verified anymore, but the method remains. To make the details easier to understand, we also make the following assumptions (which is reasonable if we follow [START_REF] Brikci | Analysis of a Molecular Structured Population Model with Possible Polynomial Growth for the Cell Division Cycle[END_REF]):

∀ 0 < x x M 2 , ∀ a 0, Γ(a, x) > 0, (a, x) ∈ R + ×]0, x M [; s.t. Γ(a, x) = 0 := x 0 (a) is an increasing curve. ( 49 
)
We make assumption [START_REF] Calsina | Asymptotic Behavior of an Age-Structured Population Model and Optimal Maturation Age[END_REF] with Γ regular. It allows us to divide Γ by x and obtain a smooth function.

We first establish the following lemma, which replaces lemma 1.1 and on which is based the proof.

Lemma 3.6 Let B ∈ C b (R 2 +
), b defined by (48) and Γ ∈ C 1 (R 2 + ) verifying assumption (49). If N is solution of problem (7)(14) then the two following identities stand:

N (0, x) = 4 ∞ α(x) B(a, 2x)N 0, Y (a, 2x) e -λ 0 a- a 0 (∂xΓ+B) s,X(s,Y (a,2x)) ds da, (50) 
where α(x) is defined by α

(x) = Inf a 0, Y (a, 2x) x M 2 . N (0, x > 0) = 4 M in( x M 2 ,2x) 0 B(f (a, 2x), 2x) Γ(f (a, 2x), 2x) N (0, a)e -λ 0 f (a,2x)- f (a,2x) 0 B(s,X(s,a))ds da 1l x x M 2 , (51) 
where f (., 2x) is the inverse function of Y (., 2x) and is so defined by f (Y (a, 2x), 2x) = a.

Proof. By the method of characteristics previously used, we obtain by straightforward calculation:

N (0, x) = 4 ∞ 0 B(a, 2x)N 0, Y (a, 2x) e -λ 0 a- a 0 (∂xΓ+B) s,X(s,Y (a,2x)) ds da. (52) 
The flow Y (a, x) can be defined also by the following differential system equivalent to [START_REF] Carrillo | Adaptive Dynamics via Hamilton-Jacobi Approach and Entropy Methods for a Juvenile-Adult Model[END_REF]:

       d da Y (a, x) = -Γ(a, x)e - a 0 ∂xΓ s,X(s,Y (a,x)) ds , a 0, x 0, Y (0, x) = x, x 0. ( 53 
)
For x x M 2 , it implies that d da Y (a, 2x) 0 so Y (a, 2x) 2x x M . Since we are looking for solutions verifying [START_REF] Clairambault | An Inequality for the Perron and Floquet Eigenvalues of Monotone Differential Systems and Age Structured Equations[END_REF], formula (50) implies that N (0, x x M 2 ) = 0. Hence, in formula (52) the integral can be reduced to a such that Y (a, 2x) x M 2 , and we find formula (50).

For x x M 4 , assumption (49) implies that Y (a, 2x) is decreasing with the a variable, so Y (a, 2x) x M 2 , α(x) = 0. We make the change of variables a → a ′ = Y (a, 2x). When a = 0, a ′ = 2x and when a = +∞, a ′ tends to a limit l 0, since for l > 0 one has Γ(a, l) > 0 so d da Y (a, l) < 0. Formula (51) comes, since we have da = d da Y (a, 2x)da ′ = -Γ(a, 2x)e -a 0 ∂xΓ s,X(s,Y (a,2x)) ds da ′ .

For x M 4 < x x M 2 , since 2x > x M
2 , for a small we have Y (a, 2x)

x M 2 , so α(x) > 0, and the definition of α(x) implies Γ(α(x), 2x) 0. Because we made assumption (49), Γ(a > α(x), 2x) > 0 so Y (a > α(x), 2x) is decreasing and we can define once more the change of variables a → a ′ = Y (a, 2x). When a = α(x), a ′ = x M 2 and when a = +∞, a ′ tends to a limit l 0. Formula (51) then comes.

We now formulate an equivalent condition of assumption [START_REF] Michel | General Relative Entropy Equations for Structured Population Models and Scattering[END_REF], used to obtain compactness:

h(x) := ∞ α(x) e - a 0 ∂ ∂x (Γ+B) s,X(s,Y (a,x)) ds 1l Y (a,x)∈[0, x M 2 ] da ∈ C b x ([0, x M ]). ( 54 
)
Formulated in terms of partial differential equations, it means that the solution v to (28

) satisfies v ∈ C b x [0, x M ], L 1 a (R + ) .
For the adjoint problem, we replace assumption ( 16) by:

B a, x X(a, x M ) = 0. ( 55 
)
To have uniqueness, we make the following assumption:

∀ x ∈]0, x M [, ∀ a ∈ R + , B(a, x) > 0. ( 56 
)
Theorem 3.7 Under the assumptions of lemma 3.6 and the supplementary assumption (54), there exists a solution (N, λ) to problem (7)( 14) and λ 0 > 0. Under the supplementary assumption (55), which implies ( 14), there is a solution φ to the adjoint problem (8) related to an eigenvalue λ 0 > 0.

Under the positivity assumption (56), (λ 0 , N, φ) are unique.

Proof. We follow the same way than for the proof of theorem 2.1 for instance, so we detail only the specific points. The main new difficulty is that on formula (51), we have divided by Γ f (a, 2x), 2x on a domain where it is strictly positive, so its inverse is well-defined, but it vanishes if x tends to 0 or x M 2 . It does not matter however, since when it vanishes, its inverse is multiplied by N (0, a) which also vanishes. We are then led to use either of formulae (50) or (51) according to where x stands.

We first define a regularised operator G ε,λ :

X → X on X = C([0, x M 2 ]
) by either of the equivalent formulae:

G ε,λ (g)(x) = 4 ∞ α(x) B(a, 2x)g Y (a, 2x) e -λ- a 0 (∂xΓ+B) s,X(s,Y (a,2x)) ds da + ε x M 2 0 g(x)dx = 4 M in( x M 2 ,2x) 0 B(f (a, 2x), 2x) Γ(f (a, 2x), 2x) g(a)e -λf (a,2x)- f (a,2x) 0 B(s,X(s,a))ds da + ε x M 2 0 g(x)dx.
The difference with the previous regularisations of parts 2 and 3.1 stands in the fact that we regularize differently: changing B in B ε would not change the value of G(g)(x = 0) which would remain zero.

Lemma 3.8 Under the assumptions of lemma 3.6 and the supplementary assumption (54), for all ε 0, λ 0, the operator G ε,λ : X → X is compact.

Proof.

It suffices to take ε = λ = 0. The assumptions ensure that the operator G = G 0,0 is well-defined. To apply Ascoli theorem, let η > 0 arbitrarily small, we look for ν > 0 such that

∀ g ∈ X, ||g|| ∞ 1, ∀ x 1 , x 2 ∈ [0, x M 2 ], 0 < x 1 -x 2 | < ν ⇒ ∆(x 1 , x 2 ) = |G(g)(x 1 )-G(g)(x 2 )| < η.
We distinguish three cases: around x M 2 , around 0, and on the compact subset [δ, x M 2δ] with δ > 0 small enough.

1. For x 1 , x 2 close to x M 2 , we use formula (50) to define G, and remark that lim

x→ x M 2 α(x) = ∞. Indeed, for x close to x M
2 , Γ(0, x) < 0 and under assumption (49) the function Γ(a, x) remains negative till a = a 0 (2x), a 0 (2x) defined by Γ(a 0 (2x), 2x) = 0. The curve Y (a, 2x) defined by (53) increases for a a 0 (2x), so for a a 0 (2x) one has Y (a, 2x) 2x > x M 2 : hence, α(x) > a 0 (2x). Under assumption (49) it is clear that lim 2x→x M a 0 (2x) = ∞, so lim 2x→x M α(x) = ∞.

Assumption (54) then implies lim 2x→x

M G(f )(x) = 0 uniformally in g, if ||g|| ∞ 1.
2. For x 1 , x 2 > 0 close to 0, we have G(g)(0) = 0 since B(a, 0) = 0. Since B is uniformally continuous, and the integral operator is uniformally convergent thanks to assumption (54), we can bound G(g)(x 1,2 ) uniformally for x 1,2 small enough and ||g|| ∞ 1.

3. For δ < x 1 , x 2 < x M 2δ, we use formula (51) to define G. This formula gives a classical form of G as an integral operator: we know that it is compact as soon as the kernel under the integral is continuous and bounded. It remains to prove that Γ(f (σ, 2x), 2x) does not vanish.

For x < x 0 (0) 2 , one has 2x < x 0 (0) x 0 (a) for all a 0, so under assumption (49) we have Γ(a, 2x) > 0 for all a > 0.

For x 0 (0) 2 x < x M
2 , for all σ we have proved above that f (σ, 2x) α(x) > a 0 (2x), which implies by definition of a 0 (x) that Γ(f (σ, 2x), 2x) > 0.

Since Γ(f (σ, 2x), 2x) > 0 on the compact subset (x, σ) ∈ [ δ 2 , x M 2 -δ 2 ] × [0, M in(2x, x M 2 )
], and Γ is continuous, it reaches its minimum Γ inf > 0 : this ends the proof of lemma 3.8. Lemma 3.9 For all ε > 0 and λ 0, under the assumptions of lemma 3.8, there exists a unique µ ε,λ > 0 and a unique

N 0 ε,λ ∈ X such that G ε,λ (N 0 ε,λ ) = µ ε,λ N 0 ε,λ , ||N 0 ε,λ || X = 1. Moreover, λ → µ ε,λ is a continuous decreasing function, with µ ε,∞ = ε x M 2 and µ ε,0 = 2 + ε x M 2 .
We let the reader check the proof (equivalent to that of lemma 2.5). We define, as soon as ε x M 2 < 1, a unique λ ε > 0 such that µ ε,λε = 1. We denote as before N 0 ε the associated eigenvector with ||N 0 ε || X = 1. As in lemma 2.5, it comes from the previous study that the family (N 0 ε ) 0 ε 1 is compact, so we extract a subsequence tending to (λ 0 , N 0 ) ∈ R + × E. Under assumption(56), formula (51) implies that if

N 0 (x 1 ) > 0 then N 0 (x ∈] x 1 2 , x M 2 [) > 0, so recursively it implies N 0 (]0, x M 2 [) > 0.
The resolution of the adjoint problem is made as in theorem 2.2. The solution of the adjoint problem (8) can be written now as

φ(0, x) = 2 ∞ 0 B a, X(a, x) φ( X(a, x ) 2 )e 
-λ 0 a-a 0 B s,X(s,x) ds da.

Since φ = 0 and X(a,x)

2 x M
2 , there exists 0 < x 1 < x M 2 where φ(x 1 ) > 0. So N φ dx da > 0, which implies λ 0 > 0. The proof of uniqueness of N and φ is the same than for theorem 2.3.

Extensions

Resolution of a Model With Multiple Cyclins

As already mentioned, there is a whole variety of proteins and cyclin/CDK complexes which play a role in the cell cycle, and we can also want to structure the model by the DN A content or the size of the cells, etc. Hence, that would be useful to include in the model the action of several variables.

Let us suppose that we have n variables playing a role in the cell cycle, and denote them by x i with

1 i n. We write x = (x 1 , ..., x n ), Γ = (Γ 1 , ..., Γ n ), |x| = n i=1 x 2 i ,
and we define an order on R n thanks to the cone R n + by x y ⇐⇒ ∀ 1 i n, x i y i . The model ( 7) may be generalised by:

           ∂ ∂a N (a, x) + ∇ x • [Γ(a, x)N (a, x] + λ 0 + B(a, x) N (a, x) = 0, a 0, x 0, N (a = 0, x) = 2 b(a, x, y)N (a, y)da dy, N 0, N da dx = 1. (57) 
In the same way, the adjoint problem becomes:

   -∂ ∂a φ -Γ(a, x) • ∇ x φ + λ 0 + B(a, x) φ = 2 φ(0, y)b(a, y, x)dy, a 0, x 0, φ 0, φN da dx = 1. (58) 
We use the notation Γ = ( Γ i ) 1 i n and suppose that Γ i (a, x)

= x i Γ i (a, x), with    Γ(a, x) > 0 for x ≈ 0, Γ(a, x) 0 for x x M = (x 1M , ..., x nM ) (59) 
Concerning division, we have the same relations ( 2) and ( 3) than previously seen. Characteristics and their inverse flow are still defined by ( 12) and [START_REF] Chiorino | Desynchronization rate in cell populations: mathematical modeling and experimental data[END_REF]. Assumption (59) implies that for all 0 x x M , X(a, x)

x M , so we add the same conditions ( 14) and ( 16) to problem (57). y γ i i with γ i 1, all the preceding theorems 2.1, 2.2, 2.3, 3.1 and 3.7 extend to the n-dimensional case under the equivalent assumptions in n dimensions.

Asymptotic Behaviour of the Linear Evolution Problem

Having solved the eigenvalue problem, we are now able to characterize the asymptotic behaviour of the solution n to the time-dependent problem [START_REF] Adimy | A Mathematical Study of the Hematopoiesis Process With Applications to Chronic Myelogenous Leukemia[END_REF]. First, we establish a General Relative Entropy Inequality, using the same formalism than in [START_REF] Michel | General Relative Entropy Equations for Structured Population Models and Scattering[END_REF] and [START_REF] Michel | General Relative Entropy Inequality: an Illustration on Growth Models[END_REF]. Proposition 4.2 Let p(t, a, x) 0, n(t, a, x) smooth solutions of problem (1) and Φ(t, a, x) 0 smooth solution of the adjoint problem:

   -∂ ∂t Φ -∂ ∂a Φ -Γ(a, x) ∂ ∂x Φ + B(a, x) Φ = 2 Φ(t, 0, y) b(a, y, x) dy, a 0, x 0, Φ 0. (60) 
Then we have, for any function H :

d dt H( n p )(t) = d dt p(t, a, x)Φ(t, a, x)1l p(t,a,x) =0 H n(t,a,x) p(t,a,x) dadx = 2 p(t, a, x)Φ(t, 0, y)b(a, y, x)
H n(t,0,y) p(t,0,y) 1l p(t,0,y) =0 -H n(t,a,x) p(t,a,x) 1l p(t,a,x) =0 + H ′ n(t,0,y) p(t,0,y) 1l p(t,0,y) =0 n(t,a,x) p(t,a,x) -n(t,0,y) p(t,0,y) dadxdy.

i) If p > 0 never vanishes, for H convex, we get d dt H( n p )(t) 0, and if H is strictly convex, d dt H( n p )(t) = 0 iff n ≡ Cp on Supp(b) with C 0 constant. ii) If p 0, for H convex, positive and non-decreasing, we also get d dt H( n p )(t) 0.

Proof. If p > 0 everywhere, 1l p =0 ≡ 1 and we have by straightforward computation:

∂ ∂t pΦH( n p ) + ∂ ∂a pΦH( n p ) + ∂ ∂x [Γ(a, x)pΦH( n p )] = -2pH( n p
) Φ(t, 0, y)b(a, y, x)dy.

Integrating this identity and denoting H( n p )(t) = p(t, a, x)Φ(t, a, x)H n(t,a,x) p(t,a,x) dadx, we get: ). There exists a unique solution n ∈ C R + ; L 1 (R 2 + ) of the following problem:

dH dt = 2 p(t,
           ∂ ∂t n + ∂ ∂a n + ∂ ∂x [Γ(a, x) n] + (B(a, x) + λ 0 ) n = 0, a 0, x 0,
n(t, a = 0, x) = 2 b(a, x, y) n(t, a, y)dy da, n(t = 0, a, x) = n 0 (a, x).

(61)

Moreover, we have the following inequalities, if | n(t, a, x)m 0 N (a, x)|φ(a, x)dx da ↓ 0 as t → ∞.

|n 0 (a, x)| C 0 N (a, x), (i) ∀ t 0, | n(t, a, x)| C 0 N (a, x), (ii) n 0 1 n 0 2 ⇒ n 1 (t, x) n 2 (t, x), (iii) ∞ 0 n(t, x)φ(a, x)dxda = ∞ 0 n 0 (a, x)φ(a, x)dxda, (iv) 
Proof. Since the proofs are the adaptation to our model of those of theorems 3.1, 3.2 and 3.4. of [START_REF] Perthame | Transport Equations in Biology[END_REF] or of theorems 4.3 and 3.2 of [START_REF] Michel | General Relative Entropy Inequality: an Illustration on Growth Models[END_REF], we let the reader check them.

Application to a Two Phase Model

As previously seen in part 1.1, equation ( 7) can be considered as a simplification of the linearised eigenvalue problem for the two-compartment model described in [START_REF] Brikci | Analysis of a Molecular Structured Population Model with Possible Polynomial Growth for the Cell Division Cycle[END_REF]:

                     ∂ ∂a P + ∂ ∂x [Γ(a, x)P ] + λ + B(a, x) + d 1 + L(a, x) P -GQ = 0, a 0, x 0, (λ + G + d 2 )Q = L(a,
x)P, a 0, x 0, P (a = 0, x) = 2 b(a, x, y)P (a, y)dy da, P, Q 0,

P + Q dx da = 1. ( 62 
)
The adjoint problem is: (63)

           -∂ ∂a φ -Γ(
Here P and Q denote respectively the proliferative and quiescent populations of cells, G is the recruitement function, L(a, x) the number of cells going from the proliferative to the quiescent compartment, and d 1 , d 2 are the death rates of each population. For the sake of simplicity, we have limited our study here to the case when L is constant, and we make the following assumptions for the coefficients.

d 1 > 0, d 2 0, L(a, x) = L 0, G 0. ( 64 
)
Theorem 4.6 Under the assumptions of theorem 2.3, and with the supplementary assumption (64), there exists unique solutions (P, Q) ∈ E 2 , (φ, ψ) ∈ E 2 to problem (62) and (63) for a unique λ ∈ R. Moreover, denoting λ 0 the eigenvalue of problem ( 7) and ( 8), we have:

λ 0 = λ + d 1 + L λ + d 2 λ + G + d 2 > 0, (65) 
or also, defining

G + = G + d 2 , d + = d 1 -λ 0 and L + = L + d 1 -λ 0 : λ = -(G + + L + ) + (G + + L + ) 2 -4(d + G + + d 2 L) 2 . ( 66 
)
The following estimate stands for λ, with L i = L + d 1 :

λ > λ := 1 2 -(G + + L i ) + (G + + L i ) 2 -4(d 1 G + + Ld 2 ) . (67) 
Proof. We reduce the system to a single equation on P, since we can write Q = L λ+G + P. Writing

λ 0 = λ + d 1 + L λ+d 2
λ+G + , we find:

           ∂ ∂a P + ∂ ∂x [Γ(a, x)P ] + λ 0 + B(a,
x) P = 0, a 0, x 0, P (a = 0, x) = 2 b(a, x, y)P (a, y)dy da, P 0,

P 1 + L λ+G + dx da = 1. ( 68 
)
We only have to change the normalization and the previous study applies to this case: theorems 2.1 to 2.3 give us a unique solution (P, Q, φ, ψ, λ 0 > 0). We denote the eigenvalue λ 0 = f (λ) where f is a continuous increasing function with a unique singularity for λ = -G + . Since Q = L λ+G + P, we need to have λ > -λ 1 , so for each λ 0 ∈ R, there exists a unique convenient λ ∈] -G + , +∞[ which is given by formula (66). The term under the square root is always nonnegative since

(G + + L + ) 2 -4d + G + + d 2 L (G + + L + ) 2 -4L + G + = (G + -L + ) 2 0.
The inequality [START_REF] Rosenfeld | Gene Regulation at the Single-Cell Level[END_REF] is given by the fact λ > λ 2 where f (λ 2 ) = 0.

Discussion. From theorem 4.6 we deduce as in theorem 4.5 the long-time convergence of the solution of the linearised problem ( 6) towards (P, Q)e λt . However, what is experimentally observed is either convergence towards a steady state or exponential growth but only in the early stages (Gompertzian growth: cf. [START_REF] Gyllenberg | Quiescence as an Explanation of Gompertzian Tumor Growth[END_REF] and references therein). In [START_REF] Brù | The Universal Dynamics of tumor Growth[END_REF] polynomial infinite growth for 15 cell lines is shown, and in [START_REF] Drasdo | A Single-Cell-Based Model of Tumor Growth In Vitro: Monolayers and Spheroids[END_REF] a single-cell model is built, which is able to exhibit such behaviours. The linearised problem cannot take into account such phenomena, due to feedback answer or saturation effect: it can only come from a non-linearity of the model. But if the linear renewal equation has a relatively simple asymptotic behaviour, the theory for nonlinear models is much more complicated. Several behaviours are possible: chaotic, periodic, convergence towards stable steady states (for recent references on nonlinear population models, see for instance [START_REF] Brikci | Nonlinear Age Structured Model With Cannibalism[END_REF], [START_REF] Calsina | Asymptotic Stability of Equilibria of Selection-Mutation Equations[END_REF], [START_REF] Calsina | Asymptotic Behavior of an Age-Structured Population Model and Optimal Maturation Age[END_REF], [START_REF] Calsina | Stability and instability of equilibria of an equation of size structured population dynamics[END_REF], [START_REF] Farkas | Stability Conditions for the Non-Linear McKendrick Equations[END_REF], [START_REF] Farkas | Stability conditions for a nonlinear size-structured model[END_REF], [START_REF] Michel | General Relative Entropy in a Non Linear McKendrick Model, Stochastic Analysis and Partial Differential Equations[END_REF], [START_REF] Mischler | Stability in a Nonlinear Population Maturation Model[END_REF] or [START_REF] Perthame | Nonlinear Renewal Equations[END_REF]).

In [START_REF] Brikci | Analysis of a Molecular Structured Population Model with Possible Polynomial Growth for the Cell Division Cycle[END_REF], following [START_REF] Gyllenberg | Quiescence as an Explanation of Gompertzian Tumor Growth[END_REF] and [START_REF] Gyllenberg | A Nonlinear Structured Population Model of Tumor Growth With Quiescence[END_REF], it is proposed that the non linearity comes from the term G(N (t)) where the weighted total population N (t) is defined by

N (t) = ∞ 0 ∞ 0 [φ * (a, x)p(t, a, x)+ψ * (a, x)q(t, a, x)]dx da,
where φ * , ψ * are given weights. The recruitment function G is taken equal to

G N (t) = α 1 θ n + α 2 N n θ n + N n , 0 < α 2 < α 1 . (69) 
To study the behaviour of the model, the method of [START_REF] Brikci | Analysis of a Molecular Structured Population Model with Possible Polynomial Growth for the Cell Division Cycle[END_REF] is inspired of the principles of General Relative Entropy. It is based on estimates and on the construction of subsolutions and supersolutions of a quantity

S(t) = ∞ 0 ∞ 0 [φ(a, x)p(t, a, x) + ψ(a, x)q(t, a, x)]dadx,
where (φ, ψ) is the solution of the adjoint linearised eigenproblem (63) for a proper value of G = G(N ) (see also [START_REF] Carrillo | Adaptive Dynamics via Hamilton-Jacobi Approach and Entropy Methods for a Juvenile-Adult Model[END_REF] for the application of this method to another model). Proposition 2.7. of [START_REF] Brikci | Analysis of a Molecular Structured Population Model with Possible Polynomial Growth for the Cell Division Cycle[END_REF] shows that unlimited growth can be obtained under the two following conditions. (H9) For all N < ∞, the eigenvalue λ(N ) corresponding to G = G(N ) in (62) satisfies λ(N ) > 0.

(H10) For each corresponding solutions to the systems (63) with G = G(N ), denoted (φ N , ψ N ), there exists a uniform constant C u such that φ * C u φ N and ψ * C u ψ N .

Proposition 2.5. of [START_REF] Brikci | Analysis of a Molecular Structured Population Model with Possible Polynomial Growth for the Cell Division Cycle[END_REF] shows that subpolynomial growth can be obtained under the following conditions, if d 2 > 0 and α 2 > 0. (H7) For G = G(∞) = α 2 > 0, the first eigenvalue of (62) is λ(∞) = 0. (H8) For the corresponding solutions to (62) and (63), denoted respectively (P 2 , Q 2 ) and (φ 2 , ψ 2 ), there exists positive constants C 2 and C 3 such that

C 3 φ 2 φ * C 2 φ 2 and C 3 ψ 2 ψ * C 2 ψ 2 .
But to obtain exactly (H7), it has been observed in the numerical simulations of [START_REF] Brikci | Analysis of a Molecular Structured Population Model with Possible Polynomial Growth for the Cell Division Cycle[END_REF] that all the parameters d 1 , d 2 , L, α 2 , α 1 had to be related and chosen very carefully: a very small change in one of the parameters implies that λ(∞) = 0, and the system either is bounded (if λ(∞) < 0) or grows exponentially (if λ(∞) > 0.) This can also be seen by taking a closer look to formula (66): indeed, we can also write it as

λ = -2 G + d + + Ld 2 G + + L + + (G + + L + ) 2 -4G + d + . (70) 
Since the denominator of this formula is always positive and bounded, one has λ = 0 iff

G + d + = -Ld 2 . (71) 
The simulations carried out in [START_REF] Brikci | Analysis of a Molecular Structured Population Model with Possible Polynomial Growth for the Cell Division Cycle[END_REF] were all done with d 2 > 0, so this formula is verified punctually, for special values of the coefficients G, d 2 , d 1 , d 2 and L linked by (71).

From a biological point of view, this obligation to have coefficients linked by such a relation seems hardly justified. But we can also assume d 2 = 0 : from a biological point of view it can be verified for some kinds of cell populations -stem cells for instance: in the quiescent compartment indeed, there is no reason why the cells should die (see [START_REF] Adimy | A Mathematical Study of the Hematopoiesis Process With Applications to Chronic Myelogenous Leukemia[END_REF] or [START_REF] Gyllenberg | Quiescence as an Explanation of Gompertzian Tumor Growth[END_REF], and the references therein).

In this case, and supposing also that lim N →∞ G(N ) = 0 (which is indeed realistic) we see that condition (71) will be always verified: we can now obtain a "robust" subpolynomial growth -I call "robust" a subpolynomial growth which remains true for a whole range of parameters d 1 , L, n, α 1 . This is expressed by the following proposition.

Proposition 4.7 Let us suppose d 2 = 0, G(N ) defined by (69) with α 2 = 0, Γ(a, x), B(a, x) given functions verifying the assumptions of one of the theorems 2.3, 3.1 or 3.7. We denote λ 0 > 0 the eigenvalue of ( 7), and suppose that 0 < d 1 < λ 0 and that L > λ 0d 1 . The case lim

N →∞ G(N ) = G = 0
can be represented by the following system:

                   ∂ ∂a P 2 + ∂ ∂x [Γ(a, x)P 2 ] + B(a, x) + d 1 + L P 2 -Q 2 = 0, a 0, x 0, Q 2 = (L + d 1 -λ 0 )P 2 , a 0, x 0, P 2 (a = 0, x) = 2 b(a, x, y)P 2 (a, y)dy da, P 2 , Q 2 0, P 2 + Q 2 dx da = 1. ( 72 
)
The adjoint problem is:

           -∂ ∂a φ 2 -Γ(a, x) ∂φ 2 ∂x + B(a, x) + d 1 + L φ 2 -Lψ 2 = 2 φ 2 (0, y)b(a, y, x) dy, Lψ 2 = (L + d 1 -λ 0 )φ 2 , a 0, x 0, φ 2 , ψ 2 0, φ 2 P 2 + ψ 2 Q 2 dx da = 1. (73) 
Under assumption (H10), and under assumption (H8) adapted for the problems(72) (73), there exists a constant C > 0 such that:

N (t) Ct 1 n , lim t→∞ N (t) = +∞.
Proof. Since d 1 < λ 0 formula (70) with d 2 = 0 implies that (H9) is verified, so proposition 2.7 of [START_REF] Brikci | Analysis of a Molecular Structured Population Model with Possible Polynomial Growth for the Cell Division Cycle[END_REF] can be applied and proves unlimited growth. The proof of the subpolynomial growth is based on the same tools than in [START_REF] Brikci | Analysis of a Molecular Structured Population Model with Possible Polynomial Growth for the Cell Division Cycle[END_REF], proposition 2.5: the only difference is that since d 2 = 0, at infinity we have λ(∞) = G(∞) = 0, so the equation for Q in (62) only expresses that Q tends to infinity whereas (λ + G)Q remains finite. We will obtain a relevant problem by an asymptotic analysis: formula (70) can be written, if G, λ → 0, λ ≈ G(λ 0 -d 1 )

L+d 1 -λ 0 . We can replace it in the second equation of (62) and find: GQ L L+d 1 -λ 0 = LP. Noting Q 2 = GQ, we obtain a problem for the couple (P 2 , Q 2 ) which remains meaningfull if λ, G vanishes, and by choosing an appropriate normalisation its limit is (72), which adjoint is (73).

We define S 2 (t) = ∞ 0 ∞ 0 [φ 2 (a, x)p(t, a, x) + ψ 2 (a, x)q(t, a, x)]dadx, and we calculate 

Since it has been proved in [START_REF] Brikci | Analysis of a Molecular Structured Population Model with Possible Polynomial Growth for the Cell Division Cycle[END_REF] that Σ(t) = a(t + t 0 )

1 n , for a large enough, is a supersolution to (74), so for t 0 such that Σ(0) S 2 (0), we have by the comparison principle S 2 (t) Σ(t). It ends the proof.

For the numerical simulations (see figure 2), we take the same values of the parameters than in [START_REF] Brikci | Analysis of a Molecular Structured Population Model with Possible Polynomial Growth for the Cell Division Cycle[END_REF], except that d 2 = 0 : we define Γ(a, x) by ( 22) with c 1 = 0.1, c 2 = 0.075, r 1 = 3, c 4 = 0.4, r 2 = 1.95. We take α 1 = 8, θ = 1 n = 1 k with k = 1, 2, 3 in the definition (69). We define L(a, x) as in [START_REF] Brikci | Analysis of a Molecular Structured Population Model with Possible Polynomial Growth for the Cell Division Cycle[END_REF] by: solutions exponentially vanishing. This is explained by proposition 4.7: indeed, when d 1 increases, it becomes bigger than λ 0 and formula (70) shows that it implies λ(N ) < 0 for all N.

L(a, x) = A 3 A γ 2

Conclusion.

In this article, we first solved the eigenvalue problem [START_REF] Brikci | An Age-and-Cyclin Structured Cell Population Model for Healthy and Tumoral Tissues[END_REF] under fairly general assumptions, provided the continuity of the repartition function b or, in the case of equal repartition after division, of the birth rate B (the generalisation to L 2 coefficients is a work in progress). Using General Relative Entropy Inequality, we deduced from it the asymptotic behaviour of problem [START_REF] Adimy | A Mathematical Study of the Hematopoiesis Process With Applications to Chronic Myelogenous Leukemia[END_REF].

We then applied these results, in part 4.3, to the study of a non linear two cell-compartment model given by equation ( 6), model which was first introduced by F. Bekkal Brikci, J. Clairambault and B. Perthame in [START_REF] Brikci | Analysis of a Molecular Structured Population Model with Possible Polynomial Growth for the Cell Division Cycle[END_REF] and [START_REF] Brikci | An Age-and-Cyclin Structured Cell Population Model for Healthy and Tumoral Tissues[END_REF] to study the action of proteins on the cell cycle (it can also be considered as a generalisation of the pure size-structured two-compartment models studied by M. Gyllenberg and G.F. Webb in [START_REF] Gyllenberg | Quiescence as an Explanation of Gompertzian Tumor Growth[END_REF] and [START_REF] Gyllenberg | A Nonlinear Structured Population Model of Tumor Growth With Quiescence[END_REF].)

Finally, we exhibited a case of "robust" polynomial growth, which reveals coherent with the results of [START_REF] Brù | The Universal Dynamics of tumor Growth[END_REF] and [START_REF] Drasdo | A Single-Cell-Based Model of Tumor Growth In Vitro: Monolayers and Spheroids[END_REF].

This last result could lead to two biological interpretations. First, when the population becomes larger, the formulation of the eigenvalue problem (72) (73), where Q had to be replaced by Q 2 the limit of G(N )Q, seems to show that the number of quiescent cells tends to infinity more rapidly than the number of proliferating cells: indeed, it seems that P (t) ≈ G(N (t))Q(t) ≈ t 1 n -n , so the relative number of proliferating cells, given by R(t) = P (t) N (t) , seems to vanish like t -n . It is coherent with the results of [START_REF] Gyllenberg | Quiescence as an Explanation of Gompertzian Tumor Growth[END_REF] and it is also confirmed by numerical tests (see figure 2, left side). From a biological point of view, it seems true in many cases, for instance for stem cells (see [START_REF] Adimy | A Mathematical Study of the Hematopoiesis Process With Applications to Chronic Myelogenous Leukemia[END_REF]), that most of the cells are quiescent. Second, this qualitative study seems to emphasize the crucial importance of apoptosis for homeostasis or tumour growth (see [START_REF] Hunter | The inhibitors of apoptosis (IAPs) as cancer targets[END_REF]): indeed, if d 1 = λ 0 is reached, the number of tumour cells would decrease rapidly instead of growing to infinity.
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  y) ds dy da, or equivalently, changing variables y → Y (a, y) and noting that e-
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 41 Replacing x, y ∈ R + by x and y ∈ R n + , replacing ∂Γ ∂x by ∇ • Γ, and y γ 1 by n i=1
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 43 Let n 0 ∈ L 1 (R ; + φ(a, x)dxda), Supp(n 0 ) ⊂ R + × [0, x M ], Γ satisfying the Cauchy-Lipschitz conditions and B ∈ L ∞ (R 2 +

∞ 0 |Theorem 4 . 4

 044 n(t, x)|φ(a, x)dadx = ∞ 0 |n 0 (a, x)|φ(a, x)dxda. Under the assumptions of theorem 4.3, and if we suppose also that n 0 satisfies|n 0 (a, x)| N (a, x), |∂ a n 0 (a, x) + ∂ x (Γn 0 )(a, x)| C 1 N (a, x),the solution to (61) satisfies also |∂ t n(t, a, x)| (C 1 + λ 0 + ||B|| L ∞ )N (a, x).
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 45 Under the assumptions of theorem 4.3, and either those of theorem 3.4 or of theorem 3.5, defining m 0 = n 0 (a, x)φ(a, x)dx da, the solution to (61) satisfies:

  a, x) ∂φ ∂x + λ + B(a, x) + d 1 + L(a, x) φ -L(a, x)ψ = 2 φ(0, y)b(a, y, x) dy, (λ + G + d 2 )ψ = Gφ, a 0, x 0, φ, ψ 0, φP + ψQ dx da = 1.
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 221 x γ 2 1l [ Ā,+∞[ (a), with γ 2 = 5, A 3 = 4 A 2 = 2 Ā = 18.We define B(a, x) by B(a, x)= k 1 y γ 1 k γ +y γ 1 1l [A * ,∞[ (a) with k 1 = 1.2 k 2 = 1.5 γ 1 = 5 A * = 23.We obtain polynomial growth by taking for instance d 1 = 0.01 and it remains true if we make small changes of any coefficient. But if d 1 becomes too big, for instance if we take d 1 = 0.05, we obtain

Figure 2 :

 2 Figure 2: Evolution of the total cell population q(t, a, x) dx da + p(t, a, x) dx da for a tumoral tissue. Left: with d 1 = 0.01, with different values of n = 1 (lower solid line curve, left), n = 1/2 (medium solid line, left), n = 1/3 (upper solid line, left) at a Log-Log scale, for N (t) (solid lines) P (t) (dotted lines) and P (t)/N (t) (dashed lines). Right: with d 1 = 0.05, we see exponential decreasing (Log scale, the three curves for N (t) are superimposed).

  G λ 0d 1 L + d 1λ 0 ψ 2 qdxda CGS 2 (t).Since N (t) C 3 S 2 (t) thanks to (H8) we obtaindS 2 (t) dt CS 2 (t) α 1 θ n θ n + (C 3 S 2 (t)) n

	dS 2 (t) dt	(t) =	φ

2 [-(L + B + d 1 )p + G(N (t))q -∂p ∂a -∂ ∂x (Γ 1 p)] + ψ 2 (Lp -G(N (t))q) dx da, dS 2 (t) dt (t) = G φ 2 (a, x)ψ 2 (a, x) q(t, a, x)dxda =
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