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Abstract— Existing transport protocols, be it TCP, SCTP or 
DCCP, do not provide an efficient congestion control mechanism 
for heterogeneous wired-cum-wireless networks. Solutions 
involving implicit loss discrimination schemes have been 
proposed but were never implemented. Appropriate mechanisms 
can dramatically improve bandwidth usage over the Internet, 
especially for multimedia transport based on partial reliability. 
In this paper we have implemented and evaluated a congestion 
control mechanism that implicitly discriminates congestion and 
wireless losses in the Datagram Congestion Control protocol 
(DCCP) Congestion Control Identification (CCID) framework. 
The new CCID was implemented as a NS-2 module. Comparisons 
were made with the TCP-like CCID and showed that the 
bandwidth utilization was improved by more than 30% and up to 
50% in significant setups. 

Keywords-protocols; losses; internetworking; wireless LAN 

I. INTRODUCTION 
The Internet topology is changing fast, and more often than 

not includes a Wireless Last Hop. Today, packets may get lost 
on wireless links, for instance due to radio interferences. This 
is a dramatic change over the assumption that was made in 
wired networks, where most (if not all) of packet losses were 
due to network congestion or buffer overflow.  

This new situation decreases the performance of classical 
congestion control mechanisms such as those implemented in 
TCP or TFRC, which reduce their sending rate each time a 
packet loss is detected. This systematic decrease principle is 
also implemented in new generation transport protocols such as 
SCTP or DCCP. This systematic reduction of the sending rate 
is useless and inefficient in the case of wireless losses and 
decreases the per-flow throughput as well as the overall 
bandwidth utilization. 

To improve the situation, a key mechanism is loss 
discrimination, which determines whether a loss is due to 
congestion or to a link failure. A number of propositions have 
been made to perform explicit discrimination, but these 
propositions make strong assumptions on the existence of 
specific router properties or specific proxies. Implicit loss 
discrimination proposals do not rely on such assumptions and 
need only to be deployed on the end systems. 

The present work consists in developing such an implicit 
loss discrimination mechanism and exploiting it in a congestion 
control mechanism. The Datagram Congestion Control 
Protocol (DCCP [1]) implements a framework allowing the 
inclusion of several congestion control mechanisms. Two 
mechanisms have been standardized so far: the TCP-like 
congestion control CCID 2 [2] and TCP-Friendly Rate Control 
CCID 3 [3].  

In this paper we selected an implicit loss discrimination 
mechanism and implemented it in the NS-2 Network Simulator 
[5], as a new DCCP congestion control mechanism. The 
development took advantage of an existing DCCP module for 
NS-2 [11]. We evaluated the bandwidth utilization and fairness 
of the mechanism on a wired-and-wireless topology. The 
wireless link was configured so that it exhibits a bursty loss 
behavior. The results showed a significant improvement in the 
performance. 

The remainder of the paper is organized as follows: Section 
II describes related work on loss discrimination in wireless 
networks; Section III details the implementation of a wireless-
aware congestion control mechanism within the NS-2 DCCP 
implementation; Section IV surveys our simulation results and 
evaluates the performance of the mechanism; Section V 
concludes. 

II. RELATED WORK: LOSS DISCRIMINATION 
A number of approaches have been studied and suggested 

for loss discrimination. We can broadly divide loss 
discrimination in explicit loss discrimination and implicit loss 
discrimination. 

A.  Explicit Loss Discrimination 
In Explicit congestion loss discrimination the sender may 

be explicitly informed of the type of packet loss by network 
routers or the end receiver. In these loss discrimination 
schemes, intermediate network elements (routers) inform the 
sender about the type of the packet loss as they have got the 
direct knowledge of the loss type. There are a number of 
approaches proposed in [4] for explicit loss discrimination. The 
Split Connection Approach, Link Level Retransmissions and 
Snoop Protocol [4] are some popular examples.  
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However, there are cases where link level retransmissions 
are unsuitable. These include interactive real-time applications, 
for example VoIP or video-conferencing. Due to their delay 
sensitivity, this type of applications generally uses UDP instead 
of TCP. Also explicit loss discrimination schemes can not be 
used as an end to end protocol and changes must be made at 
the base stations or intermediate routers to enable them 
send/receive explicit feedback, which is by no means a simple 
task. Our work is an effort to have an end to end protocol 
which at the same time gives us a better performance in a 
heterogeneous environment and is also equally fair as is TCP. 

One of the major problems with UDP is that it has no 
congestion control to ensure resource fairness. The DCCP [1] 
addresses this problem by providing congestion control for 
unreliable transport services. However, this again introduces 
the discussed problem of inappropriate congestion behavior in 
the presence of non-congestion losses such as caused by 
wireless errors. In order to successfully perform congestion 
control, the reason of a packet loss must be ascertained so that 
congestion control mechanism is not performed for losses not 
caused by congestion. 

B.  Implicit Loss Discrimination 
Implicit loss discrimination schemes do not involve 

intermediate routers or base stations for detection of loss. There 
are quite a number of schemes which can be used for loss 
discrimination. 

The Biaz scheme [6, 7] discriminates congestion losses 
from wireless link losses using Inter-Arrival Times at the 
receiver. As described in [7], Biaz scheme misclassifies a 
significant number of congestion losses, preventing the sending 
rate of a flow from being reduced when the network is 
congested. A modified version of Biaz (mBiaz) was proposed 
in [7] which results in lower congestion loss misclassification 
than the original. 

The Spike scheme [7] uses Relative One-way Trip Time 
(ROTT) to differentiate congestion and wireless losses. The 
ROTT is used to identify the state of the current connection. If 
the current state is spike state then losses are assumed to be due 
to congestion. 

The Zig-Zag scheme classifies the losses due to wireless 
links based on the number of consecutive losses n, on the 
current packet rotti and the mean rottmean and its standard 
deviation rottdev. A loss is classified as wireless if one among 
the following conditions is true: 

• n = 1 and rotti < rottmean – rottdev; or 

• n = 2 and rotti < rottmean – 0.5 rottdev; or 

• n = 3 and rotti < rottmean; or 

• n = 4 and rotti < rottmean + 0.5 rottdev; 

Otherwise the loss is classified as congestion loss. The 
mean rottmean and its standard deviation rottdev are calculated 
using the exponential average: 

• rottmean = (1 – α) rottmean + α rotti 

• rottdev = (1 – 2α) rottdev + 2α | rotti – rottmean | 

By definition, ROTT has a high probability of having 
values greater than (rottmean – rottdev): 84% if it were a 
normalized Gaussian distributed random variable. The 
threshold of rotti > rottmean – rottdev intuitively would classify 
most of the congestion loss correctly. The reasoning behind 
increasing the threshold with the number of losses encountered 
is that a more severe loss is associated with higher congestion, 
and with higher ROTT. This way, a loss event containing four 
or more packets would be classified as congestion loss only 
when relatively large ROTT were observed [7]. 

In most of the implicit loss discrimination schemes, the loss 
discrimination is performed at the receiver side and the 
congestion control at the sender side. This calls for the use of 
loss notification, i.e. the process of communicating the results 
of loss discrimination to the sender side. In [8], an option based 
scheme is proposed which uses TCP option to inform the 
sender about the type of packet loss. Of course this adds 
complexity in a sender side protocol. The use of this loss 
notification mechanism requires changes to the sender side to 
implement loss notification and suitable loss adaptation as the 
loss discrimination is totally receiver based. There are some 
other schemes which make use of Round trip delays [10] or 
bandwidth estimation schemes [9] e.g. TCP Westwood for loss 
discrimination. 

We have proposed here a new sender based loss 
discrimination scheme. We have used the concept of the Zig-
Zag scheme for the loss discrimination but it is done at the 
sender side. All we need for the loss discrimination with Zig-
Zag scheme is the value of ROTT, its mean value and its 
deviated value. The two later can be calculated once you have 
the value of ROTT. DCCP/TCP-like protocol calculates the 
value of Round Trip Time (RTT). In the absence of congestion, 
the time for a packet to reach the receiver must be same as the 
time for an acknowledgement to reach the sender. This leads to 
the notion that ROTT is one half of the RTT. So instead of 
implementing loss discrimination at the receiver side and 
additional loss notification mechanism, we can implement loss 
discrimination at the sender side taking ROTT as one half of 
RTT. This considerably reduces the changes required to be 
made at the sender side protocol. In our protocol agent, we 
have implemented loss discrimination at the sender side and 
have taken ROTT as one half of RTT. The results obtained are 
not as good as if proper loss notification mechanism would 
have been implemented but it is a good compromise between 
simplicity and reasonably good results. 

III. CONGESTION CONTROL IMPLEMENTATION 

A.  Principle 
We have proposed here a new sender-side loss 

discrimination scheme derived from the Zig-Zag scheme 
described in Section II.B. The congestion window (Cwnd) is 
halved only when a packet loss is detected and identified as a 
congestion loss.  The loss discrimination can be computed only 
with the current value of ROTT, its mean value and its standard 
deviation. The two latter can be calculated once you have the 
value of ROTT. In the absence of congestion, the time for a 
packet to reach the receiver must be the same as the time for an 
acknowledgement to reach the sender. This leads to 
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approximating the ROTT as one half of the RTT. So instead of 
implementing loss discrimination at the receiver side and 
additional loss notification mechanism, we can implement loss 
discrimination at the sender side taking ROTT as one half of 
RTT.  

Of course if the protocol makes a bad decision then there 
might be some severe effects. If it wrongly detects a congestion 
loss to be a wireless link loss then it will not halve its window 
and it will generate unfairness, i.e. it will take a bigger portion 
of the bandwidth at the time of congestion. It is quite 
dangerous and must be avoided. On the other hand if the 
protocol wrongly detects a wireless link loss to a congestion 
loss then it will halve its window just like the DCCP TCP-like 
CCID. In that case the transmission rate will be unnecessarily 
reduced but it will not affect any other flow and the protocol 
will remain totally fair. So to misinterpret a wireless link-loss 
to congestion loss is acceptable but the opposite is not 
acceptable and must be avoided. 

The results obtained are not as good as if proper loss 
notification mechanism would have been implemented but it is 
a good compromise between simplicity and reasonably good 
results as will be shown in Section IV. 

B.  Implementation as a NS-2 Agent 
The Network Simulator (NS-2) is a discrete event simulator 

targeted at the network research. It provides support for 
simulation of different transport layer protocols, routing queue 
management, trace files and other applications over wired and 
wireless networks. A DCCP module [11] was implemented in 
NS-2 [5] and is available as a patch against version 2.29.3. This 
module implements DCCP CCID2 and CCID3 as NS-2 agents. 
We used the DCCP/TCP-like Agent implementing CCID2 as a 
foundation to implement a DCCP/ZigZag Agent, which 
implements the client-side Zig-Zag scheme for loss 
discrimination described above.  

IV. EXPERIMENTS AND RESULTS 

A.  Experimental Setup 
We performed a lot of experiments first without any 

congestion in the network and then after inserting congestion in 
the network. As the bursty loss type is the type closest to the 
reality so we have used the bursty type for most of our 
experiments. We also studied the performance by changing the 
number of flows coming towards the bottleneck node. The 
network topology selected for the experiment is shown in 
Fig. 1. 

 

Figure 1.  Network topology used in experiments. 

It consists of three nodes in series. The first two nodes are 
connected to each other through a 2Mb bandwidth and 100ms 
delay duplex wired connection. The second and the third nodes 

are connected with a wireless simplex link having a bandwidth 
of 1.3Mb and a propagation delay of 200ms. The source (n0) 
emits a number of flows towards destination n2 which 
traverses the bottleneck node n1 in between. For the n0-n1 
connection we have used a bi-directional duplex link. For the 
n1-n2 wireless link we have simulated with two simplex links 
both of same bandwidth and transmission delay as shown in the 
figure 1. We have inserted a link loss from n1 to n2 and not 
from n2 to n1 as we wanted to check the performance of our 
Agent in a wireless last hop (WLH) scenario. The traffic used 
is Constant Bit Rate (CBR). For congestion free experiments 
the accumulated traffic rate of all flows was kept to 1.0Mbps 
(with bottleneck bandwidth of 1.3Mb). For the experiments 
that are performed in the presence of the congestion, the 
accumulated traffic rate of all flows is kept to 1.5Mbps. 

To simulate more realistic losses during a wireless link 
simulation, we must account for bursts of packet losses. The 
most widely known burst error models are the Gilbert 
Model [12] and the Gilbert-Elliott Model [13, 14]. Markovian 
models have been developed since [15–20]. 

We have used a simple 2-state Gilbert Model, with a 0% 
packet loss rate (PLR) in the “good” state and a 100% PLR in 
the “bad” state. This 2-state Markovian model is characterized 
by p, the probability of leaving the good state, and q, the 
probability of leaving the bad state. Table 1 lists the values of p 
and q used using during our simulations and the resulting 
overall PLR, while Fig. 2 shows the comparison of different 
burst length with the increase in the packet number. In the next 
experiments, the advertised PLR corresponds to one of these 
(p, q) couples. 

TABLE I.  OVERALL PLR FOR DIFFERENT (P, Q) COUPLES. 

p q Packet Loss Rate (PLR) 

0.001 0.6 0.176% 
0.01 0.5 1.92% 
0.1 0.6 13.94% 
0.1 0.4 19.8% 
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Figure 2.  Burst size for different packet numbers using Gilbert Elliot model. 
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As we can see from Fig. 2 the packets are dropped in bursts 
and not uniformly.  

B. Results and Analysis 
We carried out a lot of experiments on the above topology 

to test the performance of DCCP with our new congestion 
control mechanism and we compared the results with the 
original DCCP/TCPlike protocol agent.  

The experiments were done first without generating 
congestion, with different number of flows and different PLRs. 
We then increased the rate so that the bandwidth of the 
bottleneck link becomes lower than the accumulated sum of all 
flows to check the performance of the algorithm with 
congestion.  

Unless otherwise stated the loss type used is bursty. 

C. Experiments without Congestion 
To ensure that there is no congestion in the bottleneck link 

the accumulated rate of all flows is kept below the bottleneck 
bandwidth. The bottleneck bandwidth is 1.3Mb and the 
accumulated rate of all flows is 1.0Mb. 

With no loss inserted, the performance of both the protocols 
is exactly similar. But as we increase the percentage of loss in 
the wireless link we can see an improvement in the 
accumulated throughput and mean throughput. Figure 3 shows 
the comparison of the accumulated throughput with 0.176% 
loss. We can see from Table 2 that at this loss the mean 
throughput of both the algorithms is quite low. The reason is 
that with only one flow the rate of congestion loss 
misclassification is quite high [7], and every time the protocol 
assumes a loss as a congestion loss the congestion control 
mechanism results in a low throughput. We can see with the 
same loss percentage, the mean throughput increases with 
multiple flows. The reason is that it is very improbable that 
every flow experiences congestion at the same time. 
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Figure 3.  Figure 3: Accumulated throughputs (0.176% PLR, 1 flow).  

There is no improvement in the mean throughput with 
0.176% loss and 5 flows. The reason is that the mean 
throughput with both the algorithms has reached its maximum 
bandwidth utilization value which is equal to the accumulated 

rate of all the flows. As the link PLR is not very high and also 
its is highly improbable that two flows experience a wireless 
link loss at the same time so we can observe a very good 
performance with both the Agents and so there is no worth 
mentioning improvement in the mean throughput. Same is the 
case with 10 flows. 

We can see from the Table 2 that the Zig-Zag scheme gives 
an improvement in the value of mean throughout obtained after 
a simulation of 500sec. We have calculated the mean 
throughput using the last 400 sec as the first 100 seconds are 
regarded as the warm-up time for the protocol. The warm-up 
time is the time needed for a protocol to start behaving 
optimally. 

As we increased the PLR the results of our new Agent 
became better. With one flow obviously the percentage 
increase was quite significant but the throughput of both the 
schemes was not very good for the reasons already explained.  

TABLE II.  PERFORMANCE IN THE ABSENCE OF CONGESTION  
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1 0.176 30 23 19 33.85 37.7 50.4 

5 0.176 81 81 1 0.0 80 80 

1 1.92 77 55 45 50.48 6.03 20.18 

5 1.92 396 310 172 29.94 52.7 68.5 

10 1.92 732 583 159 1.86 72.2 73.55 

10 13.94 1202 1099 444 21.22 20.22 24.5 

 

With the multiple flows it was quite noticeable that the 
throughput was a lot better than one single flow. It is 
interesting to compare the window sizes of the two algorithms 
when there is some wireless link loss present. As shown in 
Fig. 4 next page, the window size of DCCP/ZigZag Agent is 
more than DCCP/TCP-like agent for most of the time because 
the Zig-Zag algorithm detects some of the wireless losses 
correctly and does not halve its congestion window in 
response. In the start of the simulation the window sizes for 
both of the algorithms is zero. This is the warm-up time, the 
reason that we have calculated the mean throughputs using the 
last 400 seconds of the simulation. 

For a single flow, Table 2 also shows that while we can 
achieve an improvement as significant as 50.48%, the 
throughput and bandwidth utilization remain very low. The 
mean throughput with the new protocol was 0.2018Mbps when 
the sending rate was 1Mbps. This confirms that with the only 
one flow a lot of wireless losses are misclassified as congestion 
losses [7].  
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Figure 4.  Window sizes of two agents (0.176% PLR, 1 flow). 

The mean throughput with the DCCP/TCP-like Agent 
increases with the increase in the number of flows which is 
nothing but expected. The reason is that not all the flows will 
experience wireless errors at the same time. With more flows it 
is less likely that the wireless losses are synchronized between 
different flows. The mean throughput of the DCCP/ZigZag 
agent with one flow and 1.92% PLR is only 0.2018Mbps while 
with the same PLR and the 5 flows the mean throughput 
increases to 0.8524Mbps. As shown in the Table 2, the 
numbers of congestion losses of both the agents have also 
increased significantly with the number of flows. The 
percentage increase in the mean throughput is 29.94% with five 
flows as compared to 50.48% with one flow.  

If we further increase the PLR up to 13.94% (which is 
highly improbable in the real scenarios) the two algorithms 
have a very low throughput with 1 flow. But if we also increase 
the number of flows the throughput starts increasing. At this 
high PLR we got 23.4% improvement with 5 flows and 
21.22% improvement with 10 flows. 

To sum up on experiments without congestion, it can be 
noticed that the mean throughputs achieved during the 
experiments are quite low when there is only 1 flow even in the 
absence of congestion. The reason is that Zig-Zag scheme is 
not very good in classifying wireless and congestion losses 
with one flow. But we have seen throughputs as high as 0.8524 
Mbps and 0.9562 Mbps with 5 and 10 flows respectively. We 
achieved up to 95% bandwidth utilization even in the presence 
of wireless loss. 

D. Experiments with Congestion 
We also performed some experiments when there was 

congestion in the network: for these experiments the bottleneck 
bandwidth was 86% of the accumulated traffic rate of all the 
flows. The bottleneck bandwidth was kept 1.3Mb but the 
accumulated transmission rate of all flows was increased to 
1.5Mbps. 

For 1 flow the results were very similar to the ones without 
congestion. Even the numbers of congestion and wireless 
losses detected were quite similar as can be seen from Table 3 
and Table 2. 

TABLE III.  PERFORMANCE WITH CONGESTIONS 
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1 0.176 30 23 19 33.85 33.7 50.46 

5 0.176 102 84 15 0.143 96.53 96.67 

1 1.92 77 55 45 50.59 10.3 15.5 

5 1.92 396 310 172 30.19 52.7 68.85 

10 1.92 717 486 132 5.31 87.01 91.6 

10 13.94 1217 1075 422 18.33 20.4 24.1 

 

As the number of flows increases, so does the number of 
congestion losses. The misclassification rate of the Zig-Zag 
scheme starts decreasing [7]. This results in a better 
performance in the presence of congestion. 

As shown in Table 3 we got 30.19% increase in the mean 
throughput in the presence of congestion with 5 flows and 
1.92% link loss while with the same set of parameter the 
increase was 29.94% without congestion. When we further 
increase the number of flows the mean throughput increases for 
the two algorithms and we see very high bandwidth utilization. 
For example with 10 flows and 1.92% link loss the bandwidth 
utilization for DCCP/ZigZag is 91.6% where as for the same 
parameters the bandwidth utilization for TCP-like is 87%. So 
we have 4.6% increase in bandwidth utilization where as the 
increase in the throughput is 5.31%. When we increase the 
PLR further, the percentage increase in the throughput 
increases as the number of congestion losses becomes very 
high at 13.94% PLR as shown in Table 3. 

There is no significant increase in the mean throughput 
when the experiments are performed with 1.92% link loss and 
10 flows. In the presence of congestion the increase is 5.31% 
(from Table 3) and it reduces to 1.86% in the absence of 
congestion (Table 2). On the other hand we get significant 
improvement with the same PLR when the number of flows are 
5 and 1 i.e. approximately 30 and 50% respectively. The reason 
for a moderate improvement in the mean throughput is that 
with the increase in flows throughput of the DCCP/TCP-like 
Agent also increases as it is highly improbable to get a 
congestion loss at the same time for all flows. So with the 
increase in the throughput the percentage increase decreases. 
However if we look at the number of congestion and wireless 
losses, there are significant number of wireless losses which 
are detected correctly (156) and thus preventing the protocol to 
execute its congestion control mechanism.  

As shown in the Table 3 the percentage increase in the 
throughput at 13.94% loss in the presence of congestion is 
18.33% as compared to 21.224% in the absence of congestion. 
The bandwidth utilization at this high loss is very poor i.e. 
24.14% for DCCP/ZigZag and 20.4% for DCCP/TCP-like 
Agent. The reason for the decrease in the improvement is that 
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high number of congestion losses has affected the throughput 
achieved. 

E. Experiments with Uniform Losses 
We also performed a few experiments with uniformly 

distributed losses but found out that the performance with both 
algorithms is not that good.  Table 4 shows the performance of 
the two algorithms with or without congestion inserted in the 
network. The percentage increase with or without congestion 
has decreased for the same number of flows and PLR. Also the 
bandwidth efficiency has also decreased considerably. This 
also ascertains the notion that the loss model has an important 
impact on the interpretation of results. 

TABLE IV.  PERFORMANCE WITH UNIFORM LOSSES 
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5 (without 
congestion) 1.92 464 396 178 24.2 42 52.2 

5 (with 
congestion) 1.92 464 405 152 22.4 42 51.4 

V. CONCLUSION 
The addition of a wireless loss detection capability has 

given DCCP a new dynamics and has made it more powerful 
than it was before. We studied a modified DCCP for the 
transmission of data in WLH scenario and observed that with 
the help of simple modifications, it achieves better performance 
than the regular TCP-like congestion control mechanism. The 
Zig-Zag algorithm for the discrimination of wireless losses was 
implemented on the sender side (which eliminated the need for 
loss notification) and we achieved up to 50% improvement in 
the mean throughput. The results show that even in the 
presence of wireless link loss we were able to achieve the 
bandwidth utilization ratio as good as 90%. 

These results can still be improved by reducing the 
misclassification rate of the loss discrimination mechanism. 
This can be done either by investigating more on the Zig-Zag 
scheme, e.g. implementing it on the receiver side, or by 
implementing alternate schemes such as the mBiaz scheme. 
These schemes can also be implemented on top of the DCCP 
CCID3 TFRC rather than on top of DCCP CCID2 TCP-like as 
was done in this paper, so that improvements in bandwidth 
utilization may be exploited by flows needing smoother 
changes in the sending rate. 

Finally, the most appropriate schemes may be implemented 
in a real DCCP stack, such as the Linux 2.6.14+ 
implementation [20], and tested either on a wireless emulation 

platform such as W-NINE [21], or on a real wired-cum-
wireless environment. 
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