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Abstract – Accurate description of the topography of active faults surfaces represents an 23 

important geophysical issue because this topography is strongly related to the stress 24 

distribution along fault planes, and therefore to processes implicated in earthquake nucleation, 25 

propagation, and arrest. 26 

Up to know, due to technical limitations, studies of natural fault roughness either performed 27 

using laboratory or field profilometers, were obtained mainly from 1D profiles. With the 28 

recent development of Light Detection And Ranging (LIDAR) apparatus, it is now possible to 29 

measure accurately the 3D topography of rough surfaces with a comparable resolution in all 30 

directions, both at field and laboratory scales. In the present study, we have investigated the 31 

scaling properties including possible anisotropy properties of several outcrops of two natural 32 

fault surfaces (Vuache strike-slip fault, France, and Magnola normal fault, Italy) in 33 

limestones. At the field scale, digital elevation models of the fault roughness were obtained 34 

over surfaces of 0.25 m2 to 600 m2 with a height resolution ranging from 0.5 mm to 20 mm. 35 

At the laboratory scale, the 3D geometry was measured on two slip planes, using a laser 36 

profilometer with a spatial resolution of 20 μm and a height resolution less than 1 μm. 37 

Several signal processing tools exist for analyzing the statistical properties of rough surfaces 38 

with self-affine properties. Among them we used six signal processing techniques: (i) the 39 

root-mean-square correlation (RMS), (ii) the maximum-minimum height difference (MM), 40 

(iii) the correlation function (COR), (iv) the RMS correlation function (RMS-COR), (v) the 41 

Fourier power spectrum (FPS), and (vi) the wavelet power spectrum (WPS). To investigate 42 

quantitatively the reliability and accuracy of the different statistical methods, synthetic self-43 

affine surfaces were generated with azimuthal variation of the scaling exponent, similar to 44 

what is observed for natural fault surfaces. The accuracy of the signal processing techniques is 45 

assessed in terms of the difference between the “input” self-affine exponent used for the 46 

synthetic construction and the “output” exponent recovered by those different methods. Two 47 
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kinds of biases have been identified: artifacts inherent to data acquisition and intrinsic errors 48 

of the methods themselves. In the latter case, the statistical results of our parametric study 49 

provide a quantitative estimate of the dependence of the accuracy with system size and 50 

directional morphological anisotropy. 51 

Finally, we used the most reliable techniques (RMS-COR, FPS, WPS). For both field and 52 

laboratory data, the topography perpendicular to the slip direction displays a similar scaling 53 

exponent 8.0=⊥H . However, our analysis indicates that for the Magnola fault surface the 54 

scaling roughness exponent parallel to the mechanical striation is identical at large and small 55 

scales 7.06.0// −=H  whereas for the Vuache fault surface it is characterized by two different 56 

self-affine regimes at small and large scales. We interpret this cross-over length scale as a 57 

witness of different mechanical processes responsible for the creation of fault topography at 58 

different spatial scales. 59 

 60 
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1. Introduction 70 

Knowledge of the detailed fault geometry is essential to understand some major processes 71 

involved in faulting such as grain comminution or asperities abrasion during slip, geometrical 72 

heterogeneity of the stress field that controls earthquake nucleation (CAMPILLO et al., 2001; 73 

VOISIN et al., 2002a), rupture propagation, and arrest (VOISIN et al., 2002b). Establishing 74 

correlations between geometrical properties of fault roughness (POWER et al., 1987, 1988; 75 

POWER and TULLIS, 1991; SCHMITTBUHL et al., 1993; LEE and BRUHN, 1996; 76 

POWER and DURHAM, 1997; RENARD et al., 2006; SAGY et al., 2007), seismic behavior 77 

of faults (OKUBO and AKI, 1987; PARSON, 2008), frictional strength and critical slip 78 

distance (SCHOLZ, 2002), wear processes during fault zone evolution (POWER et al., 1988) 79 

represents a fundamental issue to understand seismic faulting. 80 

At the laboratory scale, AMITRANO and SCHMITTBUHL (2002) highlight a complex 81 

coupling between fault gouge generation and fault roughness development. At larger scale, 82 

asperities control the slip distribution of earthquake (PEYRAT et al., 2004). Indeed asperities 83 

on active fault planes concentrate the stress (MARSAN, 2006; SCHMITTBUHL et al., 2006) 84 

and therefore may control earthquake nucleation (LAY et al., 1982; SCHOLZ, 2002) and the 85 

propagation of the rupture to its ultimate arrest (AKI, 1984). High resolution relocations of 86 

earthquakes using the multiplet technique have shown streaks of earthquake along several 87 

faults in California (RUBIN et al., 1999). This pattern has been interpreted as resulting from 88 

the presence of an organized large scale roughness (asperities) resisting slip (SCHAFF et al., 89 

2002). 90 

Despite recent progress in seismology, the imaging of fault planes over a large range of scales 91 

at depth is not yet available. A quasi-unique access to high resolution description of the fault 92 

plane comes from exhumed fault scarp observations. This requires, of course, that the main 93 

morphological patterns of faults mapped at the surface of the earth persist at least across the 94 
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seismogenic zone. Due to technical limitations, prior comparative studies of natural fault 95 

roughness were mainly based on 1D profilometry (POWER et al., 1987, 1988; POWER and 96 

TULLIS, 1991; SCHMITTBUHL et al., 1993; LEE and BRUHN, 1996; POWER and 97 

DURHAM, 1997). These 1D measurements have shown that fault roughness can be 98 

characterized by a scale invariance property described by a self-affine geometry (see section 2 99 

for the definition of self-affinity) with a roughness scaling exponent close to 0.8 for profiles 100 

oriented in a direction perpendicular to the striations observed on the fault plane. Such 101 

striations are aligned in the direction of slip. The value of 0.8 is similar to what was measured 102 

for tensile cracks (POWER et al., 1987; SCHMITTBUHL et al., 1995b; BOUCHAUD, 103 

1997). Moreover, the influence of slip was also quantified: the fault surfaces have smaller 104 

roughness amplitude along the slip direction than perpendicular to it (POWER et al., 1988; 105 

POWER and TULLIS, 1991; LEE and BRUHN, 1996; POWER and DURHAM, 1997). The 106 

compiled fault roughness statistics of several studies (POWER and TULLIS, 1991; LEE and 107 

BRUHN, 1996; BEN-ZION and SAMMIS, 2003) suggest a change in scaling properties 108 

between large and short length scales. However, considering the noise in their data, these 109 

authors underlined that it was not possible to decipher whether this variation was related to 110 

small-scale surface weathering of the fault scarp or to the faulting process itself. 111 

With the recent development of high resolution distancemeters, it is now possible to use 112 

accurate statistical approaches to quantify fault roughness. Indeed, portable 3D laser scanners 113 

(also called LiDAR, Light Detection And Ranging) allow mapping fault surface outcrops over 114 

scales of 0.5 mm to several tens of meters. The accuracy of the measurements enables a 115 

reliable quantification of the data. RENARD et al. (2006) and SAGY et al. (2007) 116 

demonstrated precisely the scaling invariance and anisotropy properties of fault topography 117 

using ground based LIDAR and laboratory profilometers. In these previous studies, statistical 118 

analysis of fault roughness was carried out with a single signal processing tool. However, 119 
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SCHMITTBUHL et al. (1995a, 1995b) recommend the simultaneous use of different methods 120 

in order to appreciate the confidence in the measured scaling invariance properties. 121 

In the present study, we use new roughness data to extend the type of measurements made by 122 

RENARD et al. (2006) and SAGY et al. (2007) and propose a parametric study of the 123 

statistical results of fault topography, using multiple signal processing tools. In order to 124 

investigate the reliability and accuracy of the different signal processing methods, synthetic 125 

self-affine surfaces were generated with azimuthal variation of the scaling exponent. These 126 

synthetic rough surfaces are completely characterized by two different self-affine exponents 127 

prescribed in perpendicular directions. When comparing these synthetic surfaces to natural 128 

faults, one should keep in mind that any self-affine model can only describe a real surface to a 129 

finite degree of accuracy, and only within a finite range of scales. After this systematic study, 130 

we used the most reliable and accurate techniques to investigate the scaling properties and 131 

anisotropy of several outcrops of two natural fault surfaces that have been measured using 3D 132 

laser scanners in the field and a laser profilometer in the laboratory. 133 

This paper is organized as follows. In Section 2, following a brief explanatory discussion of 134 

the self-affine notion, the generation process of synthetic self-affine surfaces with a 135 

directional morphological anisotropy is described. In Section 3, statistical methods to define 136 

the self-affine properties are reviewed. Section 4 is devoted to the systematic study of the 137 

accuracy of the methods. Section 5 is devoted to the acquisition of data on natural fault. In 138 

Section 6, analysis of the roughness, covering six orders of magnitude of length scales, is 139 

performed on several outcrops of two natural faults. Finally, in Section 7, we conclude by 140 

linking our findings on the statistical properties of natural fault topography to the results of 141 

earlier studies, with the ultimate goal of developing a more mutually consistent description of 142 

fault asperities geometry. 143 

 144 
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2. Generation of self-affine surfaces 145 

2.1 Self-affinity in 1D and 2D 146 

Surface roughness analysis provides a statistical characterization of a surface which is simpler 147 

and easier to use than a complete deterministic description. In geophysics, BROWN and 148 

SCHOLZ (1985) and POWER et al. (1987) demonstrated the self-similar property of natural 149 

fault surfaces at field scale. Coming from statistical physics, a more general scaling 150 

transformation has been proposed: self-affinity (MANDELBROT, 1985; MANDELBROT, 151 

1986; VOSS, 1985) that was successfully used for the quantitative description of fault 152 

roughness (SCHMITTBUHL et al., 1993, RENARD et al., 2006). 153 

A self-affine 1D profile remains unchanged under the scaling transformation δx → λ δx, δz → 154 

λHδz for 1D profiles (Figure 1) extracted from a surface (MEAKIN, 1998). Here, δx is the 155 

coordinate along the profile and δz is the roughness amplitude. For a self-affine profile, the 156 

scaling exponent H, also called Hurst exponent, lies in the range 0 ≤ H ≤ 1. Accordingly, self-157 

affinity implies that a profile appears less rough as the scale increases. In other words, if a 158 

profile is self-affine, a magnified portion of it will appear statistically identical to the entire 159 

profile if different magnifications are used in the x and z-directions (Figure 1). 160 

For 2D surfaces, this self-affinity property can be described for sets of 1D parallel profiles 161 

extracted from the surface. Moreover, if the surface is striated along some given orientation, 162 

anisotropic scaling behavior can emerge if H varies for different directions in the plane of the 163 

surface. An anisotropic self-affine surface ( )yxZ ,  with coordinates ( )yx,  obeys the property: 164 

( ) ( )yxZyxZ HH ,, /1/1 // λλλ =⊥ , where λ  is a positive dilation factor, //H  and ⊥H  are the Hurst 165 

exponents, comprised between 0 and 1, in two perpendicular directions of the surface. //H  is 166 

defined along a direction parallel to the main striations, and ⊥H  is defined along a direction 167 

perpendicular to the striation (Figure 1b). 168 

 169 
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2.2 Synthetic anisotropic self-affine surfaces 170 

To calculate synthetic fault surfaces (Figure 1b), we used a Fourier based method to simulate 171 

a fractional Brownian motion on a 2D grid (STEIN, 2002), where an anisotropy matrix 172 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⊥H
H

E
/10
0/1 //  was introduced when calculating the 2D Gaussian random field. The 173 

eigenvalues of this matrix correspond to the inverse of the two roughness exponents //H , and 174 

⊥H  that characterize the self-affine properties of the generated surface in two perpendicular 175 

directions (BIERME et al. 2007, 2008). The code to generate an anisotropic 2D self-affine 176 

surface, written in Matlab©, is given in the appendix A and can be run easily on a desktop 177 

computer. 178 

In the following sections, we decompose the signal processing analysis of rough surfaces in 179 

two stages. Firstly, we present the six signal processing tools used to estimate the self-affine 180 

property of an isotropic surface with a single Hurst exponent (Figure 1a), as observed for 181 

example for fresh mode I brittle fractures in rocks (POWER et al., 1987; SCHMITTBUHL et 182 

al., 1995b; BOUCHAUD, 1997). For this, we have synthesized several isotropic surfaces with 183 

an exponent in the range [0.1 - 0.9] and grid sizes in geometrical series: 129 × 129 points, 513 184 

× 513 points, 2049 × 2049 points. Secondly, we analyse synthetic anisotropic surfaces (Figure 185 

1b) with //H  in the range [0.7 - 0.9] and ⊥H  in the range [0.4 - 0.9]. 186 

 187 

3. Statistical signal processing methods 188 

We have used six different methods that characterize the amplitude of the roughness at 189 

various spatial wavelengths. All these methods, presented in the following sub-sections, are 190 

based on the analysis of 1D profiles (Figure 1c) that are extracted from the 2D Digital 191 

Elevation Model (DEM) of 2D surfaces (Figure 1a, b). For each surface, a set of 1D parallel 192 

profiles in a specific direction are extracted, detrended and then analyzed. Then, the properties 193 
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are averaged over all the 1D profiles to characterize the 2D surface in the chosen direction. 194 

We have repeated such analyses for profiles extracted in several directions, following a 360° 195 

rotation, allowing then to determine the azimuthal dependence of the statistical properties of 196 

the surface (RENARD et al., 2006) that could characterize a morphological anisotropy. 197 

For the application to natural fault surfaces, we also tested how the noise in the data and the 198 

presence of missing points could affect the estimation of fault surface. Indeed, the raw 199 

scanner data consist of clouds of points, with x, y, and z coordinates, sampled more or less 200 

regularly. Sometimes, data are missing (vegetation on the fault plane, low reflectivity of the 201 

scanner light beam), and the surface is incomplete. An interpolation is then necessary, which 202 

induce a bias in the estimation of scaling exponents that need to be estimated too. 203 

3.1 Root-mean-square correlation (RMS) and maximum-minimum height difference (MM) 204 

methods 205 

Let consider a 1D profile ( )xL . This profile is divided into windows of width xδ  and indexed 206 

by the position of the first point 0x  of the band. The standard deviation ( )xδσ  of the height 207 

( )xL  and the height difference ( )xh δ  between the maximum and minimum height are 208 

computed for each band, and then averaged over all the possible bands of fixed width xδ  209 

spanning the profile, by varying the origin 0x . We then obtain ( )xδσ  and ( )xh δ , where 210 

both quantities follow a power law for a self-affine profile: ( ) Hxx δδσ ∝  and 211 

( ) Hxxh δδ ∝  (SCHMITTBUHL et al. 1995a). 212 

Note that these techniques are useful when H is not too close from 0 or 1, where a significant 213 

error can be measured (see Figures 3a, b – 4a, b). Usually, levelling off of ( )xδσ  at small xδ  214 

values is due to the noise in the data (see Figure 7c, d), and leveling-off at large xδ  is due to 215 

the finite size of the profile. 216 

 217 
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3.2 Height-height correlation function (COR) method 218 

For a signal ( )xL , we consider the height-height correlation function defined by 219 

( ) ( ) ( )( )[ ] 2/12xxLxLxC Δ+−=Δ , which estimates the average height-height difference 220 

between two points of the profile separated by a distance xΔ . For a self-affine profile, the 221 

correlation function follows a power-law such that ( ) HxxC Δ∝Δ  where H is the Hurst 222 

exponent. 223 

3.3 Standard deviation of the correlation function (RMS-COR) method 224 

For a profile ( )xL  containing N  points, the height difference LΔ  between each couple of 225 

points separated by a distance xΔ  is calculated. The window size xΔ  is varied between the 226 

sampling distance and the size of the system and, for a given xΔ , the standard deviation of 227 

the height difference ( )xLΔΔσ  is calculated. For a self-affine surface this measurement 228 

follows a power-law such that ( ) Hxx Δ∝Δσ . This method was successfully applied to 229 

characterize the self-affine properties of the Vuache fault plane (RENARD et al. 2006). 230 

3.4 Fourier power spectrum (FPS) method 231 

The Hurst exponent H  can be estimated from the Fourier power spectrum which has a power 232 

law form for a 1D self-affine profile (BARABASI and STANLEY, 1995; MEAKIN 1998). 233 

For each parallel profile, the Fourier power spectrum ( )kP , i. e. the square of the modulus of 234 

the Fourier transform, is calculated as a function of the wave-number k . Then the spectrum of 235 

the whole surface is calculated by stacking all the 1D Fourier transforms to reduce the noise 236 

associated with individual profiles. For each profile of length L  containing N  increments, 237 

the spatial frequencies range between L/1  and the Nyquist frequency LN 2/  (i.e. the 238 

reciprocal of the interval between data points). When plotting the power spectrum as a 239 

function of k  in log-log space, a self-affine function reveals a linear slope, which is itself a 240 

function of the Hurst exponent H  through ( ) HkkP 21−−∝ . 241 
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3.5 Average wavelet coefficient power spectrum (WPS) method 242 

The average wavelet coefficient method consists of decomposing the input signal into 243 

amplitudes that depend on position and scale. The wavelet transform of each 1D profile ( )xL  244 

is defined as ( ) dxxL
a

bx
a

W ba ∫
+∞

∞−

⎟
⎠
⎞

⎜
⎝
⎛ −

= ψ1
,  where ψ  is the wavelet function. Then the 245 

wavelet coefficients are averaged over the translation factor b  for each length scale a : 246 

bbaa WW ,= . If the profile is self-affine, the wavelet transform verifies statistically that, for 247 

any positive dilatation factor λ , ( )[ ] ba
H

ba WxLW ,, λλ = . Accordingly, the averaged wavelet 248 

coefficients scale as 2/1+∝ H
a aW . A wide range of wavelet functions can be used. For a 249 

simple and efficient implementation, we chose the Daubechies wavelet of order 12 as 250 

suggested in SIMONSEN et al. (1998). 251 

 252 

4. Quantitative estimation of the accuracy of roughness analysis methods 253 

4.1 Synthetic isotropic and anisotropic rough surfaces 254 

Figures 1a and 1b display the topography of synthetic rough surfaces where the data set 255 

includes 2049 × 2049 points regularly spaced on a grid. Figure 1a shows an isotropic rough 256 

surface, whereas Figure 1b shows an anisotropic surface, with corrugations elongated parallel 257 

to the direction of smaller Hurst exponent (analogue to the direction of slip on a natural fault 258 

surface) and covering a wide range of scales. 259 

The roughness amplitude of a profile parallel to the striation direction (green curve in Figure 260 

1c) is smaller than that of a perpendicular profile. The profile extracted along the direction 261 

with the smallest exponent (green curve) appears more jagged at small scales compared to a 262 

perpendicular profile, showing the different effects of the anisotropy of the surface on the 263 

waviness and amplitude of the profiles. 264 
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The outputs of the statistical methods described in section 2.3 are represented on Figure 2 265 

Each curve is calculated by averaging the outputs of all possible parallel 1D profiles extracted 266 

from the anisotropic surface of Figure 1b. The results are represented in a log-log plot, 267 

allowing visualizing the linear portion of the curve that characterizes a power-law distribution 268 

(Figure 2). This linear portion is binned in a small number of increments, and a power-law fit 269 

is performed to extract the Hurst exponent that characterizes the self-affinity of the profile. 270 

The best fits are performed for each curve and a value of the "output" self-affine exponent is 271 

then calculated for all the six signal processing methods. 272 

Using the RMS correlation function, we have also extracted sets of parallel profiles in several 273 

directions, at an angle θ  to the direction of the striations. For each set of profile, we have 274 

calculated the correlation function and estimated the value of H . The angular dependence of 275 

H  could be represented on a polar plot (inset in Figure 2d) (RENARD et al., 2006). The 276 

anisotropy of such plot characterizes the anisotropy of the surface: an isotropic surface is 277 

represented as a circle of radius H , whereas an anisotropic one has a more complex elliptical 278 

shape. 279 

4.2 Isotropic surfaces: effect of size and input exponent on the output estimation of the Hurst 280 

exponent 281 

The comparison between the input Hurst exponent used to calculate an isotropic synthetic 282 

surface and the output Hurst exponent estimated using the six different methods is represented 283 

on Figure 3, for different system sizes. The RMS, MM, COR and RMS-COR methods are all 284 

mainly sensitive to the value of the input self-affine exponent (the typical trend of the curve is 285 

not parallel to the diagonal). Small self-affine exponents are systematically overestimated 286 

whereas large exponents are underestimated. In contrast, the error for the WPS method is 287 

mainly function of the system size (the response is more or less parallel to the diagonal). The 288 

FPS method appears the most accurate technique, with only slight sensitivity to the input self-289 
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affine exponent and size effects. This conclusion should however be interpreted cautiously as 290 

the algorithm used to generate the synthetic surface is based on a Fourier transform approach. 291 

The conclusion of this comparison tests is that the FPS, WPS, and RMS-COR methods are the 292 

most reliable because they have a small dependence on the value of the input Hurst exponent 293 

and a slight dependence on system size. 294 

4.3 Anisotropic surfaces: Interaction between the two input roughness exponents 295 

For synthetic self-affine anisotropic surfaces, we have calculated the error on the estimation 296 

of the two Hurst exponents. For this, we have built surfaces (2049x2049 points, similar to 297 

Figure 1b) for which the Hurst exponents //inputH  and ⊥inputH  in two perpendicular directions 298 

were varied in the range [0.4 – 0.9]. We have then used the six signal processing techniques to 299 

estimate the values of these same exponents. The absolute error in the estimation of each 300 

Hurst exponent (Figure 4) depends on the input value of these parameters and also on the 301 

amplitude of their difference ( ⊥− inputinput HH // ). 302 

This error is particularly large for the RMS (up to 20%), MM (up to 25%), and COR (up to 303 

35%) methods. When the input anisotropy ( ⊥− inputinput HH // ) increases, the absolute error on 304 

the two output exponents increases accordingly. The absolute error is smaller in the direction 305 

of the smallest exponent (analogue to the direction of striation on a natural fault surface) than 306 

perpendicular to it. Moreover, it is also noteworthy to mention that these three techniques 307 

show significant errors in the estimation for input exponents close to 0.8-0.9 even if the 308 

anisotropy is minimal, demonstrating the limited reliability of these methods to detect an 309 

exponent close to one. 310 

The RMS-COR analysis is also sensitive to the input anisotropy (Figure 4d), however such an 311 

effect is not strongly pronounced (the absolute errors are smaller, up to 15%). For this 312 

method, the error does not depend on the values of the two input Hurst exponents. For 313 

example, with a synthetic surface defined by //inputH = 0.8 and ⊥inputH = 0.6, the absolute error 314 
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in the estimation of each Hurst exponent is almost identical. As shown in Figure 4d, when 315 

anisotropy is small, the errors do not increase significantly for input values close to 1 unlike 316 

the three previous methods. 317 

The FPS and WPS analysis are only slightly sensitive to the “input” anisotropy and the 318 

estimated Hurst exponents do not depend on the input exponent values. Our analysis clearly 319 

shows that the FPS, the WPS and, to a lesser extent, the RMS-COR methods are the most 320 

reliable. More precisely, the RMS-COR and the WPS techniques slightly underestimate and 321 

overestimate, respectively, the roughness exponent compared to the FPS method. 322 

We have also analyzed the azimuthal dependence of the Hurst exponent for synthetic 323 

anisotropic self-affine surfaces. Comparisons of the “output” anisotropy estimated using the 324 

RMS-COR method and the “input” anisotropy is represented on Figure 5. We have used this 325 

technique because it does not require interpolation of the profiles, whereas the FPS and WPS 326 

methods would need regularly spaced data point. A significant directional morphological 327 

anisotropy of surfaces is visible on these polar plots of H  even if a low “input” anisotropy is 328 

imposed, thus demonstrating the reliability of the RMS-COR method to detect a slight 329 

morphological anisotropy. Remarkably, following a 360° rotation, the azimuth variation of H  330 

is not progressive. When departing a few degrees from the direction of the smallest “input” 331 

exponent, the “output” exponent is already very close to the largest “input” exponent. This 332 

property of anisotropic self-affine surface is not well understood yet. 333 

A tentative way to calculate the error on the anisotropy that is made when estimating the 334 

anisotropy of the surface ⊥− HH //  is represented on Figure 6. This plot indicates the error 335 

on the estimation of the anisotropy of the surface, and therefore provides some bounds on the 336 

accuracy of the determination of this property. Almost all methods underestimate the 337 

anisotropy, except the Fourier power spectrum which slightly overestimates it. For the RMS, 338 

MM, and COR methods, when the “input” anisotropy ⊥− HH //  increases, the absolute error 339 
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on the “output” anisotropy increases accordingly. Moreover, this absolute error is similar for 340 

all surfaces with the same “input” anisotropy, whatever the values of the two “input” self-341 

affine exponents. 342 

The determination of the “output” anisotropy with the RMS-COR, FPS, and WPS methods is 343 

less sensitive to the “input” anisotropy, except for the highest anisotropy, thus demonstrating 344 

the robustness of these three methods to determine the azimuth dependence of the statistical 345 

properties of an anisotropic self-affine surface. More precisely, estimates reported for the 346 

WPS method are somehow systematically lower than the two others techniques. 347 

4.4 Effect of noise 348 

In all physical measurements, noise is present in the data because of the limited resolution of 349 

the measuring device. Such noise is usually described using Gaussian statistics with a zero 350 

mean and a constant variance. We have analyzed how the presence of noise in synthetic data 351 

could alter the estimation of the Hurst exponent. For this, we have calculated synthetic 352 

anisotropic surfaces and added a Gaussian noise with a standard deviation equal to 1/200 of 353 

the standard deviation of the rough surface (Figure 7a, b). This artificial alteration of the 354 

synthetic surface mimics measurements biases obtained on natural data, for example due to 355 

electronic noise in the measurement device or due to weathering of the fault surface. We have 356 

then estimated the Hurst exponents using the six signal processing methods and compared the 357 

results with the noise-free analysis. The results confirm that adding noise to the synthetic data 358 

induces a leveling-off of the curves at small length scales (RENARD et al., 2006; SAGY et 359 

al., 2007) and therefore a possible underestimation of the Hurst exponent, for all the six signal 360 

processing methods (Figure 7c-h). 361 

Despite the fact that the Gaussian white noise added is isotropic, each plot (Figure 7c-h) 362 

indicates that the effect of noise is slightly dependent on the azimuth of the profile: the 363 

underestimation of the Hurst exponent is more pronounced along striations than 364 
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perpendicularly to them. Indeed, the addition of noise in the rough signal preferentially alters 365 

the roughness at small scales, and therefore has a stronger effect on the profiles parallel to the 366 

striations because they are characterized by a smaller amplitude at large length scales 367 

compared to the profiles perpendicular to the striations. 368 

For the RMS, MM and RMS-COR methods, the noise does affect not only the small length 369 

scales but also the large length scales. Indeed, such an effect is strongly pronounced for these 370 

three methods and, slopes of the curves in Figure 7c-f lead to a significant underestimation of 371 

the actual value of the self-affine exponents. Notably, the polar plot of H  from a surface with 372 

added noise obtained with the RMS-COR technique (see Figure 7f) shows errors of 10 % and 373 

20 % on the Hurst exponent measured in directions perpendicular and parallel to striations, 374 

respectively. 375 

Conversely, the COR, FPS, and WPS techniques are less sensitive to the addition of noise. At 376 

large scale, the noise appears as a negligible correction, and even if the curves are affected at 377 

small scales, the estimation of the self-affine exponent is less affected. 378 

4.5 Effect of missing data 379 

When considering natural fault measurements, local weathering and/or the presence of 380 

vegetation may form patches of missing data. To study their influence on estimation of fault 381 

surface properties, we generated incomplete data sets removing an increasing percentage of 382 

clusters of points from a synthetic surface that initially contained 513x513 points (Figure 8). 383 

For the FPS and WPS methods, the incomplete cloud of points was interpolated across the 384 

gaps (Figure 8b), using a linear fit. However, for the RMS-COR method, the biased data can 385 

be used without interpolation of the holes (Figure 8c). 386 

Typically, in our natural data sets 5 % of interpolated holes is the maximum percentage of 387 

spurious points removed from the raw scanner data. The results (Figure 8d-f) indicate that the 388 

RMS-COR, FPS and WPS analysis show an error of only 4 % on the Hurst exponent 389 
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estimated on a surface with 40 % holes compared to a complete surface. Therefore, 5% of 390 

missing points does not affect significantly the measurement of surface properties, whatever 391 

the technique employed. 392 

 393 

5. Acquisition of roughness data on natural faults at various scales 394 

5.1 Acquisition of the data on the field and in the laboratory 395 

The roughness data of several fault samples were acquired at various scales using five 396 

different scanning devices (Table 1). At the laboratory scale, we used a home-made laser 397 

profilometer (MEHEUST, 2002), where a sample, set on a 2-axis moving table, is scanned by 398 

measuring the distance between the sample and a laser head. The horizontal scanning steps 399 

are either 20 or 24 micrometers and the vertical resolution is better than 1 micrometer. 400 

On field outcrops, we measured several surfaces with four different LIDARs, where two main 401 

technologies were used. The S10 system (Table 1) contains a laser source and two cameras; 402 

the distance between the laser head and a surface point is measured by triangulation. The 403 

maximum shooting distance is around 15 m and the resolution in the distance measurement is 404 

close to 0.5 mm. Surfaces of several square meters can be measured with this system. The 405 

main drawback of this system is that it must be operated during night time otherwise the day 406 

light may blind the cameras. 407 

The other three LIDAR systems (Table 1) are based on the same technology and were built by 408 

three different companies: a light pulse is sent from a laser head and the time of flight to the 409 

target point is measured, allowing calculating the distance, knowing light velocity. The whole 410 

target surface is scanned by rotating the laser head at constant angular velocity. The main 411 

advantages of this technology is that fast scanning rates can be achieved (up to 5000 points/s), 412 

the shooting distance can be as large as 1500 m and the system can be operated even under 413 

day light. However, compared to the S10 system, the measurement accuracy is lower, 414 



- 18 - 
 

between 1 and 2 cm. Note also that if the laser wavelength is in the infra-red range, absorption 415 

by water present on the target surface might also alter the quality of the data. 416 

We have used these scanning measurement devices on two faults in limestones, where 417 

outcrop fault planes were scanned at various scales. Hand samples of slip surfaces were also 418 

collected and measured with the laboratory profilometer. 419 

5.2. The Magnola normal fault 420 

The Magnola fault outcrop, in the Fuccino area, is part of the extensive fault system in Central 421 

Apenines (Italy). This 15-km long normal fault shows microseismic activity and offsets 422 

limestone beds with a vertical displacement larger than 500 meters and a slight shear 423 

component witnessed by mechanical striations dipping at a 85° angle on the fault plane. This 424 

fault is characterized by recent exhumation (PALUMBO et al. 2004, CARCAILLET et al. 425 

2008) and the last earthquakes have risen to the surface a ~10-m thick band of fresh limestone 426 

(Figure 9a) where mechanical striations and grooves at all scales are still visible and less 427 

altered by weathering than older exhumed portions of the fault. We have scanned several sub-428 

surfaces of the fault wall (Table 2, Figure 9b) and collected one hand sample from the roof of 429 

the fault for laboratory measurements (Table 2, Figure 9c). This sample, that shows 430 

mechanical striations, was dig from below the ground surface, to get a slip surface preserved 431 

from climatic weathering. The larger outcrop surfaces show evidence of erosion and some 432 

karstic water outlets provided holes for vegetation. Small bushes and grass outcrops had to be 433 

removed either directly from the fault plane, of from the LIDAR data. The result was 434 

incomplete data sets of the fault surface, with missing points in the records. Nevertheless, 435 

elongated bumps and depressions at large scales (Figure 9a), and grooves and ridges at small 436 

scales (Figure 9b) aligned parallel to slip can be observed. 437 

 438 

 439 
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5.3. The Vuache strike-slip fault 440 

The Vuache fault is an active strike-slip fault system in the western part of the French Alps 441 

(THOUVENOT et al. 1998). The fault outcrop we analyzed lies on a short segment that 442 

connects to the main Vuache fault and that is not active anymore. This fault was analyzed in 443 

RENARD et al. (2006) and we present here new data of large and small scale slip surfaces 444 

(Figure 10). 445 

This fault has a mainly strike-slip component, witnessed by large elongated bumps and 446 

depressions associated with linear striations of smaller size observed at all scales up to the 447 

resolution of the scanners LIDAR (Figure 10c, d). Conversely, the laboratory data show that 448 

the surface below the centimeter scale appears more polished and only smooth decimeter 449 

ridges persist (Figure 10f). 450 

The fault offsets meter-scale beds of limestones and the fault plane was exhumed ten years 451 

ago by the activity of a quarry. As a consequence, the LIDAR measurements could be 452 

performed on fresh surfaces, where weathering was minimum and no vegetation had 453 

developed on the fault plane. For these surfaces, the data recovery was excellent, greater than 454 

99.5%. We therefore obtained the topography of the surfaces without holes in the data, 455 

making the signal processing results reliable. 456 

 457 

6. Roughness results and interpretation 458 

6.1 Magnola Fault 459 

The roughness analysis results of the Magnola fault outcrop and hand sample are shown on 460 

Figure 11. On each plot (Figure 11a-d) both Lidar data (upper curve), acquired with the 461 

Optech scanner (Table 2), and laboratory profilometer data (lower curve) are represented, 462 

showing a scaling behavior over 5.5 orders of magnitude of length scales (50 μm to 463 

approximately 20 m). Each curve represents an average over a large set of parallel 1D profiles 464 
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extracted from the DEM of the fault surface shown on Figure 9. The level of noise for the 465 

field LIDAR scanner (Table 1) is estimated as the height of the flat part of the spectrum at 466 

small length scales and is indicated by the black arrows (Figure 11). The flattening of the 467 

scaling behavior at large scales is related to a finite size effect. 468 

The FPS and WPS techniques performed along and perpendicular to the slip direction (Figure 469 

11a-d) indicate that the power laws can easily be connected for the field and laboratory data, 470 

demonstrating the robustness of the scaling behavior. Moreover, our results highlight a 471 

significant directional morphological anisotropy over a wide range of scales: the profiles 472 

parallel to the slip direction are rougher than perpendicular ones (POWER et al., 1988; 473 

POWER and TULLIS, 1991; LEE and BRUHN, 1996; POWER and DURHAM, 1997; 474 

RENARD et al., 2006; SAGY et al., 2007). These two methods estimate a similar Hurst 475 

exponent perpendicular to the slip orientation ( 8.0=⊥H ) across the whole range of scales 476 

investigated in this study, a property similar to fresh mode I fracture surfaces (POWER et al., 477 

1987; SCHMITTBUHL et al., 1995b, BOUCHAUD, 1997). However, the FPS technique 478 

indicates a greater anisotropy, 2.0// =− ⊥HH , where //H  represents the Hurst exponent in 479 

the direction of slip, than quantified by the WPS method ( 1.0// =− ⊥HH ). Moreover, the 480 

WPS method overestimates the self-affine exponent along the slip direction ( 7.0// =H ) 481 

compared to the FPS method ( 6.0// =H ). An attempted explanation of these last two 482 

differences is given by our parametric study of synthetic rough surfaces: the WPS method 483 

slightly overestimates the roughness exponents when measuring couples of Hurst exponents 484 

in perpendicular directions with range of values similar to those of natural fault surface (0.6 to 485 

0.9). Notably, the exponents accuracy with anisotropic surface of 2049 x 2049 points and for 486 

two Hurst exponents in perpendicular direction of 0.8 and 0.6 is numerically estimated as -487 

0.01 and -0.06 for the wavelet method, respectively (Figure 4f). For example, an amount of -488 

0.06 should be added to the measured minimal exponent with the WPS analysis to obtain the 489 
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actual one. Accordingly, on natural fault surface with two perpendicular exponents of 0.8 and 490 

0.6 calculated by the FPS, the estimated Hurst exponent in direction parallel to slip is 491 

systematically lower than with the WPS method (Figures 11-12). Moreover, since the error on 492 

the output Hurst exponent is greater in direction of slip than perpendicularly to it, 493 

consequently the output anisotropy decreases, as observed on natural fault surface (Figure 11-494 

12). 495 

Our estimations obtained on the hand sample with the RMS-COR function (see Figure 11e) 496 

show that the minimum Hurst exponent ( 6.0=H ) is at 85°, in the direction of slip, and the 497 

maximum Hurst exponent ( 8.0=H ) is almost in the perpendicular direction. These two 498 

extremes values of the self-affine exponent correspond also to those determined at all scales 499 

by the FPS and WPS methods. At the field scale (see Figure 11e), the minimum ( 4.0=H ) 500 

and maximum ( 7.0=H ) Hurst exponents are observed in directions similar to that for the 501 

hand sample. However, the results obtained with the RMS-COR method suggest that the 502 

roughness exponent of the Magnola fault surface is smaller at the field scale compared to the 503 

laboratory scale, regardless of the azimuth. We ascribe this variation to natural weathering 504 

(pitting) of the exposed fault surface at short wavelengths, as POWER and TULLIS (1991). 505 

Indeed, the section of the Magnola fault surface (Figure 9a) shows an increase of the 506 

roughness amplitude at short wavelengths created by weathering. Other sections of the 507 

Magnola fault surface, that are not presented in this study, display evidence of strong 508 

alteration at short length scales leading to a significant reduction of the Hurst exponent, 509 

regardless of azimuth. Conversely, the clean hand sample (Figure 9b), that shows mechanical 510 

striations, should represent the actual topography of the fault surface at short length scales, 511 

related to the faulting process before the action of climatic weathering. This hypothesis is 512 

supported by the fact that the fresh slip plane, scanned in laboratory, displays the same self-513 

affine RMS-COR regimes in the directions parallel and perpendicular to slip than those 514 
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estimated using the FPS and WPS methods. The increase of roughness at short wavelengths 515 

on the field surface due to the erosion appears to be similar to the effect of an additional noise 516 

tested on “ideal” synthetic surfaces (Figure 7). In both cases, the Hurst exponent decreases in 517 

all directions. Our statistical study led on synthetic surfaces shows that the noise effect is 518 

more pronounced when using the RMS-COR technique. To summarize, the roughness scaling 519 

estimated using the RMS-COR calculated on the weathered field surface exhibits a decrease 520 

of the Hurst exponent in all directions, which is not observed with the FPS and WPS 521 

techniques. 522 

On the polar plot of H obtained at the laboratory scale (see Figure 11e), when departing a few 523 

degrees from the direction of slip, the Hurst exponent is close to the value of the maximum 524 

Hurst exponent measured in the direction perpendicular to mechanical striations. Such 525 

behavior is also visible on ‘ideal” synthetic surfaces (Figure 5). In other words, the azimuth of 526 

the maximum Hurst exponent is not well-defined (gray shadows on Figure 11e), while the 527 

minimum exponent corresponds to a specific orientation. Note that this property is less visible 528 

on the polar plot of the altered field fault section (see Figure 11e) where the angular variation 529 

of H  is more progressive. 530 

6.2 Vuache Fault 531 

The FPS and WPS techniques highlight a significant directional morphological anisotropy 532 

over six orders of spatial scales (Figure 12a-d). Profiles parallel to slip have a smaller Hurst 533 

exponent than perpendicular ones (POWER et al., 1988; POWER and TULLIS, 1991; LEE 534 

and BRUHN, 1996; POWER and DURHAM, 1997; RENARD et al., 2006; SAGY et al., 535 

2007). These two methods, applied to series of profiles perpendicular to the direction of slip, 536 

indicate that the power laws of individual surfaces can easily be connected across the wide 537 

range of scales investigated (Figure 12b, d), and the value of 8.0=⊥H  is similar to what was 538 

measured on the Magnola normal fault surface. However, in the slip parallel direction there is 539 
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a slight change in the magnitude of //H  located in the length scale range between 5 mm and 2 540 

cm (gray shadows on Figure 12a, c). 75.0// =H  is larger below this length scale range than at 541 

larger length scales, where 65.0// =H  and 7.0// =H for the FPS and WPS methods, 542 

respectively. The smoother aspect of the Vuache fault surface in the direction of slip 543 

compared to the perpendicular direction is an obvious and expected consequence of striations, 544 

but the smallest directional morphological anisotropy at the laboratory scale compared to the 545 

field scale is novel in this study. At the field scale, the morphology of the elongated bumps 546 

and depressions along the slip direction is different from the grooves and striations observed 547 

at the laboratory scale (Figure 10). As the fault Vuache outcrop is quite fresh, and was 548 

preserved from the climatic erosion, we propose that this cross-over in the slope at length 549 

scale of several millimeters is significant. We interpret this cross-over length scale as a 550 

witness of different mechanical processes responsible for the creation of fault topography at 551 

different spatial scales. 552 

Our results obtained at the field and intermediate scales with the RMS-COR function (see left 553 

and center plots on Figure 12e) show that the minimum Hurst exponent ( [ ]6.055.0// −∈H ) is 554 

oriented at 20° with respect to the horizontal, indicating the fault had a normal component and 555 

not only a strike-slip one. The maximum value 75.0=H  is located for an almost 556 

perpendicular direction. These two extremes values of the self-affine exponent are slightly 557 

lower when estimated using the RMS-COR function than when using the FPS or the WPS 558 

methods. This slight underestimation with the RMS-COR technique is consistent with our 559 

results on synthetic surfaces for the accuracy in this range of parameters (Figure 4). Indeed, 560 

our parametric study led on anisotropic synthetic surfaces shows that the estimation of H 561 

calculated with the RMS-COR technique slightly underestimates its actual value (Figure 4d). 562 

At the laboratory scale (see right plot on Figure 12e), 8.0// =H and 9.0=⊥H  are located in 563 

orientations similar to that for the three larger surfaces measured on the field. However, the 564 
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polar plot of H  calculated using the RMS-COR function suggests an increase of the scaling 565 

exponents in all directions, while the estimation using the FPS or WPS techniques underlined 566 

that the exponent increased only along the slip direction. In addition, the two exponents //H  567 

and ⊥H for the hand sample are overestimated when calculated with the RMS-COR method 568 

compared to the FPS and WPS techniques. The latter observation cannot be explained by the 569 

results of our parametric study on synthetic surfaces. As a consequence of the extremely 570 

smooth aspect of the hand sample at small scales (Figure 10f), the RMS-COR method could 571 

lose its robustness. However, a new reliable result is that the directional morphological 572 

anisotropy calculated by the RMS-COR function significantly decreases at the laboratory 573 

scale, as observed with the FPS and WPS techniques. 574 

As already observed on the polar plot of H  calculated on the Magnola fault surface (Figure 575 

11e), the azimuth of the maximum Hurst exponent is less constrained (gray shadows on 576 

Figure 12e) than the single specific orientation of the striations. Remarkably, despite the weak 577 

anisotropy of the hand sample topography, the slip direction is always significant, 578 

demonstrating the accuracy and reliability of the RMS-COR method. 579 

 580 

7. Discussion & Conclusion 581 

The six statistical tools used in this study have different response under the effect of two kinds 582 

of biases, the intrinsic errors of the methods (Figures 3, 4, 5, 6) and the artifacts inherent in 583 

data acquisition (Figures 7, 8). Using a parametric approach, where we varied the size of the 584 

surface and its anisotropy, we selected the three most reliable and accurate methods (RMS-585 

COR, FPS, WPS) for roughness analysis of natural fault topography (Figures 11, 12). The 586 

Hurst exponent estimation at various scales for the natural slip surfaces displays the same 587 

trends and provides a consistent and robust characterization of their scaling regimes. We 588 
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emphasize that the slight variations in the results given by each one of these methods fall 589 

within the range of error estimated by our parametric study (see Section 4). 590 

One of the most robust results of our scaling analysis is that the FPS and the WPS methods 591 

estimate a same Hurst exponent equal to 0.8 in the direction perpendicular to slip, over 592 

approximately 6 orders of magnitude of length scales for two different fault surfaces (Figures 593 

11b, d and 12b, d). However, in the slip direction two different scaling behaviors are 594 

highlighted: the Magnola fault surface shows an identical scaling regime at large and small 595 

scales (Figure 11a, c). Conversely, the scaling property of the Vuache fault roughness exhibits 596 

a cross-over in the slope at length scale of several millimeters (Figure 12a, c). In other words, 597 

the scaling property of this fault surfaces is similar at large scales but changes at small scales. 598 

The statistical analyses (Figure 12) and the scan of the Vuache fault surface (Figure 10) 599 

clearly show a smoothing of the roughness below a length scale of several millimeters. 600 

The scaling regime of 0.8 measured in the direction perpendicular to slip is a classical result 601 

already observed for tensile cracks (POWER et al., 1987; SCHMITTBUHL et al., 1995b, 602 

BOUCHAUD, 1997), indicating that the topography of the fault surface in the direction 603 

perpendicular to slip has not registered the effect of shear. Along slip, the general 604 

interpretation is that mechanical wear processes, such as frictional ploughing, cause striations 605 

that reduce the amplitude of the large scale roughness (POWER et al., 1987, 1988; POWER 606 

and TULLIS, 1991; POWER and DURHAM, 1997; SAGY et al., 2007) and accordingly the 607 

Hurst exponent. Nevertheless, our scaling analysis seems to indicate different mechanical 608 

processes responsible for the creation of fault topography at different spatial scales. 609 

Prior comparative studies of natural fault roughness based on 1D profilometry (POWER and 610 

TULLIS, 1991; LEE and BRUHN, 1996) suggest a change in scaling properties between large 611 

and short length scales. However, due to technical limitations, their measures were not 612 
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sufficiently accurate to decipher if this variation was related either to small-scale surface 613 

weathering of the fault scarp or to the faulting process itself. 614 

From laboratory experiments CHEN and SPETZLER (1993) suggest that the break in slope at 615 

length scales of several millimeters is caused by a change in the dominant mode of 616 

deformation from small-scale intergranular cracking to intragranular cracking at a larger 617 

scale. We think this interpretation does not apply to the Magnola and Vuache faults because 618 

the grain scale of these limestones is very small (< 0.1mm), well below the observed cross-619 

over length scale. 620 

Recently, SAGY et al. (2007) observed that faults with large cumulated slip display surfaces 621 

with elongate, quasi elliptical bumps at field scale and are polished at small scales. 622 

Conversely, fault with a small cumulative slip are rough on all scales. SAGY and BRODSKY 623 

(2008) proposed that the waviness of the large slip fault surface reflects variations of 624 

thickness of the cohesive layer under the slip surface formed as boudinage structures 625 

(JOHNSON and FLETCHER, 1994; SMITH, 1977; TWISS and MOORES, 1992, 626 

GOSCOMBE et al., 2004). Therefore, they evoke two different deformation mechanisms 627 

between large and small scales: abrasion caused by frictional sliding at the origin of the 628 

smoothing at small scales, and “boudinage” creating elongated bumps and depression at large 629 

scales. 630 

From our study of natural fault roughness, we observe large elongated bumps and depressions 631 

in slip direction on two different fault planes (Figures 9b, 10a-d). There is no evidence that 632 

the small segment, polished at small scale (Figure 10f), that connects to the main Vuache fault 633 

has accumulated more slip than the Magnola fault surface that is rough at all scales (Figure 634 

9b, c). Therefore, we propose that large elongated bumps and depressions of several meters in 635 

length with maximum amplitude of around 2 m may reflect the processes of lateral growth 636 

and branching that links together several fault surfaces, during all the stages of the evolution 637 
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of the fault zone, as suggested by LEE and BRUHN (1996) and LIBICKI and BEN-ZION 638 

(2005). 639 

At small scales, two different kinds of scaling regime are observed on the two fault surfaces, 640 

(Figures 11, 12), both being linked to mechanical wear process. Frictional sliding is expressed 641 

through ploughing of small asperities and is responsible for the small scale abrasional 642 

striations on the Magnola fault surface (Figure 9c). This mechanism is also responsible for the 643 

polishing of the Vuache fault surface below the centimeter scale (Figure 10f). One should 644 

keep in mind that only one hand sample was measured for each surface and therefore it is 645 

possible that differences of the scaling behavior between the two fault planes reflect spatial 646 

heterogeneity of core fault at small scales. Notably, on the Vuache fault, although the surface 647 

appears polished at the laboratory scale on the whole surface, zones with striations due to 648 

ploughing elements could be present. A more extensive study of fault roughness in several 649 

different faults should therefore bring more information on the mechanisms at work during 650 

faulting. 651 

 652 
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Table 1: Characteristics of the field and laboratory scanner devices. 815 

3D scanner 

device 

S10 GS100 LMS Z420i Ilris-3D Lab. 

Profilometer 

Company Trimble Trimble Riegl Optech Univ. 

Strasbourg 

Resolution 

(dx) 

0.5 mm 10 or 20 mm 20 mm 20 mm 20 or 24 μm 

Noise on the 

data 

0.9 mm 4.5 mm 10.2 mm 20 mm < 1 μm 

Acquisition 

speed 

70 pts/s 5000 pts/s 5000 pts/s 2500 pts/s 60 pts/s 

 816 

Table 2: Fault surfaces analyzed in this study. 817 

Fault Surface area, dx Scanner 

Vuache, SURF1 17 x 10 m, 20 mm GS100 

Vuache, SURF7 24 x 11 m, 30 mm GS100 

Vuache, SURF6 45 x 9 m, 20 mm LMS Z420i 

Vuache, SMALL 10 x 9 cm, 24 μm Lab. Profilometer 

Vuache, SURF-JPG 0.5 x 0.5 m, 1 mm S10 

Magnola, A32 35 x 15 m, 20 mm Optech 

Magnola, M2 7.2 x 4.5 cm, 20 μm Lab. Profilometer 

818 
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Appendix A 819 

function RoughSurf = Synthetic2DFault(N,H1,H2) 820 
  821 
% This Matlab(c) function creates a self-affine 2D surface, 822 
% with a directional anisotropy (courtesy of Hermine Bierme, 823 
% Univ. Paris V, France), when H1 is different from H2. 824 
% Input parameters: 825 
% N = size of the surface: (2^(N+1)+1) x (2^(N+1=+1) 826 
% Typically N must be between 8 and 11 when running on a 827 
desktop computer. 828 
% H1, H2: Hurst exponents in two perpendicular directions 829 
% must be positive, smaller than 1. 830 
% Output result: 831 
% RoughSurf: rough surface of size (2^(N+1)+1) x (2^(N+1=+1), 832 
% with two perpendicular directions of self-affinity 833 
% characterized by Hurst exponents H1 and H2, l1 = 1/H1 and 834 
% l2 = 1/H2 represent the eigen values of the anisotropy 835 
% diagonal matrix 836 
l1 = 1/H1; 837 
l2 = 1/H2; 838 
X = (-2*2^N:2:2*2^N)/(2^(N+1)); 839 
X(2^N+1) = 1/2^N; 840 
Y = (-2*2^N:2:2*2^N)/(2^(N+1)); 841 
Y(2^N+1) = 1/2^N; 842 
XX = X(ones(1,2*2^N+1),:); 843 
YY = Y(ones(1,2*2^N+1),:)'; 844 
clear X Y 845 
  846 
% rho is the pseudo-norm associated to the eigen values l1 and 847 
l2 848 
% rho(x,y)=(abs(x)^(2/l1) + abs(y)^(2/l2) )^(1/2) 849 
rho = sqrt(abs(XX).^(2/l1)+abs(YY).^(2/l2)); 850 
clear XX YY 851 
  852 
%phi is the spectral density of the field built from rho 853 
phi = rho.^(1 + (l1+l2)/2); 854 
clear rho 855 
  856 
% W = Fourier transform of the anisotropic Gaussian field 857 
Z = randn(2*2^N+1,2*2^N+1); 858 
W = fftshift(fft2(Z))./phi; 859 
clear Z 860 
T = real(ifft2(ifftshift(W))); 861 
RoughSurf = T-T(2^N+1,2^N+1); 862 
  863 
% Plot the 2D rough surface 864 
imagesc(RoughSurf); 865 
axis equal 866 
axis tight 867 
 868 

869 
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Figures and Captions 870 

 871 

Figure 1. Digital Elevation Models (DEM) of 2D synthetic self-affine surfaces (up) and 1D 872 

profiles (down) generated using the algorithm of the appendix. (a) Surface with an isotropic 873 

self-affine property characterized by a Hurst exponent of 0.8. (b) Anisotropic self-affine 874 

surface with two Hurst exponents ( 6.0// =H  and 8.0=⊥H ) in perpendicular directions. (c) 875 

Representative 1D profiles extracted in two perpendicular directions of surface (b). Inset: 876 

magnified portion of a profile along the //H  direction (parallel to the striations), which has a 877 

statistically similar appearance to the entire profile when using a rescaling δx → λ δx, δz → 878 

λHδz. 879 

 880 

Figure 2. Outputs of the six signal processing techniques applied on the data of the 881 

anisotropic self-affine surface shown in Figure 1b. (a) Root-mean-square correlation (RMS), 882 

(b) maximum-minimum height difference (MM), (c) correlation function (COR), (d) RMS 883 

correlation function (RMS-COR), (e) Fourier power spectrum (FPS), (f) Wavelet power 884 

spectrum (WPS). The inset in (d) displays a polar plot of H  obtained by the RMS-COR 885 

method and allowing then to determine the azimuth dependence of H . The black points 886 

correspond to the Hurst exponents for the two profiles shown on this plot. 887 

 888 

Figure 3. Comparisons between the “input” Hurst exponents introduced in the construction of 889 

isotropic fractional Brownian surfaces and the “output” exponent measured on these surfaces 890 

using the six independent signal processing techniques. The effect of system size is also 891 

studied. (a) Root-mean-square correlation (RMS), (b) maximum-minimum height difference 892 

(MM), (c) correlation function (COR), (d) RMS correlation function (RMS-COR), (e) Fourier 893 
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power spectrum (FPS), (f) Wavelet power spectrum (WPS). The gray line in (a), (b), and (c) 894 

indicate for which input exponent the error in the estimation is closest to zero. 895 

 896 

Figure 4. Intrinsic errors in the estimation of the Hurst exponents for anisotropic synthetic 897 

surfaces characterized by two Hurst exponents //inputH  and ⊥inputH  in perpendicular directions 898 

(2049x2049 points, similar to Figure 1b). For each signal processing method, histogram plots 899 

are represented where the horizontal axis contains the Hurst exponents //inputH  and ⊥inputH  900 

used as inputs to generate the synthetic surface. The vertical axis represents the difference 901 

between the input exponent and the estimated output Hurst exponent, using the six different 902 

methods. For each method, two histogram plots are represented: the upper one shows the 903 

difference ( //// outputinput HH − ) and the lower one the difference ( ⊥⊥ − outputinput HH ). The black 904 

top surfaces on the histogram bars indicate a negative difference (overestimation of the output 905 

exponent) and the color ones a positive difference (underestimation of the output exponent). 906 

(a) Root-mean-square correlation (RMS), (b) maximum-minimum height difference (MM), 907 

(c) correlation function (COR), (d) RMS correlation function (RMS-COR), (e) Fourier power 908 

spectrum (FPS), (f) Wavelet power spectrum (WPS). 909 

 910 

Figure 5. Polar plots of the angular dependence of the two Hurst exponents //H  and ⊥H  for 911 

synthetic anisotropic surfaces with principal directions oriented at angles °= 0//θ  and 912 

°=⊥ 90θ . The Hurst exponents ( )θ⊥//,H , as defined by the slope H=β  in Figure 2d, were 913 

calculated on series of 1D profiles extracted at an angle θ  on 2049x2049 points surfaces. 914 

Three series of simulations are represented here for three values of //H  in the range [0.7 – 915 

0.9]. For each polar plot, the different curves corresponds to successive values of ⊥H . The 916 
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dashed lines correspond to the values of the output Hurst exponent measured with the RMS 917 

correlation method (center dashed circle: 2.0=H , outer dashed circle: 1=H ). 918 

 919 

Figure 6. Quantification of the intrinsic errors on the estimation of the anisotropy of the 920 

surface ( ⊥− HH // ). The difference between the “input” anisotropy (difference between the 921 

two “input” Hurst exponents) introduced in synthetic surfaces (2049x2049 points, similar to 922 

Figure 1b), minus the “output” anisotropy is represented for the six signal processing 923 

methods: (a) Root-mean-square correlation (RMS), (b) maximum-minimum height difference 924 

(MM), (c) correlation function (COR), (d) RMS correlation function (RMS-COR), (e) Fourier 925 

power spectrum (FPS), (f) Wavelet power spectrum (WPS). Bars with black top surface 926 

indicate an overestimation (“input” anisotropy - “ouput” anisotropy < 0) and colored top 927 

surfaces indicate an underestimation (“input” anisotropy - “ouput” anisotropy > 0). Gray bars 928 

indicate isotropic surfaces ( ⊥= HH // ), thus without errors. 929 

 930 

Figure 7. Influence of an additional noise on the self-affinity property of an anisotropic 931 

synthetic surface (513x513 points) characterized by two Hurst exponents ( 6.0// =H  and 932 

8.0=⊥H ) in perpendicular directions. The Gaussian white noise is characterized by a 933 

standard deviation two hundred times smaller than the roughness amplitude of the synthetic 934 

surface. (a) Example of 1D profiles extracted in two perpendicular directions of an “ideal” 935 

surface. (b) The same profiles but with an additional noise. Note that altered profiles appear 936 

more jagged or rougher at small scale compared the noise-free profiles. Analyses of those 937 

altered surfaces are performed with the six independent self-affine methods: (c) Root-mean-938 

square correlation (RMS), (d) maximum-minimum height difference (MM), (e) correlation 939 

function (COR), (f) RMS correlation function (RMS-COR), (g) Fourier power spectrum 940 

(FPS), (h) Wavelet power spectrum (WPS). For each method, except the RMS-COR function, 941 
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two plots are represented: the upper plot shows the difference between the noise-free surface 942 

and the altered surfaces in the direction of the largest exponent and the lower one in direction 943 

of the smallest exponent. For the RMS-COR technique, the upper plot represents the 944 

difference between the noise-free and the altered surface in both directions: perpendicular and 945 

parallel to striations. The lower subplot displays two polar plot of H  obtained with the noise-946 

free and the biased surfaces. Note that the flattening of the scaling behavior at large scales is 947 

related to a finite size effect. 948 

 949 

Figure 8. Influence of the interpolation of missing data on the estimation of the Hurst 950 

exponent. (a) Synthetic surface (513x513points) with H = 0.8. (b) Same surface with 5% of 951 

holes (white dashed lines) that have been interpolated. c) 3D view of the surface in a) with the 952 

holes. (d) RMS correlation function (RMS-COR), (e) Fourier power spectrum (FPS), (f) 953 

Wavelet power spectrum (WPS). The different curves on each plot present the result of the 954 

analysis for five different percentages of missing points (5%, 10%, 20%, 40%). 955 

 956 

Figure 9. 3D scanner data of the Magnola fault slip surface at different scales. (a) Photograph 957 

of the fault surface, showing significant weathering and covering by vegetation. The black 958 

polygon corresponds to the surface shown below. (b) Digital Elevation Model (DEM) of the 959 

surface A32 (Table 2). The LIDAR data contain 799,830 points, sampled on a roughly regular 960 

grid of ~40 x ~40 mm. The measurements were performed on a ~20 x ~20 mm grid and then 961 

averaged on a coarser grid. The resolution of the elevation is 20 mm. The fault surface shows 962 

elongated bumps (red) and depressions (blue), dipping at approximately 85°, and indicating a 963 

main normal slip motion. The corrugation, with maximum amplitude of around 2.2 m, can be 964 

observed at all scales down to the measurement resolution. (c) DEM of hand sample M2 965 

(Table 2) that contains 3999 x 3120 points on a regular mesh of 20 x 20 μm2. The surface 966 
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contains grooves (blue) and ridges (red) aligned parallel to slip and with maximum amplitude 967 

of around 1.2 mm. 968 

 969 

Figure 10. 3D data of the Vuache fault slip surface at all scales. (a) Photograph of the 970 

outcrop, where the white boxes correspond to the surfaces shown in (c) and (d). (b) Lateral 971 

photograph of the slip plane that highlights its remarkable waviness. (c-d) Fault surface 972 

topography of SURF1 and SURF6 (Table 2). Each surface contains approximately 450,000 973 

points sampled on a constant grid of 20 x 20 mm. The resolution of the elevation is 10.2 mm 974 

for (c) and 4.5 mm for (d), respectively. The surfaces show large elongated bumps (red) and 975 

depressions (blue) with maximum amplitude of around 2 m associated with linear striations of 976 

smaller size (grooves and ridges). Both geometrical patterns dipping at 15-25° indicate a 977 

strike-slip motion with a small normal component. (e) DEM of the bumpy zone SURF-JPG 978 

(Table 2) that contains 107,606 points sampled on a regular grid of 1 x 1 mm. Note the 979 

vertical exaggeration. The resolution of the elevation is 0.9 mm. (f) DEM of the hand sample 980 

SMALL (Table 2) that contains 4099 x 3333 points on constant grid of 24 x 24 μm2. The 981 

resolution of the elevation is less than one micrometer. The scans clearly show a smoothing of 982 

the roughness from large to small scales. Large fault surface measured on the field have 983 

asperities over the entire range of observed scales down to the measurement resolution. 984 

Conversely, the laboratory data show that the surface below the centimeter scale appears more 985 

polished and only smooth decimeter ridges persist. 986 

 987 

Figure 11. Roughness scaling analysis from the best preserved outcrops of the Magnola fault 988 

plane, scanned using ground based LIDAR (surface A32, Figure 9b), or using the laboratory 989 

profilometer (hand sample M2, Figure 9c). (a-b) Fourier Power Spectrum (FPS), and (c-d) 990 

Wavelet power spectrum (WPS) along two directions, parallel and perpendicular to the 991 
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direction of slip, are represented in log-log plots. Power-law fits (black dotted line) are 992 

performed for each curve and the corresponding slopes (β ) and roughness exponents ( H ) are 993 

indicated above the spectra. The inset displays an example of the amplitude ( Z ) and the 994 

wavelength (λ ) of a rough profile. Contours (red lines) of constant amplitude ( Z ) to 995 

wavelength (λ ) ratio, reflecting a self-similar behavior, are provided to allow easier 996 

interpretation of the spectra. Black arrows indicate the level of noise of the LIDAR. (e) 997 

Surface anisotropy revealed by the angular variation of the Hurst exponent determined by the 998 

RMS correlation function method. The polar plot of H on the left and the right sides 999 

correspond to data of the field surface and hand sample shown on Figure 9, respectively. 1000 

 1001 

Figure 12. Roughness scaling analysis from five surfaces (Figure 10, Table 2) of the Vuache 1002 

fault, covering 6 orders of magnitude of frequencies or wavelengths (40 μm to approximately 1003 

40 m). The data collected contain four surfaces (blue and green curves) that have been 1004 

scanned using LIDAR and one hand sample (magenta curve) measured by laboratory 1005 

profilometer. (a-b) Fourier power spectrum (FPS) and (c-d) Wavelet power spectrum (WPS) 1006 

along two directions, parallel and perpendicular to the direction of slip, are represented in log-1007 

log plots. Power law fits (black dotted line) are shown for each curve and the corresponding 1008 

slopes (β ) and roughness exponents ( H ) are indicated next to the spectra. Each curve is an 1009 

average over a series of parallel profiles extracted from the DEM shown on Figure 10. The 1010 

level of noise for the Lidar scanners is estimated as the height of the flat part of the spectrum 1011 

at small length scales and is indicated by the black arrows. The flattening of the scaling 1012 

behavior at large scales is related to a finite size effect. Contours (red lines) of constant 1013 

amplitude ( Z ) to wavelength (λ) ratio, reflecting a self similar surface, are also indicated a 1014 

guide for the eye. The inset displays an example of the amplitude ( Z ) and the wavelength 1015 

(λ ) of a rough profile. (e) Roughness anisotropy revealed by the angular variation of the 1016 
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Hurst exponent determined by the RMS-COR method. The polar plots of H  on the left, in the 1017 

center and on the right correspond to data of the field surface, the intermediate scale section 1018 

and hand sample, respectively (see Figure 10). 1019 
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