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Abstract – The finite derivation type property is a homotopical condition on monoids. Craig Squier

has proved that a monoid must satisfy it in order to admit a presentation by a finite and convergent

rewriting system. We generalise the property to n-categories presented by polygraphs and we recover

Squier’s theorem when n is 1. However, we prove that this result does not hold anymore for categories

of dimension 2 and above. We study several examples of 2-categories presented by finite convergent

polygraphs, with or without the property of finite derivation type, in order to illustrate sample cases.
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INTRODUCTION

Monoids with finite derivation type

Craig Squier has proved that, if a monoid admits a presentation by a finite and convergent (i.e. terminat-

ing and confluent) word rewriting system [5], then it has finite derivation type [19]. This is a homotopical

property of the monoid, independent of the chosen finite presentation. Squier has used it to prove that

finite convergent word rewriting systems did not provide a universal way to decide equality in monoids

presented by generators and relations.

The property of finite derivation type is defined on the Squier’s combinatorial 2-complex associated

to the word rewriting system: its vertices are the words, its arrows are generated by the rewriting steps

and their inverses, its 2-cells are the equivalence of rewriting paths (by commutation of rules that are

applied on disjoint parts of a word). Then the presentation (and the monoid) has finite derivation type

when one can fill all the holes of the complex by filling finitely many.

The property of finite derivation type can be interpreted computationally: it means that, in a word

rewriting system with this property, there are only finitely many choices that can be made during com-

putation. These choices correspond to the critical branchings of the rewriting system, where two rules

can be applied at the same place of a given word. Thus, the finite derivation type property ensures that

making a finite number of choices is sufficient to build a rewriting strategy that makes the computation

deterministic.

Generalisation to n-categories

There exist many types of rewriting systems, acting, for example, on terms, on elements of some sort

of algebra or on topological objects. For instance, permutations admit a graphical presentation by one

generator and two (directed) relations:

→ and → .



Introduction

It turns out that word rewriting systems and this presentation of permutations are instances of the same

objects: polygraphs (or computads), which are presentations by “generators” and “relations” of some

higher-dimensional categories [20, 6], see also [21, 22].

Indeed, monoids and word rewriting systems are special instances of 1-categories and 2-polygraphs,

respectively. And many usual types of rewriting systems have interpretations as 3-polygraphs, seen as

presentations of 2-categories, including the presentation of permutations, term rewriting systems [6, 13,

10], Petri nets [12] or formal proofs of propositional and linear logics [11].

The purpose of this document is to formalise the property of finite derivation type for n-categories

and to answer the following question:

For an n-category, does having a finite convergent presentation by an (n + 1)-polygraph

implies that it has finite derivation type?

As we have seen, Squier has proved that this was true when n is 1. Until now, several examples of finite

and convergent 3-polygraphs were studied and it was observed that all of them had finite derivation type.

However, it turns out that the answer is negative.

Overview of the document

In this document, we assume basic knowledge of theories of categories, of n-categories and of rewriting.

Good references to these fields include the books written by Saunders Mac Lane [15], by Eugenia Cheng

and Aaron Lauda [7] and by Franz Baader and Tobias Nipkow [1].

In Section 1 we briefly recall notations and representations of n-categories. Then, in 1.4, we define

polygraphs and presentations of n-categories by polygraphs, as in [6] and [16].

Section 2 contains several notions and tools we need, not directly to define the property of finite

derivation type or to prove the main results, but to study the examples. In particular, we recall the

definition of context of an n-category in 2.1 and introduce the notions of module over an n-category and

of derivation of an n-category into a module, respectively in 2.3 and in 2.4.

In Section 3, we introduce the notion of track n-category, which is an n-category whose n-cells are

invertible, or an (n − 1)-category enriched in groupoid. This generalises the notion of track category,

used as an algebraic model of the homotopy 2-type [2]. The fundamental groupoid of the Squier’s

combinatorial 2-complex of a word rewriting system is a monoid enriched in groupoid [8]. For n-

polygraphs, we use track n-categories to define homotopy relations, yielding the notion of homotopy

basis of an n-category: a set of (n + 1)-cells that identifies all the parallel n-cells. Then an n-category

has finite derivation type when it admits a finite homotopy basis. In practice, we define this property on

polygraphs and prove Proposition 3.3.4: if two n-polygraphs present the same (n − 1)-category, both

have finite derivation type or neither has.

In Section 4, we study the links between the property of finite derivation type and the rewriting

properties of polygraphs. In particular, we prove Proposition 4.3.5: if a finite convergent polygraph

has a finite set of critical branchings, then it has finite derivation type. We get Squier’s result [19] as a

consequence since a finite convergent word rewriting system has a finite number of critical branchings.

Finally, Theorem 4.3.9 asserts that this result does not generalise to higher dimensions, as proved by a

counter-example that is studied in the final part:

2



1. Higher-dimensional categories presented by polygraphs

Theorem. For every natural number n with n ≥ 2, there exists a n-category which does

not have finite derivation type and admits a presentation by a finite convergent (n + 1)-

polygraph.

In Section 5, we examine the case of 2-categories presented by 3-polygraphs. We give a classification

of their critical branchings and we use it to get additional sufficient conditions for a finite convergent

3-polygraph to have finite derivation type. Finally, we study three examples of finite and convergent

3-polygraph, in order to illustrate sample cases:

(5.2) The 3-polygraph of monoids has a finite number of critical branchings and, thus, has finite deriva-

tion type. We use this result to rediscover Mac Lane’s coherence theorem [15]: in a monoidal

category, all the diagrams built using the monoidal structure commute.

(5.4) The 3-polygraph of permutations has an infinite number of critical branchings. However, it was

observed by Yves Lafont [13] that, for confluence study, only a finite number of them were useful.

Following the same intuition, we prove that, despite the infinite number of critical branchings, this

3-polygraph has finite derivation type.

(5.5) The final 3-polygraph we study is the proof of Theorem 4.3.9: it is finite and convergent but

does not have finite derivation type. This 3-polygraph is an artificial counter-example, yet it has

a topological flavour: it presents a 2-category whose morphisms could be interpreted as (open-

closed, planar) necklaces with pearls, considered up to homotopy.

1. HIGHER-DIMENSIONAL CATEGORIES PRESENTED BY POLYGRAPHS

1.1. Generalities on n-categories and n-functors

Throughout this document, we only consider small, strict n-categories and strict n-functors between

them. We denote by Catn the (large) category they form.

1.1.1. Vocabulary and notations. If C is an n-category, we denote by Ck the set of k-cells of C. If

F : C → D is an n-functor, we denote by Fk the corresponding map from Ck to Dk.

In an n-category, sk and tk denote the k-source and k-target maps. If f is a k-cell, sk−1(f) and

tk−1(f) are respectively called its source and target and respectively denoted by s(f) and t(f). The

source and target maps satisfy the globular relations:

si ◦ si+1 = si ◦ ti+1 and ti ◦ si+1 = ti ◦ ti+1.

Two cells f and g are parallel when they have same source and same target. A pair (f, g) of parallel

k-cells is called a k-sphere. The boundary of a k-cell is the (k− 1)-sphere ∂f = (s(f), t(f)). The source

and target maps are extended to a k-sphere γ = (f, g) by s(γ) = f and t(γ) = g.

A pair (f, g) of k-cells of C is i-composable when ti(f) = si(g) holds; when i = k − 1, one simply

says composable. The set of i-composable pairs of k-cells is denoted by Ck ⋆i Ck. The i-composite

of (f, g) is denoted by f ⋆i g, i.e.in the diagrammatic direction. The compositions satisfy the exchange

relation given, for every j < k and every possible cells f, f ′, g and g ′ by:

(f ⋆j f ′) ⋆k (g ⋆j g ′) = (f ⋆k g) ⋆j (f ′ ⋆k g ′).
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1. Higher-dimensional categories presented by polygraphs

If f is a k-cell, we denote by Idf or 1f its identity (k + 1)-cell and, by abuse, all the higher-dimensional

identity cells it generates. When 1f is composed with cells of dimension k + 1 or higher, we abusively

denote it by f to make expressions easier to read. A cell is degenerate when it is an identity cell. For

k ≤ n, a k-category C can be seen as an n-category, with only degenerate cells above dimension k.

1.1.2. Graphical representations. Low-dimensional cells are written u : p → q, f : u ⇒ v, A : f ⇛ g

and pictured as usual (and so are n-categories, omitting the degenerate cells):

p p
u

// q p

u

!!

v

==f

¦¼

q p

u

!!

v

==f

¹*

g

s¨

A_%9 q.

For readability, we also depict 3-cells as "rewriting rules" on 2-cells:

p

u

ÃÃ

v

>>f

¦¼
q

A

≡⇛ p

u

ÃÃ

v

>>
g

¦¼
q.

For 2-cells, circuit-like diagrams are an alternative representations, where 0-cells are parts of the plane,

1-cells are lines and 2-cells are points, inflated for emphasis:

v

u

fp q

v

u

f

v

u

gp
A _%9 qp q

1.2. Standard cells and spheres

1.2.1. The suspension functor. For every natural number n, the suspension functor

Sn : Catn → Catn+1

informally lifts all the cells by one dimension, adding a formal 0-source and a formal 0-target for all of

them; thus, in the (n + 1)-category one gets, one has exactly the same compositions as in the original

one. More formally, given an n-category C, the (n + 1)-category SnC has the following cells:

(SnC)0 = {−,+} and (SnC)k+1 = Ck ∐ {−,+} .

Every cell has 0-source − and 0-target +. The (k+1)-source and (k+1)-target of a non-degenerate cell

are its k-source and k-target in C. The (k + 1)-composable pairs are the k-composable ones of C, plus

pairs where at least one of the cells is an identity of − or +.
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1.3. Adjoining and collapsing cells

1.2.2. The standard n-cell and n-sphere. By induction on n, we define the n-categories En and Sn,

respectively called the standard n-cell and the standard n-sphere. Informally, we consider them as the

n-categorical equivalents of the standard topological n-ball and n-sphere, used to build the n-categorical

equivalents of (relative) CW-complexes.

The standard 0-cell E0 is defined as any chosen single-element set and the standard 0-sphere as any

chosen set with two elements. Then, if n ≥ 1, the n-categories En and Sn are defined as the suspensions

of En−1 and Sn−1:

En = Sn−1(En−1) and Sn = Sn−1(Sn−1).

For coherence, we define S−1 as the empty set. Thus, the standard n-cell En and n-sphere Sn have

two non-degenerate k-cells e−
k and e+

k for every k in {0, . . . , n − 1}, plus a non-degenerate n-cell en

in En. Using the cellular representations, the standard cells E0, E1, E2 and E3 are respectively pictured

as follows (for S−1, S0, S1 and S2, one removes the top-dimensional cell):

e0 e−
0

e1
// e+

0
e−

0

e−
1

""

e+
1

<<
e2

¦¼

e+
0

e−
0

e−
1

""

e+
1

<<
e−

2

¹*

e+
2

s¨

e3_%9 e+
0
,

If C is an n-category then, for every k in {0, . . . , n}, the k-cells and k-spheres of C are in bijective

correspondence with the n-functors from Ek to C and from Sk to C, respectively. When the context is

clear, we use the same notation for a k-cell or k-sphere and its corresponding n-functor.

As a consequence, if I is a set, the I-indexed families (fi)i∈I of k-cells and k-spheres of C are in

bijective correspondence with the n-functors from I ·Ek to C and from I ·Sk to C, respectively. We recall

that, for a set X and an n-category D, the copower X · D is the coproduct n-category
∐

x∈XD, whose

set of k-cells is the product X × Dk.

1.2.3. The inclusion and collapsing n-functors. For every n, the inclusion n-functor Jn and the col-

lapsing n-functor Pn

Jn : Sn → En+1 and Pn : Sn → En

are respectively defined as the canonical inclusion of Sn into En+1 and as the n-functor sending both e−
n

and e+
n to en, leaving the other cells unchanged.

1.3. Adjoining and collapsing cells

1.3.1. Definition. Let C be an n-category, let k be in {0, . . . , n − 1}, let I be a set and let Γ : I · Sk → C

be an n-functor. The adjoining of Γ to C and the collapsing of Γ in C are the n-categories respectively

denoted by C[Γ ] and C/Γ and defined by the following pushouts in Catn:

I · Sk
Γ

//

I·Jk

²²

c©

C

²²

I · Ek+1
// C[Γ ]

I · Sk
Γ

//

I·Pk

²²

c©

C

²²

Ek
// C/Γ .
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1. Higher-dimensional categories presented by polygraphs

When k = n, one defines C[Γ ] by seeing C as an (n + 1)-category with degenerate (n + 1)-cells only.

By abuse, one denotes a sphere of Γ and the induced cell of C[Γ ] the same way.

To be more explicit, the n-category C[Γ ] has the same cells as C up to dimension k; its (k + 1)-cells

are all the formal composites made of the (k + 1)-cells of C, plus one extra (k + 1)-cell from Γ(i, e−
k) to

Γ(i, e+
k); above dimension k + 1, its cells are the ones of C, plus the identities of each extra cell.

The n-category C/Γ has the same cells as C up to dimension k − 1; its k-cells are the equivalence

classes of k-cells of C, for the congruence relation generated by Γ(i, e−
k) ∼ Γ(i, e+

k), for every i; above

dimension k, its cells are the formal composites of the ones of C, but with sources and targets considered

modulo the previous congruence.

1.3.2. Extension of an n-functor. Let C and D be n-categories and let Γ : I · Sk → C be an n-

functor. Then, by universal property of C[Γ ], one extends an n-functor F : C → D to a unique n-functor

F : C[Γ ] → D by fixing, for every γ in Γ , a (k + 1)-cell F(γ) in D, provided the following two equalities

hold:

s(F(γ)) = F(s(γ)) and t(F(γ)) = F(t(γ)).

1.3.3. Occurrences. Here we see the group Z of integers as an n-category: it has one cell in each

dimension up to n − 1 and Z as set of n-cells; all the compositions of n-cells are given by the addition.

Let C be an n-category and let Γ : I · Sk → C be an n-functor. We denote by ||·||Γ the n-functor

from C[Γ ] to Z defined by:

||f||Γ =

{
1 if f ∈ Γ

0 otherwise.

For every cell f, one calls ||f||Γ the number of occurrences of cells of Γ in f. Indeed, intuitively, ||f||Γ is

the number of (k + 1)-cells of Γ that f contains.

The set of cells of Γ in f is the subset {f}Γ of Γ that consists of all the cells γ of Γ such that ||f||γ ≥ 1

holds. It is, intuitively, the set of cells of Γ required to write f. This construction can also be seen as an

n-functor. One considers the set P(Γ) of parts of Γ as an n-category this way: it has one cell in each

dimension up to n − 1 and parts of Γ as n-cells; all the compositions of n-cells are given by the union.

Then {·}Γ is the n-functor from C[Γ ] to P(Γ) defined by:

{f}Γ =

{
{f} if f ∈ Γ

∅ otherwise.

1.3.4. The n-category presented by an (n + 1)-category. Let C be an (n + 1)-category. If f is an

(n + 1)-cell of C, then ∂f is an n-sphere of C. Thus, the set Cn+1 of (n + 1)-cells of C yields an

(n + 1)-functor from Cn+1 · Sn to the underlying n-category of C: the n-category presented by C is the

n-category denoted by C one gets by collapsing the (n + 1)-cells of C in its underlying n-category.

1.4. Polygraphs and presentations of n-categories

Polygraphs (or computads) are presentations by “generators” and “relations” of some higher-dimensional

categories [20, 6], see also [21, 22]. We define n-polygraphs by induction on the natural number n.
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1.4. Polygraphs and presentations of n-categories

The category Pol0 of 0-polygraphs and morphisms between them is the one of sets and maps. A

0-polygraph is finite when it is finite as a set. A 0-cell of a 0-polygraph is one of its elements. The free

0-category functor is the identity functor Pol0 → Cat0. Now, let us fix a non-zero natural number n and

let us assume that we have defined the category Poln−1 of (n − 1)-polygraphs and morphisms between

them, finite polygraphs, cells of a polygraph and the free (n − 1)-category functor Poln−1 → Catn−1,

sending an (n − 1)-polygraph Σ to the (n − 1)-category Σ∗.

1.4.1. n-polygraphs. An n-polygraph is a pair Σ = (Σn−1, Σn) made of an (n − 1)-polygraph Σn−1

and a family Σn of (n − 1)-spheres of the (n − 1)-category Σ∗
n−1.

An n-cell of Σ is an element of Σn and, if k < n, a k-cell of Σ is a k-cell of the (n − 1)-

polygraph Σn−1. The set of k-cells of Σ is abusively denoted by Σk, thus identifying it to the k-polygraph

underlying Σ. An n-polygraph is finite when it has a finite number of cells in every dimension. The size

of a k-cell f in Σ∗, denoted by ||f||, is the natural number ||f||Σk
, giving the number of k-cells of Σ that f

is made of. For 1-cells and 3-cells, we also use |·| and |||·||| instead of ||·||.

The original paper [6] contains an equivalent description of n-polygraphs, where they are defined as

diagrams

Σ0 Σ1

s0,t0
qqqqq

xxqqqqq ι1

²²

(· · · )

s1,t1
ppppp

xxppppp

Σn−1

sn−1,tn−1
ooooo

wwooooo
ιn−1

²²

Σn

sn,tn
ppppp

wwppppp

Σ0 Σ∗
1

s0,t0

oo (· · · )
s1,t1

oo Σ∗
n−1

sn−1,tn−1

oo

of sets and maps such that, for any k in {0, . . . , n − 1}, the following two conditions hold:

• The diagram Σ∗
0 Σ∗

1
s0

oo

t0
oo

(· · · )
s1

oo

t1
oo Σ∗

k
sk−1

oo

tk−1
oo

is a k-category.

• The diagram Σ∗
0 Σ∗

1
s0

oo

t0
oo

(· · · )
s1

oo

t1
oo Σ∗

k
sk−1

oo

tk−1
oo

Σk+1
sk

oo

tk
oo

is a (k + 1)-graph.

1.4.2. Morphisms of n-polygraphs. Let Σ and Ξ be two n-polygraphs. A morphism of n-polygraphs

from Σ to Ξ is a pair F = (Fn−1, Fn) where Fn−1 is a morphism of (n−1)-polygraphs from Σn−1 to Ξn−1

and where Fn is a map from Σn to Ξn such that the following two diagrams commute:

Σn
Fn

//

sn−1

²²

c©

Ξn

sn−1

²²

Σ∗
n−1 F∗

n−1

// Ξ∗
n−1.

Σn
Fn

//

tn−1

²²

c©

Ξn

tn−1

²²

Σ∗
n−1 F∗

n−1

// Ξ∗
n−1.

Alternatively, if Σn : I · Sn−1 → Σ∗
n−1 and Ξn : J · Sn−1 → Σ∗

n−1 are seen as (n − 1)-functors, then Fn
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1. Higher-dimensional categories presented by polygraphs

is a map from I to J such that the following diagram commutes in Catn−1:

I · Sn−1
Σn

//

Fn ·1Sn−1

²²

c©

Σ∗
n−1

F∗
n−1

²²

J · Sn−1
Ξn

// Ξ∗
n−1.

We denote by Poln the category of polygraphs and morphisms between them.

1.4.3. The free n-category functor. Let Σ be an n-polygraph. The n-category freely generated by Σ

is the n-category Σ∗ defined as follows:

Σ∗ = Σ∗
n−1[Σn].

This construction extends to an n-functor (·)∗ : Poln → Catn called the free n-category functor.

1.4.4. The n-category presented by an (n + 1)-polygraph. Let Σ be a (n + 1)-polygraph. The n-

category presented by Σ is the n-category denoted by Σ and defined as follows:

Σ = Σ∗
n/Σn+1.

Two n-polygraphs are Tietze-equivalent when the (n−1)-categories they present are isomorphic. If C is

an n-category, a presentation of C is an (n+1)-polygraph Σ such that C is isomorphic to the n-category Σ

presented by Σ. One says that an n-category C is finitely generated when it admits a presentation by an

(n + 1)-polygraph Σ whose underlying n-polygraph Σn is finite. One says that C is finitely presented

when it admits a finite presentation.

1.4.5. Example : a presentation of the 2-category of permutations. The 2-category Perm of permu-

tations has one 0-cell, one 1-cell for each natural number and, for each pair (m,n) of natural number, its

set of 2-cells from m to n is the group Sn of permutations if m = n and the empty set otherwise. The

0-composition of 1-cells is the addition of natural numbers. The 0-composition of two 2-cells σ ∈ Sm

and τ ∈ Sn is the permutation σ ⋆0 τ defined by:

σ ⋆0 τ(i) =

{
σ(i) if 1 ≤ i ≤ n,

τ(i − n) otherwise.

Finally the 1-composition of 2-cells is the composition of permutations. The 2-category Perm is pre-

sented by the 3-polygraph with one 0-cell, one 1-cell, one 2-cell, pictured by , and the following two

3-cells:

⇛ and ⇛ .
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2. Contexts, modules and derivations of n-categories

2. CONTEXTS, MODULES AND DERIVATIONS OF n-CATEGORIES

2.1. The category of contexts of an n-category

Throughout this section, n is a fixed natural number and C is a fixed n-category.

2.1.1. Contexts of an n-category. A context of C is a pair (x,C) made of an n-sphere x of C and an

n-cell C in C[x] such that ||C||x = 1. We often denote by C[x], or simply by C, such a context.

Let x and y be n-spheres of C and let f be an n-cell in C[x] such that ∂f = y holds. We denote by

C[f] the image of a context C[y] of C by the functor

C[y] → C[x]

defined by extending the identity n-functor of C with y 7→ f.

2.1.2. The category of contexts. The category of contexts of C is denoted by CC and defined as follows:

• Its objects are the n-cells of C.

• If f and g are n-cells of C, then the morphisms of CC from f to g are the contexts C[∂f] of C such

that C[f] = g holds.

• If C : f → g and D : g → h are morphisms of CC then D ◦ C : f → h is D[C].

• The identity context If on an n-cell f of C is the context ∂f[∂f].

When Σ is an n-polygraph, one uses CΣ instead of CΣ∗.

2.1.3. Proposition. Every context C of C[x] decomposes as follows:

C[x] = fn ⋆n−1 (fn−1 ⋆n−2 · · · (f1 ⋆0 x ⋆0 g1) · · · ⋆n−2 gn−1) ⋆n−1 gn,

where, for every k in {1, . . . , n}, fk and gk are n-cells in C. Moreover, one can chose these cells so

that fk and gk are (the identities of) k-cells.

Proof. The set of n-cells f of C[x] such that ||f||x = 1 is a quotient of the following inductively defined

set X:

• The n-cell x is in X.

• If C is in X and f is an n-cell of C such that ti(f) = si(C) holds for some i, then f ⋆i C is in X.

• If C is in X and f is a n-cell of C such that ti(C) = si(f) holds for some i, then C ⋆i f is in X.

Using the associativity and exchange relations satisfied by the compositions of C, one can order these

successive compositions to reach the required shape, or to reach the same shape with fk and gk being

identities of k-cells.
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2. Contexts, modules and derivations of n-categories

2.1.4. Whiskers. A whisker of C is a context C[x] with a decomposition

C[x] = fn−1 ⋆n−2 · · · (f1 ⋆0 x ⋆0 g1) · · · ⋆n−2 gn−1

such that, for every k in {1, . . . , n − 1}, fk and gk are k-cells. We denote by WC the subcategory of CC

with the same objects and with whiskers as morphisms. When Σ is an n-polygraph, we write WΣ instead

of WΣ∗.

2.1.5. Proposition. Let Σ be an n-polygraph and let f be an n-cell of Σ∗ with size k ≥ 1. Then there

exist n-cells γ1, . . . , γk in Σ and whiskers C1, . . . , Ck of Σ∗ such that f decomposes as follows:

f = C1[γ1] ⋆n−1 · · · ⋆n−1 Ck[γk].

Proof. We proceed by induction on the size of the n-cell f.

If it has size 1, then it contains exactly one n-cell γ of Σ, possibly composed with other ones of

lower dimension. Using the relations satisfied by compositions in an n-category, one can write f as C[γ],

with C a context of Σ∗. Moreover, this context must be a whisker, since f has size 1.

Now, let us assume that we have proved that every n-cell with size at most k, for a fixed non-zero

natural number k, admits a decomposition as in Proposition 2.1.5. Then let us consider an n-cell f with

size k + 1. Since ||f|| ≥ 2 and by construction of Σ∗ = Σ∗
n−1[Σn], one gets that f can be written g ⋆i h,

where (g, h) is a pair of i-composable n-cells of Σ∗, for some i in {0, . . . , n − 1}, with ||g|| and ||h||

at least 1. One can assume that i = n − 1 since, otherwise, one considers the following alternative

decomposition of f, thanks to the exchange relation between ⋆i and ⋆n−1:

f = (g ⋆i s(h)) ⋆n−1 (t(g) ⋆i h) .

Since ||f|| = ||g|| + ||h||, one must have ||g|| ≤ k and ||h|| ≤ k. We use the induction hypothesis to

decompose g and h as in 2.1.5, where j denotes ||g||:

g = C1[γ1] ⋆n−1 · · · ⋆n−1 Cj[γj] and h = Cj+1[γj+1] ⋆n−1 · · · ⋆n−1 Ck[γk].

We compose the right members and use the associativity of ⋆n−1 to conclude.

2.2. Contexts in low dimensions

2.2.1. Contexts of a 1-category as factorizations. From Proposition 2.1.3, the contexts of a 1-category C

have the following shape:

f ⋆0 x ⋆0 g,

where f and g are 1-cells of C. The morphisms in CC from h : u → v to h ′ : u ′ → v ′ are the pairs

(f : u ′ → u, g : v → v ′) of 1-cells of C such that the following diagram commutes in C:

u

h

²²

c©

u ′f
oo

h′

²²

v
g

// v ′.
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2.2. Contexts in low dimensions

When C is freely generated by a 1-polygraph, the 1-cells f and g are uniquely defined by the context.

Moreover, the contexts from h to h ′ are in bijective correspondence with the occurrences of the word h

in the word h ′.

The category CC has been introduced by Quillen under the name category of factorizations of C [18].

It has been used by Leech to introduce cohomological properties of congruences on monoids [14] and

by Baues and Wirsching for the cohomology of small categories [3].

2.2.2. Contexts of 2-categories. Let C be a 2-category. From Proposition 2.1.3, a context of C has the

following shape:

h ⋆1 (g1 ⋆0 x ⋆0 g2) ⋆1 k

where g1, g2, h and k are 2-cells. Morphisms in CC from a 2-cell f to a 2-cell f ′ are the contexts

C = h ⋆1 (g1 ⋆0 x ⋆0 g2) ⋆1 k such that h ⋆1 (g1 ⋆0 f ⋆0 g2) ⋆1 k = f ′ holds:

•
¼¼

EE

¾¾

CC
g1

¦¼
•

¾¾

CCf
¦¼

h

¦¼

k

¦¼

•
¾¾

CC
g2

¦¼
• = •

¾¾

CCf′

¦¼
•

Note that this decomposition is not unique. One proves that two decompositions

h ⋆1 (g1 ⋆0 x ⋆0 g2) ⋆1 k and h ′
⋆1 (g ′

1 ⋆0 x ′
⋆0 g ′

2) ⋆1 k ′

represent the same context if and only if x = x ′ and there exist 2-cells l1, l2, m1, m2 such that the

following four relations are defined and hold in C:

•
$$

// • // • // •
h¦¼

•
$$))

CC
• // • ))

CC
•

h′

¦¼
l1¦¼ l2¦¼

=

•
··##

;; JJ

l1¦¼

g1¦¼

m1¦¼

• = •
¾¾

CC
g′

1

¦¼
• •

¾¾

CC
g′

2

¦¼
• = •

··##

;; JJ

l2¦¼

g2¦¼

m2¦¼

•

• ::

¾¾

55 • // •
¾¾

55 •
k′

¦¼

m1¦¼
m2¦¼

• ::
// • // • // •

k¦¼

=

11



2. Contexts, modules and derivations of n-categories

Thus, informally, two decompositions represent the same context when one can pass from one to the

other one by moving up and down 2-cells that one finds at the left side or the right side of the sphere x.

2.3. Modules over n-categories

2.3.1. Definition. Let C be an n-category. A module over C or C-module is a functor from the category

of contexts CC to the category Ab of abelian groups. Hence, a C-module M is given by:

• An abelian group M(f), for every n-cell f in C.

• A morphism M(C) : M(f) → M(g) of groups, for every context C(x) : f → g of C. When the

context C(x) is of the shape h⋆ix (resp. x⋆ih) and when no confusion may occur, then one writes

h ⋆i m (resp. m ⋆i h) instead of M(C)(m).

2.3.2. Proposition. Let Σ be an n-polygraph. A Σ∗-module M is entirely and uniquely defined by its

values on the following contexts of C

C[ϕ] ⋆i x and x ⋆i C[ϕ]

for every i in {0, . . . , n − 1}, every generating (i + 1)-cell ϕ and every i-context C[∂ϕ].

Proof. Let f, g be two n-cells of Σ∗ and let C[x] : f → g be a morphism of CΣ. We decompose C[x] as

follows:

C[x] = fn ⋆n−1 · · · ⋆1 (f1 ⋆0 x ⋆0 g1) ⋆1 · · · ⋆n−1 gn,

in such a way that, for every k in {1, . . . , n}, fk and gk are k-cells. Thus, in the category CΣ, the context

C[x] decomposes as

C[x] = Cn[xn] ◦ · · · ◦ C1[x1],

where x1 = x and, for every i in {1, . . . , n}, one has Ci[xi] = fi ⋆i−1 xi ⋆i−1 gi and xi+1 = ∂Ci[xi].

Moreover, each Ci[xi] splits into:

Ci[xi] = (yi ⋆i−1 gi) ◦ (fi ⋆i−1 xi) ,

where yi = ∂(fi ⋆i−1 xi). Thus, since M is a functor, it is entirely defined by its values on the contexts

with shape f ⋆i x or x ⋆i f, with i in {0, . . . , n − 1} and f a non-degenerate (i + 1)-cell (indeed, when f

is degenerate as a i-cell, one has x ⋆i f = x and M(x) is always an identity).

Now, let us consider the n-context f ⋆i x, where f is an (i + 1)-cell of size k ≥ 1. We decompose it

as in 2.1.5:

f = C1[ϕ1] ⋆i · · · ⋆i Ck[ϕk],

where ϕ1, . . . , ϕk are generating (i + 1)-cells and C1, . . . , Ck are i-contexts. Thus, a context f ⋆i x

decomposes into CΣ as follows:

f ⋆i x = (C1[ϕ1] ⋆i x1) ◦ · · · ◦ (Ck[ϕk] ⋆i xk) ,

where xk = x and xj = ∂(Cj+1[ϕj+1] ⋆i xj+1).

Proceeding similarly with contexts of the shape x ⋆i f, one gets the result.

12



2.3. Modules over n-categories

2.3.3. Example: the trivial module. Let C be an n-category. The trivial C-module sends each n-cell

of C to Z and each context of C to the identity of Z.

2.3.4. Example of modules over 2-categories. Let V be a concrete category, i.e. a category equipped

with a faithful functor into Set. We view it as a 2-category with:

• One 0-cell.

• Objects as 1-cells. Their 0-composition is given by the cartesian product.

• Morphisms as 2-cells. Their 0-composition is given by the cartesian product of morphisms. Their

1-composition is the composition of morphisms in V, written in reverse order.

Let us fix a 2-category C and let us consider 2-functors X : C → V and Y : Cco → V, where Cco is C

where one has exchanged the source and target of every 2-cell. Then, for every internal abelian group G

in V, the following assignments yield a C-module M(X, Y,G):

• Every 2-cell f : u ⇒ v is sent to the abelian group of morphisms:

M(X, Y,G)(f) = V
(

X(u) × Y(v), G
)
.

• Let C be a context from f : u ⇒ v to f ′ : u ′ ⇒ v ′ and let C = g ⋆1 (w ⋆0 x ⋆0 w ′) ⋆1 g ′ be a

decomposition of C, where g, g ′ are 2-cells and w,w ′ are 1-cells. By hypothesis, X(g) and Y(g ′)

are morphisms in V:

X(g) : X(u ′) → X(w) × X(u) × X(w ′) Y(g ′) : Y(v ′) → Y(w) × Y(v) × Y(w ′).

We denote by X̃(g) : X(u ′) → X(u) and by Ỹ(g ′) : Y(v ′) → Y(v) the morphisms they induce,

thanks to the projections given by the cartesian structure. Then M(X, Y,G)(C) is defined as the

morphism of groups from M(X, Y,G)(f) to M(X, Y,G)(f ′) that sends a morphism ϕ : X(u) ×

Y(v) → G of V to the following one:

ϕ ◦
(
X̃(g), Ỹ(g ′)

)
: X(u ′) × Y(v ′) → G .

When X or Y is trivial, i.e. sends all the cells of C to the terminal object of V, one denotes the corre-

sponding C-module by M(∗, Y,G) or M(X, ∗, G). In particular, M(∗, ∗, Z) is the trivial C-module.

By construction, a C-module M(X, Y,G) is uniquely and entirely defined by its values on the contexts

h ⋆1 x and x ⋆1 h, for every 2-cell h in C, i.e. by the objects X(u) and Y(u), for every 1-cell u, and

by the morphisms X(f) and Y(f) for every 2-cell f. As a consequence, when C is freely generated by a

2-polygraph Σ, the C-module M(X, Y,G) is uniquely and entirely determined by:

• The objects X(a) and Y(a) of V for every 1-cell a in Σ1.

• The morphisms X(γ) : X(u) → X(v) and Y(γ) : Y(v) → Y(u) of V for every 2-cell γ : u ⇒ v

in Σ2.

In the sequel, we consider this kind of C-module with V being the category Set of sets and maps or the

category Ord of partially ordered sets and monotone maps. In this last situation, an internal abelian

group in Ord is a partially ordered set equipped with a structure of abelian group, such that group law is

monotone in both arguments.

13



3. Higher-dimensional categories with finite derivation type

2.4. Derivations of n-categories

2.4.1. Definition. Let C be an n-category and let M be a C-module. A derivation of C into M is a map

sending every n-cell f of C to an element d(f) of M(f) such that the following relation holds, for every

i-composable pair (f, g) of n-cells of C:

d(f ⋆i g) = f ⋆i d(g) + d(f) ⋆i g.

Given a derivation d on C, we define its values on contexts by

d(C) =

n∑

i=−n

fn ⋆n−1 (fn−1 ⋆n−2 · · · (d(fi) ⋆i−1 · · · (f1 ⋆0 x ⋆0 f−1) · · · ⋆n−1 f−n,

for any context C = fn ⋆n−1 · · · (f1 ⋆0 x ⋆0 f−1) · · · ⋆n−1 f−n in C[x]. This gives a mapping d(C) from

the set of 2-cells of C with boundary ∂x to the abelian group M(∂C). In this way a derivation from C

into M satisfies:

d(C[f]) = d(C)[f] + C[d(f)].

Given a derivation d of an n-category C and an n-functor Γ : I · Sn → C, we define d on (n + 1)-cells

of C[Γ ] by d(γ) = d(sγ) − d(tγ). Let us note that this has no reason to be a derivation of C[Γ ].

If f is a degenerate n-cell, then d(f) = 0 holds. Indeed, one has:

d(f) = d(f ⋆n−1 f) = f ⋆n−1 d(f) + d(f)⋆n−1 = 2 · d(f).

2.4.2. Example: occurrences. If C is an n-category and Γ : I ·Sn → C is an n-functor, we have defined

the n-functor ||·||Γ counting the number of occurrences of cells of Γ in a cell of C[Γ ]. This construction is

a derivation of C into the trivial C-module, sending each n-cell of C to 0 and each n-cell of Γ to 1.

2.4.3. Example of derivations of free 2-categories. Let us consider a 2-polygraph Σ, a concrete cat-

egory V and a module of the shape M(X, Y,G), as defined in 2.3.4. Then, by construction of Σ∗, a

derivation d of Σ∗ into M(X, Y,G) is entirely and uniquely determined by a family (dγ)γ∈Σ2
made of a

morphism

dγ : X(u) × Y(v) → G

of V for each 2-cell γ : u ⇒ v of Σ. Indeed, every 2-cell of Σ∗ can be written as a formal composite of

2-cells of Σ and 1-cells of Σ∗. Moreover, the relations satisfied by a derivation imply that such a map is

compatible with the axioms of n-category.

3. HIGHER-DIMENSIONAL CATEGORIES WITH FINITE DERIVATION TYPE

3.1. Track n-categories

3.1.1. Definitions. In an n-category C, a k-cell f is invertible when there exists a k-cell g from t(f)

to s(f) in C such that both f⋆k−1g = s(f) and g⋆k−1f = t(f) hold. In that case, g is unique and denoted

by f−1. The following relations are satisfied:

(1x)
−1 = 1x and (f ⋆i g)−1 =

{
f−1

⋆i g−1 if i < k − 1

g−1
⋆k−1 f−1 otherwise.

14



3.2. Homotopy bases

Moreover, if F : C → D is an n-functor, one has:

F(f−1) = F(f)−1.

A track n-category is an n-category whose n-cells are invertible, i.e. an (n − 1)-category enriched in

groupoid. We denote by Tckn the category of track n-categories and n-functors between them.

3.1.2. Example. Let C be an n-category. Given two n-cells f from u to v and g from v to u in C, we

denote by If,g the following n-sphere of C:

If,g = (f ⋆n−1 g, 1u) .

If γ = (f, g) is an n-sphere of C, we denote by γ−1 the n-sphere (g, f) of C. Then we define the track

(n + 1)-category C(γ) by:

C(γ) = C[γ, γ−1]/{
I
γ,γ−1 ,I

γ−1,γ

}.

This construction is extended to a set Γ of n-spheres, yielding a track (n + 1)-category C(Γ).

3.1.3. The free track category functor. Given an n-polygraph Σ, the track n-category freely generated

by Σ is the n-category denoted by Σ⊤ and defined by:

Σ⊤ = Σ∗
n−1(Σn),

This construction extends into a functor (·)⊤ : Poln → Tckn called the free track n-category functor.

3.2. Homotopy bases

3.2.1. Homotopy relation. Let C be a n-category. A homotopy relation on C is a track (n + 1)-

category T with C as underlying n-category. Given an n-sphere (f, g) in C, one denotes by f ≈T g the

fact that there exists an (n + 1)-cell from f to g in T. If Γ is a set of n-spheres of C, one simply uses ≈Γ

instead of ≈C(Γ) and calls it the homotopy relation on C generated by Γ .

One has f ≈T g if and only if π(f) = π(g) holds, where π is the canonical projection from T to the

n-category T presented by T, i.e. C/Tn+1. As a consequence, the relation ≈T is a congruence relation

on the parallel n-cells of C, i.e. it is an equivalence relation compatible with every composition of C.

3.2.2. Homotopy basis. A set Γ of n-spheres of C is a homotopy basis of C when, for every n-

sphere (f, g) of C, one has f ≈Γ g. In other words, Γ is a homotopy basis if and only if, for every

n-sphere γ of C, there exists an (n + 1)-cell γ such that ∂γ = γ holds, i.e. such that the following

diagram commutes in Catn+1:

Sn

γ
//

Jn

²²

c©

C

²²

En+1
γ

// C(Γ).
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3. Higher-dimensional categories with finite derivation type

3.2.3. Proposition. Let C be an n-category and let Γ be a homotopy basis of C. If C admits a finite

homotopy basis, then there exists a finite subset of Γ that is a homotopy basis of C.

Proof. Let Γ ′ be a finite homotopy basis of C. Let γ be an n-sphere of C in Γ ′. Since Γ is a homotopy

basis of C, there exists an (n+1)-cell ϕγ in C(Γ) with boundary γ. This defines an (n+1)-functor F from

C(Γ ′) to C(Γ) which is the identity on cells of C and which sends each γ in Γ ′ to ϕγ. For each ϕγ, we

fix a representative in C[Γ, Γ−1] and denote by {ϕγ}
Γ

the set of cells of Γ occurring in this representative.

Let us denote by Γ0 the following subset of Γ

Γ0 =
⋃

γ∈Γ ′

{ϕγ}Γ ,

consisting of all the cells of Γ contained in the cells ϕγ. The subset Γ0 is finite since Γ ′ and every {ϕγ}

are. Now let us see that it is an homotopy basis of C. Let us fix an n-sphere (f, g) of C. By hypothesis,

there exists an (n + 1)-cell A in C(Γ ′) with boundary (f, g). By application of F, one gets an (n + 1)-

cell F(A) in C(Γ) with boundary (f, g). Moreover, the (n + 1)-cell F(A) is a composite of cells of the

shape ϕγ: hence, it lives in C(Γ0). As a consequence, one gets f ≈Γ0
g, which concludes the proof.

3.3. Polygraphs with finite derivation type

3.3.1. Definition. One says that an n-polygraph Σ has finite derivation type when it is finite and when

the track n-category Σ⊤ it generates admits a finite homotopy basis.

3.3.2. Lemma. Let Σ and Σ ′ be n-polygraphs. We denote by π : Σ∗
n−1 → Σ and by π ′ : Σ ′∗

n−1 → Σ
′

the canonical (n − 1)-functors. Then every (n − 1)-functor F from Σ to Σ
′

can be lifted to an n-functor

F̃ : Σ⊤ → Σ ′⊤ such that the following diagram commutes in Catn−1:

Σ∗
n−1

π
//

F̃
²²

c©

Σ

F

²²

Σ ′∗
n−1 π′

//
Σ

′
.

Proof. For every k-cell u in Σ∗, with k in {0, . . . , n − 2}, we take F̃(u) = F(u). Since π and π ′ are

identities on cells up to dimension n − 2, we have the relation F ◦ π(u) = π ′ ◦ F̃(u).

Now, let us consider an (n−1)-cell u in Σn−1. One arbitrarily chooses an (n−1)-cell of Σ ′∗, hence

of Σ ′⊤, that is sent on F ◦ π(u) by π ′, and one fixes F̃(u) to that (n − 1)-cell. One extends F̃ to every

(n − 1)-cell of Σ∗ thanks to the universal property of Σ∗.

Then, let f be an n-cell from u to v in Σn. Then π(u) = π(v) holds by definition of π. Applying F

on both members and using the property satisfied by F̃, one gets π ′ ◦ F̃(u) = π ′ ◦ F̃(v). By definition

of π ′ and of Σ ′⊤, this means that there exists an n-cell from F̃(u) to F̃(v) in Σ ′⊤. One takes one such

n-cell for F̃(f). Finally, one extends F̃ to every n-cell of Σ⊤.
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3.3. Polygraphs with finite derivation type

3.3.3. Lemma. Let Σ and Σ ′ be n-polygraphs and let F : Σ⊤ → Σ ′⊤ be an n-functor. Given a set Γ of

n-spheres of Σ⊤, we define F(Γ) as the following set of n-spheres of Σ ′⊤:

F(Γ) =
{

(F(g), F(g ′))
∣∣ (g, g ′) ∈ Γ

}
.

Then, for every n-sphere (f, f ′) of Σ⊤ such that f ≈Γ f holds, we have F(f) ≈F(Γ) F(f ′).

Proof. It is an immediate consequence of functoriality of F.

3.3.4. Proposition. Let Σ and Σ ′ be Tietze-equivalent finite n-polygraphs. Then Σ has finite derivation

type if and only if Σ ′ has.

Proof. Let us assume that Σ and Σ ′ are n-polygraphs which present the same (n − 1)-category, say C.

Let us assume that Σ has finite derivation type, so that we can fix a finite homotopy basis Γ of Σ⊤.

Using Lemma 3.3.2 twice on the (n − 1)-functor Id(C), we get two n-functors F : Σ⊤ → Σ ′⊤ and

G : Σ ′⊤ → Σ⊤ such that the following diagrams commute in Catn−1:

Σ∗
n−1

π
//

F

²²

c©

C

Id(C)

²²

Σ ′∗
n−1 π′

// C

Σ∗
n−1

π
//

c©

C

Σ ′∗
n−1 π′

//

G

OO

C.

Id(C)

OO

In particular, both π and π ′ are the identity on k-cells, for every k < n − 1, hence so are F and G.

Let us consider an (n − 1)-cell a in Σ ′
n−1. Then π ′ ◦ FG(a) = π ◦G(a) = π ′(a). Thus, there exists

an n-cell denoted by fa from a to FG(a) in Σ ′⊤. From these cells, we define fu for every (n− 1)-cell u

in Σ ′∗, hence of Σ ′⊤, using the following relations:

• For every degenerate (n − 1)-cell u, fu is defined as u.

• For every i-composable pair (u, v) of (n − 1)-cells, fu⋆iv is defined as fu ⋆i fv.

We have that, for every (n − 1)-cell u, the n-cell fu goes from u to FG(u): to check this, we argue

that FG is an n-functor which is the identity on degenerate (n − 1)-cells.

Now, let us consider an n-cell g from u to v in Σ ′⊤. We denote by fg the following n-cell from u

to u in Σ ′⊤, with a cellular representation giving the intuition for the case n = 2:

f(g) = g ⋆n−1 fv ⋆n−1 FG(g)−1
⋆n−1 f−1

u •

FG(u)

ºº

u

$$

FG(v)
::

v

GG

fu

+?

g

¾/
fv

EY

FG(g)−1

]q

•
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3. Higher-dimensional categories with finite derivation type

Let us prove that, for any composable pair (g, h) of n-cells in Σ ′⊤, we have:

fg⋆n−1h = g ⋆n−1 fh ⋆n−1 g−1
⋆n−1 fg.

For that, we assume that g has source u and target v, while h has source v and target w. Then we

compute:

g ⋆n−1 fh ⋆n−1 g−1
⋆n−1 fg

= g ⋆n−1

(
h ⋆n−1 fw ⋆n−1 FG(h)−1

⋆n−1 f−1
v

)

⋆n−1 g−1
⋆n−1

(
g ⋆n−1 fv ⋆n−1 FG(g)−1

⋆n−1 f−1
u

)

= g ⋆n−1 h ⋆n−1 fw ⋆n−1 FG(h)−1
⋆n−1 FG(g)−1

⋆n−1 f−1
u

= (g ⋆n−1 h) ⋆n−1 fw ⋆n−1 FG(g ⋆n−1 h)−1
⋆n−1 f−1

u

= fg⋆n−1h.

Now, let us consider an n-cell g and a whisker C[x] in Σ⊤ such that x = ∂(g−
n−1). We note that, by

definition of fg, it has the same (n − 1)-source and (n − 1)-target as g, so that C[fg] is defined. Let us

prove that the following relation holds:

fC[g] = C[fg].

From the decomposition of contexts, it is sufficient to prove that the following relation holds

fu⋆ig⋆iv = u ⋆i fg ⋆i v

for every n-cell g, every possible k-cells u and v, with k < n − 1, and every i < k such that u ⋆i g ⋆i v

is defined. Let us assume that g has source w and target w ′ and compute, from the left-hand side of this

relation:

fu⋆ig⋆iv = (u ⋆i g ⋆i v) ⋆n−1 fu⋆iw
′
⋆iv ⋆n−1 FG(u ⋆i g ⋆i v)−1

⋆n−1 f−1
u⋆iw⋆iv

= (u ⋆i g ⋆i v) ⋆n−1 (u ⋆i fw′ ⋆i v) ⋆n−1 (u ⋆i FG(g)−1
⋆i v) ⋆n−1 (u ⋆i f−1

w ⋆i v)

= u ⋆i fg ⋆i v.

Now, we denote by Γ ′ the set of n-spheres (fg, Ids(g)), for every n-cell g in Σ ′
n. Then, it follows from

the previous relations that, for every n-cell g in Σ ′⊤, one has:

fg ≈Γ Ids(g) .

Let us consider an n-sphere (g, g ′) in Σ ′⊤. Then (G(g), G(g ′)) is an n-sphere in Σ⊤. Since Γ is a ho-

motopy basis for Σ⊤, we have G(g) ≈Γ G(g ′), so that, by Lemma 3.3.3, one gets FG(g) ≈F(Γ) FG(g ′).

Finally, let us denote Γ ′′ the set of n-spheres of Σ ′⊤ defined by Γ ′′ = Γ ′ ∪ F(Γ) and let us prove

that Γ ′′ is a finite homotopy basis of Σ ′⊤. Since both Σ ′
n and Γ are finite, so is Γ ′′. Let us consider an

n-sphere (g, g ′) in Σ ′⊤, with source w and target w ′, and let us prove that g ≈Γ ′′ g ′ holds. We start by

using the definition of fg to get:

g = fg ⋆n−1 f−1
w′ ⋆n−1 FG(g) ⋆n−1 f−1

w .

Using the definition of fg′ , one gets a similar formula for g ′. We have seen that fg ≈Γ ′ w, fg′ ≈Γ ′ w

and FG(g) ≈Γ ′′ FG(g ′) hold. Thus one gets g ≈Γ ′′ g ′.
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4. Critical branchings and finite derivation type

Proposition 3.3.4 shows that the property is invariant by Tietze-equivalence for finite polygraphs. We

will illustrate in Example 4.3.10 that this is not the case for infinite ones. Thus we define

3.3.5. Definition. An n-category has finite derivation type when it admits a presentation by an (n+1)-

polygraph with finite derivation type.

4. CRITICAL BRANCHINGS AND FINITE DERIVATION TYPE

4.1. Rewriting properties of polygraphs

In this section we review abstract rewriting properties on polygraphs. Proof of claims in this section are

intuitively the same as the ones for abstract rewriting systems, which can be found in [1]. We fix an

(n + 1)-polygraph Σ and an n-cell f in Σ∗.

4.1.1. Reductions and normal forms. One says that f reduces into some n-cell g when there exists a

non-degenerate (n + 1)-cell A from f to g in Σ∗. A reduction sequence is a family (fk)k of n-cells such

that each fk reduces into fk+1. One says that f is a normal form (for Σn+1) when every (n+1)-cell with

source f is degenerate, i.e. it reduces only in itself. A normal form for f is a normal form g such that f

reduces into g. The polygraph Σ is normalizing at f when f admits a normal form. It is normalizing

when it is at every n-cell of Σ∗.

4.1.2. Termination. One says that Σ terminates at f when there exists no infinite reduction sequence

starting at f is stationary. One says that Σ terminates when it does at every n-cell of Σ∗.

If Σ terminates at f, then it is normalizing at f, i.e. every n-cell has at least one normal form.

Moreover, in case of termination, one can prove properties using a form of induction, usually called

Noetherian induction: for that, one proves the property on normal forms; then one fixes an n-cell f, one

assumes that the result holds for every g such that f reduces into g and one proves that, under those

hypotheses, the n-cell f satisfies the property.

4.1.3. Confluence. A branching of Σ is a pair (A,B) of (n + 1)-cells of Σ∗ with same source; this

n-cell is called the source of the branching (A, B). A branching (A,B) is local when ||A|| = ||B|| = 1. A

confluence of Σ is a pair (A,B) of (n + 1)-cells of Σ∗ with same target. A branching (A,B) is confluent

when there exists a confluence (A ′, B ′) such that both tn(A) = sn(A ′) and tn(B) = sn(B ′) hold, as in

the following diagram:

A

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

B

ÂÂ
??

??
??

?

A′

ÂÂ
??

??
??

?

B′

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

Such a pair (A ′, B ′) is called a confluence for (A,B). Branchings and confluences are only considered

up to symmetry, so that (A,B) and (B,A) are considered equal. The polygraph Σ is (locally) confluent

at f when every (local) branching with source f is confluent. It is (locally) confluent when it is at every

n-cell.
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4. Critical branchings and finite derivation type

If Σ is confluent then every n-cell of Σ∗ has at most one normal form. Thus, normalization and

confluence imply that the n-cell f has exactly one normal form, written f̂. In a terminating polygraph,

local confluence and confluence are equivalent: this was proved in the case of word rewriting systems (a

subcase of 2-polygraphs) by Newman [17] and, since, the result is called Newman’s lemma.

4.1.4. Convergence. The polygraph Σ is convergent at f when it terminates and it is confluent at f. It

is convergent when it is at every n-cell.

If Σ is convergent at f, then f has exactly one normal form. Thanks to Newman’s lemma, one gets

convergence from termination and local confluence. If Σ is convergent, we have f ≈Σn+1
g if and only if

f̂ = ĝ: thus, a convergent (n + 1)-polygraph provides a decision procedure to the equivalence of n-cells

in the n-category it presents.

4.1.5. Critical branchings in polygraphs. Given a branching b = (A,B) of Σ with source f and a

whisker C[∂f] of Σ∗, the pair C[b] = (C[A], C[B]) is a branching of Σ, with source C[f]. Furthermore,

if b is local and C is a whisker, then C[b] is also local. We define by 4 the order relation on branchings

of Σ given by b 4 b ′ when there exists a whisker C such that C[b] = b ′ holds.

A branching is minimal when it is minimal for the order relation 4. A branching is trivial when it

can be written either as (A,A), for a (n + 1)-cell A, or as (A ⋆i sn(B), sn(A) ⋆i B), for (n + 1)-cells A

and B and a i in {0, . . . , n − 1}. A branching is critical when it is minimal and not trivial.

A polygraph is locally confluent if and only if all of its critical branchings are confluent. To prove that,

one checks that trivial branchings are always confluent and that a non-minimal branching is confluent if

and only if the corresponding minimal branching is (there is a minimal one by a size argument, allowed

by the fact that we work in a polygraph).

4.2. Using derivations for proving termination of a 3-polygraph

A method to prove termination of a 3-polygraph has been introduced in [9], see also [10, 11]; in special

cases, it can also provide complexity bounds [4]. It turns out that the method uses interpretations that are

a special case of derivations, as described here. Here we only give an outline of the proof.

4.2.1. Theorem. Let Σ be a 3-polygraph. Let X : Σ∗
2 → Ord and Y : (Σ∗)co

2 → Ord be 2-functors,

let G be an abelian group in Ord and let d be a derivation of Σ∗
2 into M(X, Y,G) such that the following

conditions hold:

• For every 1-cell a in Σ1, the sets X(a) and Y(a) are not empty.

• For every 3-cell from f to g in Σ3, the inequalities X(f) ≥ X(g), Y(f) ≥ Y(g) and d(f) > d(g)

are satisfied.

• The addition of G is strictly monotone in both arguments.

• Every bounded decreasing sequence of elements of G is stationary.

• There exists an element z in G such that, for every 2-cell f in Σ∗
2, one has d(f) ≥ z.

Then the 3-polygraph Σ terminates.
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4.3. Branchings and homotopy bases

Proof. Let us assume that A : f ⇛ g is a 3-cell of Σ∗ with size 1. Then there exists a 3-cell α : ϕ ⇛ ψ

of Σ and a context C of Σ∗
2 such that A = C[α] holds, i.e. such that f = C[ϕ] and g = C[ψ] hold. Thus,

one gets:

d(f) = d(C)[ϕ] + C[d(ϕ)] and d(g) = d(C)[ψ] + C[d(ψ)].

We use the fact d(ϕ) > d(ψ) holds by hypothesis to get C[d(ϕ)] > C[d(ψ)]. Moreover, since X and Y

are 2-functors into Ord and since d sends every 2-cell to a monotone map, one gets d(C)[ϕ] ≥ d(C)[ψ].

Finally, one uses the hypothesis on the strict monotony of addition in G to get d(f) > d(g). Then one

deduces that, for every non-degenerate 3-cell A : f ⇛ g, one has d(f) > d(g). Thus, every infinite

reduction sequence (fk)k would produce an infinite, strictly decreasing sequence (d(fk)k) in G, the

existence of which is prohibited by the last two hypotheses.

4.2.2. Special cases. The sequel contains several examples where derivations are used to prove termi-

nation. Other examples can be found in [10] or [4]. In some of those, we take at the trivial 2-functor

for at least one of the 2-functors X and Y. Also, we often take G to be Z, with the derivation satisfying

d(f) > 0 for every f. One can check that those situations match the hypotheses of Theorem 4.2.1.

4.3. Branchings and homotopy bases

In the case of convergent word rewriting systems, i.e. convergent 2-polygraphs with exactly one 0-cell,

the critical branchings generate a homotopy basis [19]. In this section, we generalise this result to any

polygraph.

In particular, we recover Squier’s theorem as Corollary 4.3.7, stating that a finite convergent 2-

polygraph has finite derivation type. However, this result fails to generalise to higher-dimensional

polygraphs, as stated in Theorem 4.3.9. Indeed, starting with n = 3, there exist finite convergent n-

polygraphs with an infinite number of critical branchings. The detailed proof can be found in 5.5.

4.3.1. Notation. When Σ is a locally confluent (n + 1)-polygraph, we assume that, for every critical

branching b = (A,B), a confluence (A ′, B ′) has been chosen. We denote by ΓΣ the set of all the

(n + 1)-spheres (A ⋆n A ′, B ⋆n B ′) of Σ, for each critical branching b = (A,B).

4.3.2. Lemma. Let Σ be a locally confluent (n+1)-polygraph. Then every local branching b = (A,B)

admits a confluence (A ′, B ′) such that A ⋆n A ′ ≈ΓΣ
B ⋆n B ′ holds.

Proof. First, let us examine the case where b is a trivial branching. If A = B, then (tn(A), tn(B)) is a

confluence that satisfies the required property. Otherwise, let us assume that there exist (n + 1)-cells A1

and B1 in Σ∗ and a i in {0, . . . , n − 2} such that A = A1 ⋆i sn(B1) and B = sn(A1) ⋆i B1 hold: then

(tn(A1) ⋆i B1, A1 ⋆i tn(B1)) is a confluence that satisfies the required property.

Now, let us assume that b is not trivial. Let b1 = (A1, B1) be a minimal branching such that b1 4 b,

with a whisker C such that b = C[b1] holds. Since (A,B) is not trivial, then b1 cannot be trivial, so

that it is critical. Then we consider its fixed confluence (A ′, B ′). Then (C[A ′], C[B ′]) is a confluence for

(A,B). Furthermore, one has

A ⋆n C[A ′] = C[A1] ⋆n C[A ′] = C[A1 ⋆n A ′]
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4. Critical branchings and finite derivation type

and, similarly, B ⋆n C[B ′] = C[B1 ⋆n B ′]. Since C is a whisker and since, by definition of C, one has

A1 ⋆n A ′ ≈ΓΣ
B1 ⋆n B ′, one gets that (C[A ′], C[B ′]) satisfies the required property.

4.3.3. Lemma. Let Σ be a convergent (n + 1)-polygraph and let (A,B) be a branching of Σ such that

both tn(A) and tn(B) are in normal form. Then one has tn(A) = tn(B) and A ≈ΓΣ
B.

Proof. Since Σ is terminating, we can prove the result by induction on the source of the branching.

First, if this source f is a normal form, then by definition of normal form, both A and B must be

identities. Hence tn(A) and tn(B) are equal, and so do A and B. Thus A ≈ΓΣ
B holds.

Now, we fix a n-cell f, which is not a normal form. We assume that the result holds for every

branching (A,B) such that the targets of A and B are normal forms and such that there exists a non

trivial (n + 1)-cell from f to their source. Let (A,B) be a branching with source f and such that the

targets of A and B are normal forms. Since f is not a normal form, A and B cannot be identities, hence

one can decompose them into A = A1 ⋆n A2 and B = B1 ⋆n B2 with A1 and B1 being (n + 1)-cells of

size 1.

The pair (A1, B1) is a local branching. Thus, using Lemma 4.3.2, one gets a confluence (A ′
1, B

′
1) for

(A1, B1) such that A1 ⋆n A ′
1 ≈ΓΣ

B1 ⋆n B ′
1 holds. Let us denote by g the common target of A ′

1 and B ′
1,

by e its normal form and by A3 a n-cell from g to e.

Then we consider the branching (A2, A
′
1 ⋆n A3), whose source is denoted by h. The targets of A2

and A ′
1 ⋆n A3 are normal forms and A1 is a non trivial (n + 1)-cell from f to h: thus, the induction

hypothesis can be applied to this branching, yielding that A2 has target e and that A2 ≈ΓΣ
A ′

1 ⋆n A3

holds.

We proceed similarly to prove that B2 satisfies the same properties, so that one gets that A and B

have the same target and that A ≈ΓΣ
B holds. The constructions we have done are summarized in the

following diagram:

h

A′

1

>>>

ÂÂ
>>>

A2

##

f

A

¼¼

B

EE

A1

88qqqqqqqqqqqqq

B1
&&MMMMMMMMMMMMM ≈ΓΣ g A3

// e.

k

B′

1¡¡¡

??¡¡¡

B2

;;

=

=

≈ΓΣ

≈ΓΣ

4.3.4. Proposition. Let Σ be a convergent (n + 1)-polygraph. Then ΓΣ is a homotopy basis for Σ⊤.

Proof. Let (A,B) be an (n + 1)-sphere in Σ⊤, with source and target denoted by f and g, respectively.

Since Σ is convergent, these n-cells share the same normal form, which we denote by e. Let A ′ and B ′
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4.3. Branchings and homotopy bases

be (n + 1)-cells in Σ∗, from f to e and from g to e respectively:

f

A

ÁÁ

B

¡¡

A′

ÁÁ

e.

g
B′

@@

We apply the previous result to the branching (A ⋆n B ′, A ′), yielding A ⋆n B ′ ≈ΓΣ
A ′ and, hence,

A ≈ΓΣ
A ′

⋆n B ′−1
. We proceed similarly with the branching (B ⋆n B ′, A ′) to get B ≈ΓΣ

A ′
⋆n B ′−1

and, thus, A ≈ΓΣ
B.

4.3.5. Proposition. A finite convergent polygraph with a finite set of critical branchings has finite

derivation type.

Proof. If Σ has a finite set of critical branchings, then the set Γ(Σ) is finite.

4.3.6. Corollary. A terminating polygraph with no critical branching has finite derivation type.

4.3.7. Corollary ([19]). A finite convergent 2-polygraph has finite derivation type.

Proof. If Σ is a finite convergent 2-polygraph with one 0-cell, i.e. a word rewriting system, then its set

of critical branchings is finite. Indeed, it is equal to the number of possible overlaps between the words

corresponding to the sources of 2-cells: there are finitely many 2-cells and finitely many letters in each

word. If Σ has more than one 0-cell, then the number of possible overlaps is bounded by the number of

overlaps in Σ ′, built from Σ by identification of all its 0-cells.

From this result Squier has proved that, if a finitely presented monoid admits a presentation by a

finite convergent word rewriting system, then it has finite derivation type, [19]. Now we prove that this

result is false for n-categories when n ≥ 2.

4.3.8. Proposition. For every natural number n with n ≥ 3, there exists a finite convergent n-polygraph

without finite derivation type.

Proof. We consider the 3-polygraph Σ with one 0-cell, one 1-cell, three 2-cells , , and the fol-

lowing four 3-cells:

⇛ , ⇛ , ⇛ , ⇛ .

The 3-polygraph Σ is finite and convergent. However, the first and second 3-cells create an infinite

number of critical branchings whose confluence diagrams cannot be presented by a finite homotopy

basis. These facts are proved in 5.5.

Then we apply suspension functors on Σ to get an n-polygraph, for some n ≥ 3. It has exactly the

same cells and compositions in dimensions n − 3, n − 2, n − 1 and n as Σ in dimensions 0, 1, 2 and 3;

on top of that, it has two cells in each dimension up to n − 4 and no other possible compositions, except

with degenerate cells. Thus, we conclude that the n-polygraph we have built is finite and convergent, yet

it still fails to have finite derivation type.
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4. Critical branchings and finite derivation type

4.3.9. Theorem. For every natural number n with n ≥ 2, there exists a n-category which does not

have finite derivation type and admits a presentation by a finite convergent (n + 1)-polygraph.

Proof. Let n ≥ 2, by Proposition 4.3.8, there exists a finite convergent (n + 1)-polygraph Σ without

finite derivation type. Let denote by C the n-category presented by the polygraph Σ. By proposition

3.3.4 any finite (n + 1)-polygraph presenting C does not have finite derivation type. This proves that C

does not have finite derivation type.

We end this section by an example which illustrates that the property of finite derivation type is not

Tietze-invariant for infinite polygraphs.

4.3.10. Example. Let C be the 2-category presented by the 3-polygraph Σ with one 0-cell, one 1-cell,

three 2-cells ,�
�
�
�

, and the following two 3-cells:

��
�
�
�
���α

⇛
��
��
��
��

�
�
�

�
�
�

��

and ��
β

⇛��.

The polygraph Σ terminates and does not have critical branching. By Corollary 4.3.6 it follows that Σ

has finite derivation type and, thus, so does C.

Now let us consider another presentation of the 2-category C, namely the 3-polygraph Ξ defined the

same way as Σ except for the 3-cells:

��
��
��
��

�
�
�

�
�
�

��

α

⇛ ���
�
�
���

and ��
β

⇛��.

The polygraph Ξ still terminates, but it has the following non-confluent critical branching:

��
��
��
��

�
�
�

�
�
�

��
α

E»,
EE

EE
EE

EE
EE

EE
EE

EE
EE

EE
EE

EE
EE

EE

EE
EE

EE
EE

EE
EE

EE

����
�
�
�
�

β

y2Fyyyyyyyyyyyyyy

yyyyyyyyyyyyyy

yyyyyyyyyyyyyy

α

Cº+
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC

CC
CC

CC
CC

CC
CC

CC
��
�
�
�
���

�
�
�
�

��

We define, by induction on the natural number k ≥ 1, the 2-cell
k

as follows:

1
= and

k+1
=

k
.
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4.3. Branchings and homotopy bases

Then, we complete the polygraph Ξ into an infinite convergent polygraph Ξ∞ = Ξ ∪ {βk, k ≥ 1}, where

βk is the 3-cell:

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��

k βk

⇛

��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
� k

We define β0 as β. For any natural number k, we have the confluence diagrams:

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

���
�
�

�
�
� k+1

βk+1

Cº+
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC

CC
CC

CC
CC

CC
CC

CC

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��

�
�
�
�

�
�
�
�

k

�
�
�

�
�
�

��

��

�� ��

k

α
{3G{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

�
�
�
�
�
�
�
�

βk Cº+
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC

CC
CC

CC
CC

CC
CC

CC

��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
� k+1

��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
� k

�
�
�
� k

α

{3G{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

αβk

ÄÂ

By Proposition 4.3.4, the set Γ = {αβk | k ∈ N} form a homotopy basis of Ξ⊤
∞ .

Let us prove that the polygraph Ξ∞ does not have finite derivation type. On the contrary, suppose

that Ξ∞ does have finite derivation type. Then, following Proposition 3.2.3, there is a finite subset Γ0 of

Γ which is a homotopy base of Ξ⊤
∞ . Subset Γ0 beeing finite, there is a natural number l > max{k | αβk ∈

Γ0} such that the 4-cell αβl is not in Γ0. However, since Γ0 is a homotopy base we have

s (αβl) ≈Γ0
t (αβl) .

That is there is a 4-cell Φ in Ξ⊤
∞(Γ0) such that sΦ = s (αβl) and tΦ = t (αβl) hold. Thus there exist

4-cells Φ1, Φ2 ∈ Ξ⊤
∞(Γ0) and a context C of Ξ⊤ such that

Φ = Φ1 ⋆3 C[Ψε] ⋆3 Φ2,

where Ψ ∈ Γ0 and ε ∈ {−1, 1}. We have

s2Φ = s2(C[Ψε]) = s2(C)[s2(Ψ)].

Since Ψ ∈ Γ0, there exist k < l such that Ψ = αβk. Hence s2Φ = s2[C][αβk]. In an other hand, we

have s2Φ = s2(αβl). This means that there are 2-cells f1, f2, g1, g2 such that

f2 ⋆1 (f1 ⋆0
��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��

�
�
�
�

�
�
�
�

k
⋆0 g1) ⋆1 g2 =

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��

�
�
�
�

�
�
�
�

l
,

holds in Ξ∗
∞ , which is impossible with k < l. This proves that Ξ∞ does not have finite derivation type.
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5. THE CASE OF 3-POLYGRAPHS

5.1. Classification of critical branchings

5.1.1. Definitions. Let Σ be a 3-polygraph and let (A,B) be a critical branching of Σ. Let us denote

by α and β the 3-cells of Σ that generate A and B. Then (A,B) falls in one of three cases.

The first possibility is that there exists a context C of Σ∗
2 such that sα = C[sβ] holds. Then, the

source of the branching (A, B) is:

sα = sβ

C

.

In that case, (A,B) is an inclusion critical branching.

If the branching (A,B) is not an inclusion one, the second possibility is that there exist 1-cells u, v

and 2-cells f, g, h such that sα and sβ decompose in one of the following ways.

• One has sα = f ⋆1 (u ⋆0 h) and sβ = (h ⋆0 v) ⋆1 g, so that the source of (A, B) is:

g

vv

u

sα
=

g

v

u

f

h =
sβ

u

vf

.

• One has sα = f ⋆1 (h ⋆0 u) and sβ = (v ⋆0 h) ⋆1 g:

g u

vv
sα

= h

g
u

v f

=

fv

sβ
u .

• One has sα = f ⋆1 (u ⋆0 h ⋆0 v) and sβ = h ⋆1 g:

sα

gu v
=

f

u h

g
vv =

sβ
u vv

f

.

• One has sα = f ⋆1 h and sβ = (u ⋆0 h ⋆0 v) ⋆1 g:

g

u vsα
=

u v
f

g

h =

v

sβ

fu

.

If (A,B) matches one of these cases, then it is called a regular critical branching.

Finally, when the branching (A,B) is not an inclusion or regular one, there exist 1-cells u, v and

2-cells f, g, h such sα and sβ decompose in one of the following ways.
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5.1. Classification of critical branchings

• One has sα = f ⋆1 (h ⋆0 u) and sβ = (h ⋆0 v) ⋆1 g, so that there exists a 2-cell k such that the

source of (A,B) is:

k

g

sα

= k

f

h

g
= k

sβ

f

.

In that case, one can write (A,B) = (C[k], D[k]) for appropriate contexts C and D of Σ∗. The

family (C[k], D[k])k, where k ranges over the 2-cells with appropriate boundary and such that

(C[k], D[k]) is a minimal branching, is called a right-indexed critical branching.

• One has sα = f ⋆1 (u ⋆0 h) and sβ = (v ⋆0 h) ⋆1 g, so that there exists a 2-cell k such that the

source of (A,B) is:

k

g

sα

= k

g

f

h = k

sβ

f

.

In that case, one can write (A,B) = (C[k], D[k]) for appropriate contexts C and D of Σ∗. The

family (C[k], D[k])k, where k ranges over the 2-cells with appropriate boundary and such that

(C[k], D[k]) is a minimal branching, is called a left-indexed critical branching.

• One is not in the right-indexed or left-indexed cases and one has

sα = f ⋆1 (u0 ⋆0 h1 ⋆0 u1 ⋆0 h2 ⋆0 · · · ⋆0 un−1 ⋆0 hn ⋆0 un)

and

sβ = (v0 ⋆0 h1 ⋆0 v1 ⋆0 h2 ⋆0 · · · ⋆0 vn−1 ⋆0 hn ⋆0 vn) ⋆1 g ,

so that there exist 2-cells k0, . . . , kn such that the source of (A, B) is as follows, where we write p

instead of n − 1 for size reasons:

k0 kn

sα

g

kpk1

= knk0 h1 k1 h2

g

f

hnhp kp

=

f

knk0

sβ

kpk1 .
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5. The case of 3-polygraphs

In that case, one can write (A,B) = (C[k0, . . . , kn], D[k0, . . . , kn]) for appropriate 3-cells C

and D in some Σ∗[x0, . . . , xn]. The family (C[k0, . . . , kn], D[k0, . . . , kn])k0,...,kn
, where the ki’s

range over the 2-cells with appropriate boundary and such that (C[k0, . . . , kn], D[k0, . . . , kn]) is

a minimal branching, is called a multi-indexed critical branching.

In all those cases, the branching (A,B) is said to be an instance of the corresponding right-indexed or

left-indexed or multi-indexed one. It is a normal instance when the indexing 2-cell k (resp. 2-cells k0,

. . . , kn) is a normal form (resp. are normal forms).

A 3-polygraph is non-indexed when each of its critical branchings is an inclusion one or a regular

one. It is right-indexed (resp. left-indexed) when each of its critical branchings is either an inclusion one,

a regular one or an instance of a right-indexed (resp. left-indexed) one.

5.1.2. Proposition. A 3-polygraph with a finite set of 3-cells has a finite number of inclusion and regular

critical branchings.

Proof. Let Σ be a polygraph with Σ3 = {α1, . . . , αp} finite. Given i ∈ {1, . . . , p}, Σ3 being finite, the

set J of j such that there is a morphism s(αj) → s(αi) in WΣ is finite. Moreover, for a j ∈ J, the set of

morphisms of WΣ from s(αj) to s(αi) is finite. This proves that there is a finite set of inclusion critical

branchings.

Now, let us prove that Σ has a finite number of regular critical branchings. Let us fix some i and j

in {1, . . . , p} and let us assume that there exist two whiskers C and D of Σ∗ such that (C[αi], D[αj])

is a regular branching, with source f. Then there exist a 2-cell h and whiskers C ′ and D ′ of Σ∗

such that C[s(α)i] = C ′[h] = D ′[h] = D[s(αj)] holds. But the sets WΣ(s(αi), f), WΣ(s(αj), f),

WΣ(h,C[s(αi)]) and WΣ(h,C[s(αj)]) are finite. Hence there exist finitely regular branchings of this

form, with i and j fixed. Since Σ3 is finite, the 3-polygraph Σ has finitely many regular branchings.

5.1.3. Theorem. A finite convergent non-indexed 3-polygraph has finite derivation type.

Proof. We use the previous result and, then, we apply Proposition 4.3.5.

5.2. Mac Lane’s coherence theorem revisited

5.2.1. Monoidal categories. A monoidal category is a data (C,⊗, e, a, l, r) made of a category C, a

bifunctor ⊗ : C × C → C, an object e of C and three natural isomorphisms

ax,y,z : (x ⊗ y) ⊗ z → x ⊗ (y ⊗ z) , lx : e ⊗ x → x, rx : x ⊗ e → x,

such that le = re holds and such that the following two diagrams commute in C:

(x⊗(y⊗z))⊗t
a

// x⊗((y⊗z)⊗t)

a

''PPPPPPPPPPPP

((x⊗y)⊗z)⊗t

a
77nnnnnnnnnnnn

a
++WWWWWWWWWWWWWWWWWWWWWW

c© x⊗(y⊗(z⊗t))

(x⊗y)⊗(z⊗t)

a

33gggggggggggggggggggggg
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5.2. Mac Lane’s coherence theorem revisited

x⊗(e⊗y)

l

$$JJJ
JJJ

JJJ
J

(x⊗e)⊗y

a
99rrrrrrrrrr

r

55
x⊗y .

c©

Mac Lane’s coherence theorem [15] states that, in a such monoidal category, all the diagrams whose

arrows are built from ⊗, e, l and r commute. Thereafter, we give a proof of this fact by building a

homotopy basis of a 3-polygraph.

5.2.2. The 3-polygraph of monoids. We denote by ΣMon the 3-polygraph with one 0-cell, one 1-cell,

two 2-cells and and the following three 3-cells:

⇛α , ⇛λ , ⇛ρ .

We denote by Γ the set made of the following 4-cells αα, αρ and λρ, where we commit the abuse of

denoting a 3-cell of Σ∗ with size 1 like its generating 3-cell:

α _%9

α

B¹*
BB

BB
BB

B

BB
BB

BB
B

BB
BB

BB
B

α
|4H|||||||

|||||||

|||||||

α

QÁ2QQQQQQQQQQQQQQQQQQQQ

QQQQQQQQQQQQQQQQQQQQ

QQQQQQQQQQQQQQQQQQQQ

α

m,@mmmmmmmmmmmmmmmmmmmm

mmmmmmmmmmmmmmmmmmmm

mmmmmmmmmmmmmmmmmmmm

αα

ÄÂ

λ

9µ&
99

99
99

99

99
99

99
99

99
99

99
99

α
£6J£££££££

£££££££

£££££££

ρ

n,@

αρ

Â Â
Â Â
Â Â
Â Â
Â Â
Â Â
Â Â
Â Â

ÄÂ
Â Â
Â
Â Â
Â
Â Â
Â
Â Â
Â

λ

7́%

ρ

9̈M
λρ

ÄÂ

5.2.3. Theorem. The set Γ of 4-cells form a homotopy basis of the track 3-category Σ⊤
Mon.

Proof. Let us prove that ΣMon terminates by using a derivation. We consider the Σ∗
2-module M(X, ∗, Z)

generated by the following values:

X( ) = N \ {0} , X( )(i, j) = i + j , X( ) = 1 .
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5. The case of 3-polygraphs

The functor X satisfies the following equalities:

X

( )
(i, j, k) = i + j + k = X

( )
,

X

( )
(i) = i = X

( )
(i) and X

( )
(i) = i = X

( )
(i) .

Now, let d be the derivation of Σ∗
2 into M(X, ∗, Z) generated by the following values:

d (i, j) = i and d = 0 .

The derivation d satisfies the following strict inequalities:

d

( )
(i, j, k) = 2i + j > i + j = d

( )
(i, j, k) ,

d

( )
(i) = 1 > 0 = d

( )
(i) and d

( )
(i) = i > 0 = d

( )
(i) .

We apply Theorem 4.2.1 to conclude.

The 3-polygraph has five critical branchings, all of the regular type, and all of them are confluent.

Their confluence diagrams are given by the boundaries of the 4-cells of Γ , plus the following two ones:

λ

<¶'
<<

<<
<<

<<
<

<<
<<

<<
<<

<

<<
<<

<<
<<

<
α

~5I~~~~~~~

~~~~~~~

~~~~~~~

λ

n,@

λα

Â Â
Â Â
Â Â
Â Â
Â Â
Â Â
Â Â
Â Â

ÄÂ
Â Â
Â
Â Â
Â
Â Â
Â
Â Â
Â

ρ

<¶'
<<

<<
<<

<<

<<
<<

<<
<<

<<
<<

<<
<<

α
~5I~~~~~~~

~~~~~~~

~~~~~~~

ρ

n,@

ρα

Â Â
Â
Â Â
Â
Â Â
Â
Â Â
Â

ÄÂ
Â Â
Â
Â Â
Â
Â Â
Â
Â Â
Â

Since Σ terminates and has all its critical branchings confluent, it is convergent as a consequence of

Newman’s lemma. Thus we know that the set {αα, λρ, λα, αρ, ρα} of 4-cells is a (finite) homotopy

basis of Σ⊤.

To get the result, we check that λα and ρα are superfluous in this homotopy basis, since their bound-

aries are also the boundaries of 4-cells of Σ⊤(Γ). Let us detail the proof for λα.

We consider the 4-cell
( )

⋆1 αα of Σ⊤(Γ). We partially fill its boundary with other 4-cells of
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5.2. Mac Lane’s coherence theorem revisited

Σ⊤(Γ) and equalities, yielding a 3-sphere of Σ⊤ denoted by γ:

α _%9

λ
Â¦¼

=
α

I½.
IIIIIIIIIIIII

IIIIIIIIIIIII

IIIIIIIIIIIII

λ
Â¦¼

α

u0Duuuuuuuuuuuuu

uuuuuuuuuuuuu

uuuuuuuuuuuuu

ρ _ %9

α
[#7

α _%9

=

λ_ey

ρ}}}}
}}}}
}}}}

}4H}}}} }}}}
}}}}

α

t0D

αρ γ

αρ

As a consequence of this construction, we have sγ ≈Γ tγ. Then we build the following diagram, proving

that s(λα) ≈Γ t(λα) also holds:

λ

³~µ

λÂ¦¼

α

1±"

λ
ÄÄÄ

ÄÄÄÄ
Ä

ÄÄÄ
Ä

Äuª ÄÄ
ÄÄÄ

Ä
ÄÄ

Ä
α

CCC
C

CCC
C

CCC
C

Cº+
CC

C
CC

C CC
C

λ_ey

λuuuuuu
uuuuuu

uuuuuu

u0Duuuuuu
uuuuuu

uuuuuu
λLLLLLL

LLLLLL
LLLLLL

L[oLLLLL

LLLLL
LLLLL

λ
_ey

= =

=

For the 4-cell ρα, one proceeds in a similar way, starting with the 4-cell
( )

⋆1 αα.

5.2.4. Corollary (Mac Lane’s coherence theorem [15]). In a monoidal category (C,⊗, e, a, l, r), all

the diagrams whose arrows are built from ⊗, e, a, l and r are commutative.

Proof. We see Cat1 as a (large) 3-category with one 0-cell, categories as 1-cells, functors as 2-cells

and natural transformations as 3-cells. The 0-composition is the cartesian product of categories, the 1-

composition is the composition of functors and the 2-composition is the "vertical" composition of natural

transformations.
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5. The case of 3-polygraphs

Then monoidal categories are exactly the 3-functors from Σ⊤ to Cat1 such that the source and target

of every 4-cell of Γ are identified. The correspondence between a monoidal category (C,⊗, e, a, l, r) and

such a 3-functor M is given by:

M( ) = C, M( ) = ⊗, M( ) = e, M(α) = a, M(λ) = l, M(ρ) = r.

As a consequence, a diagram D in C whose arrows are built from ⊗, e, a, l and r is the image by M of

a 3-sphere γ of Σ⊤. Since Γ is a homotopy basis of Σ⊤, we have sγ ≈Γ tγ. Since M is a 3-functor and

since it identifies the source and the target of every 3-sphere of Γ , it does the same with the ones of γ,

i.e. we have M(sγ) = M(tγ), which means that the diagram D commutes.

5.3. Right-indexed and left-indexed polygraphs

5.3.1. Proposition. Let Σ be a terminating right-indexed (resp. left-indexed) 3-polygraph. Then Σ is

confluent if and only if the following two conditions are satisfied:

1. Each of its inclusion and regular critical branchings is confluent.

2. Each normal instance of each of its right-indexed (resp. left-indexed) critical branchings is con-

fluent.

Proof. If Σ is confluent then, by definition, all of its branchings are confluent: in particular, its inclusion

and regular critical branchings and the normal instances of its right-indexed or left-indexed ones.

Conversely, let us assume that Σ has all of its inclusion and regular critical branchings and all of the

normal instances of its right-indexed (resp. left-indexed) critical branchings that are confluent. Since Σ is

terminating, we know that it is sufficient to prove that it is locally confluent. Moreover, since Σ is right-

indexed (resp. left-indexed), there remain to prove that every non normal instance of the right-indexed

(resp. left-indexed) critical branching is confluent.

From now on, we assume that Σ is right-indexed, the proof in the left-indexed case being similar. Let

us consider a right-indexed critical branching (A[k], B[k])k, which has the following shape by definition:

D k

C k

A[k] ~4H~~~~~~~

~~~~~~~

~~~~~~~

B[k] @¹*
@@

@@
@@

@

@@
@@

@@
@

@@
@@

@@
@

E k

Now, let f be a 2-cell such that (A[f], B[f]) is a non normal instance of (A[k], B[k])k. Since Σ is termi-

nating, f admits a normal form, say g. We denote by F a 3-cell from f to g. Since g is in normal form,

32



5.3. Right-indexed and left-indexed polygraphs

the branching (A[g], B[g]) is a normal instance of (A[k], B[k])k so that, by hypothesis, it is confluent: let

us denote by (G, H) a confluence for this branching, with target h. With all those ingredients, one builds

the following confluence diagram for the critical branching (A[f], B[f]), thus concluding the proof:

fD
D[F] _%9 gD

G

<¶'
<<

<<
<<

<<
<

<<
<<

<<
<<

<

<<
<<

<<
<<

<

fC

A[f] ~4H~~~~~~~

~~~~~~~

~~~~~~~

B[f] @¹*
@@

@@
@@

@

@@
@@

@@
@

@@
@@

@@
@

C[F] _%9 gC

A[g] ~4H~~~~~~~

~~~~~~~

~~~~~~~

B[g] @¹*
@@

@@
@@

@

@@
@@

@@
@

@@
@@

@@
@

h .

E f
E[F]

_%9 gE

H
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5.3.2. Homotopy bases of indexed 3-polygraphs. Let Σ be a locally confluent and right-indexed (resp.

left-indexed) 3-polygraph. We assume that a confluence has been chosen for:

• Each inclusion and regular critical branching.

• Each normal instance of each right-indexed (resp. left-indexed) critical branching.

We denote by ΓΣ the collection of the 2-spheres of Σ∗ corresponding to these confluence diagrams.

5.3.3. Proposition. Let Σ be a convergent right-indexed (resp. left-indexed) 3-polygraph. Then ΓΣ is a

homotopy basis of Σ⊤.

Proof. The proof follows the same scheme than the results of 4.3, where it was proved that the family of

3-spheres associated to the confluence diagrams of all the critical branchings was a homotopy basis.

First, we prove that every local branching of (A, B) of Σ admits a confluence (A ′, B ′) such that

A ⋆2 A ′ ≈ΓΣ
B ⋆2 B ′ holds. The proof is the same as in 4.3 when (A,B) is a trivial or when it is

generated by an inclusion or a regular critical branching.

There remains to check the cases of local branchings of the shape C(A[f], B[f]), where (A[k], B[k])k)

is a right-indexed (resp. left-indexed) critical branching and where C is a context. For that, we proceed

by Noetherian induction on the indexing 2-cell f, thanks to the termination of Σ.

When f is a normal form, then (A[f], B[f]) is a normal instance of the branching (A[k], B[k])k. To

build ΓΣ we have fixed a confluence for this branching, say (A ′, B ′). Then we have:

C[A[f]] ⋆2 A ′ ≈ΓΣ
C[B[f]] ⋆2 B ′.
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5. The case of 3-polygraphs

Let us assume that f is a non normal 2-cell such that (A[f], B[f]) is an instance of the branching

(A[k], B[k])k. Moreover, we assume that, for every 2-cell g such that f reduces into g and (A[g], B[g]) is

an instance of (A[k], B[k])k, there exists a confluence (A ′, B ′) for (A[g], B[g]) such that A[g]⋆2A ′ ≈ΓΣ

B[g] ⋆2 B ′ holds.

Since f in not in normal form, we can choose a 2-cell g such that f reduces into g, through a 3-cell F.

Since f and g have the same boundary, we have an instance (A[g], B[g]) of the branching (A[k], B[k])k.

We apply the induction hypothesis to g to get a confluence (A ′, B ′), with target denoted by h, such that

A[g] ⋆2 A ′ ≈ΓΣ
B[g] ⋆2 B ′ holds. Moreover, the branchings (C[A[f]], C[sA[F]]) and (C[B[f]], C[sB[F]])

are trivial branchings, yielding:

C[A[f]] ⋆2 C[tA[F]] ≈ΓΣ
C[sA[F]] ⋆2 C[A[g]]

and

C[B[f]] ⋆2 C[tB[F]] ≈ΓΣ
C[sB[F]] ⋆2 C[B[g]].

With these constructions, we build the following diagram, where we have assumed that the considered

branching was right-indexed – the case of a left-indexed critical branching is similar:

C

tA f
C[tA[F]] _%9

≈ΓΣ

C

tA g

C[A′]

=·(
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==
==

==
=

==
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==
==

=

==
==

==
==

=

C

sA

sB
f=

C[A[f]] ~4H~~~~~~~

~~~~~~~

~~~~~~~

C[B[f]] @¹*
@@

@@
@@

@

@@
@@

@@
@

@@
@@

@@
@

C[sA[F]]

C[sB[F]]
_%9

C

sB
g

sA
=

C[A[g]] ~4H~~~~~~~

~~~~~~~

~~~~~~~

C[B[g]] @¹*
@@

@@
@@

@

@@
@@

@@
@

@@
@@

@@
@

≈ΓΣ

C

h

.

C

tB f
C[tB[F]]

_%9

≈ΓΣ

C

tB g

C[B′]
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Hence, composing the three 4-cells of Σ⊤(ΓΣ) of that diagram, one proves that the confluence (C[tA[F]]⋆2

C[A ′], C[tB[F]] ⋆2 C[B ′]) satisfies the required

C[A[f]] ⋆2 C[tA[F]] ⋆2 C[A ′] ≈ΓΣ
C[B[f]] ⋆2 C[tB[F]] ⋆2 C[B ′],

thus concluding the first part of the proof.

The remainder of the proof is exactly the same as in 4.3, with the following two steps:

• For every branching (A,B) such that tA and tB are in normal form, one has tA = tB and A ≈ΓΣ

B. For that, we use the first part of the proof and we proceed by noetherian induction on the source

fo the branching (A,B).
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5.4. The 3-polygraph of permutations

• We consider two parallel 3-cells A and B in Σ⊤ and prove that A ≈ΓΣ
B holds.

5.3.4. Theorem. A finite convergent 3-polygraph with finitely many normal instances of indexed critical

branchings has finite derivation type.

5.4. The 3-polygraph of permutations

Here we see an example of a 3-polygraph that is finite, convergent, right-indexed and, thus, with an

infinite number of critical branchings, yet with finite derivation type. Another proof for termination and

the ideas for proving confluence we use here can be found in [13].

5.4.1. Definition. The 3-polygraph ΣPerm has one 0-cell ∗, one 1-cell , one 2-cell , and the following

two 3-cells:

α

⇛ and
β

⇛ .

5.4.2. Termination. We consider the (ΣPerm)∗2-module M(X, ∗, Z) with:

X
( )

= N and X
( )

(i, j) = (j + 1, i).

Then we consider the derivation d of (ΣPerm)∗2 into M(X, ∗, Z) given by:

d
( )

(i, j) = i.

The 2-functors X, Y and the derivation d satisfy the conditions of Theorem 4.2.1. Indeed, the derivation

d sends every 2-cell of Σ∗
Perm to a map with values in N and the following inequalities hold:

X

( )
(i, j) = (i + 1, j + 1) ≥ (i, j) = X

( )
(i, j),

X

( )
(i, j, k) = (k + 2, j + 1, i) = X

( )
(i, j, k),

d

( )
(i, j) = i + j + 1 > 0 = d

( )
(i, j),

d

( )
(i, j, k) = 2i + j + 1 = 2i + j = d

( )
(i, j, k).
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5. The case of 3-polygraphs

5.4.3. Normal forms. Let f be a 2-cell of Σ∗
Perm satisfying:

d(f)(0, . . . , 0) = 0.

Then f is in normal form. Otherwise, there exists a context C and a 2-cell g such that f = C[g] holds

and g is the source of one of the two 3-cells of ΣPerm. As a consequence, there exists a family (i1, . . . , in)

of natural numbers, with n = 2 or n = 3, such that the following inequalities hold:

d(f)(0, . . . , 0) ≥ d(g)(i1, . . . , in) ≥ 1.

Let us define N0 as the set of 2-cells given by the following inductive construction:

= or .

First, we check that the following holds:

X
( )

(i1, . . . , in, j) = (j + n, i1, . . . , in).

We proceed by structural induction, using the definition and the functoriality of X:

X
( )

(i, j) = (j + 1, i)

and

X

( )
(i1, . . . , in, in+1, j) =

(
X

( )
× IdN

)
(i1, . . . , in, j + 1, in+1)

= (j + n + 1, i1, . . . , in+1).

Now, let us prove that the 2-cells of N0 are in normal form, still by structural induction. For the base

case, we have, by definition of d:

d
( )

(0, 0) = 0.

Then, for the inductive case, we have, using the fact that d is a derivation:

d

( )
(0, . . . , 0) = d

( )
(0, . . . , 0) + d

( )
(0, 0) = 0.

Let us denote by N the set of 2-cells of Σ∗
Perm given by the following inductive graphical scheme:

= ∗ or or .

Let us prove that the 2-cells of N are in normal form, by structural induction. First, one has d(∗) = 0

since d is a derivation. Then, one gets:

d
( )

(i1, . . . , in + 1) = d
( )

(i1) + d
( )

(i2, . . . , in) = 0.
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5.4. The 3-polygraph of permutations

And, finally, using the values of X on N0:

d

( )
(i1, . . . , im, j, k1, . . . , kn)

= d
( )

(i1, . . . , im, j) + d
( )

(i1, . . . , im, k1, . . . , kn) = 0.

Finally, we prove that every 2-cell of Σ∗
Perm in normal form is in N. We proceed by induction on the pair

(m,n) of natural numbers, where m is the size of the 2-cells and n is the size of their source.

The only 2-cells of Σ∗
Perm with size 0 are the 1n, where n denotes the 1-cell with size n. All of them

are in normal form. Moreover, they belong to N: 10 is ∗ and, for every natural number n, 1n+1 = 11⋆01n.

The only 2-cell of Σ∗
Perm whose source has size 0 is 10 = ∗, which is in normal form and belongs

to N.

Then, let us fix two non-zero natural numbers m and n. We assume that, every 2-cell g of Σ∗
Perm

which is in normal form and such that (||g|| , |sg|) < (m,n) holds is in N, where compare pairs of

natural numbers with the product order.

Let us consider a 2-cell f of Σ∗
Perm in normal form, with size m and whose source has size n. Since

||f|| = m ≥ 1 and since is the only 2-cell of ΣPerm, there exists a 2-cell g such that f decomposes into:

f =
g

.

Since f is in normal form, then so does g. Moreover, g has size m − 1 and its source has size n. We

apply the induction hypothesis to g: this 2-cell is in N. Its source is n ≥ 1, so that g 6= ∗; there remains

two possibilities, by definition of N:

g = h or g =
h

.

In the first case, the 2-cell h is in normal form, has size m−1 and its source has size n−1. By induction

hypothesis, we know that h is in N. There are two subcases for the decomposition of f:

f =
h

or f =
h

.

The first decomposition is a proof that f is in N, since h is in N and is in N0. The second decom-

position tells us that f = ⋆0 f ′, where f ′ is in normal form (otherwise f would not), has size m and its

source has size n − 1; we apply the induction hypothesis to get that f ′ is in N; then we get that f is in N.

Now, let us examine the second case: the 2-cell h is in normal form, has size at most m − 2 and its

source has size n − 1; hence, by induction hypothesis, h is in N. There are three subpossibilities:

f =

h

or f =
h

or f =
h

.

The first subcase is, in fact, impossible since f would contain the source of a 3-cell, which contradicts

the assumption that f is in normal form. The second case gives that f is in N. In the third case, we have
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5. The case of 3-polygraphs

a decomposition of f into (f ′ ⋆0 1p) ⋆1 (11 ⋆0 f ′′) where f ′ is in N0 and f ′′ is a normal form (otherwise f

would not), has size at most m − 1 and has source n − 1: thus, we apply the induction hypothesis to get

that f ′′ and, hence, f are in N.

5.4.4. Confluence. The 3-polygraph ΣPerm has three regular critical branchings, with the following

sources:

, , ,

plus a right-indexed critical branching, with source:

k .

From Theorem 5.3.1, we know that, to get confluence of ΣPerm, it is sufficient to prove that the three

regular critical branchings are confluent and that each normal instance of the right-indexed one is.

In the following confluence diagrams, we commit the abuse of naming 3-cells with their generator

only. First, we check that the three regular critical branchings are confluent:
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From the inductive characterization of the set N of normal forms we have given, we deduce that there

are two normal instances of the right-indexed critical branching: for k = and k = . We check that
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5.4. The 3-polygraph of permutations

both are confluent:
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5.4.5. Theorem. The 3-polygraph ΣPerm has finite derivation type.

Proof. Indeed, the 3-polygraph ΣPerm is finite, convergent, right-indexed and has finitely many normal

instances of its right-indexed critical branchings. Thus Theorem 5.3.3 tells us that ΣPerm has finite deriva-

tion type. More precisely, the five 4-cells αα, αβ, βα, ββ
( )

and ββ
( )

form a homotopy basis of

the track 3-category Σ⊤
Perm.
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5. The case of 3-polygraphs

5.5. Main counterexample

Let us consider the 3-polygraph Σ with one 0-cell, one 1-cell, three 2-cells , and and the follow-

ing four 3-cells:

α

⇛ ,
β

⇛ ,
γ

⇛ ,
δ

⇛ .

We define by induction on the natural number k the 2-cell
k

as follows:

0
= and

k+1
=

k
⋆1 .

5.5.1. Termination. To prove that the 3-polygraph Σ terminates, we use two subsequent derivations

of Σ∗
2, as in Theorem 4.2.1.

We consider the derivation ||·|| , into the trivial module M(∗, ∗, Z). One checks that the following

holds:

||α|| = 0, ||β|| = 0, ||γ|| = 1, ||δ|| = 1,

Let us note that one would have the same results with the derivation ||·|| . As a consequence, one gets

that the 3-polygraph Σ terminates if and only if the 3-polygraph {α,β} terminates. To prove the latter,

we consider the derivation d into the Σ∗
2-module M(X, Y, Z), with:

X
( )

= N, X
( )

= (0, 0), X
( )

(i) = i + 1.

Y
( )

= N, Y
( )

= (0, 0), Y
( )

(i) = i + 1.

d
( )

(i, j) = i, d
( )

(i, j) = i, d
( )

(i, j) = 0.

Since d is a derivation, one gets:

dα = d
( )

− d
( )

= d
( )

⋆1

( )
+ ⋆1

(
d

( )
⋆0

)
− d

( )
⋆1

( )
− ⋆1

(
⋆0 d

( ))
.

Thus, for every natural numbers i and j, one gets:

dα(i, j) = d
( )

(i + 1, j) + d
( )

(0, i) − d
( )

(i, j + 1) − d
( )

(0, j)

= (i + 1) + 0 − i − 0

= 1.

Similarly, one gets dβ(i, j) = 1 for every natural numbers i and j, yielding the termination of {α,β} and,

thus, of Σ.
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5.5. Main counterexample

5.5.2. Normal forms. Let f be a 2-cell of Σ∗, that cannot be reduced by the 3-cells γ and δ and which

satisfies:

d(f)(0, . . . , 0) = 0.

Then f is in normal form. Indeed, otherwise there exists a context C such that f = C[g], with either

g = sα or g = sβ. As a consequence, there exist two natural numbers i and j such that the following

inequalities hold:

df(0, . . . , 0) ≥ dg(i, j) ≥ 1.

Now, we define N as the set of 2-cells given by the following inductive construction scheme:

= (a) ∗ or (b)
k

or (c) k

or (d)
k

or (e)
k

.

We use the special graphical representations , and for 2-cells of N which have, respectively,

degenerate source and target, degenerate source, degenerate target.

We start by checking that the 2-cells of N are in normal form. For that, one proceeds by structural

induction, using the construction scheme, in order to prove two properties.

The first one is that each 2-cell of N is irreducible by the 3-cells γ and δ: this is an observation that

the given construction scheme do not allow any 2-cell of N to contain either or .

The second one is that, for a 2-cell f of N, one has df(0, . . . , 0) = 0. For the base case (a), one has

d(∗) = 0 since d is a derivation. Then, for the induction, there are four cases:

(b) d

(
k

)
(0, . . . , 0)

= d
( )

(0, k) + d
( )

(0, k) + k · d
( )

(0, 0) + d
( )

+ d
( )

(0, . . . , 0)

= 0.

(c) d
(

k
)

(0, . . . , 0)

= d
( )

(0, k) + k · d
( )

(0, 0) + d
( )

(0, . . . , 0) + d
( )

(0, . . . , 0)

= 0.

(d) d

(
k

)
(0, . . . , 0)

= d
( )

(0, k) + k · d
( )

(0, 0) + d
( )

(0, . . . , 0) + d
( )

(0, . . . , 0)

= 0.

(e) d
(

k
)

(0, . . . , 0)

= k · d
( )

(0, 0) + d
( )

(0, . . . , 0)

= 0.
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5. The case of 3-polygraphs

Now, let us prove that every 2-cell of Σ∗ that is in normal form is contained in the set N. We proceed

by induction on the triple (m,n, p) of natural numbers, where m is the size of the 2-cells, n the size of

their source, p the size of their target.

The only 2-cells of Σ∗ with size 0 are the 1n, where n denotes the 1-cell with size n. All of them are

in normal form and belong to N. Indeed, each 1n can be formed, from ∗, by n subsequent applications

of the construction rule (e) with k = 0.

The 2-cells of Σ∗ with size 1 are the 1p ⋆0 ϕ ⋆0 1q, where ϕ is one of , and . Such a 2-cell is

always in normal form and belongs to N. Indeed, we have seen that 1q is in N. Then ϕ ⋆0 1q is in N by

using the following case, with = 1q, depending on ϕ:

• If ϕ = : case (c) with = ∗ and k = 0.

• if ϕ = : case (d) with = ∗ and k = 0.

• If ϕ = : case (e) with k = 1.

Finally, 1p ⋆0 ϕ ⋆0 1q is in N, thanks to case (e), applied p times in sequence, each time with k = 0.

Now, let us fix a non-zero natural number m and two natural numbers n and p. We assume that we

have proved the result for each g in normal form of size at most m − 1 or with size m and such that the

inequality (|sg| , |tg|) < (n, p) holds.

Let us consider a 2-cell f, in normal form and such that ||f|| = m, |sf| = n and |tf| = p hold. Since f

has size at least 1, there exists a 2-cell g such that f decomposes in one of the three following ways:

f = g or g or g

One denotes by ϕ the corresponding generating 2-cell. Since f is in normal form, so does g and g has

size m − 1: we apply the induction hypothesis to it, so that we know that g is in N. Thus, g decomposes

into one of the five following ways:

g = (a) ∗ or (b)
k

h or (c) k h

or (d)
k

h or (e)
k

h .

We study all the possible decompositions of f, depending on the one of g and on ϕ. In case (a), i.e. when

g = ∗, we have ϕ = , since this is the only possibility to have tϕ degenerate. We have already seen

that is in N. In case (b), one has the following possibilities, depending on ϕ:

f =
k

h or
k

h or
k

h

The following 2-cells must be in normal form, since f is, and they have size at most m − 2:

h , h , h .

We apply the induction hypothesis to each one: they belong to N. Thus f is in N by case (b). The

proof for case (c) is obtained from case (b) by replacing the 2-cell
k

by k . In case (d), the

reasoning depends on ϕ:
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5.5. Main counterexample

• When ϕ = , one has the following possibilities, depending where ϕ connects to g:

f =
k

h or
k

h or
k

h

or
k

h or
k

h .

The first and third case cannot occur. Indeed, one proves, by structural induction that a normal

form with source of size at least 1 and with degenerate target has the following shape:

k
· · ·

k k
.

As a consequence, such a decomposition of f would contain either or , preventing it

from being in normal form.

For the second case, one applies the induction hypothesis to the 2-cell : indeed, it is a

2-cell with size at most m − 1 that must be in normal form, otherwise f would not. Thus, f is built

from 2-cells of N following case (d) and, as such, is in N.

The fourth decomposition contains either or , respectively when k ≥ 1 and k = 0. Thus

it is not possible that f decomposes this way, since it is a normal form.

For the fifth decomposition, one applies the induction hypothesis to h , which is a 2-cell

that must be in normal form, with size at most m − 1.

• When ϕ = , one has the following possible decompositions of f:

f =
k

h or
k

h or
k

h .

The first case shows that f is in N: it is built with case (d), applied with =
k

h ,

which is g that we already know to belong to N, with = ∗ and k = 0.

In the second case, we apply the induction hypothesis to : it is a normal form of size at

most m − 1. Thus f is built from case (d).

In the third case, one applies the induction hypothesis to h : it is a normal form of size at

most m − 1. Thus f is built from case (d).

• When ϕ = , the 2-cell can decompose as follows:

f =
k

h or
k

h

or
k+1

h or
k

h .
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5. The case of 3-polygraphs

The first case cannot occur: otherwise, f would contain and, thus, it would not be in normal

form.

In the second case, we apply the induction hypothesis to : this is a normal form with size at

most m − 1. This proves that f is in N, built following case (d).

In the third case, f is in N, built following case (d).

In the fourth case, we apply the induction hypothesis to h : this is a normal form with size at

most m − 1. Thus f is in N, built from case (d).

Case (e) depends on the values of ϕ:

• When ϕ = , we have the following possible decompositions of f:

f =
k

h or
k

h .

In the first case, one must have k = 0: otherwise, f would contain which is not a normal form.

Thus the 2-cell h is a normal form of size m − 1: we apply the induction hypothesis to get that h

is in N. Then, by structural induction on h, one shows that it decomposes in one of the following

two ways:

h =
k

or
k

.

The first decomposition is impossible since, otherwise, f would contain and, thus, it would

not be a normal form. The second decomposition gives that f is in N, built from case (c).

• When ϕ = , we have the following possible decompositions of f:

f =
k

h or
k

h .

In the first case, f is in N, built from h in two subsequent steps: with case (e), then with case (d).

In the second case, one applies the induction hypothesis to h which is a 2-cell in normal

form, with either size at most m − 1, when k > 0, or with size m and source of size n − 1. Thus

this 2-cell is in N, and so does f, which is built following case (e).

• When ϕ = , we have the following possible decompositions of f:

f =
k+1

h or
k

h .

In the first case, f is built from h by application of case (e) and, as such, is in N.

In the second case, one applies the induction hypothesis to h , which is a 2-cell in normal

form, with either size at most m − 1, when k > 0, or with size m and source of size n − 1. As a

consequence, this 2-cell is in N, proving that f is built following case (e) and, thus, it is in N.
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5.5. Main counterexample

We have proved that the 2-cell of Σ∗ that are in normal form are exactly the 2-cells of N. In particular,

we denote by N0 the set of normal forms with degenerate source and target, which are defined by the

following inductive scheme:

= ∗ or
k

.

5.5.3. Confluence. Let us examine the critical branchings of Σ. The 3-polygraph Σ has four regular

critical branchings whose sources are:

, , , ,

plus one right-indexed critical branching, generated by α and β, with source:

k .

Thus Σ is a terminating and right-indexed 3-polygraph. By application of Theorem 5.3.1, we get conflu-

ence of Σ by proving that its four regular critical branchings and all normal instances of its right-indexed

critical branchings are confluent.

For the regular ones, we have the following confluence diagrams:
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From the characterization of normal forms of Σ, the normal instances of the right-indexed critical branch-

ing αβ are the instances corresponding to the following 2-cells:

= , = , = ,

plus:

=
n

,

for every in N0 and n in N.
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5. The case of 3-polygraphs

Now we check that, for each one of these 2-cells, the corresponding critical branching αβ is

confluent. Let us note that, for the first three, there are several possible confluence diagrams, because

they also contain regular critical branchings of Σ. For = , we choose the following one:
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Finally, for =
n

:
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5.5.4. Homotopy basis. The 3-polygraph Σ is convergent and right-indexed. Thus, Theorem 5.3.3 tells

us that the following 4-cells form a homotopy basis of Σ⊤:

γδ, δγ, αγ, βδ, αβ

( )
, αβ

( )
, αβ

( )
,

plus, for every in N0 and n in N, the 4-cell

αβ
( n)

.

In fact, the 4-cells αβ

( )
, αβ

( )
and αβ

( )
are superfluous. Indeed, their source and target

are the boundary of 4-cells in Σ⊤({αγ,βδ}), as proved thereafter.
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For αβ
( )
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We denote by Γ0 the family made of the 4-cells γδ, δγ, αγ and βδ. Then, for every natural number n,

one defines:

Γn+1 = Γn ∪
{
αβ

( n)
, ∈ N0

}
.

Thus, the following set of 4-cells is a homotopy basis of Σ:

Γ =
⋃

n∈N

Γn.

For every natural number n, we denote by ξn the 4-cell αβ
( n)

.

5.5.5. Lemma. Let n be a natural number. There is no 4-cell of Σ⊤(Γ0) which is parallel to ξn, i.e.:

sξn 6≈Γ0
tξn.

Proof. Let us assume, on the contrary, that there exists a 4-cell Φ in Σ⊤(Γ0) such that sΦ = sξn and

tΦ = tξn hold. We build the derivation d of Σ∗ into the trivial Σ∗-module that takes the following

values on the generating 3-cells:

dα = 1, dβ = −1, dγ = 0, dδ = 0.
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5.5. Main counterexample

Then d induces a derivation of Σ⊤ into the trivial Σ⊤-module: we define d(f−1) = −d(f) and we verify

that, with those values, d is compatible with the inverse relations.

Then, we check that, for any 4-cell Ψ of Σ⊤(Γ0), the extension of d satisfies dΨ = 0. Since d is a

derivation, it is sufficient to check this on the generating 4-cells:

• d(γδ) = dγ − dδ = 0.

• d(δγ) = dδ − dγ = 0.

• d(αγ) = dα + dβ + dγ − dγ = 1 − 1 = 0.

• d(βδ) = dβ + dα + dδ − dδ = −1 + 1 = 0.

Thus, since Φ is in Σ⊤(Γ0), one must have dΦ = 0. However, one has:

dΦ = dα − dβ = 1 − (−1) = 2.

This proves that Φ cannot be in Σ⊤(Γ0).

5.5.6. Lemma. Let n be a natural number. There is no 4-cell of Σ⊤(Γn) which is parallel to ξn, i.e.:

sξn 6≈Γn
tξn.

Proof. On the contrary, let us assume that Φ is a 4-cell of Σ⊤(Γn) such that sΦ = sξn and tΦ = tξn

hold.

First, we prove that Φ cannot contain any occurrence of a generating 4-cell αβ
(

k
)

or its

inverse, with k < n. For that, we define the derivation d of Σ∗
2 into the module M(X, ∗, G) given

thereafter:

• The 2-functor X : Σ∗
2 → Set is generated by the values:

X
( )

= N, X
( )

= (0, 0), X
( )

(i) = i + 1.

• The abelian group G is freely generated by the set N of natural numbers. The natural number n,

seen as a generator of G, is denoted by an.

• The derivation d is given by:

d
( )

= 0, d
( )

(i, j) = aj, d
( )

(i) = 0.

Now, let us assume that there exist 4-cells Ψ1, Ψ2 in Σ⊤(Γn), a context C of Σ⊤, an ε in {−1, 1}, a 2-cell

and a k in {0, . . . , n − 1} such that the 4-cell Φ decomposes this way:

Φ = Ψ1 ⋆3 C
[
αβ

(
k
)ε]

⋆3 Ψ2.
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5. The case of 3-polygraphs

Then we have s2Φ = (s2C)
[
s2αβ

(
k
)]

. In particular, both 2-cells are sent by d to the same

element of G. But, on the one hand, by hypothesis, one gets:

s2Φ = s2ξn = n ,

so that the following holds:

d (s2Φ) = an.

And, on the other hand, one has:

(s2C)
[
s2αβ

(
k
)]

= k

s2C

.

Then, using the fact that d is a derivation, one computes:

d




k

s2C


 = d

(
∗

s2C

)
+ d

(
k

)
+ d

( )
= d(f) + ak ,

where f = (s2C)
[ ]

. Thus, we have an = ak + d(f), with k < n and f in Σ∗
2. This is impossible

because G is freely generated and d sends any 2-cell to an element of G written using the ai’s with

positive coefficients.

Thus, we conclude that the 4-cell Φ must be built using the 4-cells of Γ0 and their inverses, i.e. Φ is

a 4-cell of Σ⊤(Γ0). However, this would contradict the previous result.

5.5.7. Theorem. The 3-polygraph Σ does not have finite derivation type.

Proof. On the contrary, let us assume that Σ does have finite derivation type. Then, by application of

Proposition 3.2.3, there exists a finite subfamily Γ ′ of Γ which is a homotopy basis of Σ⊤.

Since Γ ′ is finite, there exists some natural number n such that Γ ′ is contained in Γn. In particular,

the 4-cell ξn is not in Γ ′. However, since Γ ′ is a homotopy basis and since Γ ′ is contained in Γn, we have:

sξn ≈Γn
tξn.

We have seen that this is not possible, thus contradicting the fact that one can extract a finite homotopy

basis from Γ . As a consequence, the 3-polygraph Σ does not have finite derivation type.

5.5.8. A variant of the counterexample. In the previous 3-polygraph, one can think that the problem

comes from the complicated normal forms, especially from the fact that one can find normal forms

of N0 everywhere in a given 2-cell. Here we give another example, similar to the first one but with

more simple normal forms. It is a bit more contrived, which led us to prefer the other one for the main

exposition.

Let Ξ be the 3-polygraph with the following generating cells:

50



References

• Two 0-cells, denoted by ξ and η and, in the diagrammatic representations, respectively pictured

by a white background and by a gray one.

• Two 1-cells ξ
p

//η and η
q

//ξ . By abuse, both are pictured by a wire, leaving the back-

grounds discriminate them.

• Four 2-cells , , , and .

• Two 3-cells
α′

⇛ and
β′

⇛ .

Following the same reasoning steps as for the previous example one proves that the finite 3-polygraph Ξ

is convergent and that it does not have finite derivation type. Indeed, the following family of 4-cells,

indexed by the natural number n, form a homotopy basis of Ξ⊤ and cannot be reduced further:

n

α′

Bº+

β′

|3G

n+1
α′β′

(
n+1

)

ÄÂ
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