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Abstract 

Large plastic deformation in sheets made of dual phase steel DP800 is studied 

experimentally and numerically. Shear testing is applied to obtain large plastic strains in 

sheet metals without strain localisation. In the experiments, full-field displacement 

measurements are carried out by means of digital image correlation, and based on these 

measurements the strain field of the deformed specimen is calculated. In the numerical 

analyses, an elastoplastic constitutive model with isotropic hardening and the Cockcroft-

Latham fracture criterion is adopted to predict the observed behaviour. The strain hardening 

                                                 

*Corresponding author. Tel.: + 47 73 59 46 90; fax: + 47 73 59 47 01. 

 E-mail address: venkatapathi.tarigopula@ntnu.no (V. Tarigopula). 



 2

parameters are obtained from a standard uniaxial tensile test for small and moderate strains, 

while the shear test is used to determine the strain hardening for large strains and to 

calibrate the fracture criterion. Finite Element (FE) calculations with shell and brick 

elements are performed using the non-linear FE code LS-DYNA. The local strains in the 

shear zone and the nominal shear stress-elongation characteristics obtained by experiments 

and FE simulations are compared, and, in general, good agreement is obtained. It is 

demonstrated how the strain hardening at large strains and the Cockcroft-Latham fracture 

criterion can be calibrated from the in-plane shear test with the aid of non-linear FE 

analyses. 

  

Keywords: shear test, DP800, sheet metal, digital image correlation, numerical simulations, 

ductile fracture, Cockcroft-Latham fracture criterion. 

 

1 Introduction 

In the recent years, high strength steels are increasingly used in lightweight applications 

such as closure and structural panels in the automotive industry in a quest for lighter and 

safer vehicles. Such applications typically call for sheet metal forming processes including 

stamping, stretch flanging and deep drawing. These forming processes lead to large plastic 

deformations of the sheets and severe strain path changes while transforming them into 

structures. Fracture in vehicle parts may occur as a result of the forming processes during 

car crashes, where it may be detrimental for the energy dissipation capability of the 

structure. In view of the above facts, fundamental understanding and tools for the 
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prediction of material behaviour at large deformations including failure are indispensable 

for improving the performance of automotive structures. 

  

Uniaxial tensile tests are the most widely used experiment for determining the elastoplastic 

behaviour of materials. However, in this test ductile fracture usually occurs after diffuse 

and localised necking, and accurate measurements of large plastic deformations up to 

fracture are hampered by these plastic instability modes [1]. Hence, alternative material 

tests are needed to characterize the behaviour of sheet metals for large plastic strains and 

complex loading paths. Among the possible choices, the shear test is particularly attractive 

for sheet materials since large strains are achieved without the occurrence of plastic 

instabilities [2-4]. 

 

Numerous experimental and numerical studies have shown that the shear test, ranging from 

simple shear to pure shear, is a very efficient technique for evaluating the material 

properties of sheet specimens under complex loadings or strain path changes [1-9]. In 

simple shear one direction remains constant and everything else rotates relatives to it, while 

directions of greatest compression and extension are constant in pure shear. Iosipescu [7] 

designed a new procedure for pure shear testing using notched specimens subjected to 

antimetric four-point bending. This test is particularly attractive for the in-plane shear 

testing of composites. The advantage of this method is the use of small specimens without 

the need of grips to hold the specimen during testing, and the existence of a uniform shear 

region between the notches. However, non-uniform stress distributions might occur around 

the roots of the notches depending on the specimen orthotropy ratio [8] or damage state 
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[10], and this may further introduce difficulties in evaluating ductile damage and fracture. 

On the other hand, simple shear tests were performed by some researchers [2-6] using a 

planar simple shear apparatus. The specimens are very easy to prepare and have a simple 

rectangular shape. This technique has been adopted for studying the flow localisation 

induced by a change in strain path [5], and plastic anisotropy of sheet metals at large strains 

[2-4]. However, care should be taken to obtain proper gripping of the specimen during 

deformation, since it critically influences the response of the specimen. In particular, 

premature failure inside the grips should be avoided because of the heterogeneous stress 

distribution at corners [4]. 

 

Bao and Wierzbicki [9] presented a novel shear test specimen with a butterfly gauge section 

and reduced thickness in the shear zone. This specimen is designed to be used for 

characterizing fracture for low stress triaxiality conditions. The reduced thickness in the 

shear zone requires machining of the material that may introduce surface effects such as 

residual stresses and microcracks. Moreover, the plastic deformation of the machined shear 

zone may result in a non-planar stress state that could make the results difficult to interpret 

when evaluating planar anisotropic materials, and in particular when thin shell 

approximations are used in the numerical simulations. Lademo et al. [1] proposed a 

modified specimen design based on Bao and Wierzbicki’s [9] geometry without the 

reduced thickness in the shear zone, but that retains the predominant pure shear in the 

confined zone and ensures fracture initiation within the gauge area rather than at the free 

edge. The shear test may in addition to fracture strain investigations also be used to identify 

hardening parameters in a range of effective plastic strains and for combination of stresses 
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that are not explored by standard uniaxial tension tests. However, the shear specimen has a 

complex shape with a confined shear zone. The complex shape makes it difficult to obtain 

accurate measurements of the development of strains within the shear zone. Therefore, it is 

worth considering full-field measurements over the shear zone in order to obtain estimates 

of local displacements and strains. These measurements are helpful in further 

improvements of the specimen design and in interpretation of test results. In the literature, 

various full-field measurement techniques have been used for displacement and strain field 

measurements based on digital images. Of particular interest is the relatively simple, 

computationally inexpensive and robust algorithm based on digital image correlation (DIC) 

[11-13]. 

  

The objective of the present work is twofold. First, the local strains in the shear zone of the 

specimen will be determined by using digital image correlation (DIC). Thereafter, these 

measurements will be compared with results from a series of numerical simulations using 

the non-linear explicit solver of the FE code LS-DYNA. The second objective is to 

demonstrate the use of the shear test to determine the strain hardening at large strains and to 

calibrate the Cockcroft-Latham fracture criterion. This requires good agreement between 

the experimentally and numerically obtained strain fields in the shear zone and nominal 

shear stress vs. elongation characteristics.  
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2 Experiments 

2.1 Material 

The dual-phase high-strength steel DP800 (chemical composition in wt % – C: 0.12, Si: 

0.20, Mn: 1.50, P: 0.015, S: 0.002, Nb: 0.015, Fe: bal.), which consists of a mixture of 70 

% ferrite and 30 % martensite (vol. %), was considered in the present investigation. The 

steel was supplied by Swedish Steel Works, SSAB. In the as-received state, the ferrite 

grains are nearly equiaxial with a size of 5-10 μm, while the martensite phases, usually 

present at the grain boundaries, have a size in the order of 2-5μm. This steel possesses the 

combined attributes of excellent formability (ductility) and high strength, which allow for 

the use of thinner sheets in industrial applications. Accordingly, the specimens in this study 

were taken from a cold-rolled sheet of nominal thickness 1.5 mm. The thickness variation 

along the sheet was found to be less than 2 %. The material was characterized by using 

monotonic quasi-static tensile tests and in-plane shear tests in the as-received state. The 

tensile tests were performed in different orientations from the rolling direction in order to 

assess potential plastic anisotropy of the material.  

 

2.2 Tensile tests 

Uniaxial tensile tests were carried out at room temperature by using a conventional servo-

hydraulic Dartec testing machine with a load capacity of 20 kN. Tensile specimens in 

accordance with the ASTM standard, 1.5 mm thick and with a 5 mm wide gauge section 

(see Fig. 1), were cut along the rolling direction (0o), 45o to the rolling direction and in the 

transverse in-plane direction (90o). The gauge length of the specimen was 30 mm. Three 

duplicate samples in each direction were machined and tested. The specimens, as shown in 

Fig. 1, were gripped at either end by a suitable fixture in the testing machine and stretched 
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to fracture under displacement control at a constant cross-head speed of 1.8 mm / min to 

produce a strain-rate of the order of 10-3 /s. Load-deformation curves were obtained using 

an extensometer over the gauge length, from which the Cauchy stress vs. logarithmic strain 

curves and the strain-hardening parameters were calculated. For the measurement of plastic 

strain ratios ( R -values), the longitudinal and transverse strains were measured 

continuously with the aid of an MTS 634.31F-25 one sided extensometer, having a 20 mm 

gauge length, and an MTS 632.19F-20 transverse averaging extensometer, respectively. 

Thereafter, the standard equations of plasticity were used to calculate the logarithmic 

plastic strains from the extensometer readings. The R -values are then determined from 

 
p p
w w
p p p

t l w

Rα
ε ε
ε ε ε

= = −
+

 (1) 

where α  denotes the orientation to the rolling direction, while p
lε  and p

wε  refer to the 

longitudinal and transverse logarithmic plastic strains of the gauge section, respectively. 

The logarithmic plastic thickness strain, p
tε , is calculated by assuming plastic 

incompressibility. Data were logged with a frequency of 10 Hz. 

 

2.3 In-plane shear tests 

2.3.1 Specimen design 

Although shear tests have been used quite extensively, there exists no standard geometry. 

The specimen geometry in the current study was developed for determining the plastic 

behaviour of sheet metals by Lademo et al. [1] based on the design proposed by Bao and 

Wierzbicki [9] for low stress triaxiality fracture tests. Numerous specimen geometries were 

evaluated, experimentally and numerically through FE-based optimisation [1]. Efforts were 
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made to design the specimen geometry to obtain predominant shear deformation under 

plane stress conditions, and to avoid plastic instability phenomena. Fig. 2 shows the 

geometry of the final specimen that has a small and concentrated shear zone of length 2.5 

mm. Large parts of the specimen length are used for supporting the shear zone and for the 

clamping. 

2.3.2 Experimental procedure 

Two shear specimens were machined such that the x-axis coincided with the rolling 

direction, i.e. the 0o direction. The specimens were mounted using a clevis and clevis pin at 

each end, and tested in a standard Dartec hydraulic testing machine with a 20 kN load cell 

under constant displacement rate of 0.3 mm / min. An MTS 634.31F-25 extensometer with 

a 30 mm gauge length was attached to the specimen to measure the elongation across the 

shear zone in the x-direction. During testing, the crosshead displacement and the loading 

force were also measured. Data were recorded at a frequency of 10 Hz using Instron multi-

axis software (MAX).  

 

During the shear test, there is no possibility to follow the shear strain evolution directly in 

the shear zone. Thus, a digital video camera system was employed to obtain optical 

recordings of the specimen deformation at regular intervals to investigate the local strains 

in the shear zone. Since these tests were conducted at quasi-static rates, a low-speed camera 

was sufficient to capture the whole deformation process. The utilized camera was an 

EHDcmos 1.3 mega pixel digital camera, which acquired the images at a frame rate of 1 

frame / sec with a resolution of 256 × 512 pixels (8-bit dynamic range). It should be noted 

that an increase of frame rate will in general reduce the resolution. Thus, the selected 
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frame-rate and resolution constitute a compromise. Typically, 440-480 images were 

captured for each test at quasi-static speeds. Before each test, a random pattern was applied 

to the surface of the object. This pattern was applied by first coating the surface with black 

paint and then spraying a white spray paint to the black surface to create speckles. The 

resulting surface texture is useful for determining displacement and strain fields through 

digital image correlation. The experimental set-up for these tests is shown in Fig. 3. 

 

3 Digital Image Correlation (DIC) 

3.1 Displacement and strain measurements 

Digital image correlation is a non-contact optical method to measure displacement and 

strain fields of a planar object (when only one camera is used) by comparing the random 

pattern of grey levels of the sample surface during deformation with an initial (reference) 

image taken prior to loading. In order to obtain in-plane displacement quantities, this 

method usually employs an image-matching algorithm based upon cross-correlation 

function [11, 14] to compare a pair of digital images captured before and after a small 

deformation. 

 

Besnard et al. [15] introduced a finite element framework into the digital image correlation 

procedure in order to be in direct correspondence with FE simulations while measuring the 

displacement fields. The region of interest (ROI) of the sample surface is discretized into 

continuous finite elements (Q4-elements) (see Fig. 4). Each element with four nodes is 

referred to as a zone of interest (ZOI) and bilinear shape functions are adopted to represent 

the displacements in each element. Nodal displacements are obtained by optimising the 
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mean quadratic difference between the grey levels of all the elements in the reference 

image and the corresponding elements in the deformed image. With the determined 

displacement field, it is possible to calculate the associated strain field.  

 

The principle of digital image correlation is to match zones from one image to the other by 

characterizing the similarity between the intensity patterns (Fig. 5), and then to find a local 

displacement. Initial guesses for nodal displacements are obtained by using a coarse 

graining technique [13]. Finite element kinematics is a novel technique to regularize the 

sought displacement field by decomposing the trial displacement field onto a basis of a 

linear combination of continuous shape functions as proposed in finite element methods. 

Among the possible choices, the first order shape functions are particularly attractive 

because of their simplicity. A number of iterations are needed before the required 

convergence is attained. If necessary, the obtained subpixel displacements can be corrected 

by using the shift / modulation properties of Fourier transforms. However, all the elements 

are correlated at one time in this finite element based DIC because of the inter-element 

connectivity. An in-depth description of the adopted approach has been provided by 

Besnard et al. [15]. 

 

The out-of-plane displacement has a certain influence on the recorded sample surface 

during deformation, and thereby it influences the in-plane displacement measurements [16]. 

In this study, as shown in Fig. 3, the lens of the camera is positioned at the same vertical 

position as the specimen and is placed at a distance of 300 mm from the sample surface. 
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The effect of the out-of-plane displacement on the in-plane deformations of the ROI is 

assumed to be negligible. 

 

In this study, different strain measures are used for the shear tests, which all accounts for 

large deformations and rotations. The choice of strain measures was partly dictated by those 

available in the FE code LS-DYNA, since it was considered important to compare the local 

strains obtained by full-field displacement measurements and FE simulations. A Cartesian 

coordinate system is introduced with the orthogonal base vectors 1e , 2e  and 3e  parallel to 

the rolling (x-), transverse (y-) and thickness (z-) directions, respectively. The Green-

Lagrange strain tensor E  is computed from the deformation gradient F  as 

 1 ( ); ,
2

T= ⋅ − = ⋅E F F I F R U  (2) 

where U  is the right stretch tensor and R  is the rotation tensor. The in-plane components 

11E , 22E  and 12E  of the Green-Lagrange strain tensor are calculated from the measured 

displacement field. Shear deformation may also be characterized by the angle change 

between two adjacent, orthogonal fibers [17], see Fig. 6 . Consider two adjacent fibres of 

unit length that are aligned with the base vectors 1e  and 2e  in the initial configuration 0Ω . 

Assume that the fibres are subjected to a homogeneous deformation field. In the current 

configuration Ω , the direction of the fibres are then given by the vectors 1 1= ⋅g F e  and 

2 2= ⋅g F e , while the angle between them, θ , is obtained as 

 1 2 1 2

1 2 1 2

cos
T

θ ⋅ ⋅ ⋅ ⋅
= =

⋅ ⋅
g g e F F e
g g F e F e

 (3) 
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The shear angle γ  is then defined by / 2γ π θ= − . Further, the stretch ratios in the fibre 

directions are given as 1 1λ = g  and 2 2λ = g , since the length of the fibres in the initial 

configuration was unity. The thinning of the sheet is defined by the logarithmic thickness 

strain 33ε . To calculate 33ε , it is assumed that elastic strains are negligible and that plastic 

incompressibility prevails. Plastic incompressibility implies that det 1=F . Further, the 

components 13F , 31F , 23F and 32F  of the deformation gradient are all assumed to vanish for 

the actual deformation fields. With these assumptions, the logarithmic thickness strain may 

be calculated as 33 33 11 22 12 21ln ln ( )F F F F Fε = = − − . It is also worth noting that the stretch 

ratio in the thickness direction is 3 33expλ ε= , which could be used as an alternative 

measure for the thinning of the sheet. However, in predominant shear deformation the 

thinning is expected to be relatively small, and the difference between the two measures of 

less importance. 

 

3.2 Measurement uncertainties 

The performance of the digital image algorithm is evaluated a priori in terms of 

displacement uncertainty. To obtain an estimate of the uncertainty associated with the 

correlation algorithm, an artificial image is constructed from the recorded picture of one 

representative test by applying artificially known displacements ranging from 0 to 1 pixel 

with 0.1 pixel increments using the shift/modulation property of the Fourier transform. 

Thereafter, the correlation algorithm is applied to this pair of images, thus allowing an 

evaluation of the uncertainty. In this way, the a priori performance of the algorithm is 

predicted with an actual picture. The quality of the estimate is characterized by the standard 

uncertainty, uσ , which is defined as the mean of the standard displacement uncertainties. 
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An indication of the accuracy of this technique is seen in Fig. 7, where the effect of the 

element (or ZOI) size l  on the displacement uncertainty was studied for a representative 

shear test. A rapid decrease of the uncertainty, uσ , is observed with the element size l  (in 

pixels), as 1
u A lα ασ + −≈  with α ≈ 1.35 and A ≈ 0.8 pixel. Even though the displacement 

uncertainty is the lowest for large element sizes, the large displacements prompt us to use 

small sizes. This means that the displacement uncertainty and the corresponding spatial 

resolution are the result of a compromise. Thus, for an element size of l  = 8 pixels as used 

for the shear specimen, a displacement uncertainty of the order of 0.04 pixel and a standard 

strain uncertainty εσ  of the order of ≈2/2 uσ 3.5 × 10-3 are obtained. This last result is 

obtained when the nodal strains are determined by a centred finite difference algorithm 

[18].  

 

4 Experimental results 

4.1 Tensile tests 

Three duplicate tests were included in the study for each direction (i.e., 0o, 45o and 90o), 

and the tests were designated as “mtsxxyy”, where mts indicates the tensile specimen, xx 

represents the orientation to the rolling direction and yy refers to the sample number. Tpical 

mechanical properties of DP800 obtained by means of the uniaxial tension tests are 

presented in Table 1. The average static proof stress at 0.2 % permanent plastic strain was 

found to be approximately 535 MPa and the ultimate strength was about 800 MPa. 

Engineering stress-strain curves describing the work hardening behaviour for one 

representative test in each orientation are shown in Fig. 8a. All the curves exhibit a smooth 
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transition from the elastic to the plastic domain regardless of specimen orientation to the 

rolling direction. 

 

Fig. 8b shows the logarithmic plastic thickness strain p
tε  against logarithmic plastic width 

strain p
wε  for one representative test in each orientation, and demonstrates the determination 

of the R -values by linear regression in the uniform plastic deformation region, i.e. from 

initial yielding to diffuse necking. In Fig. 8b, the solid symbols represent the experimental 

observations, while the dashed lines indicate the best fits to the experimental data. The 

slopes of the fitted lines represent the R -values (0.80 to 1.05) that are given in Table 1. The 

strength and plastic flow anisotropy is seen to be minor and it was therefore decided to 

neglect plastic anisotropy in the elastoplastic constitutive model established for DP800.          

 

4.2 In-plane shear tests 

Two duplicate shear tests were performed in the rolling direction (i.e. 0o direction), using 

the specimen design shown in Fig. 2. The tests were specified as “msszz”, where mss 

denotes shear specimen and zz indicates the sample number. The test results in terms of 

nominal shear stress-elongation characteristics are presented in Fig. 9. The nominal shear 

stress is the applied force divided by the nominal cross-sectional area of the shear zone. 

There is no significant scatter observed between the two duplicate tests. The increase of the 

nominal shear stress is gradual, and the curves do not exhibit any drop in flow stress. 

Furthermore, the nominal shear stress-elongation curves show no signs of plastic instability 

(i.e., softening behaviour) taking place before the onset of failure occurs at maximum force.  
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In order to determine the displacement and strain fields in the shear zone, digital image 

correlation was employed by means of pictures taken with the digital video camera system. 

A selected sequence of the deformation for shear specimen, mss02, obtained from the 

digital video camera is shown in Fig. 10.  Note that the frames in Fig. 10 only show a small 

region of the centre part of the specimen that measures around 8 mm × 12 mm. As can be 

seen, the deformation started with predominant shear ( 2t ), and the shearing proceeds 

( 3 5t t− ) involving the formation of a well-defined band. Within the shear zone of the 

specimen, the deformation, and thus the damage accumulation, becomes highly localised 

and within this localised zone the fracture initiates. Prior to ductile failure, no significant 

area reduction was noticed in the shear zone. 

 

The evolution of the digital images at various stages of deformation provides direct 

information about the local strain distribution. A total of 21 images were chosen randomly 

for the displacement evaluation in the digital image correlation. Images were selected at 

large intervals in the beginning and then more images were used during the large 

deformation stages.  

 

Fig. 11a depicts the shear deformation of a single element taken at the middle of the shear 

zone in terms of the shear angle γ  versus time. It is seen that the shear angle is about 50o 

when failure occurs. Fig. 11b shows the logarithmic thickness strain 33ε  versus time for an 

element at the centre of the specimen gauge section. There is significant scatter between the 

duplicate tests, but a maximum thickness strain of about 6 % is estimated at fracture. Note 

that thinning is not constant over the shear zone and this value might vary depending on the 
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chosen area of interest. Nevertheless, the shear strains in the shear zone seem to be an order 

of magnitude larger than the thickness strains.  

    

5 Constitutive model and parameter identification 

5.1 Constitutive model 

A phenomenological constitutive model for DP800 is presented in this section. Since the 

material exhibits only weak anisotropic behaviour (see Fig. 8), it was chosen to simulate the 

in-plane shear tests with an isotropic elastoplastic model. The strains and rotations in the 

shear test are finite, thus, large deformations are considered in the constitutive model. The 

main ingredients of the elastoplastic constitutive model are an isotropic yield criterion, a 

non-linear isotropic hardening rule and the associated flow rule [19]. In addition, the 

concept of non-local plastic thinning for plane stress analysis [20] and a ductile fracture 

criterion [21] are used respectively to reduce the mesh dependence of strain localisation and 

to predict ductile failure. This model is a standard material model (*MAT_135) for use 

with co-rotational shell elements in LS-DYNA [22]. Applying brick elements instead of 

shell elements, this model has been implemented in LS-DYNA as a user-defined model 

[23].  

 

The basic constitutive equations for shell (co-rotational) and brick element formulation are 

compiled in Table 2. A superposed hat (^) denotes the co-rotational formulation and a 

superposed dot specifies material time differentiation. It is seen that the co-rotational stress 

tensor σ̂  and the co-rotational rate-of-deformation tensor D̂  are adopted as energy 

conjugate measures of stress and strain-rate for plane-stress formulation. For brick 
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elements, the Cauchy stress σ  and the rate-of-deformation tensor D  are taken as energy 

conjugate measures, using the objective Jaumann stress rate J∇σ  in the hypoelastic relation.  

 

The linear hypoelastic relation, which defines the objective stress rate J∇σ (or σ̂ ) in terms 

of the elastic rate-of-deformation eD (or ˆ eD ), is assumed to be isotropic, i.e. C  is an 

isotropic 4th order tensor, which is determined by Young’s modulus E  and Poisson’s ratio 

υ. The generalized associated flow rule is adopted to establish the plastic rate-of-

deformation tensor pD  (or ˆ pD ) and the effective plastic strain rate ε . The consistency 

condition, 0f = , is utilized to determine the plastic multiplier λ  during a plastic process. 

 

The yield criterion 0( ) 0f Rσ σ= − + ≤  defines the elastic domain of the material, where 

0σ  is the reference yield stress. The effective stress σ , based on Hershey’s isotropic yield 

criterion with high exponent [24], is then defined in terms of the Cauchy stress tensor σ  by 

 ( ) { }
1

1 2 2 3 3 1
1 ,
2

mm m mσ σ σ σ σ σ σ σ⎡ ⎤= = − + − + −⎢ ⎥⎣ ⎦
σ  (4) 

where m  is a material constant and 1 2 3( , , )σ σ σ  are the principal stresses. For shell 

elements, the yield criterion is defined in terms of the co-rotational stress tensor σ̂  (see 

Table 2), and a plane stress state is assumed. In this case, the effective stress reads 

 ( ) { }
1

1 2 1 2
1ˆ ˆ ˆ ˆ ˆ ,
2

mm m mσ σ σ σ σ σ⎡ ⎤= = + + −⎢ ⎥⎣ ⎦
σ  (5) 

where 1 2ˆ ˆ( , )σ σ  are the principal stresses in the plane of the sheet. It is noted that for m = 2 

the criterion coincides with the classical von Mises yield criterion. According to Logan and 
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Hosford [25], the isotropic yield locus for randomly oriented bcc materials is better 

approximated by the exponent m  equals 6. In the present study, 6m =  was used even 

though a dual-phase material is considered. 

 

Isotropic hardening is defined by a two-component Voce rule for small to moderate strains 

 
2

1
( ) (1 exp( )),i i

i
R Q Cε ε

=

= − −∑  (6) 

where ε  is accumulated effective plastic strain, iC  and iQ  are material parameters 

determined from standard tensile tests. The rate form of Eq. (6) reads 

 
2

1
, exp( )R R i i i

i
R H H C Q Cε ε

=

= = −∑  (7) 

It is seen from Eq. (6) that the strain hardening saturates for large strains with a maximum 

value 
2

1
i

i
R Q

=

= ∑ . Saturation is not always confirmed by experiments, and nearly linear 

hardening has been reported for large strains [1, 26]. To account for this phenomenon, the 

strain hardening evolution rule is modified to read 

 ,minmax( , ) ,R RR H H ε=  (8) 

where ,minRH  is the minimum work hardening rate. This quantity may be identified from 

experiments at large plastic strains, e.g. from the shear test. It follows that Eq. (6) is valid 

until an effective plastic strain ε ∗  only, which is implicitly defined by 

 
2

,min
1

exp( )R i i i
i

H C Q C ε ∗

=

= −∑  (9) 

It will be shown below that this option provides better results for problems involving large 

plastic deformations. 
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5.2 Failure criterion 

To describe ductile failure of the material, the simple phenomenological criterion proposed 

by Cockcroft and Latham [21] was employed. In this failure criterion, the element is eroded 

when 

 1
0

max( ,0) CW d W
ε

σ ε= ≥∫  (10) 

where 1σ  is the maximum principal stress and CW  is the critical value of the integral W  

that should be determined from an appropriate experiment. In the model, the fracture 

criterion is coupled with the element erosion algorithm available in LS-DYNA. Element 

erosion occurs when CW W≥  in one or more integration points of an element, and this 

element is removed from the finite element model. Element removal may not be a generally 

applicable approach for describing material failure. However, in this work, attention is 

given to the onset of failure rather than crack propagation. 

  

5.3 Identification of material parameters 

The elastoplastic model contains several material parameters that have to be identified from 

suitable experiments. It is a common practice to identify the hardening parameters from 

simple uniaxial tensile tests. In this study, the parameters of the two-component Voce rule 

are determined from the uniaxial tension test, while the linear hardening for large strains 

and the fracture parameter are determined from the shear test. 
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5.3.1 Strain hardening 

The results of uniaxial tensile tests up to diffuse necking were used to determine strain-

hardening parameters in Eq. (6) namely 0σ , iQ  and iC  ( i = 1, 2). These parameters were 

deduced by fitting Eq. (6) to the quasi-static Cauchy stress vs. logarithmic plastic strain 

curve in the rolling direction for specimen mts0002, which is chosen as the reference test. 

A least square method is applied for minimizing the error between experimental data and 

calculated results. Fig. 12a shows that the chosen strain hardening model describes the 

experimental behaviour well. The identified parameters are gathered in Table 3. 

5.3.2 Minimum work hardening rate  

The two-component Voce hardening rule, described by Eq. (6), and calibrated from 

uniaxial tensile tests converges asymptotically to a zero work hardening rate at relatively 

moderate strains. However, this behaviour is not in accordance with the data obtained from 

the shear tests, and thereby a minimum work hardening rate was introduced in addition to 

the above hardening parameters as described in Section 5.1. As seen in Fig. 12b, the model 

without the minimum work hardening rate parameter was not able to predict the 

experimental nominal shear stress vs. elongation behaviour at large displacements. Thus, 

the minimum work hardening rate ,minRH  is determined for large plastic strains from the 

shear test by correlating experimental and numerical nominal shear stress-elongation curves 

through a trial-and-error procedure. In this context, numerical simulations are carried out 

with shell elements. Fracture was excluded by prescribing a large value of CW . Further 

details about the numerical simulations are described in Section 6. It was found that 

reasonable predictions were obtained with ,minRH = 200 MPa for the investigated dual-phase 

steel, see Fig. 12b, and this value was used for subsequent simulations. 
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5.3.3  Ductile fracture 

The Cockcroft-Latham fracture criterion has only one parameter, CW , that presently is 

identified from the in-plane shear test. The parameter can not be identified directly from the 

measured force-elongation characteristics, since the stress and strain fields are 

inhomogeneous within the shear zone. Attempts to use analytical calculations resulted in 

severe underestimations of the fracture parameter [1, 26]. Therefore, an FE-based technique 

is adopted to identify the fracture parameter CW . This technique relies on an acceptable 

correlation between the experimental and simulated force-elongation curve. When this is 

obtained, a simulation is carried out in which CW  is given a large value to exclude fracture. 

During the simulation, the integral W  is continuously calculated. At an elongation 

corresponding to the maximum force in the experiment, the maximum value of  W  within 

the shear zone is determined from the simulation and taken as the fracture parameter CW .  

The evolution of the integral W  depends on the state of stress as well as on the strains 

developed. In order to assess the influence of stress triaxiality, numerical simulations with 

brick elements were performed and compared with the shell element simulations.  

 

As can be seen from Fig. 13, satisfactory agreement is found between the experiments and 

simulations using shell and brick element models in terms of nominal shear stress-

elongation characteristics. The maximum value of the fracture integral W  within the shear 

zone is calculated through the numerical analysis and is plotted as a function of elongation 

in Fig. 13. The fracture parameter CW  is determined as the maximum value of W  at an 

elongation corresponding to incipient fracture in the experiments. Accordingly, CW  is 

found to be in the order of 590 MPa based on the shell element simulation and around 610 
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MPa based on the simulation with brick elements. A detailed description of the FE models 

used in the simulations of the shear test is given in the subsequent section. 

  

6 Numerical simulations 

The explicit solver of the non-linear finite element code LS-DYNA [22] was used for the 

computational analyses of the in-plane shear test. The simulations were carried out using 

the material model presented in Section 5, and the corresponding model parameters are 

summarized in Table 3. In addition to the constitutive law given in Table 2, the material 

model also includes the Cockcroft-Latham failure criterion that allows elements to be 

removed from the mesh after a critical value is exceeded using the element erosion 

algorithm of LS-DYNA.  

 

The FE shell model of the in-plane shear specimen was made using the mesh generator of 

the code I-DEAS [27]. The model is shown in Fig. 14 and consists of 4550 shell elements 

with selective reduced integration (LS-DYNA type 16). Two through thickness integration 

points were used. Effort was made to create a finer mesh in the concentrated shear zone, 

while a coarse mesh was made outside the gauge section. An element size of approximately 

0.08 mm × 0.08 mm was used in the shear zone and found to be sufficient for representing 

the observed behaviour. The dimensions of the FE model are equal to those of the physical 

specimens with a shear zone of 2.5 mm. The clevis pins were modelled using rigid shell 

elements in order to be consistent with the experimental conditions. The right pin was 

fixed, while the left pin was given a displacement boundary condition through a smooth 

curve function in LS-DYNA. 
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The 3D model of the specimen was generated using the shell drag option in LS-PREPOST 

on the basis of a shell model. Since the shear specimen is symmetric in the thickness 

direction, one half of the specimen was modelled by taking into account the thickness 

symmetry boundary condition, resulting in a total of 17295 elements with 5 elements in the 

thickness direction. The analyses were performed using eight-node brick elements with on-

point integration. The approximate element size used in the shear zone was 0.07 mm × 0.09 

mm × 0.15 mm. 

 

Numerical predictions of damage and fracture are prone to mesh dependent. In plane stress 

formulations (i.e. for shell elements), predictions of localized necking due to plastic 

thinning are also sensitive to the mesh density. Non-local plastic thinning was proposed by 

Wang et al. [20] to improve the convergence characteristics of such simulations. In this 

approach, the average plastic thickness strain rate within a radius of influence surrounding 

the integration point is calculated and used to predict the thinning of the shell. In the model 

implementation, the following non-local equations are considered for the shell elements. 

Assume that the non-local value of the plastic strain rate in the thickness direction 33( )p
rε x  

is to be calculated for an integration point with position vector r r∈Ωx in a given shell 

layer. Let rΩ  denote the neighbourhood within a given radius L  of this integration point 

included in the same layer of the shell element. The non-local plastic strain rate [28] is 

defined by 

 33 33
1( ) ( ) ( )
( )

r

p p
r r

r

w d
W

ε ε
Ω

= − Ω∫x y x y
x

 (11) 
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where 
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Ω
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⎡ ⎤⎛ − ⎞
⎢ ⎥+ ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

∫x y x x y
x y

 (12) 

In the above equations, 33( )pε y  is the local plastic strain rate of the integration point, y  is 

the local position vector within the domain rΩ , w  is a weight function, and the parameters 

p and q  are user-defined exponents of the weight function. Further details regarding non-

local thinning are provided by Wang et al. [20]. In the present study, the radius of the non-

local domain L  for the shear test is taken as approximately half of the sheet thickness, i.e. 

0.70 mm. The parameters p  and q  are set to zero, i.e. equal weight is given to the 

integration points within the non-local domain. 

   

7 Comparison and discussion 

Experimental results in terms of mode of deformation, nominal shear stress-elongation 

characteristics, strain contours and various strain measures (shear angle, stretch ratios and 

logarithmic thickness strain) versus elongation, are compared with the numerical 

predictions in this section. 

  

The nominal shear stress-elongation curves from experiments and simulations with shell 

and brick elements after including the failure parameter are depicted in Fig. 15a. A fairly 

good correlation between the experimental and numerical nominal shear stress-elongation 

curves is observed. From Fig. 13 it is seen that a 3 % higher estimate of the fracture 

parameter CW  was found in brick element simulations. Accordingly, there is some 
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influence of the three-dimensional stress state on the evolution of the integral W  in the 

shear test. In general, W  increases more rapidly under higher stress triaxiality level, and a 

higher estimate of CW  should be expected from the brick element analyses. However, this 

result indicates that the stress triaxiality stays at a low level even for large strains in the 

shear test. Fig. 15b depicts plots of effective plastic strain ε  vs. stress triaxiality mσ
σ

, 

where mσ  is the mean stress and σ  is the effective stress, for two critical elements in the 

shell and brick element models. As seen from Fig. 15b, higher stress triaxiality values are 

apparent in the brick element model, which is in accordance with the 3 % higher estimate 

of CW . At incipient failure, the stress triaxiality is about 0.16 in the shell model and 0.23 in 

the brick model. These values are considered to be in the low stress triaxiality regime, 

according to Bao and Wierzbicki [9].  

 

As the global response is well predicted, it is interesting to compare the local strain 

measurements from the experiments with the strains calculated in the simulations. Fig. 16 

compares the Green-Lagrange shear strain xyE  in the shear zone, measured by digital image 

correlation and computed using shell elements. It should be noted that all the contours in 

the figure are displayed with a fixed scale. The shear deformation in both cases is 

concentrated in the gauge area and very small deformations are observed in the rest of the 

specimen. The numerical simulation reproduces the deformation mode seen in the 

experiment, which is a necessary requirement for the application of the FE-based technique 

used to identify the fracture parameter. However, the estimated Green-Lagrange shear 

strain at the onset of fracture in the numerical simulation is approximately 85 %, whereas it 
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is in the order of 70 % in the experiment. Some of the difference might be attributed to the 

possible difference in sizes of the element used in the experiments and simulations. The 

element size in the experiments is approximately 0.2 mm × 0.2 mm, whereas the element 

size in simulations is in the order of 0.08 mm × 0.08 mm. As the element size used in the 

digital image correlation is larger than that used in the FE simulations, it may not capture 

very accurately strain gradients, and therefore the maximum level is smaller in the 

experiment. Fig. 17 shows the stretch ratios 1λ  and 2λ  in the rolling (loading) and 

transverse directions, the shear angle γ , and the logarithmic thickness strain 33ε  calculated 

from field measurements and FE simulations. The values are taken for a single element in 

the centre of the gauge area. As can be seen from Fig. 17a, the stretch ratio 1λ  in the 

loading direction is somewhat over-predicted in the FE simulations, while the predicted 

stretch ratio 2λ  in the transverse direction is comparable to that of the experiment, see Fig. 

17b. The shear angle is larger in the numerical simulations than in the experiments, Fig. 

17c, and this is in agreement with the results presented in Fig. 16. Fig. 17d shows the 

logarithmic thickness strain 33ε  against elongation. There is some difference in the thinning 

between simulations and experiments, which could be attributed to the deviations found in 

the in-plane deformations. However, it is recalled that significant scatter in the thickness 

strain was found between duplicate tests. 

 

The large differences in effective plastic strain to failure in the shear test (of the order of 

1.0) compared with the conventional uniaxial tensile tests (of the order of 0.15 up to 

maximum load, see Fig. 8a) is noteworthy. The shear test thus provides information on the 

material behaviour for significantly larger strains and for different states of stress than in 



 27

the uniaxial tensile tests, and therefore has a potential for use in calibration and validation 

of constitutive laws and fracture criteria [1, 26].  

 

Fractured specimens from experiments and simulations are illustrated in Fig. 18. Fracture 

occurs in the core of the shear zone as a result of combined shear and tensile stresses. The 

simulations predict the onset of fracture within the localised shear zone. However, the crack 

in the simulations looks somewhat serrated because of the element erosion algorithm, 

whereas the crack in the experiments appears smooth. The validation of the Cockcroft-

Latham fracture criterion is beyond the scope of the present paper. The aim was to illustrate 

how the shear test in combination with field measurements could be used to identify a 

given fracture criterion. However, it should be noted that the Cockcroft-Latham fracture 

criterion has been validated for different materials and used in various applications with 

good results [29-32]. 

  

Additional analyses using 2m =  were carried out to study the influence of the yield 

criterion exponent, which determines the shape of the yield surface. It is seen from Fig. 19 

that for both shell and brick models, the values of 2m =  and 6m =  resulted in almost the 

same behaviour. In particular, the initial elastic to plastic transition region is very well 

predicted with 6m = , whilst the behaviour after the transition region is better predicted 

with 2m = . Moreover, only one stress path (shear) is considered in the present 

investigation, which eventually provided a response of the same accuracy for both 

2m = and 6 using shell and brick elements. 
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8 Concluding remarks 

The stress-strain behaviour and plastic anisotropy of a dual-phase high-strength steel 

DP800 sheet was investigated by means of uniaxial tension tests in various directions with 

respect to the rolling direction. Only weak plastic anisotropy was detected. Monotonic, 

quasi-static in-plane shear tests were carried out to assess the work hardening behaviour at 

large plastic strain and ductile fracture. A full-field measuring system based on digital 

image correlation was applied to evaluate the displacements and strains in the gauge area 

up to fracture. It is worth noticing that the in-plane shear test provides substantial 

information concerning the material behaviour at large strains and for different states of 

stress than the uniaxial tensile test. Furthermore, the in-plane shear tests also give 

information about ductile failure with presumably minor effects of plastic instability. Thus, 

the information gained from the shear tests can be used in calibration and/or validation of 

constitutive relations and fracture criteria.  

 

The experimental behaviour was modelled using LS-DYNA and an elastoplastic 

constitutive model with high-exponent isotropic yield criterion. It was shown that the 

constitutive model predicted the experimental results in terms of load-elongation 

characteristics and mode of deformation with good accuracy. Consistent results were 

obtained with shell and brick elements. The local strains obtained in the numerical 

simulations were in reasonable agreement with the experimental observations by digital 

image correlation. In addition, it was shown how a fracture criterion, in this case the 

Cockcroft-Latham criterion, could be identified from the shear test by an FE-based 
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technique. The calibrated fracture criterion was then used to model ductile failure in shell 

and brick element simulations. 
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Fig. 1. Geometry of the uniaxial tensile test specimen 

 

 

 

 

 

Fig. 2. Geometry of the in-plane shear test specimen 
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(a) 

 
(b) 

Fig. 3. Experimental set-up for in-plane shear tests, (a) specimen with extensometer, and (b) 
specimen and camera 
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Fig. 4. Schematic representation of FE-based DIC 
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Fig. 5. Field determination principle of DIC 
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Fig. 6. Shear deformation represented by the angle between two adjacent, orthogonal fibers in the 

initial 0Ω  and current Ω  configurations  

 

 
Fig. 7. Displacement uncertainty as a function of ZOI size for quasi-static in-plane shear test, mss02 
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(b) 

Fig. 8. Quasi-static tensile test results for one representative test in each direction of DP800, (a) 
engineering stress-strain curves, and (b) plots for determination of R -value 
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Fig. 9. Nominal shear stress vs. extensometer elongation for the quasi-static in-plane shear tests 
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Fig. 10. Sequence of digital images for a quasi-static in-plane shear test, mss02 
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(b) 

Fig. 11 (a) Shear angle vs. time, and (b) logarithmic thickness strain vs. time, evaluated from the 
estimated displacement field for the two duplicate shear tests 
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a) Strain-hardening, tensile test 
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b) Minimum work hardening rate, shear test 

Fig. 12 (a) Experimental and fitted strain-hardening curves and (b) nominal shear stress vs. 
elongation curves for the in-plane experimental shear tests compared with simulations with different 

values of the minimum work hardening rate, ,minRH  
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Fig. 13. Correlation of nominal shear stress-elongation curves from experiments and simulations 

(both shell & brick elements) including plots of maxW , for in-plane shear test 

 

 

 

 
Fig. 14. FE model of the in-plane shear specimen 
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(b) 

Fig. 15  (a) Experimental and numerical nominal shear stress vs. elongation curves after including 
failure parameter, and (b) comparison of plastic strain (ε ) vs. stress triaxiality ( mσ σ ) between 

shell and brick element simulations of shear test 
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Digital image correlation Numerical simulations 

  

  

  

    

 

Fig. 16. Comparison of Green-Lagrange shear strain ( xyE ) plots at different deformation stages 
between digital image correlation (for mss02) and numerical simulations representing with the same 

colour scale 
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(a) Stretching of fiber in the loading direction 
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(b) Stretching of fiber in the transverse direction 
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(c) Shear angle 
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 (d) Logarithmic thickness strains 

Fig. 17 Comparison of local measurements against elongation between experiments and simulations 
with shell and brick element models 

 

 

 
(a) Experiments 

 
(b) Simulation-shell 

 
(c) Simulation-brick 

Fig. 18. Comparison of fractured shear zone from experiments, mss02, and simulations 
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(a) 
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(b) 

Fig. 19. Influence of exponent ( m ) in the yield criterion on the predicted nominal shear stress-
deformation behaviour in (a) shell element model, and (b) brick element model 
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Table 1. Material characteristics for DP800 

 Width Thickness Yield stress Maximum 
stress 

Plastic strain 
 ratio 

 w  t  
0.2s  us  R  

 [mm] [mm] [MPa] [MPa] [-] 
mts0001 5.02 1.490 543 812 0.86 
mts0002 5.09 1.496 529 815 0.92 
mts0003 5.04 1.492 545 816 0.84 
mts4501 5.01 1.487 532 809 0.99 
mts4502 5.02 1.504 526 804 1.06 
mts4503 5.04 1.498 525 793 1.01 
mts9001 5.01 1.500 539 803 0.97 
mts9002 5.04 1.493 544 811 1.04 
mts9003 5.06 1.488 542 811 0.99 

 

 

Table 2. Basic constitutive equations for shell (co-rotational) and brick elements 

Shell element formulation (co-rotational) Brick element formulation (Jaumann) 
Additive decomposition of rate-of-deformation tensor into elastic and plastic parts 

ˆ ˆ ˆ ˆ,e p T= + = ⋅ ⋅D D D D R D R  e p= +D D D  

Hypoelastic stress-strain relation on rate form 
ˆˆ ˆ: ,e T= = ⋅ ⋅σ C D σ R σ R  :J e∇ =σ C D  

Yield criterion 
0ˆ ˆ( , ) ( ) ( ) 0f R Rσ σ= − + ≤σ σ  0( , ) ( ) ( ) 0f R Rσ σ= − + ≤σ σ  

Associated flow rule 
ˆ ,

ˆ
p f f

R
λ ε λ λ∂ ∂

= = − =
∂ ∂

D
σ

 ,p f f
R

λ ε λ λ∂ ∂
= = − =

∂ ∂
D

σ
 

Loading/unloading conditions 
ˆ( ) 0; 0; 0f fλ λ≤ ≥ =σ  ( ) 0; 0; 0f fλ λ≤ ≥ =σ  

 

 

 

Table 3. Identified parameters from the experiments for DP800 

E  
[MPa] 

ν  
[-] 

0σ  
[MPa] 

1Q  
[MPa] 

1C  
[-] 

2Q  
[MPa] 

2C  
[-] 

,minRH  
[MPa] 

m  
[-] 

205000 0.3 420 178 337 388 15 200 6 
 


