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Abstract

For estimating the unknown parameters in an unstable autoregres-
sive AR(p), the paper proposes sequential least squares estimates with
a special stopping time defined by the trace of the observed Fisher in-
formation matrix. The limiting distribution of the sequential LSE is
shown to be normal for the parameter vector lying both inside the
stability region and on some part of its boundary in contrast to the
ordinary LSE. The asymptotic normality of the sequential LSE is pro-
vided by a new property of the observed Fisher information matrix
which holds both inside the stability region of AR(p) process and on
the part of its boundary. The asymptotic distribution of the stopping
time is derived.
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1 Introduction

Consider the autoregressive AR(p) model

xn = θ1xn−1 + . . . + θpxn−p + εn, n = 1, 2, . . . , (1.1)

where (xn) is the observation, (εn) is the noise which is a sequence of inde-
pendent identically distributed (i.i.d.) random variables with Eε1 = 0 and
0 < Eε2

1 = σ2 < ∞, σ2 is known, x0 = x−1 = . . . = x1−p = 0; parameters
of the model θ1, . . . , θp are unknown. This model can be expressed in vector
form as

Xn = AXn−1 + ξn , (1.2)

where Xn = (xn, xn−1, . . . , xn−p+1)
′, ξ = (εn, 0, . . . , 0)′,

A =

(

θ1 . . . θp

Ip−1 0

)

, (1.3)

the prime denotes the transposition.
A commonly used estimate of the parameter vector θ = (θ1, . . . , θp)

′ is
the least squares estimate (LSE)

θ(n) = M−1
n

n
∑

k=1

Xk−1xk, Mn =

n
∑

k=1

Xk−1X
′
k−1, (1.4)

where M−1
n denotes the inverse of matrix Mn if det Mn > 0 and M−1

n = 0
otherwise. Let

P(z) = zp − θ1z
p−1 − . . . − θp (1.5)

denote the characteristic polynomial of the autoregressive model (1.1 ). The
process (1.1 ) is said to be stable (asymptotically stationary) if all roots
zi = zi(θ) of the characteristic polynomial (1.5 ) lie inside the unit circle, that
is the parameter vector θ = (θ1, . . . , θp)

′ belongs to the parametric stability
region Λp defined as

Λp = {θ ∈ Rp : |zi(θ)| < 1, i = 1, . . . , p} . (1.6)

The process (1.1 ) is called unstable if the roots of P(z) lie on or inside the
unit circle, that is, θ ∈ [Λp]; [Λp] denotes the closure of the stability region
Λp.

It is well known (see,e.g. Anderson (1971), Th.5.5.7) that the LSE θ(n)
is asymptotically normal for all θ ∈ Λp, that is

√
n(θ(n) − θ)

L
=⇒ N (0, F ), as n → ∞,
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where F = F (θ) is a positive definite matrix,
L

=⇒ indicates convergence in
law. It should be noted that the asymptotic normality of θ(n) is provided by
the following asymptotic property of the observed Fisher information matrix

lim
n→∞

Mn/n = F a.s. (1.7)

for all θ ∈ Λp. On the boundary ∂Λp of the stability region Λp, this property
does not hold and the distribution of θ(n) is no longer asymptotically normal.
The investigation of the asymptotic distribution of LSE θ(n) when xn is
unstable goes back to the late fifties with the paper of White (1958) (see
also Ahtola and Tiao (1987), Dickey and Fuller (1979), Rao (1978), Sriram
(1987),(1988)) who considered the AR(1) model with i.i.d. N (0, σ2) random
errors εn and θ1 = 1 and established that

n(θ(n) − 1)
L

=⇒ (W 2(1) − 1)/

∫ 1

0

W 2(t)dt ,

where W (t) is a standard brownian motion. Subsequently the research of the
limiting distribution of θ(n) for unstable AR(p) processes has been receiving
considerable attention due to important applications in time series analysis,
in modeling economic and financial data and in system identification and
control. We can not go into the detail here and refer the reader to the paper
by Chan and Wei (1988) who derived the limiting distribution of LSE θ(n) for
the general unstable AR(p) model. By making use of the functional central
limit theorem approach, Chan and Wei expressed the limiting distribution
of LSE θ(n) in terms of functionals of standard brownian motions. However,
the closed forms of the distribution functions of these functionals are not
known and that may cause difficulties in practice (see section 4 in Chan and
Wei).

For the unstable AR(1) model with i.i.d. random errors and −1 ≤ θ1 ≤
1, Lai and Siegmund (1983) proposed to use the sequential least squares
estimate for θ1 which is obtained from the LSE

θ1(n) =

n
∑

k=1

xk−1xk/

n
∑

k=1

x2
k−1

by replacing n with a special stopping time τ based on the observed Fisher
information. They proved that, in contrast with the ordinary LSE θ1(n), the
sequential LSE is asymptotically normal uniformly in θ ∈ [−1, 1]. For the
unstable AR(2) model, Galtchouk and Konev (2006) applied the sequential
LSE with a particular stopping time and established that it is asymptotically
normal not only inside the stability rigion Λ but also for its boundary points
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θ corresponding to a pair of conjugate complex roots z1 = eiφ, z2 = e−iφ of
the polynomial (1.5 ).

In this paper, for the case of unstable AR(p) process, we propose a se-
quential LSE for θ and find the conditions on θ (see Conditions 1-3 in the
next section) ensuring its asymptotic normality. The set Λ̃p of the points θ ,
satisfying these conditions includes the stability region Λp and some part of
its boundary. It is shown that the convergence of the sequential LSE to the
normal distribution is uniform in θ ∈ K for any compact set K ∈ Λ̃p (see
Theorem 2.1). The extension of the property of asymptotic normality of the
sequential estimate to the part of the boundary ∂Λp is achieved by making
use of a new property of observed Fisher information matrix Mn, which holds
in a broader subset of [Λp] as compared with (1.7 ) (see Lemma 3.3).

The remainder of this paper is arranged as follows. In Section 2 we
introduce a sequential procedure for estimating the parameter vector θ =
(θ1, . . . , θp)

′ in (1.1 ) and study its properties. Section 3 gives a new property
of the observed Fisher information matrix and establishes some technical
results. In Section 4 we prove Theorem 2.2 from Section 2 on asymptotic
distribution of the stopping time.

2 Sequential least squares estimate.

Uniform asymptotic normality.

In this section we consider the sequential least squares estimate and study
its asymptotic properties. We define the sequential LSE for the parameter
vector θ = (θ1, . . . , θp)

′ in model (1.1 ) as

θ(τ(h)) = M−1
τ(h)

τ(h)
∑

k=1

Xk−1xk, (2.1)

where
τ(h) = inf

{

n ≥ 1 : tr Mn ≥ hσ2
}

, inf{∅} = +∞, (2.2)

is stopping time, h is a positive number (threshold).
Assume that the parameter vector θ = (θ1, . . . , θp)

′ in (1.1 ) satisfies the
following Conditions.

Condition 1. Parameter θ = (θ1, . . . , θp)
′ is such that all roots zi = zi(θ)

of the characteristic polynomial (1.5 ) lie inside or on the unite circle.
Condition 2. All the roots zi = zi(θ) of P(z), which are equal to one in

modulus, are simple.

4



Condition 3. The system of linear equations with respect to Y1, . . . , Yp−1







Y1 −
∑p

l=2 θlYl−1 = θ1

−∑j−1
k=1 θj−k + Yj −

∑p−j
k=1 θk+jYk = θj ,

2 ≤ j ≤ p − 1,
(2.3)

has a unique solution (Y1, . . . , Yp−1), Yi = κi(θ), 1 ≤ i ≤ p−1, and the matrix

L(θ1, . . . , θp) =











1 κ1(θ) κ2(θ) . . . κp−1(θ)
κ1(θ) 1 κ1(θ) . . . κp−2(θ)

...
...

...
. . .

...
κp−1(θ) κp−2(θ) . . . κ1(θ) 1











(2.4)

is positive definite.

Let
◦
Λp denote all θ = (θ1, . . . , θp)

′ in (1.1 ) which satisfy Conditions 1,2,
and Λ̃p– all θ = (θ1, . . . , θp)

′ satisfying all Conditions 1-3.
Example 2.1. For AR(2) process, one finds

Λ2 = {θ = (θ1, θ2)
′ : −1 + θ2 < θ1 < 1 − θ2, |θ2| < 1} ,

[Λ2] = {θ = (θ1, θ2)
′ : −1 + θ2 ≤ θ1 ≤ 1 − θ2, |θ2| ≤ 1} ,

◦
Λp = [Λ2] \ {(−2,−1), (2,−1)} ,

Λ̃2 = {θ = (θ1, θ2)
′ : −1 + θ2 < θ1 < 1 − θ2,−1 ≤ θ2 < 1} ,

L(θ1, θ2) =

(

1 θ1/(1 − θ2)
θ1/(1 − θ2) 1

)

.

Example 2.2. By numerical calculation for AR(3) process, one can check that
Conditions 1-3 are satisfied, for example, for the values of θ = (θ1, θ2, θ3) such
that z1(θ) = eiφ, z2(θ) = e−iφ with 3π/10 ≤ φ ≤ 3π/5 and −1 ≤ z3(θ) ≤
−0.5.

As is shown in Lemma 3.3 (Section 3), Conditions 1-3, imposed on the
parameter θ = (θ1, . . . , θp)

′ in (1.1 ), provide the convergence of the ratio
Mn/

∑n
k=1 x2

k−1 to the matrix L(θ1, . . . , θp) given in (2.4 ). This property
can be viewed as an extension of (1.7 ) outside the stability region (1.6 ).

Remark 2.1 It will be observed that Λp ⊂ Λ̃p and, for all θ ∈ Λ̃p, one has

lim
n→∞

Mn
∑n

k=1 x2
k−1

=
pF

tr F
= Λ(θ1, . . . , θp) a.s., (2.5)
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where F is the same as in (1.7 ). Indeed, by making use of the identity

n
∑

k=1

x2
k−1 =

1

p

n
∑

k=1

‖Xk−1‖2 +
1

p

p
∑

i=2

n
∑

l=n−i+2

x2
l−1 , (2.6)

one obtains

Mn
∑n

k=1 x2
k−1

=
Mn

n

(

1

p
tr

Mn

n
(1 + (

n
∑

k=1

‖Xk−1‖2)−1

p
∑

i=2

n
∑

l=n−i+2

x2
l−1)

)−1

.

Limiting n → ∞, one comes to (2.5 ), in view of (1.7 ).

Theorem 2.1 Suppose that in the AR(p) model (1.1 ), (εn) is a sequence of
i.i.d. random variables with Eεn = 0 and Eε2

n = σ2 < ∞ and the parameter
vector θ = (θ1, . . . , θp)

′ satisfies Conditions 1-3. Then for any compact set
K ⊂ Λ̃p

lim
h→∞

sup
θ∈K

sup
t∈Rp

∣

∣

∣

∣

Pθ

(

M
1/2
τ(h)(θ(τ(h)) − θ) ≤ t

)

− Φp(
t

σ
)

∣

∣

∣

∣

= 0 , (2.7)

where Φp(t) = Φ(t1) · · ·Φ(tp), Φ is the standard normal distribution function,
Λ̃p is defined in Condition 3.

Proof. Substituting (1.1 ) in (2.1 ) yields

M
1/2
τ(h)(θ(τ(h) − θ) = M

−1/2
τ(h)

τ(h)
∑

k=1

Xk−1εk =
√

hM
−1/2
τ(h) L1/2(θ1, . . . , θp)Yh, (2.8)

where

Yh =
1√
h

τ(h)
∑

k=1

L−1/2(θ1, . . . , θp)Xk−1εk (2.9)

and L(θ1, . . . , θp) is given in (2.4 ). Denote

Gτ(h) = L−1/2(θ1, . . . , θp)Mτ(h)L
−1/2(θ1, . . . , θp).

One can easily verify that

∥

∥

∥

∥

∥

L−1/2(θ1, . . . , θp)
M

1/2
τ(h)√
h

− Ip

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

1√
h
G1/2

τ(h) − Ip

∥

∥

∥

∥

2

≤ ‖h−1Gτ(h) − Ip‖2 ≤ tr L−1(θ1, . . . , θp)‖h−1Mτ(h) − L(θ1, . . . , θp)‖2 .
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From here, by making use of Lemma 3.4 from Section 3, one gets, for any
compact set K ⊂ Λ̃p and δ > 0,

lim
h→∞

sup
θ∈K

Pθ

(

‖
√

hM
−1/2
τ(h) L1/2(θ1, . . . , θp) − Ip‖ > δ

)

= 0 . (2.10)

Now we prove that for any compact set K ⊂ Λ̃p and for each constant vector
v ∈ Rp with ‖v‖ = 1

lim
h→∞

sup
θ∈K

sup
t∈R

|Pθ(v
′Yh ≤ t) − Φ(t)| = 0 . (2.11)

In view of (2.9 ), one has

v′Yh =
1√
h

τ(h)
∑

k=1

gk−1εk, gk−1 = v′L−1/2(θ1, . . . , θp)Xk−1.

For each h > 0, we define an auxiliary stopping time as

τ0 = τ0(h) = inf{n ≥ 1 :
n
∑

k=1

g2
k−1 ≥ h}, inf{∅} = +∞.

Further we make use of the representation

v′Yh =
1√
h

τ0(h)
∑

k=1

gk−1εk + η(h) + ∆(h) ,

where ∆(h) =
∑4

i=1 ∆i(h),

∆1(h) = h−1/2I(τ(h)=1)g0ε1, ∆2(h) = h−1/2gτ(h)−1ετ(h) ,

∆3(h) = −h−1/2I(τ0(h)=1)g0ε1, ∆4(h) = h−1/2gτ0(h)−1ετ0(h) ,

η(h) =
1√
h

τ(h)−1
∑

k=1

gk−1εk −
1√
h

τ0(h)−1
∑

k=1

I(τ0(h)>1)gk−1εk .

Now we show that

lim
h→∞

sup
θ∈K

sup
t∈R

|Pθ(
1√
h

τ0(h)
∑

k=1

gk−1εk ≤ t) − Φ(t)| = 0 (2.12)

and for any δ > 0
lim

h→∞
sup
θ∈K

Pθ(|η(h)| > δ) = 0 , (2.13)
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lim
h→∞

sup
θ∈K

Pθ(|∆(h)| > δ) = 0 . (2.14)

The proof of (2.12 ) is based on Proposition 3.1 from the paper by Lai and
Siegmund (1983). Actually one needs to check only the condition A6, that
is, for each δ > 0,

lim
m→∞

sup
θ∈K

Pθ(g
2
n ≥ δ

n
∑

k=1

g2
k−1 for some n ≥ m) = 0 . (2.15)

Conditions A1 − A5 are evidently satisfied. It will be noted that

n
∑

k=1

g2
k−1 =

(

v′L−1/2(Mn/

n
∑

k=1

x2
k−1 − L)L−1/2v + 1

)

n
∑

k=1

x2
k−1.

Proceeding from this equality one gets the inclusion

{g2
n ≥ δ

n
∑

k=1

g2
k−1 for some n ≥ m} ⊆

⊆ {‖Xn‖2 ≥ δ1

n
∑

k=1

g2
k−1 for some n ≥ m}

= {‖Xn‖2 ≥ δ1

n
∑

k=1

x2
k−1[1+v′L−1/2(Mn/

n
∑

k=1

x2
k−1−L)L−1/2v] for some n ≥ m}

⊆ {‖Xn‖2 ≥ δ1

n
∑

k=1

x2
k−1[1 − ‖L1/2v‖2‖Mn/

n
∑

k=1

x2
k−1 − L‖] for some n ≥ m}

⊆ {‖Xn‖2 ≥ δ1

n
∑

k=1

x2
k−1[1 − a∗‖Mn/

n
∑

k=1

x2
k−1 − L‖] for some n ≥ m}

⊂ {‖Mn/

n
∑

k=1

x2
k−1 − L‖ ≥ (2a∗)−1 for some n ≥ m}

∪{‖Xn‖2 ≥ δ1

2

n
∑

k=1

x2
k−1 for some n ≥ m} ,

where δ1 = δ/a∗, a∗ = supθ∈K ‖v′L−1/2‖2.
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This, in view of Lemmas 3.1,3.3, yields (2.15 ). It will be observed that
(2.15 ) enables one to show (by the same argument as in Lemma 3.5) that,
for any compact set K ⊂ Λ̃p and δ > 0

lim
h→∞

sup
θ∈K

Pθ(g
2
τ0−1/

τ0−1
∑

k=1

g2
k−1 ≥ δ) = 0 . (2.16)

Now we check (2.13 ). One can easily verify that

Eθη
2(h) = Eθu(h), u(h) =

1

h

∣

∣

∣

∣

∣

τ−1
∑

k=1

g2
k−1 −

τ0−1
∑

k=1

g2
k−1

∣

∣

∣

∣

∣

.

The random variable u(h) is uniformly bounded from above uniformly in
θ ∈ K because

u(h) ≤ 1

h

τ−1
∑

k=1

g2
k−1 + 1 =

1

h
v′L−1/2Mτ(h)−1L

−1/2v + 1

≤ a∗

h

τ−1
∑

k=1

‖Xk−1‖2 + 1 ≤ a∗ + 1 .

Therefore, it suffices to show that for each δ > 0

lim
h→∞

sup
θ∈K

Pθ(u(h) ≥ δ) = 0 . (2.17)

To this end, one can use the following estimate

u(h) =
1

h

∣

∣

∣

∣

∣

v′L−1/2Mτ(h)−1L
−1/2v −

τ0−1
∑

k=1

g2
k−1

∣

∣

∣

∣

∣

= h−1
τ−1
∑

k=1

x2
k−1v

′L−1/2

(

Mτ(h)−1/

τ−1
∑

k=1

x2
k−1 − L

)

L−1/2v

+h−1
τ−1
∑

k=1

x2
k−1 − h−1

τ0−1
∑

k=1

g2
k−1

≤ a∗‖Mτ(h)−1/

τ(h)−1
∑

k=1

x2
k−1 − L‖+ x2

τ(h)−1/

τ(h)−1
∑

k=1

x2
k−1 + g2

τ0(h)−1/

τ0(h)−1
∑

k=1

g2
k−1 .

From here, by making use of (2.16 ) and Lemmas 3.4,3.5 one comes to (2.17
) which implies (2.13 ). By a similar argument, one can check (2.14 ). This
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completes the proof of (2.11 ). Combining (2.10 ) and (2.11 ) one arrives at
(2.7 ). Hence Theorem 2.1. 2

Now we will study the properties of the stopping time τ(h) defined by
(2.2 ). Further we need the following functionals

J1(x; t) =
∫ t

0
x2(s)ds,

J2(x, y; t) =
∫ t

0
(x2(s) + y2(s))ds,

J3(x, y; t) =
∫ t

0
(x2(s) + µ1y

2(s))ds,
J4(x, y, z; t) = J2(x, y; t) + µ2J1(z; t),
J5(x, y, z, u; t) = J2(x, y; t) + µ3J1(z; t) + µ4J1(u; t),

(2.18)

where µi, i = 1, 4 are defined by (4.17 ),(4.27 ) and (4.28 ). For the set Λ̃p of
the parameter vector θ = (θ1, . . . , θp)

′ satisfying Conditions 1-3, we introduce
the following subsets belonging to its boundary ∂Λ̃p

Γ1(p) = {θ ∈ ∂Λ̃p : z1(θ) = −1, |zk(θ)| < 1, k = 2, p}
Γ2(p) = {θ ∈ ∂Λ̃p : z1(θ) = 1, |zk(θ)| < 1, k = 2, p}
Γ3(p) = {θ ∈ ∂Λ̃p : z1(θ) = eiφ, z2(θ) = e−iφ, φ ∈ (0, π), |zk(θ)| < 1, k = 3, p}
Γ4(p) = {θ ∈ ∂Λ̃p : z1(θ) = −1, z2(θ) = 1, |zk(θ)| < 1, k = 3, p}
Γ5(p) = {θ ∈ ∂Λ̃p : z1(θ) = −1, z2(θ) = eiφ, z3(θ) = e−iφ, φ ∈ (0, π),
|zk(θ)| < 1, k = 4, p},
Γ6(p) = {θ ∈ ∂Λ̃p : z1(θ) = 1, z2(θ) = eiφ, z3(θ) = e−iφ, φ ∈ (0, π),
|zk(θ)| < 1, k = 4, p}
Γ7(p) = {θ ∈ ∂Λ̃p : z1(θ) = −1, z2(θ) = 1, z3(θ) = eiφ, z4(θ) = e−iφ, φ ∈ (0, π),
|zk(θ)| < 1, k = 5, p},

(2.19)
where zk(θ) are roots of the characteristic polynomial (1.5 ).

It will be noted that all these sets will be used only for the AR(p) model
(1.1 ) with p ≥ 5. In the case when p ≤ 4, it is obious which of the sets Γi(p)
are odd and how to amend the remaining subsets Γi(p).

Theorem 2.2 Suppose that in the AR(p) model (1.1 ), (εn)n≥1 is a sequence
of i.i.d. random variables with Eεn = 0, 0 < Eε2

n = σ2 < ∞ and the
parameter vector θ = (θ1, . . . , θp) satisfies Conditions 1-3. Let τ(h) be defined
by (2.2 ). Then, for each θ ∈ Λp,

Pθ − lim
h→∞

τ(h)

h
=

σ2

trF
. (2.20)

Moreover, for each θ ∈ ∂Λ̃p, as h → ∞,

τ(h)

bi

√
h

L
=⇒ νi, if θ ∈ Γi(p), 1 ≤ i ≤ 7 , (2.21)
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where Λp is given in (1.6 );

ν1 = inf {t ≥ 0 : J1(W1; t) ≥ 1} ,
ν2 = inf {t ≥ 0 : J1(W2; t) ≥ 1} ,
ν3 = inf {t ≥ 0 : J2(W1, W2; t) ≥ 1} ,
ν4 = inf {t ≥ 0 : J3(W1, W2; t) ≥ 1} ,
νi = inf {t ≥ 0 : J4(W1, W2, W3; t) ≥ 1} , i = 5, 6,
ν7 = inf {t ≥ 0 : J5(W1, W2, W3, W4; t) ≥ 1} ;

b1, . . . , b7 are defined by (4.7 ),(4.8 ),(4.10 ),(4.17 ), (4.27 ) and (4.28 ),
respectively; W1(t), . . . , W4(t) are independent standard brownian motions.

The proof of Theorem 2.2 is given in the Appendix.

3 Auxiliary propositions.

In this Section we establish some properties of the process (1.1 ) and the
observed Fisher information matrix Mn used in Section 2.

We need some notations. Let z1(θ), . . . , zq(θ) denote all the distinct
roots of the characteristic polynomial (1.5 ), mi(θ) be the multiplicity of
zi(θ), (

∑q
i=1 mi(θ) = p). Let

ρ(θ) =

{

max(mi(θ) : |zi(θ)| = 1) if max |zi(θ)| = 1,
0 if max |zi(θ)| 6= 1 for all i = 1, q.

Formally the set
◦
Λp introduced in Condition 3 can be written as

◦
Λp = Λp ∪ {θ : max

1≤i≤q
|zi(θ)| = 1, ρ(θ) = 1}. (3.1)

It includes both the stability region Λp and the points θ of its boundary for
which all the roots of the polynomial (1.5 ), lying on the unit circle, are
simple.

Lemma 3.1 Let (xn)n≥0 be an autoregressive process defined by (1.1 ). Then

for any compact set K ⊂
◦
Λp and δ > 0

lim
m→∞

sup
θ∈K

Pθ( max
0≤i≤p−1

x2
n−i ≥ δ

n
∑

k=1

x2
k−1 for some n ≥ m) = 0 .

11



Proof. Taking into account the equation (1.2 ), it suffices to show that for

any compact set K ⊂
◦
Λp and δ > 0

lim
m→∞

sup
θ∈K

Pθ(Bm(δ)) = 0 ,

where

Bm(δ) = {‖Xn‖2 ≥ δ

n
∑

k=1

‖Xk−1‖2 for some n ≥ m}.

Now we estimate the ratio ‖Xn‖2/
∑n

k=1 ‖Xk−1‖2 from above. For each 1 ≤
s < n, we introduce the quantity

ls = min{1 ≤ i ≤ s : min
1≤j≤s

‖Xk−j‖2 = ‖Xk−i‖2}

and have the inequality

n
∑

k=1

‖Xk−1‖2 ≥
s
∑

k=1

‖Xn−k‖2 ≥ s‖Xn−ls‖2 . (3.2)

On the other hand, it follows from (1.1 ) that

Xn = AlsXn−ls +
ls−1
∑

i=0

Aiξn−i

and, therefore, one gets

‖Xn‖2 ≤ 2‖Als‖2‖Xn−ls‖2 + 2‖
ls−1
∑

i=0

Aiξn−i‖2

≤ 2‖Als‖2‖Xn−ls‖2+2

(

s−1
∑

i=0

‖Aiξn−i‖
)2

≤ 2‖Als‖2‖Xn−ls‖2+2s
s−1
∑

i=1

‖Aiξn−i‖2

≤ 2‖Als‖2‖Xn−ls‖2 + 2s

s−1
∑

i=1

‖Ai‖2ε2
n−i . (3.3)

Further it will be observed that, for every compact set K ⊂
◦
Λp, there exists

a positive number κ such that

sup
θ∈K

‖An‖2 ≤ κ, n ≥ 1 . (3.4)

12



Indeed, we express A in its Jordan normal form

A = SDS−1 , (3.5)

where D = diag(J1, . . . , Jq), Jl is the ml × ml submatrix of the form

Jl =









zl 1 0 . . . 0
0 zl 1 . . . 0
0 . . . zl 1
0 . . . zl









if zl is a multiple root with multiplicity ml ≥ 2, and Jl = zl if zl is a simple
root.

By direct computation with (3.5 ) one finds An = SDnS−1, Dn =
diag(Jn

1 , . . . , Jn
q ), where the powers of the matrix Jl are equal to zn

l for a
simple root zl and consist of the elements (see, R.Varga (2000))

< Jn
l >ij=











0, j < i ,
( n

j − i
)

zn−j+i
l , i ≤ j ≤ min(ml, n + i) ,

0, n + i < j ≤ ml ,

for the roots zl with multiplicity ml ≥ 2,
( n

j − i
)

is the binomial coefficient.

From here, in view of the definition (3.1 ), one comes to (3.4 ). By making
use of (3.3 ) and (3.4 ), one obtains

‖Xn‖2 ≤ 2κ‖Xn−ls‖2 + 2sκ
s−1
∑

i=0

ε2
n−i .

Combining this inequality and (3.2 ) yields

‖Xn‖2

∑n
k=1 ‖Xk−1‖2

≤ 2κ

s
+ 2sκ

∑s−1
i=0 ε2

n−i
∑n

k=1 ‖Xk−1‖2
.

It remains to use elementary inequality

n−1
∑

i=0

ε2
k ≤ 2(1 + ‖A‖2)

n
∑

k=1

‖Xk−1‖2 ,

which follows from (1.2 ), to derive the desired estimate for the ratio

‖Xn‖2

∑n
k=1 ‖Xk−1‖2

≤ 2κ

s
+ 2sκ

2(1 + ‖A‖2)
∑s−1

i=0 ε2
n−i

∑n−1
k=1 ε2

k

.

13



This inequality implies the inclusion

Bm(δ) ⊂ {2κ/s > δ/2 for some n ≥ m}

∪{4(1 + ‖A‖2)sκ
s−1
∑

i=0

ε2
i−1/

n−1
∑

k=1

ε2
k >

δ

2
for some n ≥ m} .

Therefore, for sufficiently large s, one gets

sup
θ∈K

Pθ(Bm(δ) ≤ P{ν
s−1
∑

i=0

ε2
i−1/

n−1
∑

k=1

ε2
k >

δ

2
for some n ≥ m} ,

where ν = supθ∈K 4(1 + ‖A‖2)sκ. Limiting m → ∞ and applying the law of
large numbers one comes to the assertion of Lemma 3.1.

Lemma 3.2 Let (xn)n≥0 be an autoregressive process defined by (1.1 ). Then

for any compact set K ⊂
◦
Λp and each l = 1, p − 1

lim
m→∞

sup
θ∈K

Pθ(

∣

∣

∣

∣

∣

n
∑

k=1

xk−lεk

∣

∣

∣

∣

∣

≥ δ
n
∑

k=1

x2
k−1 for some n ≥ m) = 0 , (3.6)

where
◦
Λp is given in (3.1 )

Proof. We will apply Lemma 2.2 from the paper by Lai and Siegmund (1983))
given in the Appendix. Let cn = n3/4. For the set of interest one has the
following inclusions

{

|
n
∑

k=1

xk−lεk| > δ
n
∑

k=1

x2
k−1 for some n ≥ m

}

⊆
{

|
n
∑

k=1

xk−lεk| > δ

n
∑

k=1

x2
k−l for some n ≥ m

}

=

{

|∑n
k=1 xk−lεk|

(
∑n

k=1 x2
k−l)

2/3 ∨ cn
· (
∑n

k=1 x2
k−l)

2/3 ∨ cn
∑n

k=1 x2
k−l

> δ for some n ≥ m

}

⊆
{ |∑n

k=1 xk−lεk|
(
∑n

k=1 x2
k−l)

2/3 ∨ cn
>

√
δ for some n ≥ m

}

∪
{

(
n
∑

k=1

x2
k−l)

−1/3 ∨ cn(
n
∑

k=1

x2
k−l)

−1 >
√

δ for some n ≥ m

}
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⊂







|
n
∑

k=1

xk−lεk|
(

(
n
∑

k=1

x2
k−l)

2/3 ∨ cn

)−1

>
√

δ for some n ≥ m







∪

∪
{

(

n
∑

k=1

x2
k−l)

−1 > δ3/2 for some n ≥ m

}

∪

∪
{

cn(
n
∑

k=1

x2
k−l)

−1 >
√

δ for some n ≥ m

}

⊂
{

|
n
∑

k=1

xk−lεk| > δ(

n
∑

k=1

x2
k−l)

2/3 ∨ cn for some n ≥ m

}

∪
{

cn(

n
∑

k=1

x2
k−l)

−1 >
√

δ ∧ δ3/2 for some n ≥ m

}

.

From here, it follows that

Pθ

(

|
n
∑

k=1

xk−lεk| > δ
n
∑

k=1

x2
k−l for some n ≥ m

)

≤ Pθ



|
n
∑

k=1

xk−lεk| > δ

(

n
∑

k=1

x2
k−l

)2/3

∨ cn for some n ≥ m





+Pθ

{

n3/4(
n
∑

k=1

x2
k−l)

−1 >
√

δ ∧ δ3/2 for some n ≥ m

}

. (3.7)

By making use of (1.1 ) and the elementary inequalities, one obtains

n
∑

k=1

ε2
k =

n
∑

k=1

(xk − θ1xk−1 − . . . − θpxk−p)
2

≤ (p + 1)

(

n
∑

k=1

x2
k +

p
∑

j=1

θ2
j

n
∑

k=1

x2
k−j

)

≤ (p + 1) max
1≤j≤p

θ2
j (

n
∑

k=1

x2
k +

p
∑

j=1

n
∑

k=1

x2
k−j)

≤ (p + 1)2µk

n
∑

k=1

x2
k−l

(

1 +

n
∑

k=n−l+1

x2
k/

n
∑

k=1

x2
k−l

)

,
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where µk = supθ∈K ‖θ‖2.
Therefore the second summand in the right-hand side of (3.6 ) can be

estimated as

Pθ

{

n3/4(
n
∑

k=1

x2
k−l)

−1 >
√

δ ∧ δ3/2 for some n ≥ m

}

≤ Pθ

{

2(p + 1)2µkn
3/4(

n
∑

k=1

ε2
k)

−1 >
√

δ ∧ δ3/2 for some n ≥ m

}

+Pθ

{

n
∑

k=n−l+1

x2
k/

n
∑

k=1

x2
k−l ≥ 1 for some n ≥ m

}

.

Combining this and (3.7 ) and applying Lemma 3.1, and Lemma 2.2 by Lai
and Siegmund (see Section 4) yield (3.6 ).

This completes the proof of Lemma 3.2. 2

Lemma 3.3 Let parameters θ1, . . . , θp in the equation (1.1 ) satisfy Condi-
tions 1-3 and p× p matrix Mn be given by (1.3 ). Then, for any compact set
K ⊂ Λ̃p and each δ > 0,

lim
m→∞

sup
θ∈K

Pθ

(

‖ Mn
∑n

k=1 x2
k−1

− L(θ1, . . . , θp)‖ ≥ δ for some n ≥ m

)

= 0,

where L(θ1, . . . , θp) is defined in (2.4 ).

Proof. Each diagonal element of the matrix Mn can be expressed through
∑n

l=1 x2
l−1 as

< Mn >ii=

n
∑

k=i

x2
k−i =

n−i+1
∑

l=1

x2
l−1 =

n
∑

l=1

x2
l−1 −

n
∑

l=n−i+2

x2
l−1, 2 ≤ i ≤ p . (3.8)

Further it will be observed that each element < Mn >ij , 2 ≤ i < j ≤ p,
of Mn standing above the principal diadonal and below the first row can be
expressed through some element of the first row as

< Mn >ij=

n
∑

k=1

xk−ixk−j =

n
∑

l=1

xl−1xl−1+i−j −
n
∑

l=n−i+2

xl−1xl−1+i−j (3.9)

=< Mn >i,j−i+1 −
n
∑

t=n−i+2

xt−1+i−j .
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Now we derive the equations relating the elements of the first row, that is,
< Mn >1s, 2 ≤ s ≤ p. Making use of the equation (1.1 ), one gets

< Mn >1s=
n
∑

k=1

xk−1xk−s =
n
∑

k=1

(

p
∑

l=1

θlxk−l−1 + εk−1

)

xk−s

=

p
∑

l=1

θl

n
∑

k=1

xk−l−1xk−s +

n
∑

k=1

xk−sεk−1 .

Since
n
∑

k=1

xk−l−1xk−s =







< Mn >ss, if l = s − 1,
< Mn >s,l+1, if l ≥ s,
< Mn >l+1,s, if l ≤ s − 2,

this implies the following system of equations

< Mn >12= θ1 < Mn >22 +

p
∑

l=2

θl < Mn >2,l+1 +
n
∑

k=1

xk−2εk−1 ,

< Mn >1s=

s−2
∑

l=2

θl < Mn >l+1,s +θs−1 < Mn >ss

+

p
∑

l=s

θl < Mn >s,l+1 +

n
∑

k=1

xk−sεk−1, 3 ≤ s ≤ p.

Taking into account (3.8 ),(3.9 ) one can represent this system as

< Mn >12= θ1

n
∑

k=1

x2
k−1 +

p
∑

l=2

θl < Mn >1,l +η1,2(n), (3.10)

< Mn >1s=

s−2
∑

l=1

θl < Mn >1,s−l +θs−1

n
∑

k=1

x2
k−1+

p
∑

l=s

θl < Mn >1,l−s+2 +η1,s(n),

where 3 ≤ s ≤ p,

η1,2(n) = −θ1x
2
n−1 −

p
∑

l=2

θlxn−1xn−l +
n
∑

k=1

xk−2εk−1,

η1,s(n) = −
s−2
∑

l=1

θl

n
∑

t=n−l+1

xt−1xt+l−s − θs−1

n
∑

l=n−s+2

x2
l−1

17



−
p
∑

l=s

θl

n
∑

t=n−s+2

xt−1xt+s−l−2 +
n
∑

k=1

xk−sεk−1.

Denote

zi(n) =
< Mn >1,i+1
∑n

k=1 x2
k−1

, η̃1,i+1 =
η1,i+1(n)
∑n

k=1 x2
k−1

, i = 1, p − 1.

Then the system of equations (3.10 ) takes the form






z1(n) −∑p
l=2 θlzl−1(n) = θ1 + η̃1,2,

−∑j−1
k=1 θj−kzk(n) + zj(n) −∑p−j

k=1 θk+jzk(n) = θj + η̃1,j+1,
j = 2, p − 1

(3.11)

In virtue of Lemmas 3.1,3.2, for any compact set K ⊂ Λ̃p and δ > 0, one has

lim
m→∞

sup
θ∈K

Pθ(max
2≤s≤p

|η̃1,s(n)| > δ for some n ≥ m) = 0.

From here and the Condition 3, which holds for each vector θ ∈ K, it follows
that the solution of the system (3.11 ) converges, as n → ∞, to the unique
solution of system (2.3 ) uniformly in θ ∈ K, that is,

lim
m→∞

sup
θ∈K

Pθ( max
1≤i≤p−1

|zi(n) − κi(θ)| > δ for some n ≥ m) = 0.

This, in view of (3.9 ) and Lemma 3.1, implies the desired convergence of the
remaining elements of the matrix Mn. Hence Lemma 3.3. 2

Lemma 3.4 Let Mn, τ(h) and L(θ) = L(θ1, . . . , θp) be given by (1.4 ), (2.2

) and (2.4 ), respectively. Then, for any compact set K ⊂
◦
Λp and δ > 0,

lim
h→∞

sup
θ∈K

Pθ

(

‖Mτ(h)

h
− L(θ1, . . . , θp)‖ > δ

)

= 0, (3.12)

where
◦
Λp is defined in Condition 3.

Proof. By making use of the equality

Mτ(h)

h
− L(θ) =

Mτ(h)
∑τ(h)

k=1 x2
k−1

− L(θ) + Mτ(h)

(

1

h
− 1
∑τ(h)

k=1 x2
k−1

)

one gets the estimate

‖Mτ(h)

h
− L(θ)‖ ≤ ‖ Mτ(h)

∑τ(h)
k=1 x2

k−1

− L(θ)‖
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+



‖Mτ(h)‖/
τ(h)
∑

k=1

x2
k−1









τ(h)
∑

k=1

x2
k−1 − h



 /h.

Therefore

{

‖Mτ(h)

h
− L(θ)‖ > δ

}

⊂
{

‖ Mτ(h)
∑τ(h)

k=1 x2
k−1

− L(θ)‖ > δ/2

}

(3.13)

∪







‖ Mτ(h)
∑τ(h)

k=1 x2
k−1

‖

(

∑τ(h)
k=1 x2

k−1 − h
)

h
> δ/2







.

Further one has the inclusions
{

‖ Mτ(h)
∑τ(h)

k=1 x2
k−1

− L(θ)‖ > δ/2

}

⊆ {τ(h) ≤ m}

∪
{

‖ Mn
∑n

k=1 x2
k−1

− L(θ)‖ > δ/2 for some n ≥ m

}

,







‖ Mτ(h)
∑τ(h)

k=1 x2
k−1

‖





τ(h)
∑

k=1

x2
k−1 − h



 /h > δ/2







⊂ {τ(h) ≤ m}

∪
{

‖ Mn
∑n

k=1 x2
k−1

− L(θ)‖ > δ/2 for some n ≥ m

}

,







‖ Mτ(h)
∑τ(h)

k=1 x2
k−1

‖





τ(h)
∑

k=1

x2
k−1 − h



 /h > δ/2







⊂ {τ(h) ≤ m}

∪
{

‖Mn‖
∑n

k=1 x2
k−1

· x2
n−1

∑n−1
k=1 x2

k−1

> δ/2 for some n ≥ m

}

.

From here and (3.13 ), it follows that

Pθ

{

‖Mτ(h)

h
− L(θ)‖ > δ

}

≤ 2Pθ{τ(h) ≤ m} (3.14)

+Pθ

{

‖ Mn
∑n

k=1 x2
k−1

− L(θ)‖ > δ/2 for some n ≥ m

}

+Pθ

{

‖Mn‖
∑n

k=1 x2
k−1

· x2
n−1

∑n−1
k=1 x2

k−1

> δ/2 for some n ≥ m

}

.
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By the definition of τ(h) in (2.2 )

{τ(h) < m} =

{

m
∑

k=1

(x2
k−1 + · · ·+ x2

k−p) > h

}

=

{

m
∑

k=1

(x2
k−1 + · · · + x2

k−p) > h, max
1≤j≤m

(x2
j−1 + · · ·+ x2

j−p) < l

}

+

{

m
∑

k=1

(x2
k−1 + · · ·+ x2

k−p) > h, max
1≤j≤m

(x2
j−1 + · · ·+ x2

j−p) ≥ l

}

⊂ {ml > h} ∪ ∪m
j=1{(x2

j−1 + · · ·+ x2
j−p) ≥ l}. (3.15)

This yields

Pθ{τ(h) < m} ≤ I(ml>h) +

m
∑

k=1

Pθ{x2
k−1 + · · ·+ x2

k−p ≥ l}.

Consider the last term in (3.14 ). By the inequality

‖Mn‖
∑n

k=1 x2
k−1

≤ ‖ Mn
∑n

k=1 x2
k−1

− L(θ)‖ + ‖L(θ)‖

one has

Pθ

{

‖Mn‖
∑n

k=1 x2
k−1

· x2
n−1

∑n−1
k=1 x2

k−1

> δ/2 for some n ≥ m

}

≤ Pθ

{

‖ Mn
∑n

k=1 x2
k−1

− L(θ)‖ >
√

δ/4 for some n ≥ m

}

(3.16)

+Pθ

{

L∗
k

x2
n−1

∑n−1
k=1 x2

k−1

>
√

δ/4 for some n ≥ m

}

+Pθ

{

L∗
k

x2
n−1

∑n−1
k=1 x2

k−1

> δ/4 for some n ≥ m

}

,

where L∗
k = supθ∈K ‖L(θ)‖.

Combining (3.14 )-(3.16 ) yields

sup
θ∈K

Pθ

(

‖Mτ(h)

h
− L(θ)‖ > δ

)
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≤ 2I(ml>h) + 2
m
∑

k=1

sup
θ∈K

Pθ{‖Xk−1‖2 ≥ l}

+Pθ

{

‖ Mn
∑n

k=1 x2
k−1

− L(θ)‖ >
1

2
(δ ∧

√
δ) for some n ≥ m

}

+2Pθ

{

L∗
k

x2
n−1

∑n−1
k=1 x2

k−1

>
1

2
(δ ∧

√
δ) for some n ≥ m

}

.

Limiting h → ∞, l → ∞, m → ∞ and taking into account Lemma 3.3, one
comes to (3.12 ). Hence Lemma 3.4. 2

Lemma 3.5 Let xk and τ(h) be defined by (1.1 ) and (2.2 ). Then for any

compact set K ⊂
◦
Λ0 and δ > 0

lim
h→∞

sup
θ∈K

Pθ



x2
τ(h)−1/

τ(h)−1
∑

k=1

x2
k−1 > δ



 = 0. (3.17)

Proof. In view of the inclusion
{

x2
τ(h)−1

∑τ(h)−1
k=1 x2

k−1

> δ

}

⊂ {τ(h) ≤ m}
⋃

{

x2
n

∑n−1
k=1 x2

k−1

> δ for some n ≥ m

}

.

one has

sup
θ∈K

Pθ

{

x2
τ(h)−1

∑τ(h)−1
k=1 x2

k−1

> δ

}

≤ I(ml>h) +
m
∑

j=1

sup
θ∈K

Pθ

{

‖Xj−1‖2 ≥ l
}

+ sup
θ∈K

Pθ

{

x2
n

∑n−1
k=1 x2

k−1

> δ for some n ≥ m

}

.

Limiting h → ∞, l → ∞, m → ∞ and applying Lemma 3.1 lead to (3.17 ).
This completes the proof of Lemma 3.5. 2

4 Appendix.

In this Section we cite the probabilistic result from the paper of Lai and
Siegmund (1983) used in Section 3 and give the proof of Theorem 2.2.

Lemma 2.2 (by Lai and Siegmund (1983)). Let (Fn)n≥0 be a filtration
on a measurable space (Ω,F), (xn)n≥0 and (εn)n≥0 be sequences of random
variables adapted to (Fn)n≥0. Let (Pθ, θ ∈ Θ) be a family of probability
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measures on (Ω,F) such that under every Pθ εn is independent of Fn−1 for
each n ≥ 1. Then, for each γ > 1/2, δ > 0, and increasing sequence of
positive constants cn → ∞,

sup
θ∈Θ

Pθ

(

|
n
∑

i=1

xi−1εi| ≥ δ max(cn, (

n
∑

i=1

x2
i−1)

γ) for some n ≥ m

)

→ 0 ,

as m → ∞.
Proof of Theorem 2.2. Assertion (2.20 ) easely follows from Lemma 3.12

in [6]. For the points θ belonging to ∂Λp we decompose the original time
series (1.2 ) into several components depending on the number of the roots
of the characteristic polynomial (1.5 ) lying on the unit circle and their values.
To this end, the characteristic polynomial (1.5 ) is represented as

P(z) = (z + 1)δ1(z − 1)δ2(z2 − 2z cos φ + 1)δ3ϕ(z),

where δi are either zero or 1 with δ1 + δ2 + δ3 ≥ 1, ϕ(z) is the polynomial of
order r = p−δ1−δ2−2δ3 which has all roots inside the unit circle. Assuming
(without loss of generality) that r ≥ 1, one has

ϕ(z) = zr + β1z
r−1 + . . . + βr .

By applying the backshift operator q−1 (i.e. q−1xn = xn−1) one can write
down (1.1 ) as

q−δ1(q + 1)δ1q−δ2(q − 1)δ2q−2δ3(q2 − 2q cos φ + 1)δ3q−rϕ(q)xn = εn (4.1)

Let θ ∈ Γ1(ρ). Then this equation, in view of (2.19 ), takes the form

q−1(q + 1)q−p+1ϕ(q)xn = εn .

Denote
un = q−p+1ϕ(q)xn ,

vn = q−1(q + 1)xn ,

that is
un = xn + β1xn−1 + . . . + βp−1xn−p+1 ,
vn = xn + xn−1 .

(4.2)

Introducing the vector Vn = (vn, . . . , vn−p+1)
′ and the matrix

Q =















1 β1 β2 . . . βp−1

1 1 0 . . . 0
0 1 1 . . . 0
...
0 . . . 1 1















(4.3)
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one can rewrite equations (4.2 ) in the vector form

(

Un

Vn

)

= Q1Xn, Xn = (xn, . . . , xn−p+1)
′ . (4.4)

The processes un and vn satisfy the equations

un = −un−1 + εn, vn + β1vn−1 + . . . + βp−1vn−p+1 = εn .

Substituting (4.4 ) in (1.4 ) yields

tr Mn

n2
= tr(Q1Q

′
1)

−1

(

n−2
∑n

k=1 u2
k−1 n−2

∑n
k=1 uk−1V

′
k−1

n−2
∑n

k=1 uk−1Vk−1 n−2
∑n

k=1 Vk−1V
′
k−1

)

. (4.5)

By Theorem 3.4.2. in Chan and Wei (1988)

n−2
n
∑

k=1

uk−1V
′
k−1

P→ 0, as n → ∞.

Since the process Vn is stable

lim
n→∞

n−2

n
∑

k=1

Vk−1V
′
k−1 = 0 a.s.

By Donsker’s theorem

n−2

[nt]
∑

k=1

u2
k−1

L
=⇒ σ2

∫ t

0

W 2
1 (s)ds, 0 ≤ t ≤ 1 ,

as n → ∞. By making use of these limiting relations in (4.5 ), one get

tr M[nt]

n2

L
=⇒ κ11

∫ t

0

W 2
1 (s)ds, 0 ≤ t ≤ 1 , (4.6)

where
κ11 = σ2 < (Q1Q

′
1)

−1 >11 .

Now by definition of τ(h) in (2.2 ) one has

Pθ(
τ(h)

b1

√
h
≤ t) = Pθ(tr M[tb1

√
h] ≥ h) = Pθ(

tr M[tb1
√

h]

b2
1h

b2
1 ≥ 1) .

This and (4.6 ) imply the validity of (2.21 ) for θ ∈ Γ1(ρ) with

b2
1 = 1/κ11 . (4.7)
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By a similar argument, one check (2.21 ) for θ ∈ Γ2(ρ) with

b2
2 = 1/(σ2 < (Q2Q

′
2)

−1 >11) , (4.8)

where

Q2 =















1 β1 β2 . . . βp−1

1 −1 0 . . . 0
0 1 −1 . . . 0
... 0
0 . . . 1 −1















.

Assume that θ ∈ Γ3(ρ). Then using the equation

q−2(q2 − 2q cos φ − 1)q−p+2ϕ(q)xn = εn ,

we decompose the process (1.2 ) into two processes

Un = (un, un−1)
′, Vn = (vn, . . . , vn−p+3)

′ ,

which obey the equations

Un =

(

2 cos φ −1
1 0

)

Un−1 +

(

εn

0

)

, (4.9)

vn + β1vn−1 + . . . + βp−2vn−p+2 = εn .

These processes are related with Xn = (xn, . . . , xn−p+1)
′ by the following

transformation
(

Un

Vn

)

= Q3Xn

with

Q3 =



















1 β1 . . . βp−2 0
0 1 β1 . . . βp−2

1 −2 cos φ 1 0 . . . 0
0 1 −2 cos φ 1 0 . . .
...
0 . . . 0 1 −2 cos φ 1



















.

Further, by the same argument, one shows that

n−2 tr M[nt]
L

=⇒ tr(Q3Q
′
3)

−1

(

Ht 0
0 0

)

, 0 ≤ t ≤ 1,

where

Ht =
σ2

4 sin2 φ

∫ t

0

(W 2
1 (s) + W 2

2 (s))ds

(

1 cos φ
cos φ 1

)

,
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that is,

n−2 tr M[nt]
L

=⇒ r2

4 sin2 φ

∫ t

0

(W 2
1 (s) + W 2

2 (s))ds ,

where

r2 = σ2 tr(Q3Q
′
3)

−1

(

1 cos φ
cos φ 1

)

.

From here one comes to (2.21 ) with

b3 = (2 sin φ)/r . (4.10)

Now assume that θ ∈ Γ4(ρ). In this case the process (1.2 ) is decomposed
into two vector processes

Un = (un, un−1)
′, Vn = (vn, . . . , vn−p+3)

′ ,

which are defined by the formulae

un = xn + β1xn−1 + . . . + βp−2xn−p+2, vn = xn − xn−2

and satisfy the equations

un = un−2 + εn, vn + β1vn−1 + . . . + βp−2vn−p+2 = εn .

These processes are related to the original process (1.2 ) by the transforma-
tion

(

Un

Vn

)

= Q4Xn , (4.11)

where

Q4 =















1 β1 . . . βp−2 0
0 1 β1 . . . βp−2

1 0 −1 0 . . . 0
...
0 . . . 0 1 0 −1















.

Further we represent Un as

Un = T−1

(

yn

zn

)

, (4.12)

where processes yn and zn satisfy the equations

yn = yn−1 + ε, zn = −zn−1 + ε , (4.13)
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T =

(

1 1
1 −1

)

.

By making use of (4.11 )-(4.12 ) one gets

tr Mn

n2
= tr(Q4Q

′
4)

−1

(

n−2
∑n

k=1 Uk−1U
′
k−1 n−2

∑n
k=1 Uk−1V

′
k−1

n−2
∑n

k=1 Vk−1U
′
k−1 n−2

∑n
k=1 Vk−1V

′
k−1

)

,

(4.14)

n−2

n
∑

k=1

Uk−1U
′
k−1 = T−1

(

n−2
∑n

k=1 y2
k−1 n−2

∑n
k=1 yk−1zk−1

n−2
∑n

k=1 yk−1zk−1 n−2
∑n

k=1 z2
k−1

)

(T−1)′ .

By Theorems 3.4.1 and 2.3 in Chan and Wei (1988), one has, as n → ∞,

n−2

n
∑

k=1

Uk−1V
′
k−1

P→ 0, n−2

n
∑

k=1

yk−1zk−1
P→ 0 ,

σ−2



n−2

[nt]
∑

k=1

y2
k−1, n

−2

[nt]
∑

k=1

z2
k−1





L
=⇒ (J1(W1; t), J1(W2; t)) ,

where 0 ≤ t ≤ 1. From here and (4.11 ), it follows that

n−2tr M[nt]
L

=⇒ σ2tr(Q4Q
′
4)

−1Dt , (4.15)

where

Dt =

(

St 0
0 0

)

, St = T−1

( ∫ t

0
W 2

1 (s)ds 0

0
∫ t

0
W 2

2 (s)ds

)

(T−1)′ .

It easy to check that

σ2tr(Q4Q
′
4)

−1Dt =

∫ t

0

(

r1W
2
1 (s) + r2W

2
2 (s)

)

ds , (4.16)

where

r1 =
σ2

4

2
∑

i=1

2
∑

j=1

< (Q4Q
′
4)

−1 >ij, r2 =
σ2

4

2
∑

i=1

2
∑

j=1

(−1)i+j < (Q4Q
′
4)

−1 >ij .

Denote
b2
4 = 1/µ1, µ1 = r2/r1 . (4.17)

It remains to note that (4.15 ),(4.16 ) imply

Pθ(τ(h) ≤ tb4

√
h) → Pθ(J3(W1, W2) ≥ 1), as h → ∞ ,
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where J3 is defined in (2.18 ).
Assume that θ ∈ Γ5(ρ). Then equation (4.1 ) has the form

q−1(q + 1)q−2(q2 − 2q cos φ + 1)qrϕ(q)xn = εn, r = p − 3.

Decompose xn into three processes

un = q−2(q2 − 2q cos φ + 1)q−rϕ(q)xn = xn + γ1xn−1 + . . . + γp−1xn−p+1 ,
vn = q−1(q + 1)q−rϕ(q)xn = xn + f1xn−1 + . . . + fp−2xn−p+2 ,
wn = q−1(q + 1)q−2(q2 − 2q cos φ + 1)xn = xn + t1xn−1 + t2xn−2 + t3xn−3 ,

(4.18)
where γi, fj, tk are the coefficients of the corresponding polynomials. These
processes satisfy the following equations

un = −un−1 + εn,
vn = 2vn−1 cos φ − vn−2 + εn,
wn = −β1wn−1 − . . . − βp−3wn−p+3 + εn .

Introducing vectors Vn = (vn, vn−1)
′, Wn = (wn, wn−1, . . . , wn−p+4)

′ and the
matrix

Q5 =





















1 γ1 . . . γp−1

1 f1 . . . fp−2 0
0 1 f1 . . . fp−2

1 t1 t2 t3 0 . . . 0
0 1 t1 t2 t3 0 . . . 0
. . .
0 . . . 0 1 t1 t2 t3





















, (4.19)

we write down (4.18 ) as





Un

Vn

Wn



 = Q5Xn . (4.20)

From here and (1.4 )

n−2tr M[nt] = tr(Q5Q
′
5)

−1C[nt]/n
2 , 0 ≤ t ≤ 1, (4.21)

where

Cn =





∑n
k=1 u2

k−1

∑n
k=1 Uk−1V

′
k−1

∑n
k=1 Uk−1W

′
k−1

∑n
k=1 Vk−1uk−1

∑n
k=1 Vk−1V

′
k−1

∑n
k=1 Vk−1W

′
k−1

∑n
k=1 Wk−1uk−1

∑n
k=1 Wk−1V

′
k−1

∑n
k=1 Wk−1W

′
k−1



 .
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By Theorems 3.4.1, 3.4.2 in Chan and Wei (1988),

n−2
∑n

k=1 Vk−1uk−1
P→ 0 ,

n−2
∑n

k=1 Wk−1uk−1
P→ 0 ,

n−2
∑n

k=1 Wk−1V
′
k−1

P→ 0 ,

(4.22)

as n → ∞. Due to the stability of the process Wk,

lim
n→∞

n−2
n
∑

k=1

Wk−1W
′
k−1 = 0 a.s. (4.23)

By the Theorem 2.3 therein


n−2

[nt]
∑

k=1

u2
k−1, n−2

[nt]
∑

k=1

Vk−1V
′
k−1





L
=⇒ σ2 (J2(W1, W2; t)H, J1(W3; t)) ,

(4.24)
where J1 and J2 are defined in (2.18 ),

H =
1

4 sin2 φ

(

1 cos φ
cos φ 1

)

.

Limiting n → ∞ in (4.21 ) and taking into account (4.22 )-(4.24 ) one gets

n−2tr M[nt]
L

=⇒ m(t) as n → ∞ , (4.25)

where

m(t) = σ2tr(Q5Q
′
5)

−1

(

St 0
0 0

)

, (4.26)

St =

(

J1(W3; t) 0
0 J2(W1, W2; t)H

)

.

By easy calculation in (4.26 ) one finds

m(t) = κ11J1(W3; t) +
J2(W1, W2; t)

4 sin2 φ
(κ22 + κ33 + (κ23 + κ32) cos φ) ,

where κij = σ2 < (Q5Q
′
5)

−1 >ij.
Now by the definition of τ(h) in (2.2 ) and (4.25 ) we obtain

P(τ(h) ≤ b5

√
ht) = P(tr M[tb5

√
h] ≥ h) ,

P(
tr M[tb5

√
h]

hb2
5

b2
5 ≥ 1) → P(m(t)b2

5 ≥ 1) .
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Setting
b2
5 = {4 sin2 φ}/{κ22 + κ33 + (κ23 + κ32) cos φ}

µ2 = κ11b
2
5

(4.27)

yields
P(m(t)b2

5 ≥ 1) = P(J4(W1, W2, W3; t) ≥ 1) ,

where J4 is defined in (2.18 ), that is, (2.21 ) holds for θ ∈ Γ5(ρ).
One can check that for θ ∈ Γ6(ρ) the limiting distribution of τ(h) coincides

with that for θ ∈ Γ5(ρ) with b6 = b5.
By a similar argument it can be shown that for θ ∈ Γ7(ρ)

lim
h→∞

P(τ(h) ≤ b7t
√

h) = P(m̃(t)b2
7 ≥ 1) ,

where
m̃(t) = κ̃11J1(W3; t) + κ̃22J1(W4; t)+

+
J2(W1, W2; t)

4 sin2 φ
(κ̃33 + κ̃44 + (κ̃34 + κ̃43) cos φ) ,

κ̃ij = σ2 < (Q7Q
′
7)

−1 >ij, Q7 is corresponding transformation matrix which
relates the original process with the decomposed ones.

Setting

b2
7 = (4 sin2 φ)/ (κ̃33 + κ̃44 + (κ̃34 + κ̃43) cos φ) ,

µ3 = κ̃11b
2
7, µ4 = κ̃22b

2
7

(4.28)

one comes to (2.21 ). This completes the proof of Theorem 2.2. 2
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