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For estimating the unknown parameters in an unstable autoregressive AR(p), the paper proposes sequential least squares estimates with a special stopping time defined by the trace of the observed Fisher information matrix. The limiting distribution of the sequential LSE is shown to be normal for the parameter vector lying both inside the stability region and on some part of its boundary in contrast to the ordinary LSE. The asymptotic normality of the sequential LSE is provided by a new property of the observed Fisher information matrix which holds both inside the stability region of AR(p) process and on the part of its boundary. The asymptotic distribution of the stopping time is derived.

Introduction

Consider the autoregressive AR(p) model

x n = θ 1 x n-1 + . . . + θ p x n-p + ε n , n = 1, 2, . . . , (1.1) where (x n ) is the observation, (ε n ) is the noise which is a sequence of independent identically distributed (i.i.d.) random variables with Eε 1 = 0 and 0 < Eε 2 1 = σ 2 < ∞, σ 2 is known, x 0 = x -1 = . . . = x 1-p = 0; parameters of the model θ 1 , . . . , θ p are unknown. This model can be expressed in vector form as

X n = AX n-1 + ξ n , (1.2) 
where X n = (x n , x n-1 , . . . , x n-p+1 ) ′ , ξ = (ε n , 0, . . . , 0) ′ ,

A = θ 1 . . . θ p I p-1 0 , (1.3) 
the prime denotes the transposition.

A commonly used estimate of the parameter vector θ = (θ 1 , . . . , θ p ) ′ is the least squares estimate (LSE)

θ(n) = M -1 n n k=1 X k-1 x k , M n = n k=1 X k-1 X ′ k-1 , (1.4) 
where M -1 n denotes the inverse of matrix M n if det M n > 0 and M -1 n = 0 otherwise. Let P(z) = z pθ 1 z p-1 -. . .θ p (1.5) denote the characteristic polynomial of the autoregressive model (1.1 ). The process (1.1 ) is said to be stable (asymptotically stationary) if all roots z i = z i (θ) of the characteristic polynomial (1.5 ) lie inside the unit circle, that is the parameter vector θ = (θ 1 , . . . , θ p ) ′ belongs to the parametric stability region Λ p defined as

Λ p = {θ ∈ R p : |z i (θ)| < 1, i = 1, . . . , p} . (1.6) 
The process (1.1 ) is called unstable if the roots of P(z) lie on or inside the unit circle, that is, θ ∈ [Λ p ]; [Λ p ] denotes the closure of the stability region Λ p . It is well known (see,e.g. [START_REF] Anderson | The statistical analysis of time series[END_REF], Th.5.5.7) that the LSE θ(n) is asymptotically normal for all θ ∈ Λ p , that is

√ n(θ(n) -θ) L =⇒ N (0, F ), as n → ∞,
where F = F (θ) is a positive definite matrix, L =⇒ indicates convergence in law. It should be noted that the asymptotic normality of θ(n) is provided by the following asymptotic property of the observed Fisher information matrix lim n→∞ M n /n = F a.s.

(1.7) for all θ ∈ Λ p . On the boundary ∂Λ p of the stability region Λ p , this property does not hold and the distribution of θ(n) is no longer asymptotically normal.

The investigation of the asymptotic distribution of LSE θ(n) when x n is unstable goes back to the late fifties with the paper of [START_REF] White | The limiting distribution of the serial correlation coefficient in the explosive case[END_REF] (see also [START_REF] Ahtola | Distribution of least squares estimators of autoregressive parameters for a process with complex roots on the unit circle[END_REF], [START_REF] Dickey | Distribution of the estimators for autoregressive time series with a unit root[END_REF], [START_REF] Rao | Asymptotic distribution of an estimator of the boundary parameter of an unstable process[END_REF], [START_REF] Sriram | Sequential estimation of the mean of a first order stationary autoregressive process[END_REF],( 1988)) who considered the AR(1) model with i.i.d. N (0, σ 2 ) random errors ε n and θ 1 = 1 and established that

n(θ(n) -1) L =⇒ (W 2 (1) -1)/ 1 0 W 2 (t)dt ,
where W (t) is a standard brownian motion. Subsequently the research of the limiting distribution of θ(n) for unstable AR(p) processes has been receiving considerable attention due to important applications in time series analysis, in modeling economic and financial data and in system identification and control. We can not go into the detail here and refer the reader to the paper by [START_REF] Chan | Limiting distribution of least squares estimates of unstable autoregressive processes[END_REF] who derived the limiting distribution of LSE θ(n) for the general unstable AR(p) model. By making use of the functional central limit theorem approach, Chan and Wei expressed the limiting distribution of LSE θ(n) in terms of functionals of standard brownian motions. However, the closed forms of the distribution functions of these functionals are not known and that may cause difficulties in practice (see section 4 in Chan and Wei).

For the unstable AR(1) model with i.i.d. random errors and -1 ≤ θ 1 ≤ 1, [START_REF] Lai | Fixed-accuracy estimation of an autoregressive parameter[END_REF] proposed to use the sequential least squares estimate for θ 1 which is obtained from the LSE

θ 1 (n) = n k=1 x k-1 x k / n k=1 x 2 k-1
by replacing n with a special stopping time τ based on the observed Fisher information. They proved that, in contrast with the ordinary LSE θ 1 (n), the sequential LSE is asymptotically normal uniformly in θ ∈ [-1, 1]. For the unstable AR(2) model, [START_REF] Galtchouk | Sequential estimation of the parameters in unstable AR(2)[END_REF] applied the sequential LSE with a particular stopping time and established that it is asymptotically normal not only inside the stability rigion Λ but also for its boundary points θ corresponding to a pair of conjugate complex roots z 1 = e iφ , z 2 = e -iφ of the polynomial (1.5 ).

In this paper, for the case of unstable AR(p) process, we propose a sequential LSE for θ and find the conditions on θ (see Conditions 1-3 in the next section) ensuring its asymptotic normality. The set Λp of the points θ , satisfying these conditions includes the stability region Λ p and some part of its boundary. It is shown that the convergence of the sequential LSE to the normal distribution is uniform in θ ∈ K for any compact set K ∈ Λp (see Theorem 2.1). The extension of the property of asymptotic normality of the sequential estimate to the part of the boundary ∂Λ p is achieved by making use of a new property of observed Fisher information matrix M n , which holds in a broader subset of [Λ p ] as compared with (1.7 ) (see Lemma 3.3).

The remainder of this paper is arranged as follows. In Section 2 we introduce a sequential procedure for estimating the parameter vector θ = (θ 1 , . . . , θ p ) ′ in (1.1 ) and study its properties. Section 3 gives a new property of the observed Fisher information matrix and establishes some technical results. In Section 4 we prove Theorem 2.2 from Section 2 on asymptotic distribution of the stopping time.

2

Sequential least squares estimate. Uniform asymptotic normality.

In this section we consider the sequential least squares estimate and study its asymptotic properties. We define the sequential LSE for the parameter vector θ = (θ 1 , . . . , θ p ) ′ in model (1.1 ) as

θ(τ (h)) = M -1 τ (h) τ (h) k=1 X k-1 x k , (2.1) 
where

τ (h) = inf n ≥ 1 : tr M n ≥ hσ 2 , inf{∅} = +∞, ( 2.2) 
is stopping time, h is a positive number (threshold). Assume that the parameter vector θ = (θ 1 , . . . , θ p ) ′ in (1.1 ) satisfies the following Conditions.

Condition 1. Parameter θ = (θ 1 , . . . , θ p ) ′ is such that all roots z i = z i (θ) of the characteristic polynomial (1.5 ) lie inside or on the unite circle.

Condition 2. All the roots z i = z i (θ) of P(z), which are equal to one in modulus, are simple. Condition 3. The system of linear equations with respect to Y 1 , . . . , Y p-1

   Y 1 -p l=2 θ l Y l-1 = θ 1 -j-1 k=1 θ j-k + Y j -p-j k=1 θ k+j Y k = θ j , 2 ≤ j ≤ p -1, (2.3)
has a unique solution (Y 1 , . . . , Y p-1 ), Y i = κ i (θ), 1 ≤ i ≤ p -1, and the matrix

L(θ 1 , . . . , θ p ) =      1 κ 1 (θ) κ 2 (θ) . . . κ p-1 (θ) κ 1 (θ) 1 κ 1 (θ) . . . κ p-2 (θ) . . . . . . . . . . . . . . . κ p-1 (θ) κ p-2 (θ) . . . κ 1 (θ) 1      (2.4)
is positive definite. Let

• Λp denote all θ = (θ 1 , . . . , θ p ) ′ in (1.1 ) which satisfy Conditions 1,2, and Λp -all θ = (θ 1 , . . . , θ p ) ′ satisfying all Conditions 1-3.

Example 2.1. For AR(2) process, one finds

Λ 2 = {θ = (θ 1 , θ 2 ) ′ : -1 + θ 2 < θ 1 < 1 -θ 2 , |θ 2 | < 1} , [Λ 2 ] = {θ = (θ 1 , θ 2 ) ′ : -1 + θ 2 ≤ θ 1 ≤ 1 -θ 2 , |θ 2 | ≤ 1} , • Λp = [Λ 2 ] \ {(-2, -1), (2, -1)} , Λ2 = {θ = (θ 1 , θ 2 ) ′ : -1 + θ 2 < θ 1 < 1 -θ 2 , -1 ≤ θ 2 < 1} , L(θ 1 , θ 2 ) = 1 θ 1 /(1 -θ 2 ) θ 1 /(1 -θ 2 )
1 .

Example 2.2. By numerical calculation for AR(3) process, one can check that Conditions 1-3 are satisfied, for example, for the values of θ = (θ 1 , θ 2 , θ 3 ) such that z 1 (θ) = e iφ , z 2 (θ) = e -iφ with 3π/10 ≤ φ ≤ 3π/5 and -1 ≤ z 3 (θ) ≤ -0.5.

As is shown in Lemma 3.3 (Section 3), Conditions 1-3, imposed on the parameter θ = (θ 1 , . . . , θ p ) ′ in (1.1 ), provide the convergence of the ratio M n / n k=1 x 2 k-1 to the matrix L(θ 1 , . . . , θ p ) given in (2.4 ). This property can be viewed as an extension of (1.7 ) outside the stability region (1.6 ).

Remark 2.1 It will be observed that Λ p ⊂ Λp and, for all θ ∈ Λp , one has

lim n→∞ M n n k=1 x 2 k-1 = pF tr F = Λ(θ 1 , . . . , θ p ) a.s., (2.5) 
where F is the same as in (1.7 ). Indeed, by making use of the identity

n k=1 x 2 k-1 = 1 p n k=1 X k-1 2 + 1 p p i=2 n l=n-i+2 x 2 l-1 , (2.6) 
one obtains

M n n k=1 x 2 k-1 = M n n 1 p tr M n n (1 + ( n k=1 X k-1 2 ) -1 p i=2 n l=n-i+2 x 2 l-1 ) -1
.

Limiting n → ∞, one comes to (2.5 ), in view of (1.7 ).

Theorem 2.1 Suppose that in the AR(p) model (1.1 ), (ε n ) is a sequence of i.i.d. random variables with Eε n = 0 and Eε 2 n = σ 2 < ∞ and the parameter vector θ = (θ 1 , . . . , θ p ) ′ satisfies Conditions 1-3. Then for any compact set

K ⊂ Λp lim h→∞ sup θ∈K sup t∈R p P θ M 1/2 τ (h) (θ(τ (h)) -θ) ≤ t -Φ p ( t σ ) = 0 , (2.7) 
where

Φ p (t) = Φ(t 1 ) • • • Φ(t p ), Φ is the standard normal distribution function, Λp is defined in Condition 3.
Proof. Substituting (1.1 ) in (2.1 ) yields

M 1/2 τ (h) (θ(τ (h) -θ) = M -1/2 τ (h) τ (h) k=1 X k-1 ε k = √ hM -1/2 τ (h) L 1/2 (θ 1 , . . . , θ p )Y h , (2.8) 
where

Y h = 1 √ h τ (h) k=1 L -1/2 (θ 1 , . . . , θ p )X k-1 ε k (2.9) and L(θ 1 , . . . , θ p ) is given in (2.4 ). Denote G τ (h) = L -1/2 (θ 1 , . . . , θ p )M τ (h) L -1/2 (θ 1 , . . . , θ p ).
One can easily verify that

L -1/2 (θ 1 , . . . , θ p ) M 1/2 τ (h) √ h -I p 2 = 1 √ h G 1/2 τ (h) -I p 2 ≤ h -1 G τ (h) -I p 2 ≤ tr L -1 (θ 1 , . . . , θ p ) h -1 M τ (h) -L(θ 1 , . . . , θ p ) 2 .
From here, by making use of Lemma 3.4 from Section 3, one gets, for any compact set K ⊂ Λp and δ > 0,

lim h→∞ sup θ∈K P θ √ hM -1/2 τ (h) L 1/2 (θ 1 , . . . , θ p ) -I p > δ = 0 . (2.10)
Now we prove that for any compact set K ⊂ Λp and for each constant vector

v ∈ R p with v = 1 lim h→∞ sup θ∈K sup t∈R |P θ (v ′ Y h ≤ t) -Φ(t)| = 0 . (2.11)
In view of (2.9 ), one has

v ′ Y h = 1 √ h τ (h) k=1 g k-1 ε k , g k-1 = v ′ L -1/2 (θ 1 , . . . , θ p )X k-1 .
For each h > 0, we define an auxiliary stopping time as

τ 0 = τ 0 (h) = inf{n ≥ 1 : n k=1 g 2 k-1 ≥ h}, inf{∅} = +∞.
Further we make use of the representation

v ′ Y h = 1 √ h τ 0 (h) k=1 g k-1 ε k + η(h) + ∆(h) , where ∆(h) = 4 i=1 ∆ i (h), ∆ 1 (h) = h -1/2 I (τ (h)=1) g 0 ε 1 , ∆ 2 (h) = h -1/2 g τ (h)-1 ε τ (h) , ∆ 3 (h) = -h -1/2 I (τ 0 (h)=1) g 0 ε 1 , ∆ 4 (h) = h -1/2 g τ 0 (h)-1 ε τ 0 (h) , η(h) = 1 √ h τ (h)-1 k=1 g k-1 ε k - 1 √ h τ 0 (h)-1 k=1 I (τ 0 (h)>1) g k-1 ε k . Now we show that lim h→∞ sup θ∈K sup t∈R |P θ ( 1 √ h τ 0 (h) k=1 g k-1 ε k ≤ t) -Φ(t)| = 0 (2.12)
and for any δ > 0 lim

h→∞ sup θ∈K P θ (|η(h)| > δ) = 0 , (2.13) lim h→∞ sup θ∈K P θ (|∆(h)| > δ) = 0 . (2.14)
The proof of (2.12 ) is based on Proposition 3.1 from the paper by [START_REF] Lai | Fixed-accuracy estimation of an autoregressive parameter[END_REF]. Actually one needs to check only the condition A 6 , that is, for each δ > 0,

lim m→∞ sup θ∈K P θ (g 2 n ≥ δ n k=1 g 2 k-1 for some n ≥ m) = 0 . (2.

15)

Conditions A 1 -A 5 are evidently satisfied. It will be noted that

n k=1 g 2 k-1 = v ′ L -1/2 (M n / n k=1 x 2 k-1 -L)L -1/2 v + 1 n k=1 x 2 k-1 .
Proceeding from this equality one gets the inclusion

{g 2 n ≥ δ n k=1 g 2 k-1 for some n ≥ m} ⊆ ⊆ { X n 2 ≥ δ 1 n k=1 g 2 k-1 for some n ≥ m} = { X n 2 ≥ δ 1 n k=1 x 2 k-1 [1+v ′ L -1/2 (M n / n k=1 x 2 k-1 -L)L -1/2 v] for some n ≥ m} ⊆ { X n 2 ≥ δ 1 n k=1 x 2 k-1 [1 -L 1/2 v 2 M n / n k=1 x 2 k-1 -L ] for some n ≥ m} ⊆ { X n 2 ≥ δ 1 n k=1 x 2 k-1 [1 -a * M n / n k=1 x 2 k-1 -L ] for some n ≥ m} ⊂ { M n / n k=1 x 2 k-1 -L ≥ (2a * ) -1 for some n ≥ m} ∪{ X n 2 ≥ δ 1 2 n k=1 x 2 k-1 for some n ≥ m} ,
where

δ 1 = δ/a * , a * = sup θ∈K v ′ L -1/2 2 .
This, in view of Lemmas 3.1,3.3, yields (2.15 ). It will be observed that (2.15 ) enables one to show (by the same argument as in Lemma 3.5) that, for any compact set K ⊂ Λp and δ > 0

lim h→∞ sup θ∈K P θ (g 2 τ 0 -1 / τ 0 -1 k=1 g 2 k-1 ≥ δ) = 0 . (2.16)
Now we check (2.13 ). One can easily verify that

E θ η 2 (h) = E θ u(h), u(h) = 1 h τ -1 k=1 g 2 k-1 - τ 0 -1 k=1 g 2 k-1 .
The random variable u(h) is uniformly bounded from above uniformly in

θ ∈ K because u(h) ≤ 1 h τ -1 k=1 g 2 k-1 + 1 = 1 h v ′ L -1/2 M τ (h)-1 L -1/2 v + 1 ≤ a * h τ -1 k=1 X k-1 2 + 1 ≤ a * + 1 .
Therefore, it suffices to show that for each δ > 0

lim h→∞ sup θ∈K P θ (u(h) ≥ δ) = 0 .
(2.17)

To this end, one can use the following estimate

u(h) = 1 h v ′ L -1/2 M τ (h)-1 L -1/2 v - τ 0 -1 k=1 g 2 k-1 = h -1 τ -1 k=1 x 2 k-1 v ′ L -1/2 M τ (h)-1 / τ -1 k=1 x 2 k-1 -L L -1/2 v +h -1 τ -1 k=1 x 2 k-1 -h -1 τ 0 -1 k=1 g 2 k-1 ≤ a * M τ (h)-1 / τ (h)-1 k=1 x 2 k-1 -L + x 2 τ (h)-1 / τ (h)-1 k=1 x 2 k-1 + g 2 τ 0 (h)-1 / τ 0 (h)-1 k=1 g 2 k-1 .
From here, by making use of ( Now we will study the properties of the stopping time τ (h) defined by (2.2 ). Further we need the following functionals

J 1 (x; t) = t 0 x 2 (s)ds, J 2 (x, y; t) = t 0 (x 2 (s) + y 2 (s))ds, J 3 (x, y; t) = t |z k (θ)| < 1, k = 4, p}, Γ 6 (p) = {θ ∈ ∂ Λp : z 1 (θ) = 1, z 2 (θ) = e iφ , z 3 (θ) = e -iφ , φ ∈ (0, π), |z k (θ)| < 1, k = 4, p} Γ 7 (p) = {θ ∈ ∂ Λp : z 1 (θ) = -1, z 2 (θ) = 1, z 3 (θ) = e iφ , z 4 (θ) = e -iφ , φ ∈ (0, π), |z k (θ)| < 1, k = 5, p}, (2.19 
) where z k (θ) are roots of the characteristic polynomial (1.5 ).

It will be noted that all these sets will be used only for the AR(p) model (1.1 ) with p ≥ 5. In the case when p ≤ 4, it is obious which of the sets Γ i (p) are odd and how to amend the remaining subsets Γ i (p). Theorem 2.2 Suppose that in the AR(p) model (1.1 ), (ε n ) n≥1 is a sequence of i.i.d. random variables with Eε n = 0, 0 < Eε2 n = σ 2 < ∞ and the parameter vector θ = (θ 1 , . . . , θ p ) satisfies Conditions 1-3. Let τ (h) be defined by (2.2 ). Then, for each θ ∈ Λ p ,

P θ -lim h→∞ τ (h) h = σ 2 trF .
(2.20)

Moreover, for each θ ∈ ∂ Λp , as h → ∞, τ (h) b i √ h L =⇒ ν i , if θ ∈ Γ i (p), 1 ≤ i ≤ 7 , (2.21) 
where Λ p is given in (1.6 ); The proof of Theorem 2.2 is given in the Appendix.

ν 1 = inf {t ≥ 0 : J 1 (W 1 ; t) ≥ 1} , ν 2 = inf {t ≥ 0 : J 1 (W 2 ; t) ≥ 1} , ν 3 = inf {t ≥ 0 : J 2 (W 1 , W 2 ; t) ≥ 1} , ν 4 = inf {t ≥ 0 : J 3 (W 1 , W 2 ; t) ≥ 1} , ν i = inf {t ≥ 0 : J 4 (W 1 , W 2 , W 3 ; t) ≥ 1} , i = 5, 6, ν 7 = inf {t ≥ 0 : J 5 (W 1 , W 2 , W 3 , W 4 ; t) ≥ 1} ; b 1 , . . . ,
3 Auxiliary propositions.

In this Section we establish some properties of the process (1.1 ) and the observed Fisher information matrix M n used in Section 2.

We need some notations. Let z 1 (θ), . . . , z q (θ) denote all the distinct roots of the characteristic polynomial (1.5 ), m i (θ) be the multiplicity of z i (θ), ( q i=1 m i (θ) = p). Let

ρ(θ) = max(m i (θ) : |z i (θ)| = 1) if max |z i (θ)| = 1, 0 if max |z i (θ)| = 1 for all i = 1, q.
Formally the set

•

Λp introduced in Condition 3 can be written as where

• Λp = Λ p ∪ {θ : max 1≤i≤q |z i (θ)| = 1, ρ(θ) = 1}. ( 3 
B m (δ) = { X n 2 ≥ δ n k=1 X k-1 2 for some n ≥ m}.
Now we estimate the ratio X n 2 / n k=1 X k-1 2 from above. For each 1 ≤ s < n, we introduce the quantity

l s = min{1 ≤ i ≤ s : min 1≤j≤s X k-j 2 = X k-i 2 }
and have the inequality

n k=1 X k-1 2 ≥ s k=1 X n-k 2 ≥ s X n-ls 2 . (3.2) 
On the other hand, it follows from (1.1 ) that

X n = A ls X n-ls + ls-1 i=0 A i ξ n-i
and, therefore, one gets

X n 2 ≤ 2 A ls 2 X n-ls 2 + 2 ls-1 i=0 A i ξ n-i 2 ≤ 2 A ls 2 X n-ls 2 +2 s-1 i=0 A i ξ n-i 2 ≤ 2 A ls 2 X n-ls 2 +2s s-1 i=1 A i ξ n-i 2 ≤ 2 A ls 2 X n-ls 2 + 2s s-1 i=1 A i 2 ε 2 n-i . (3.3) 
Further it will be observed that, for every compact set K ⊂

• Λp , there exists a positive number κ such that sup θ∈K A n 2 ≤ κ, n ≥ 1 .

(3.4) Indeed, we express A in its Jordan normal form

A = SDS -1 , (3.5) 
where D = diag(J 1 , . . . , J q ), J l is the m l × m l submatrix of the form

J l =     z l 1 0 . . . 0 0 z l 1 . . . 0 0 . . . z l 1 0 . . . z l    
if z l is a multiple root with multiplicity m l ≥ 2, and J l = z l if z l is a simple root.

By direct computation with (3.5 ) one finds

A n = SD n S -1 , D n = diag(J n 1 , . . . , J n q )
, where the powers of the matrix J l are equal to z n l for a simple root z l and consist of the elements (see, R.Varga (2000))

< J n l > ij =      0, j < i , n j -i z n-j+i l , i ≤ j ≤ min(m l , n + i) , 0, n + i < j ≤ m l ,
for the roots z l with multiplicity m l ≥ 2, n ji is the binomial coefficient. From here, in view of the definition (3.1 ), one comes to (3.4 ). By making use of (3.3 ) and (3.4 ), one obtains

X n 2 ≤ 2κ X n-ls 2 + 2sκ s-1 i=0 ε 2 n-i .
Combining this inequality and (3.2 ) yields

X n 2 n k=1 X k-1 2 ≤ 2κ s + 2sκ s-1 i=0 ε 2 n-i n k=1 X k-1 2 .

It remains to use elementary inequality

n-1 i=0 ε 2 k ≤ 2(1 + A 2 ) n k=1 X k-1 2 ,
which follows from (1.2 ), to derive the desired estimate for the ratio

X n 2 n k=1 X k-1 2 ≤ 2κ s + 2sκ 2(1 + A 2 ) s-1 i=0 ε 2 n-i n-1 k=1 ε 2 k .

This inequality implies the inclusion

B m (δ) ⊂ {2κ/s > δ/2 for some n ≥ m} ∪{4(1 + A 2 )sκ s-1 i=0 ε 2 i-1 / n-1 k=1 ε 2 k > δ 2
for some n ≥ m} .

Therefore, for sufficiently large s, one gets

sup θ∈K P θ (B m (δ) ≤ P{ν s-1 i=0 ε 2 i-1 / n-1 k=1 ε 2 k > δ 2
for some n ≥ m} , where ν = sup θ∈K 4(1 + A 2 )sκ. Limiting m → ∞ and applying the law of large numbers one comes to the assertion of Lemma 3.1.

Lemma 3.2 Let (x n ) n≥0 be an autoregressive process defined by (1.1 ). Then for any compact set K ⊂

• Λp and each l = 1, p -1 lim m→∞ sup θ∈K P θ ( n k=1 x k-l ε k ≥ δ n k=1 x 2 k-1 for some n ≥ m) = 0 , (3.6) 
where

• Λp is given in (3.1 )
Proof. We will apply Lemma 2.2 from the paper by Lai and Siegmund (1983)) given in the Appendix. Let c n = n 3/4 . For the set of interest one has the following inclusions

| n k=1 x k-l ε k | > δ n k=1 x 2 k-1 for some n ≥ m ⊆ | n k=1 x k-l ε k | > δ n k=1 x 2 k-l for some n ≥ m = | n k=1 x k-l ε k | ( n k=1 x 2 k-l ) 2/3 ∨ c n • ( n k=1 x 2 k-l ) 2/3 ∨ c n n k=1 x 2 k-l > δ for some n ≥ m ⊆ | n k=1 x k-l ε k | ( n k=1 x 2 k-l ) 2/3 ∨ c n > √ δ for some n ≥ m ∪ ( n k=1 x 2 k-l ) -1/3 ∨ c n ( n k=1 x 2 k-l ) -1 > √ δ for some n ≥ m ⊂    | n k=1 x k-l ε k | ( n k=1 x 2 k-l ) 2/3 ∨ c n -1 > √ δ for some n ≥ m    ∪ ∪ ( n k=1 x 2 k-l ) -1 > δ 3/2 for some n ≥ m ∪ ∪ c n ( n k=1 x 2 k-l ) -1 > √ δ for some n ≥ m ⊂ | n k=1 x k-l ε k | > δ( n k=1 x 2 k-l ) 2/3 ∨ c n for some n ≥ m ∪ c n ( n k=1 x 2 k-l ) -1 > √ δ ∧ δ 3/2 for some n ≥ m .
From here, it follows that

P θ | n k=1 x k-l ε k | > δ n k=1 x 2 k-l for some n ≥ m ≤ P θ   | n k=1 x k-l ε k | > δ n k=1 x 2 k-l 2/3 ∨ c n for some n ≥ m   +P θ n 3/4 ( n k=1 x 2 k-l ) -1 > √ δ ∧ δ 3/2 for some n ≥ m . (3.7)
By making use of (1.1 ) and the elementary inequalities, one obtains

n k=1 ε 2 k = n k=1 (x k -θ 1 x k-1 -. . . -θ p x k-p ) 2 ≤ (p + 1) n k=1 x 2 k + p j=1 θ 2 j n k=1 x 2 k-j ≤ (p + 1) max 1≤j≤p θ 2 j ( n k=1 x 2 k + p j=1 n k=1 x 2 k-j ) ≤ (p + 1) 2 µ k n k=1 x 2 k-l 1 + n k=n-l+1 x 2 k / n k=1 x 2 k-l
, where µ k = sup θ∈K θ 2 . Therefore the second summand in the right-hand side of (3.6 ) can be estimated as

P θ n 3/4 ( n k=1 x 2 k-l ) -1 > √ δ ∧ δ 3/2 for some n ≥ m ≤ P θ 2(p + 1) 2 µ k n 3/4 ( n k=1 ε 2 k ) -1 > √ δ ∧ δ 3/2 for some n ≥ m +P θ n k=n-l+1 x 2 k / n k=1 x 2 k-l ≥ 1 for some n ≥ m .
Combining this and (3. Proof. Each diagonal element of the matrix M n can be expressed through

n l=1 x 2 l-1 as < M n > ii = n k=i x 2 k-i = n-i+1 l=1 x 2 l-1 = n l=1 x 2 l-1 - n l=n-i+2 x 2 l-1 , 2 ≤ i ≤ p . (3.8)
Further it will be observed that each element < M n > ij , 2 ≤ i < j ≤ p, of M n standing above the principal diadonal and below the first row can be expressed through some element of the first row as

< M n > ij = n k=1 x k-i x k-j = n l=1 x l-1 x l-1+i-j - n l=n-i+2 x l-1 x l-1+i-j (3.9) =< M n > i,j-i+1 - n t=n-i+2
x t-1+i-j .

Now we derive the equations relating the elements of the first row, that is, < M n > 1s , 2 ≤ s ≤ p. Making use of the equation (1.1 ), one gets

< M n > 1s = n k=1 x k-1 x k-s = n k=1 p l=1 θ l x k-l-1 + ε k-1 x k-s = p l=1 θ l n k=1 x k-l-1 x k-s + n k=1 x k-s ε k-1 . Since n k=1 x k-l-1 x k-s =    < M n > ss , if l = s -1, < M n > s,l+1 , if l ≥ s, < M n > l+1,s , if l ≤ s -2,
this implies the following system of equations

< M n > 12 = θ 1 < M n > 22 + p l=2 θ l < M n > 2,l+1 + n k=1 x k-2 ε k-1 , < M n > 1s = s-2 l=2 θ l < M n > l+1,s +θ s-1 < M n > ss + p l=s θ l < M n > s,l+1 + n k=1 x k-s ε k-1 , 3 ≤ s ≤ p.
Taking into account (3.8 ),(3.9 ) one can represent this system as

< M n > 12 = θ 1 n k=1 x 2 k-1 + p l=2 θ l < M n > 1,l +η 1,2 (n), (3.10) 
< M n > 1s = s-2 l=1 θ l < M n > 1,s-l +θ s-1 n k=1 x 2 k-1 + p l=s θ l < M n > 1,l-s+2 +η 1,s (n), where 3 ≤ s ≤ p, η 1,2 (n) = -θ 1 x 2 n-1 - p l=2 θ l x n-1 x n-l + n k=1 x k-2 ε k-1 , η 1,s (n) = - s-2 l=1 θ l n t=n-l+1 x t-1 x t+l-s -θ s-1 n l=n-s+2 x 2 l-1 - p l=s θ l n t=n-s+2 x t-1 x t+s-l-2 + n k=1 x k-s ε k-1 .
Denote

z i (n) = < M n > 1,i+1 n k=1 x 2 k-1 , η1,i+1 = η 1,i+1 (n) n k=1 x 2 k-1 , i = 1, p -1.
Then the system of equations (3.10 ) takes the form

   z 1 (n) -p l=2 θ l z l-1 (n) = θ 1 + η1,2 , -j-1 k=1 θ j-k z k (n) + z j (n) -p-j k=1 θ k+j z k (n) = θ j + η1,j+1 , j = 2, p -1 (3.11)
In virtue of Lemmas 3.1,3.2, for any compact set K ⊂ Λp and δ > 0, one has

lim m→∞ sup θ∈K P θ ( max 2≤s≤p |η 1,s (n)| > δ for some n ≥ m) = 0.
From here and the Condition 3, which holds for each vector θ ∈ K, it follows that the solution of the system (3.11 ) converges, as n → ∞, to the unique solution of system (2.3 ) uniformly in θ ∈ K, that is,

lim m→∞ sup θ∈K P θ ( max 1≤i≤p-1 |z i (n) -κ i (θ)| > δ for some n ≥ m) = 0.
This, in view of (3.9 ) and Lemma 3.1, implies the desired convergence of the remaining elements of the matrix M n . Hence Lemma 3.3. 2 Lemma 3.4 Let M n , τ (h) and L(θ) = L(θ 1 , . . . , θ p ) be given by (1.4 ), (2. 2) and (2.4 ), respectively. Then, for any compact set K ⊂

• Λp and δ > 0, lim h→∞ sup θ∈K P θ M τ (h) h -L(θ 1 , . . . , θ p ) > δ = 0, (3.12) 
where

•
Λp is defined in Condition 3.

Proof. By making use of the equality

M τ (h) h -L(θ) = M τ (h) τ (h) k=1 x 2 k-1 -L(θ) + M τ (h) 1 h - 1 τ (h) k=1 x 2 k-1
one gets the estimate

M τ (h) h -L(θ) ≤ M τ (h) τ (h) k=1 x 2 k-1 -L(θ) +   M τ (h) / τ (h) k=1 x 2 k-1     τ (h) k=1 x 2 k-1 -h   /h. Therefore M τ (h) h -L(θ) > δ ⊂ M τ (h) τ (h) k=1 x 2 k-1 -L(θ) > δ/2 (3.13) ∪    M τ (h) τ (h) k=1 x 2 k-1 τ (h) k=1 x 2 k-1 -h h > δ/2    .
Further one has the inclusions

M τ (h) τ (h) k=1 x 2 k-1 -L(θ) > δ/2 ⊆ {τ (h) ≤ m} ∪ M n n k=1 x 2 k-1 -L(θ) > δ/2 for some n ≥ m ,    M τ (h) τ (h) k=1 x 2 k-1   τ (h) k=1 x 2 k-1 -h   /h > δ/2    ⊂ {τ (h) ≤ m} ∪ M n n k=1 x 2 k-1 -L(θ) > δ/2 for some n ≥ m ,    M τ (h) τ (h) k=1 x 2 k-1   τ (h) k=1 x 2 k-1 -h   /h > δ/2    ⊂ {τ (h) ≤ m} ∪ M n n k=1 x 2 k-1 • x 2 n-1 n-1 k=1 x 2 k-1 > δ/2 for some n ≥ m .
From here and (3.13 ), it follows that

P θ M τ (h) h -L(θ) > δ ≤ 2P θ {τ (h) ≤ m} (3.14) +P θ M n n k=1 x 2 k-1 -L(θ) > δ/2 for some n ≥ m +P θ M n n k=1 x 2 k-1 • x 2 n-1 n-1 k=1 x 2 k-1 > δ/2 for some n ≥ m .
By the definition of τ (h) in (2.2 )

{τ (h) < m} = m k=1 (x 2 k-1 + • • • + x 2 k-p ) > h = m k=1 (x 2 k-1 + • • • + x 2 k-p ) > h, max 1≤j≤m (x 2 j-1 + • • • + x 2 j-p ) < l + m k=1 (x 2 k-1 + • • • + x 2 k-p ) > h, max 1≤j≤m (x 2 j-1 + • • • + x 2 j-p ) ≥ l ⊂ {ml > h} ∪ ∪ m j=1 {(x 2 j-1 + • • • + x 2 j-p ) ≥ l}. (3.15) 
This yields

P θ {τ (h) < m} ≤ I (ml>h) + m k=1 P θ {x 2 k-1 + • • • + x 2 k-p ≥ l}.
Consider the last term in (3.14 ). By the inequality

M n n k=1 x 2 k-1 ≤ M n n k=1 x 2 k-1 -L(θ) + L(θ)
one has 

P θ M n n k=1 x 2 k-1 • x 2 n-1 n-1 k=1 x 2 k-1 > δ/2 for some n ≥ m ≤ P θ M n n k=1 x 2 k-1 -L(θ) > δ/4 for some n ≥ m (3.16) +P θ L * k x 2 n-1 n-1 k=1 x 2 k-1 > δ/4 for some n ≥ m +P θ L * k x 2 n-1 n-1 k=1 x 2 k-1 > δ/4 for some n ≥ m , where L * k = sup θ∈K L(θ) . Combining (3.14 )-(3.16 ) yields sup θ∈K P θ M τ (h) h -L(θ) > δ ≤ 2I (ml>h) + 2 m k=1 sup θ∈K P θ { X k-1 2 ≥ l} +P θ M n n k=1 x 2 k-1 -L(θ) > 1 2 (δ ∧ √ δ) for some n ≥ m +2P θ L * k x 2 n-1 n-1 k=1 x 2 k-1 > 1 2 (δ ∧ √ δ) for some n ≥ m . Limiting h → ∞, l → ∞, m → ∞
P θ   x 2 τ (h)-1 / τ (h)-1 k=1 x 2 k-1 > δ   = 0. (3.17)
Proof. In view of the inclusion

x 2 τ (h)-1 τ (h)-1 k=1 x 2 k-1 > δ ⊂ {τ (h) ≤ m} x 2 n n-1 k=1 x 2 k-1 > δ for some n ≥ m . one has sup θ∈K P θ x 2 τ (h)-1 τ (h)-1 k=1 x 2 k-1 > δ ≤ I (ml>h) + m j=1 sup θ∈K P θ X j-1 2 ≥ l + sup θ∈K P θ x 2 n n-1 k=1 x 2 k-1 > δ for some n ≥ m .
Limiting h → ∞, l → ∞, m → ∞ and applying Lemma 3.1 lead to (3.17 ). This completes the proof of Lemma 3.5. 2 4 Appendix.

In this Section we cite the probabilistic result from the paper of [START_REF] Lai | Fixed-accuracy estimation of an autoregressive parameter[END_REF] used in Section 3 and give the proof of Theorem 2.2.

Lemma 2.2 (by [START_REF] Lai | Fixed-accuracy estimation of an autoregressive parameter[END_REF]). Let (F n ) n≥0 be a filtration on a measurable space (Ω, F ), (x n ) n≥0 and (ε n ) n≥0 be sequences of random variables adapted to (F n ) n≥0 . Let (P θ , θ ∈ Θ) be a family of probability measures on (Ω, F ) such that under every P θ ε n is independent of F n-1 for each n ≥ 1. Then, for each γ > 1/2, δ > 0, and increasing sequence of positive constants c n → ∞,

sup θ∈Θ P θ | n i=1 x i-1 ε i | ≥ δ max(c n , ( n i=1 x 2 i-1 ) γ ) for some n ≥ m → 0 , as m → ∞.
Proof of Theorem 2.2. Assertion (2.20 ) easely follows from Lemma 3.12 in [START_REF] Galtchouk | On uniform asymptotic normality of sequential least squares estimators for the parameters in a stable AR(p)[END_REF]. For the points θ belonging to ∂Λ p we decompose the original time series (1.2 ) into several components depending on the number of the roots of the characteristic polynomial (1.5 ) lying on the unit circle and their values. To this end, the characteristic polynomial (1.5 ) is represented as

P(z) = (z + 1) δ 1 (z -1) δ 2 (z 2 -2z cos φ + 1) δ 3 ϕ(z),
where δ i are either zero or 1 with δ 1 + δ 2 + δ 3 ≥ 1, ϕ(z) is the polynomial of order r = p -δ 1 -δ 2 -2δ 3 which has all roots inside the unit circle. Assuming (without loss of generality) that r ≥ 1, one has

ϕ(z) = z r + β 1 z r-1 + . . . + β r .
By applying the backshift operator q -1 (i.e. q -1 x n = x n-1 ) one can write down (1.1 ) as q -δ 1 (q + 1) δ 1 q -δ 2 (q -1) δ 2 q -2δ 3 (q 2 -2q cos φ + 1) δ 3 q -r ϕ(q)x n = ε n (4.1) Let θ ∈ Γ 1 (ρ). Then this equation, in view of (2.19 ), takes the form q -1 (q + 1)q -p+1 ϕ(q)x n = ε n .

Denote

u n = q -p+1 ϕ(q)x n , v n = q -1 (q + 1)x n , that is u n = x n + β 1 x n-1 + . . . + β p-1 x n-p+1 , v n = x n + x n-1 . (4.2) 
Introducing the vector V n = (v n , . . . , v n-p+1 ) ′ and the matrix

Q =        1 β 1 β 2 . . . β p-1 1 1 0 . . . 0 0 1 1 . . . 0 . . . 0 . . . 1 1        (4.3)
By a similar argument, one check (2.21 ) for θ ∈ Γ 2 (ρ) with

b 2 2 = 1/(σ 2 < (Q 2 Q ′ 2 ) -1 > 11 ) , (4.8) 
where

Q 2 =        1 β 1 β 2 . . . β p-1 1 -1 0 . . . 0 0 1 -1 . . . 0 . . . 0 0 . . . 1 -1        .
Assume that θ ∈ Γ 3 (ρ). Then using the equation q -2 (q 2 -2q cos φ -1)q -p+2 ϕ(q)x n = ε n , we decompose the process (1.2 ) into two processes

U n = (u n , u n-1 ) ′ , V n = (v n , . . . , v n-p+3 ) ′ ,
which obey the equations

U n = 2 cos φ -1 1 0 U n-1 + ε n 0 , (4.9) 
v n + β 1 v n-1 + . . . + β p-2 v n-p+2 = ε n .
These processes are related with X n = (x n , . . . , x n-p+1 ) ′ by the following transformation where

U n V n = Q 3 X n with Q 3 =          1 β 1 . . . β p-2 0 0 1 β 1 . . . β p
r 2 = σ 2 tr(Q 3 Q ′ 3 ) -1 1 cos φ cos φ 1 .
From here one comes to (2.21 ) with b 3 = (2 sin φ)/r . (4.10)

Now assume that θ ∈ Γ 4 (ρ). In this case the process (1.2 ) is decomposed into two vector processes U n = (u n , u n-1 ) ′ , V n = (v n , . . . , v n-p+3 ) ′ , which are defined by the formulae

u n = x n + β 1 x n-1 + . . . + β p-2 x n-p+2 , v n = x n -x n-2
and satisfy the equations

u n = u n-2 + ε n , v n + β 1 v n-1 + . . . + β p-2 v n-p+2 = ε n .
These processes are related to the original process (1.2 ) by the transformation

U n V n = Q 4 X n , (4.11) 
where Further we represent U n as

Q 4 =        1 
U n = T -1 y n z n , (4.12) 
where processes y n and z n satisfy the equations

y n = y n-1 + ε, z n = -z n-1 + ε , (4.13) 
where J 3 is defined in (2.18 ). Assume that θ ∈ Γ 5 (ρ). Then equation (4.1 ) has the form q -1 (q + 1)q -2 (q 2 -2q cos φ + 1)q r ϕ(q)x n = ε n , r = p -3.

Decompose x n into three processes u n = q -2 (q 2 -2q cos φ + 1)q -r ϕ(q)x n = x n + γ 1 x n-1 + . . . + γ p-1 x n-p+1 , v n = q -1 (q + 1)q -r ϕ(q)x n = x n + f 1 x n-1 + . . . + f p-2 x n-p+2 , w n = q -1 (q + 1)q -2 (q 2 -2q cos φ + 1)x n = x n + t 1 x n-1 + t 2 x n-2 + t 3 x n-3 , (4.18) where γ i , f j , t k are the coefficients of the corresponding polynomials. These processes satisfy the following equations

u n = -u n-1 + ε n , v n = 2v n-1 cos φ -v n-2 + ε n , w n = -β 1 w n-1 -. . . -β p-3 w n-p+3 + ε n .
Introducing vectors V n = (v n , v n-1 ) ′ , W n = (w n , w n-1 , . . . , w n-p+4 ) ′ and the matrix 

Q 5 =           1 γ 1 . . . γ p
  U n V n W n   = Q 5 X n . (4.20) 
From here and (1.4 )

n -2 tr M [nt] = tr(Q 5 Q ′ 5 ) -1 C [nt] /n 2 , 0 ≤ t ≤ 1, (4.21) 
where

C n =   n k=1 u 2 k-1 n k=1 U k-1 V ′ k-1 n k=1 U k-1 W ′ k-1 n k=1 V k-1 u k-1 n k=1 V k-1 V ′ k-1 n k=1 V k-1 W ′ k-1 n k=1 W k-1 u k-1 n k=1 W k-1 V ′ k-1 n k=1 W k-1 W ′ k-1   .
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 1311 It includes both the stability region Λ p and the points θ of its boundary for which all the roots of the polynomial (1.5 ), lying on the unit circle, are simple. Let (x n ) n≥0 be an autoregressive process defined by (1.1 ). Then for any compact set K ⊂ Λp for some n ≥ m) = 0 .Proof. Taking into account the equation (1.2 ), it suffices to show that for any compact set K ⊂ • Λp and δ > 0 lim m→∞ sup θ∈K P θ (B m (δ)) = 0 ,
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 2331 [START_REF] Galtchouk | Sequential estimation of the parameters in unstable AR(2)[END_REF] and applying Lemma 3.1, and Lemma 2.2 by Lai and Siegmund (see Section 4) yield(3.6 ).This completes the proof of Lemma 3.2. Let parameters θ 1 , . . . , θ p in the equation (1.1 ) satisfy Conditions 1-3 and p × p matrix M n be given by(1.3 ). Then, for any compact set K ⊂ Λp and each δ > 0L(θ 1 , . . . , θ p ) ≥ δ for some n ≥ m = 0, where L(θ 1 , . . . , θ p ) is defined in (2.4 ).

  b 7 are defined by (4.7 ),(4.8 ),(4.10 ),(4.17 ), (4.27 ) and (4.28 ), respectively; W 1 (t), . . . , W 4 (t) are independent standard brownian motions.

  and taking into account Lemma 3.3, one comes to (3.12 ). Hence Lemma 3.4. 2 Lemma 3.5 Let x k and τ (h) be defined by (1.1 ) and (2.2 ). Then for any compact set K ⊂

	• Λ0 and δ > 0
	lim h→∞	sup θ∈K

  -1 1 f 1 . . . f p-2 0 0 1 f 1 . . . f p-2 1 t 1 t 2 t 3 0 . . . 0 0 1 t 1 t 2 t 3 0 . . .

					
					
					
					
					 	,	(4.19)
				0	 
	. . .				 
	0 . . .	0 1 t 1	t 2	t 3
	we write down (4.18 ) as			

(x 2 (s) + µ

y

(s))ds, J 4 (x, y, z; t) = J 2 (x, y; t) + µ 2 J 1 (z; t), J 5 (x, y, z, u; t) = J 2 (x, y; t) + µ

J 1 (z; t) + µ

J 1 (u; t),(2.18) where µ i , i = 1, 4 are defined by (4.17 ),(4.27 ) and (4.28 ). For the set Λp of the parameter vector θ = (θ 1 , . . . , θ p ) ′ satisfying Conditions 1-3, we introduce the following subsets belonging to its boundary ∂ ΛpΓ 1 (p) = {θ ∈ ∂ Λp : z 1 (θ) = -1, |z k (θ)| < 1, k = 2, p} Γ 2 (p) = {θ ∈ ∂ Λp : z 1 (θ) = 1, |z k (θ)| < 1, k = 2, p} Γ 3 (p) = {θ ∈ ∂ Λp : z 1 (θ) = e iφ , z 2 (θ) = e -iφ , φ ∈ (0, π), |z k (θ)| < 1, k = 3, p} Γ 4 (p) = {θ ∈ ∂ Λp : z 1 (θ) = -1, z 2 (θ) = 1, |z k (θ)| < 1, k = 3, p} Γ

(p) = {θ ∈ ∂ Λp : z 1 (θ) = -1, z 2 (θ) = e iφ , z 3 (θ) = e -iφ , φ ∈ (0, π),
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one can rewrite equations (4.2 ) in the vector form

The processes u n and v n satisfy the equations

Substituting (4.4 ) in (1.4 ) yields

By Theorem 3.4.2. in Chan and Wei (1988)

Since the process V n is stable

as n → ∞. By making use of these limiting relations in (4.5 ), one get

where

This and (4.6 ) imply the validity of (2.21 ) for θ ∈ Γ 1 (ρ) with

By making use of (4.11 )-(4.12 ) one gets

By Theorems 3.4.1 and 2.3 in Chan and Wei (1988), one has, as n → ∞,

where 0 ≤ t ≤ 1. From here and (4.11 ), it follows that

where

It easy to check that

where 

as n → ∞. Due to the stability of the process W k ,

By the Theorem 2.3 therein

) where J 1 and J 2 are defined in (2.18 ),

Limiting n → ∞ in (4.21 ) and taking into account (4.22 )-(4.24 ) one gets

where

By easy calculation in (4.26 ) one finds

where ≥ 1) = P(J 4 (W 1 , W 2 , W 3 ; t) ≥ 1) , where J 4 is defined in (2.18 ), that is, (2.21 ) holds for θ ∈ Γ 5 (ρ).

One can check that for θ ∈ Γ 6 (ρ) the limiting distribution of τ (h) coincides with that for θ ∈ Γ 5 (ρ) with b 6 = b 5 .

By a similar argument it can be shown that for θ ∈ Γ 7 (ρ)