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The present paper deals with a class of random operators on quantum graphs, the so-
called random length model. We consider the Laplacian on a metric graph spanned by the
simple lattice Z¢ with §-type boundary conditions where the edge lengths arei.i.d. random
variables. Under certain technical assumptions we show that the operator exhibits the
Anderson localization at the bottom of the spectrum, i.e. that the bottom of the spectrum
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Abstract

The spectral properties of the Laplacian on a class of quantum graphs with random
metric structure are studied. Namely, we consider quantum graphs spanned by the
simple Z%lattice with d-type boundary conditions at the vertices, and we assume
that the edge lengths are randomly independently identically distributed. Under
the assumption that the coupling constant at the vertices does not vanish, we show
that the operator exhibits the Anderson localization at the bottom of the spectrum
almost surely. We also study the case of other spectral edges.

Introduction

is pure point with exponentially decaying eigenfunctions.
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The random length model on metric graphs was studied in [1] for regular trees, where
stability of the absolutely continuous spectrum was found, and in [14] for radial trees,
where Anderson localization at all energies was proved. Also the random necklace model
studied in the earlier paper [17] can be viewed as a special random length model. Random
length models for metric graphs spanned by Z¢ were studied in [12] where existence of
the integrated density of states was discussed, but, to our knowledge, no paper studied
the Anderson localization in this situation so far. For discussion of localization in other
random models on quantum graphs see also [7, 13, 10].

The localization in the model we are studying can be proved by an iterative procedure
called the multiscale analysis, see [28], which works in rather abstract situations as far as
some input data are available (see also the paper [7] which is concerned specifically with
metric graphs). So we are concentrating on obtaining the necessary ingredients. Our main
construction is the reduction of the study of finite volume operators on metric graphs to
a family of random discrete operators. It turns out that the discrete operators obtained
are closely related to the random hopping model considered in [15], so we are able to use
similar construction to obtain the two most important estimates, the Wegner estimate
and the initial scale estimate.

2 Random length model on a quantum graph lattice

We recall here some basic constructions for quantum graphs. For the general theory see
e.g. the reviews [10, 19, 20] and the collections of papers [3, 6, 8, 18].

Let I' = (V,€) be a countable directed graph with V and £ being the sets of vertices
and edges, respectively. For an edge e € £, we denote by te its initial vertex and by 7e
its terminal vertex. For e € £ and v € V we write v ~ e or e ~ v if v € {te,7e}. The
degree of a vertex is the number degv := #{e € £ : e ~ v}.

For 0 < lpin < lmax < o0 consider a function [ : & — [lnin, lmax)- Sometimes we
will write [, instead of I(e); this number will be interpreted as the length of the edge e.
Replacing each edge e by a copy of the segment [O, le} in such a way that 0 corresponds to
te and [, to Te and, thus, obtains a so-called metric graph. Our aim is to study a special
type of differential operator on such a structure.

In the space H = @, ¢ He, He = L?[0,1] consider an operator H acting as f =:

(fo) — (=f/) =1 Hf on the domain consisting of the functions f € @, .. H*[0,l.]
satisfying the Kirchhoff boundary conditions, i.e. for any v € V one has
fele) = fo(0) = f(v), Te=1b=uv, (1)

and

fl0)=af), f(v):="> f0)= > fll), (2)
where « is a real number, the so-called coupling constant (for simplicity, we assume that
the coupling constants are the same for all vertices). It is known, that the operator thus
obtained is self-adjoint. We denote this operator by H (', [, «).



We are going to study a special case of underlying configuration, a periodic lattice.
Let V=127% d>1. Let hj, j =1,...,d, be canonical basis of 74, and set

Ey:={(m,m+h;), mez' j=1,...d},

where for an edge e = (v,v') € Z%, v,v' € Z%, one has te := v, Te := v'. For this graph
Il .= (Z%, &,) consider the operator H(l,a) := H(I'Y,l,a). In the present paper we are
going to study some spectral properties of such operators under assumption that /. are
random independent identically distributed variables.

Namely, on (€2, P), a probability space, let (l:)ees be a family of independent iden-
tically distributed (i.i.d.) random variables whose common distribution has a Lipschitz
continuous density p with support [lnin, lmax]. By @ random Hamiltonian on the quantum
graph, we mean a family of operators H*(«) := H (¥, «).

By rescaling ¢t — [¥t on each edge, one obtains a unitary equivalent operator acting
on the same space &.L?[0,1] (independent of w), which allows one to use the standard
results from the theory of random operators, the existence of an almost sure spectrum and
of almost sure spectral components (see e.g. [5, 27]), i.e. the existence of closed subsets
Yo = Ye(a) C R and a subset ' C Q with P(£) = 1 such that spec, H(a) = %,
e ¢ {pp,ac,sc}, for any w € . Let ¥(a) = X, U X, U X be the almost sure spectrum
of H*(a). Let us describe this set. For [ > 0 and § € R denote by P, g the periodic
Kronig-Penney operator acting in L?*(R),

d2
Puﬁ = ——2 + ﬁ25( — ku)

dx
keZ

The operator can be correctly defined through its quadratic form; it is unitarily equivalent
to the operator H(l,,[3) for d = 1, where [, is the constant function, l,(e) = u for all
e € . It is well known [2] that

spec P, g = {k* : k € RUIR, cosku + % sinku € [—1,1]}. (3)

In particular, each Dirichlet eigenvalue (7n)?/u®, n = 1,2, ..., is a spectral edge, and the
bands depend continuously on both o and u. As follows from the general constructions
[5, 27], one has

Y= U spec H(l,, o). (4)

ue [lminylmax}

On the other hand, one has spec H(l,, @) := spec P, 44, see [25]. Hence, an elementary
analysis shows that the almost sure spectrum ¥ («) of H¥(«) is a union of bands, and the
bottom of the spectrum is given by

k% : k€ (0,7/lnax) and cos klpay + % sin klpax = 1, o >0,

inf 2(a) = { 0, a=0,

k2 k> 0and cosh Kl + 2%1 sinh Kl — 1, a < 0.



Define the set
2.9 92 9

m™™n m™T™n
A= {—p T } (5)
T’LEZ max min

The set consists of the spectra of the operator H(l,) with Dirichlet boundary condition
(which formally corresponds to o = 00) at each vertex when u ranges over the support of
the random variables (I¥).s and the point 0. Our main result is

Theorem 1. Let o # 0. Let Ey be a edge of ¥ that is not contained in A. Then, there
exists € > 0 such that the spectrum of H* in (Ey — e, Ey + ) N X is almost surely dense
pure point with exponentially decaying eigenfunctions.

In particular, we get

Theorem 2. Let o« # 0. There exists € > 0 such that the spectrum of H* in (inf ¥, inf ¥+
g) is almost surely dense pure point with exponentially decaying eigenfunctions.

Remark 3. It is quite easy to see that, if [,.x — lmin is sufficiently small, there are band
edges of ¥ outside A. This can be obtained using (3), (4) and the asymptotics given for
specPy, 5 for large k.

Our results do not establish localization for the most important case o = 0. In this
case, it is quite easy to see that both the Wegner estimate near inf > = 0 and the initial
scale estimate (see theorems 4 and 5 below) fail to hold. The operator H (I, 0) is analogous
to the acoustic operator (see e.g. [22] and references therein); for this operator, at least
in dimension one, it is known that localization does not hold in its strongest form at the
bottom of the spectrum (see [11]). In the case @ = 0, the reduced operator we use to
study the random quantum graph is a discrete version of the acoustic operator.

As in [16], the assumptions of theorems 1 and 2 also imply dynamical localization (see
remark 7 in [10]).

3 Multiscale analysis and finite-volume operators

Let A be a subset of edges from &;. Denote V) := {e : e € A} U{re: e € A} and
consider the graph I'¢ := (VA, A). Note that this graph has no isolated vertices. We will
call the operator Hy(l, ) := H(I'Y, 1, ) the finite-volume Hamiltonian associated to A.
For random operators with random length functions (¥, we write HY (a) := Hx (¥, @)

In what follows, we consider Hamiltonians associated with finite cubes A = A(n)
constructed as follows: take n € N and denote by A(n) the set of edges e such that at
least one of the vertices v € {ie, e} satisfies |v| < n; for the corresponding set of vertices,
we write V(n) := Va@m).

In order to prove Anderson localization using a multiscale analysis, it is sufficient
to verify two groups of conditions. The first one consists of rather abstract properties,
namely:

e the finite-volume Hamiltonians corresponding to non-intersecting sets of edges are
independent,



e the finite-volume operator obeys a Weyl estimate for the eigenvalues,

e there exists a geometric resolvent inequality relating operators corresponding to
different finite-volume subsets,

e a generalized spectral theorem holds, i.e.n one can determine the spectrum through
generalized eigenfunctions.

Note that the first condition is trivially satisfied in our case. The second and the third one
can be obtained by minor modification of the arguments of [7], where equilateral lattices
were considered. The last condition is satisfied due to the results of [1] (see also [21] for
generalizations).

Below, we are concerned with the second group of estimates, which crucially depend
on the way randomness enters the system. They consist in the Wegner estimate and the
initial scale estimate; they are proved in sections 4 and 5, respectively. Using a multiscale
analysis, they imply by the multiscale analysis theorem 1 (see e.g. [7].

Theorem 4 (The Wegner estimate). Let I be an interval such that INA = (), Then
there exists a C' = C(I) > 0 such that for any interval J C I, and any cube A = A(n)
there holds

P{ spec H(a) N J # 0} < C|A||J]. (6)

Theorem 5 (The initial scale estimate). Let E be a spectral edge of H*(«) which
is not contained in the set A from (5), then for each & > 0 and B € (0,1) there exists
n* =n*(&,0) > 0 such that

P{dist(spec Hy,(a), E) < n 1} <n7t
forn >n*.

Remark 6. As easily seen, for o # 0 the initial scale estimate is satisfied near the bottom
of the spectrum inf >, which is outside A.

As for a = 0, one can easily see that independently of the random variables [¢ and the
set A the constant function f = 1 satisfies H{f = 0. Hence, both the Wegner estimate
and the initial scale estimate fail for the energy E = 0, and this is the only spectral edge
(the almost sure spectrum is the positive half-line.) Moreover, for d = 1 the operator
H“ is unitary equivalent to the free Laplacian. Hence, one has a certain similarity to
the Schrodinger operators with random vector potentials, where only localization near
internal spectral edges is proved so far [9].

We will prove both estimates, theorems 4 and 5 by considering a certain family of
discrete operators which we introduce now. A similar approach was used in [16] for
quantum graphs with random coupling constants and the details of the reduction can be
found there.

Denote by D* the positive Laplacian with the Dirichlet boundary conditions in L?[0, I’]
and set DY = P, ., D¥. Clearly,

IS

kN 2
specDj(:UspecDe, spech:{<7r ) :k:1,2,...}.

v
ecA €



For E ¢ spec DY consider the operators My (I, z) acting on £%(Vy),

My E)e) =VE( Y ——mlra+ Y —— ol

ecA:ite=v sin lé) ecAite=v
- Z cot l;’\/Ecp(v)). (7)
ec€A:v~e

For the complete graph, A = £, we write simply M (I, E) instead of M (I*, FE). The
map E — My(l*, E) is obviously analytic outside spec D*. As shown in [24], a value
E ¢ spec DY is in the spectrum of HY («) if and only if o € spec My (I¥, E') and, moreover,
for each such E there holds dim ker (H{(o) — E) = dimker (M, (1%, E) — «). The relation
will be the key to our analysis below. We note that similar relations between quantum
graphs and discrete operators exist for more general boundary conditions at the vertices,
but the corresponding reduced operators M (FE) become much more complicated, see [26].

4 Proof of theorem 4 (Wegner estimate)

As noted previously,
P{spec H{(a)NJ # 0} =P{3E € J : a € spec M\(I*, E)}. (8)

Note also that, for any FE, € I, one can write M (¥, E) = My(I* E,) + (E —
E)ABA(I“, E,E,). Due to analyticity, one can find a constant b > 0 such that
|Ba(l“, ELE)|| < bforall E,,E €l and A C £ and almost all w € €.

On the other hand, the condition « € spec My (I“, E') implies the existence of a vector
@ € P(Vy), |le]l = 1, such that (Mx(I*,E) — a)p = 0. Let E; be the center of .J.
Estimating, for £ € J,

(MA@, Ey) = )| < ||(Ma(I¥, E) — a)¢|| + |E = Ey| - || BA(I*, E, E))¢|| < b]J],
yields the inequality
P{spec H{(a)NJ # 0} < IP’{ dist (spec My (I, Ey), o) < b|J\}. (9)

In what follows, we denote E; simply by E to alleviate the notation.
For e € £, introduce the operators Pf, Ps, I, acting on (?(Vy):

L (f(Le) + f(Te)), v € {ie, Te},

Pif(v) =4 2 ' (10)
0, otherwise,
% (f(Le)—f(Te)), v = e,
P fv) = % (f(re) = f(e)), v=re, 1
0, otherwise,
. ) fw), ve{we, e},
) = {0, otherwise. (12)



In terms of these operators, one has

VE
My (I, E) = —— (Pt - P)—VEcotI“VEI*
A( ) §<Sinl?@< 1 2) )

and
OM (¢, E Ecosl®vVE E
M) PestVE gy, P
ol¥ sin l‘g\/ﬁ sin l‘g\/ﬁ
Consider first the case I C (0,+00). As ||Pf — Ps|| = 1 and P{I¢ = Pf for j € {1,2},
one has
—cosl“VE (Pf — P§) +I° > (1- |cosl;”\/E|)Ie.

As I does not meet A, there exist constants ¢y, ¢y > 0 such that

E
1— |cosle\/E\ >ciand ———=>¢ forallee & and EF €I and a.e. w € €,
sin? l“g\/E
hence OMA (1 E
% > ciepl® forallee & and E €1
which gives
OMA(I, E S
Z% ZClCQZ[ > Gid, [ =cica >0

ec& ec&

or
0

DMy (I¥, E) > 3id with D) := —_—.

A A(, )_ﬁl W1 A Z@l

eEN e

Let E¥(a,b) denote the spectral projection of M (1“; F') onto the interval (a, b). There
holds

# [spec MA(1°, E) N (oo = b|J|, e + B] J|)]
a+bl|J|
=tr B} (a —blJ|,a+b|J|) = tr [/ X (oo (Ma(I¥, Ey) — N)dA| . (13)

—b]J]|
On the other hand, one has
—tr [DAX(—OO,O] (MAUW, E) — )\)]
= tr [O\X(—o0,0)(MA(IY, E) = \)DAMA(I°, E)] > Btr [0sX(—oo0) (Ma(I°, E) = N)] .

(The last estimate is possible as both operators under the trace sign are non-negative.)
Hence,

tr [8»((_0070} (MA<lw, E) — )\)] < ﬁil tr Z —86)((_0070] (MA(ZW, E) — )\) s

ec&



where we denoted for brevity d. := 9/0l¥, and

a-+bJ|
tr [ (0 — b0]a+ bJJ))] < 5 / St [~0x(_oe) (Ma(1%, B) — \)] d.
a=blJ]| ec&

Taking the expectation, one obtains

a+b|J|

Etr Ex(a —blJ],a+b]J|) < 37! Z/ Hp(z;j,)dz;i/ Ge(E,\w)d\  (14)
l

ec& Yimin  o/te a—>blJ|

lmax

where we denote

llnax
Ge(E,\ w) = —/ POy tr [X(—oo,0)(Ma (19,1, E) = X)] dl

lmin

and My (¥, 1, E) is the operator M, (¥, E) with [¥ replaced by [. As the density p is
Lipschitz continuous by assumption, one can integrate by parts and obtain

I=lmin

lmax
Go(E N\ w) = —p()Eu(1, B, )\, w)|/ = +/ P ()F.(, B\ w)dl,

lmin

where
F.(l, B\ w) = tr [x<_oo,0} (Mpo(.1, E) = A) — Y (oo (Mno (1% Lin E) — A)} .

As 0. My (I“, F) is a rank-two operator, the functions F,(l, E, A\, w) are uniformly bounded
by 2. Hence, the functions G, are bounded as well, say |G.| < G, G > 0. Plugging this
estimate into (14), one obtains

a+b|J| 220G
Etr Ex(a— blJ],a + blJ]) < G3~ Z/ in=CAll, =252
= Ja-ul| B
It remains to observe that
IP’{ dist (spec My (1, E), a) < b|J|} < Etr Ex(a — blJ|,a + b]J]). (15)

Now, let us consider the remaining case I C (—oc,0). For E < 0, it is more convenient
to rewrite

w —F e e w e
My, E) = ; <F Vl“\/ﬁ (Pf — P8) — V—Ecothl*v/—E I )

Then,
|E]

OMp(I“F) = —5—F—=
Al ) sinh? [v/—F

[[e — coshI“V_E(P¢ — P;)],

and one has
FAMN(I°, E) = MA(I, FE) + Kx(I°, F)

8



with

a
Ztanhlw —E——, K\(“E):= Ztanhl“\/—Ele
ecA 8l v ecA

As (1), are bounded and bounded away from 0 and as I C (—o0,0), there exists v > 0
such that K, (I, F) > ~id for all A, E € I, and a.e. w. One arrives at

— tr [FAX(—o00] (MA(I¥, E) — )]
= 1 [OAX(—o0,0) (MA (I, E) = \) FAMA (I, E)]
— b0 [O0X (o) (MA(I?, B) = NYMA(I%, )] + tr [0rX(oe0)(Ma (14, E) — N KA (1%, E)]
> tr [aAX(—oo,O}(MA(lwa E) = A) My (1, E)] +otr [aAX(—oo,O}(MA(lwa E) - )\)} )

and

v tr [&\X(,OO,O](MA(ZW, E)— )\)]

<t Ztanhl v—E 0
J—E oX
— 1 [OAX (—o0,0] (MA(I?, E) — N)M (I, E)] .

et

eeA

Using this inequality and (13) one can estimate

VEtr [Ex(a —b|J|,a+blJ|)] =~tr

a+-b|J|
/ aAX(,Oom (MA(ZW, E) - )\) dA

—blJ]|

<

a+blJ| w
S e b (M B) = )]

& VB O

a-+b|J|
+ / }tr [O\X (oo (Ma (1%, B) — )M (I, E }dA_ Ay + Ay,
a—b|J|

The first term A; can be estimated as previously by C’|A||J| with some positive constant
C” uniformly in £ € I and A. To estimate the second term As, we note that My (I“, F)
is a finite-dimensional operator acting on ¢?(V,}); hence, it has at most |V,| < 2|A]
eigenvalues counting multiplicities and that one can estimate the norm || My (¥, E)|| < m
(and, therefore, the absolute value of each eigenvalue) with some m > 0 uniformly in
E € I and a.e. w. Therefore, uniformly in £ € I, one can estimate the trace under the
integral sign by 2m|A|, which implies the estimate Ay < C”|A||J| with some C” > 0.
Now, it remains to use again the inequality (15) to complete the proof of theorem 4. [

5 Proof of theorem 5 (initial scale estimate)

As in the proof of theorem 4, one can show that, for some b > 0, there holds

P{dist(spec Hy(n)(lw, @), E) < 0”71} < P{dist(spec M) (Lo, E), @) < bn”~'}. (16)
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Theorem 5 is a consequence of
P{dist(spec Ma() (Lo, E), o) < bn 1} <nt. (17)

It is well known, see e.g. Section 2.2 in [28] that, in order to prove the estimates (17), it
is sufficient to show the Lifschitz tail behavior for the integrated density of states for the
operator M(l,, F). Note that, if E is an edge of the almost sure spectrum of H“(«), then
« is an edge of the almost sure spectrum of M (I, E) (see e.g.[16]). Hence, it is sufficient
to study the behavior of the integrated density of states of M (I“, E) at the spectral edges.

The operator M(I“, E) is closely related to the random hopping model considered in
[15]; below, we use very the constructions of [15] and [23] to obtain the Lifshitz tails.
The integrated density of states is defined by

A My (I, E) = A< t
k(t) :== lim A € spec M ( ) = }
n—o0 V(n)]

This limit exists almost surely and ¢ — k() is increasing. Let [ftmin, fimax] De the almost
sure spectrum of M (¥, F). Then, k(t) = 0 for ¢t < pyim and k() = 1 for t > pipax. Denote

V E ‘

By well-known arguments, see e.g. [28, Section 2.2], in order to prove (17) it is sufficient
to show

b:= sup

le [lminylmax}

m log } log[l - k(lumax - 8)” S _5 and hm log } logk(’umin _'_ 8)‘

d
< ——.
e—0+ log e e—0+ log e -2

(18)

For n € N define M%(E) := M(I¥, E) where [¥(¢) = [%(e + ) for v € (2n + 1)Z¢. By
the Floquet-Bloch theory, the operator M¥(FE) admits a density of states, k¥, satisfying

1 w
bn(E) = /[ L #e BN (oo, )
where M (E, 0) differs from M*(E) only by an operator of rank at most Cn?~! with C' > 0
independent of n. As suggested in [15], in order to obtain (18), it is sufficient to show the
analogous estimates with k(E) replaced by Ek¥(FE) uniformly in n for sufficiently large n.
In its turn, as noted in [23] and applied in [15], the latter asymptotics can obtained directly
from the following local energy estimate which has been proved in [15, Lemma 2.1]. Let
a € (0,b). For ¢ € [*(Z%) one has

(o, ME@) > (0, Weo) + al|el, Holel)

where Hy is the free Laplace operator in (Z<),

Hou(n) = > (u(n) —u(m)),



and the potential W is given by

with

We(v) = Z ﬁ(%) + Z VE cot I°NE

e:v~v

B(t) = {_M’ t] > a,

—a, otherwise.

evnr~e

Then, as in [15], following the computations done in [23], one proves Lifshitz tails for
M(1¥, E) near fimax OF fmin- This completes the proof of theorem 5. O
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