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We present a tight-binding potential for transition metals, carbon, and transition metal carbides,
which has been optimized through a systematic fitting procedure. A minimal basis, including the
s, p electrons of carbon and the d electrons of the transition metal, is used to obtain a transferable
tight-binding model of the carbon-carbon, metal-metal and metal-carbon interactions applicable to
binary systems. The Ni-C system is more specifically discussed. The successful validation of the
potential for different atomic configurations indicates a good transferability of the model and makes
it a good choice for atomistic simulations sampling a large configuration space. This approach
appears to be very efficient to describe interactions in systems containing carbon and transition
metal elements.

PACS numbers: 61.50.Lt,61.72.Bb,71.15.Nc,71.20.Be,81.05.Je

I. INTRODUCTION

Carbon-metal interactions play a major role in many
aspects of materials sciences, in particular when transi-
tion metals are involved. They lead to the formation of
solid solutions or of compounds in which carbon occu-
pies interstitial sites. Early transition metals (Ti, V, Cr,
Zr, Nb, Mo, Ta, for instance) have a tendency to form
highly stable carbides whereas such carbides are hardly
stable (cementite Fe3C) or metastable (Ni3C, Co3C) in
the case of Fe, Co and Ni.1 The phase diagrams involving
the latter elements present broad domains of two-phase
mixtures. The domains of stability of solid solutions are
narrow, but of outmost importance (steels).

These elements, as well as some other elements of the
ends of the transition series (Pd, Pt), are also well known
for their catalytic properties involving the chemistry of
molecules containing carbon. The oxidation of carbon
monoxide on transition metal surfaces is for example one
of the most extensively studied heterogeneous catalytic
reactions in relation with the air pollution problem. Sur-
face reactions of methane on nickel surfaces have also
been investigated extensively, since they are involved in
industrial reactions, such as steam reforming of methane
and methanation of carbon monoxide.2

Another more recent example of the catalytic impor-
tance of these elements which has motivated this work is
the catalytic growth of carbon nanotubes (CNT). CNT
have remarkable physical properties with the potential
for significant technological impact. In many applica-
tions, optimal performance requires the control of their
structural properties, e. g. size, length and chirality,
which remains a significant difficulty for the widespread

application of carbon nanotubes in high-technology de-
vices. Unlike the case of multi-wall nanotubes (MWNT),
the formation of single-wall carbon nanotubes (SWNT)
requires the presence of transition metal element or alloy
catalysts (Co, Ni, Fe, Y,. . . ).3,4,5 SWNT are synthesized
via the interaction of metal-catalyst nanoparticles with
carbon or hydrocarbon vapours at relatively high tem-
perature. These catalysts are crucial for the controlled
synthesis of SWNT, by different techniques such as laser
ablation,6 arc discharge method3 or chemical vapor de-
position.7,8,9 However, the exact role played by the metal
atoms in the growth of SWNT is still under study.10

Many theoretical works have been devoted to the in-
vestigation of the unique properties of transition metal
carbides in connection with their electronic structure and
bonding characteristics. Most of these works are based on
static ab initio calculations.11 However, understanding
the nucleation and growth mechanisms involved in cat-
alytic processes and validating them by computer simula-
tions requires to model fairly complex processes involving
strong modifications of the bonding between carbon and
the transition metal atoms. For example the catalytic
growth of SWNT involves segregation and diffusion pro-
cesses of carbon atoms and the self-organization of these
atoms into graphene sheets and nanotube embryos close
to the catalytic surface.

A challenge for such simulations is to have an energy
model able to describe the competition between very dif-
ferent carbon environments. In the case of solid solutions
or of ordered compounds, metal–C bonds are predomi-
nant around C atoms. When phase separation occurs,
carbon atoms have to segregate to form pure graphite or
metastable, more or less well crystallized, phases of car-
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bon, in which case carbon atoms form covalent sp2, sp3

or even sp bonds. These processes can only be sim-
ulated using large enough systems (hundreds or thou-
sands of atoms) during fairly long times, typically in
the range 10−9s – 10−6s. Ab initio molecular dynamics
calculations4,12 cannot therefore be used systematically
at such size and time scales. On the other hand, us-
ing simple phenomenological potentials13 in different sit-
uations is problematic — the transferability problem —
since such potentials can hardly account for the (quan-
tum) nature of the different types of covalent bonds.

The aim of this paper is to present and discuss the va-
lidity of a simple intermediate model for carbon and tran-
sition metal interactions based on a tight-binding descrip-
tion of the chemical bonds. Applications of this model to
surface segregation of carbon and to the catalytic nucle-
ation of carbon caps on small nickel clusters have already
been presented elsewhere.10,14,15,16 Although the model
can be extended to all transition elements, we concen-
trate here on fcc metals and more particularly on nickel.

The paper is organized as follows: In Sec. II, we present
the tight-binding model and the recursion technique used
to calculate band energies. Empirical repulsive contri-
butions are then added to obtain total energies. Sec-
tions III and IV describe the corresponding models for
the carbon-carbon and nickel-nickel interactions, respec-
tively, whereas Sec. V is devoted to a discussion of the
electronic structure of transition metal carbides and of
nickel-carbon interactions. Different validations and ap-
plications of the model are finally developed and dis-
cussed in Sec. VI.

II. METHODOLOGY

When using the tight-binding (or extended Hückel)
approximation, the first step is to define a basis set of
atomic orbitals. To describe the valence states of car-
bon, the set must of course include the 2s and 2p states.
In the case of the transition elements, d states must also
be included, the problem being to decide whether s and p
states of the metallic element should be kept also. Since
we are interested in cohesive energies more than in a de-
tailed description of the electronic structure, we have cho-
sen to use the simplest basis where the contribution of
these states is neglected. When interested in more de-
tailed electronic structure properties, sp − d hybridiza-
tion should however be taken into account and this can
be done, as shown for example by Barreteau et al.17 An-
other more complete, but much heavier to implement,
tight-binding scheme has also been derived by Andriotis
et al. (see Ref. [18], and references therein).

Thus, we will work with the following basis |i, λ〉 where
i denotes the lattice sites and λ denotes the orbital index,
(λ = s, px, py, pz, dxy, dyz, dzx, dx2−y2 , d3z2−r2).

As usual in the simplest tight-binding approximation,
we neglect the direct overlap integrals 〈i, λ|j, µ〉 = δijδλµ

and the three-central integrals. We are then left with the

usual hopping or (transfer) integrals β defined in terms
of the interatomic matrix elements of the hamiltonian H :

βiλ,jµ = Hiλ,jµ = 〈i, λ|H |j, µ〉 ; i 6= j , (1)

which are responsible for the broadening of the discrete
atomic levels into energy bands. They are functions of
the direction cosines l, m, n of ~rij = ~rj − ~ri and of a
limited number of parameters, the Slater-Koster param-
eters,19 which decrease rapidly with the interatomic dis-
tance rij . Since the atomic potential is assumed to be
spherically symmetric, the (9 × 9) matrix of hopping in-
tegrals between sites i and j is completely determined
by ten Slater-Koster hopping parameters (ssσ, spσ, ppσ,
ppπ, ddσ, ddπ, ddδ, sdσ, pdσ, pdπ). The intra-atomic
matrix elements of the hamiltonian H are given by:

Hiλ,iµ = (εiλ + αiλ,jλ)δλµ , (2)

where εiλ is the atomic level of the orbital |i, λ〉. The
second term in the right hand side of Eq. (2) is a so-called
crystal field integral which determines the displacement
of the average energy level. This shift is neglected here.
In the case of a transition metal carbide, three atomic
levels have to be determined, i. e. εs, εp for carbon and
εd for the transition metal atom.

As usual in such a semi-phenomenological tight-
binding scheme, we assume that the total energy (com-
pared to the energy of the free atoms) Etot can be written
as the sum of a band structure, attractive, contribution
which describes the formation of an energy band when
atoms are put together and of a phenomenological repul-
sive term which empirically accounts for the ionic and
electronic repulsions.20,21,22 It is convenient to decom-
pose these terms into local contributions Ei

band, Ei
rep and

Ei
tot, so that:

Etot =
∑

i atoms

Ei
tot ; Ei

tot = Ei
band + Ei

rep . (3)

The band energy, Ei
band, is given by:

Ei
band =

∫ EF

−∞

(E − εi)ni(E)dE , (4)

where EF denotes the Fermi level, εi is the atomic energy
level introduced previously and ni(E) is the local density
of states (LDOS). To define and calculate this LDOS, we
first define the Green function (or resolvent), G(z):

G(z) = (z − H)−1 . (5)

The total density of states per atom n(E) =
(2/N)

∑
n δ(E − En), where the factor 2 takes into ac-

count the spin degeneracy, and N is the number of atoms,
is related to the trace of the Green function through:

n(E) = −
2

πN
lim

ε→0+
Im Tr G(z) . (6)
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Projecting G(z) on the orbital |i, λ〉, we obtain the local
density of states niλ(E) on site i and for orbital λ:

ni,λ(E) = −
2

π
lim

ε→0+
ImGiλ,iλ(z) , (7)

where Giλ,iλ(z) is the diagonal element of the Green func-
tion. The LDOS ni(E) is then given by:

ni(E) =
∑

λ

ni,λ(E) , (8)

so that, obviously, n(E) = (1/N)
∑

i ni(E). Notice here
that, using the properties of the resolvent, a decomposi-
tion of the band energy into bond energies rather than
into site energies can be derived, which can be conve-
nient in some cases. This has been discussed in detail by
Pettifor et al.; see Ref.[23] and references therein.

We now use the recursion method24 to calculate the
local density of states niλ(E) and more precisely the con-
tinued fraction expansion of Giλ,iλ(z):

Giλ,iλ(z) =
1

z − aiλ
1 −

(biλ
1 )2

. . . z − aiλ
M − (biλ

M )2ΣM (z)

, (9)

where the coefficients (a, b), which are related to the
moments of the density of states, are obtained from
the recursion procedure, and where ΣM (z) is the tail
of the continued fraction. As compared to the stan-
dard diagonalization technique, we make here two addi-
tional approximations: only the first moments are calcu-
lated exactly for the considered atomic structures, which
means that only a few coefficients (a, b) are calculated
exactly.25 Many constant coefficients up to the M th level
are then inserted, after what the continued fraction is
cut, ΣM (z) = 0. Giλ,iλ(z) can then be written as the
ratio of two polynomials and finally the local density of
states ni(E) is obtained as a set of M delta-functions at

positions (Ej
i , j = 1, M) and weights (Aj

i , j = 1, M) by
diagonalizing a tridiagonal matrix of size M . This ap-
proach, of order N , is particularly useful for the study
of large and fully relaxed systems. It corresponds to em-
bedding site i and its local atomic environment within an
effective medium. In principle the Fermi level is fixed by

a global neutrality condition, Ne =
∫ EF

−∞
n(E)dE so that,

in general, the local charges N i
e =

∫ EF

−∞
ni(E)dE differ

from Ne. In metallic systems the usual rule is to impose
a local charge neutrality condition, which can be done by
introducing local variations of the atomic energy levels.
This insures to some extent the validity of the decom-
position (3) of the total energy.21,26 More precisely the
variational properties of the ground state energy insures
that, even if charge transfers occur, the ground state en-
ergy can be calculated to lowest order as if charge trans-
fers are neglected. Instead of varying the energy levels, a
more approximate but much easier procedure is to intro-
duce fictitious local Fermi levels, so that finally the local

energy can be written:

Ei
tot =

jmax∑
j=1

Ai
jE

i
j , (10)

where the highest occupied energy level jmax depends on
each site i and is simply determined through the local

neutrality condition
∑jmax

j=1 Ai
j = Ne.

III. CARBON

Because of the technological importance of carbon, a
large number of “potentials” has been proposed in the
literature to modelize its cohesive properties. We adopt
here the usual term “potential” to describe a model al-
lowing us to calculate the total energy of a system for
any positions of the atoms considered as classical vari-
ables. A first class of potentials has been derived by
Stillinger and Weber27 and by Tersoff;28 they are based
on a pairwise additive description of the total energy, sup-
plemented by angular terms to take into account the di-
rectional spn covalent bonding of carbon. Such terms are
actually necessary to insure the stability of non-compact
atomic structures, i. e. structures with low coordination
numbers.

Among the more recent developments, we can men-
tion the formulation in terms of bond order,23 the in-
clusion of dependences on the environment29 as well as
potentials allowing to treat both carbon and hydrocar-
bon phases.30,31 For a recent discussion, see e. g. Ref.[32].
The accuracy of such potentials depends critically on the
validity of the data base to which the parameters are fit-
ted. Improving the accuracy usually implies increasing
the number of parameters, which can blur the physical
transparency of the model and leaves the question of the
transferability unresolved. The main reason for their suc-
cess is their low computational cost that makes large scale
computations of thousands of atoms affordable.

A second popular class of potentials has been derived
in the framework of a tight-binding approximation which
is indeed well known to provide very good descriptions
of the electronic structure and of the energies of carbon
covalent bonds. Following a parametrization of the tight-
binding hamiltonian by Goodwin et al.33 for silicon, Xu
et al.34 proposed an interaction model for carbon that has
been widely used. Improvements over this relatively sim-
ple model include three-center integrals and environment
dependent parameters for the hopping integrals and the
repulsive term.35 Although in principle more transferable
than empirical models, the tight-binding models also de-
pend on adjustable parameters to build the hamiltonian
matrix of the interactions and to describe the empirical
repulsive term that is always present. These parameters
are usually fitted to ab initio or experimental data, al-
though Porezag et al. used a density functional-based
scheme to determine the parameters of a non-orthogonal
tight-binding model.36
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In our model, we start from the potential of Xu et
al.34 to describe the band structure term, but instead of
performing a diagonalization of the hamiltonian matrix,
we consider local densities of states ni(E). Both s and p

electrons are taken into account, with the corresponding
s, px, py and pz atomic orbitals. To calculate the cohesive
energy of the system, we assume the same atomic energy
levels for C (εs = −2.99 eV and εp = 3.71 eV, but the
model only depends in fact on the difference εp−εs = 6.70
eV), and the same dependence on distance of the hopping
integrals as that given by Xu et al.:34

βλ(r) = β0
λ(r0/r)n exp{n[−(r/rc)

nc + (r0/rc)
nc ]} . (11)

The values of β0
λ corresponding to the different interac-

tions at the diamond interatomic distance r0 = 1.536
Å, are given by β0

ssσ = −5.00 eV, β0
spσ = 4.70 eV,

β0
ppσ = 5.50 eV and β0

ppπ = −1.55 eV.
The coefficients of equation (11) are n = 2.00, nc =

6.50, and rc = 2.18 Å. As explained in Sec. II, only a
few continued fraction coefficients are calculated. We
keep only four coefficients (a1, b1, a2, b2) which corre-
sponds to a fourth moment approximation, i. e. the first
four moments of the local density of states ni,λ(E) are
calculated exactly on each site of the considered atomic
structure. This is the minimal approximation that takes
into account the directional character of the carbon s−p
bonds. The local density of states ni(E) on site i then
only depends on the first and second neighbours of i, a
neighbour being defined here as an atom closer to i than
a given cut-off distance. The cut-off distance for car-
bon is fixed at 2.70 Å. To restore rotational invariance,
a problem that plagues the use of the recursion method
in the case of p-bonded systems,37 we proceed as fol-
lows: unlike the coefficients, the moments of the LDOS
are linear functionals of these LDOS; they can therefore
be averaged over the p orbital index; then new coeffi-
cients corresponding to the p LDOS can be calculated.
As explained in Sec. II, the related continued fraction is
then expanded up to the M th level using constant co-
efficients equal to a2 and b2. A typical value for M is
M = 40. High enough values are necessary to obtain
quasi-continuous densities of states.

For the repulsive part of the energy we use also the
form proposed by Xu et al.34 but the parameters had to
be modified for the following reason. Although fairly ac-
curate, the energies calculated within our fourth moment
approximation are not exactly equal to those determined
after a full diagonalization procedure. Since it is impor-
tant to have a model that reproduces accurately the com-
petition between the different crystalline forms of carbon,
and more importantly, the competition between graphite
and diamond, new fits should be performed. The repul-
sive energy has the form:

Ei
rep = F (

∑
j 6=i

φ(rij)), (12)

where F (x) is a polynomial function :

F (x) = C1x + C2x
2 + C3x

3 + C4x
4 + C5x

5 (13)

and φ(rij) is a repulsive pairwise potential

φ(r) = φ0(d0/r)m exp{m[−(r/dc)
mc +(d0/dc)

mc ]} (14)

The parameters were fitted using a a Levenberg-
Marquardt method38 to match the total energy curves
of selected structures obtained using ab initio FPLMTO
calculations (WIEN97 code39). These structures include
a C3 linear molecule, an infinite linear chain, a graphene
sheet, diamond, simple cubic and face centered cubic lat-
tices. Fig. 1 presents the total energy curves as a function
of the nearest neighbour distance for the various struc-
tures used for the fit. Both LDA and GGA calculations
were performed and the ab initio results were shifted to
the experimental energy for diamond at its equilibrium
distance (Etot = −7.34 eV/atom at d = 1.53 Å). The pa-
rameters were fitted to the GGA values with more weight
on the linear chain, graphene and diamond structures.
The total energy curves match very well the ab initio re-
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FIG. 1: Total energy as a function of the interatomic dis-
tance for C3, linear chain, graphene, diamond, simple cubic
and face centered cubic structures. Thin dotted line: LDA
approximation; full line: GGA approximation; thick dashed
line: 4th moment approximation.

sults for carbon in its sp, sp2 and sp3 bonding states. The
molecules and the simple cubic and fcc phases are too sta-
ble as compared to the ab initio results but still far from
being stable. Finally, the coefficients in Eq. (13) are given
by: C1 = 6.2148, C2 = −0.48797, C3 = 0.50716.10−1,
C4 = −0.28906.10−2, C5 = 0.69083.10−4. The co-
efficients in Eq.(14) are: φ0 = 1.3572, d0 = 1.5096,
m = −3.4528, dc = 2.0798, mc = 7.0584. Further-
more, to avoid any discontinuity in the energy calcula-
tions, Fermi-like cut-off functions are used. In Eq.(11),
the βλ(r) are replaced by βλ(r)/[1 + exp((r − δ1)/σ1)]
with δ1 = 2.53Å and σ1 = 0.016Å, while in Eq.(14), φ(r)
is changed into φ(r)/[1+exp((r−δ2)/σ2)] with δ2 = 2.59
Å and σ2 = 0.0033 Å.

A reliable model to study the synthesis of carbon
nanostructures should not only yield the correct relative
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energies for carbon in its sp, sp2 and sp3 states but also
correct energy barriers between these states. Kertesz and
Hoffman40, and Fahy et al.41 have calculated the energy
barrier corresponding to the transition from rhombohe-
dral graphene to diamond. Following the same path in
the R (bond length between layers), θ (buckling angle)
and B (bond length within layers) space, we find the
same value ∆E = 0.33 eV/atom as in Ref.[41] for slightly
different values of the parameters (see Fig. 2).

FIG. 2: Total energy difference for the diamond to rhombo-
hedral graphite transition along the path in the R, θ, B space
defined in Ref. [41]. Circles: 4th moment approximation; di-
amonds: Fahy et al.41

Finally, we study typical defects that are likely to oc-
cur in sp2 carbon nanostructures, such as adatoms and
Stone-Wales defects. Since a carbon adatom is a common
defect in graphitic lattices, it is important to study its
behaviour within our model. Using a simulated anneal-
ing procedure, we find that the equilibrium position of
the adatom corresponds to a bridge-like structure where
the adatom lies above a C–C bond. This geometry and
the energy gain (equal to -0.93 eV) are similar to those
obtained within previous LDA calculations on a similar
surface.42,43,44 This result is a priori far from obvious
since it could have been imagined that a “hole” position
where the atom lies above the centre of an hexagon is
more favourable. This is therefore a very nice validation
of the potential. The distance of the adatom perpendic-
ular to the graphene plane is equal to 1.25 Å with C–C
bond length equal to 1.42 Å and bond angle close to 98◦.

The Stone-Wales defect is a 90◦ rotation of two car-
bon atoms in the hexagonal network with respect to the
midpoint of the bond. This leads to the formation of two
pentagons and two heptagons, replacing four hexagons.45

This transformation, studied extensively theoretically us-
ing first-principles calculations, has been shown to give
rise to extremely high-energy barriers of 6 to 10 eV
with an energy of formation around 4–5 eV.46 Our tight-
binding model yields reasonable values with an energy
barrier equal to 7.2 eV and an energy of formation equal
to 6.0 eV. Notice that the presence of adatoms consider-

ably lowers the energy barrier.47

IV. TRANSITION METAL

The electronic structure of transition metals is charac-
terized by the presence of tightly bound d electrons which
form a narrow band that overlaps and hybridizes with a
broader nearly-free-electron sp band, and most physical
properties of these metals have a systematic variation
across the transition-metal series, as a function of the
number of valence d electrons. This is well described
within the tight-binding approximation21,22,48 where sp-
d hybridizations are neglected and in which the mean
position of the d band in the solid is assumed to be given
by the atomic level εd. In particular, the bell shape be-
haviour of the cohesive energy and of the elastic moduli
is correctly predicted by these models and is the result
of a progressive filling of the d states.20 In our d band
model, the Slater-Koster parameters for the hopping in-
tegrals ddσ, ddπ and ddδ are assumed to be in the ratios
−2 : 1 : 0 and to decay exponentially with respect to the
bond length r as:

ddλ(r) = ddλ0 exp[−q(r/r0 − 1)] , (15)

with λ = σ, π, δ. The second term in Eq.(3), Ei
rep, is a

repulsive contribution, chosen to have a pairwise Born-
Mayer form here:

Ei
rep = A

∑
j atoms

exp[−p(
rij

r0

− 1)] . (16)

The (ddλ0, q, A, p) parameters used in this study are
fitted to experimental values of the lattice parameter, of
the cohesive energy, and of the elastic moduli (bulk mod-
ulus and the two shear moduli) for the fcc elements at the
end of the 3d transition metal series, cobalt and nickel.
Both elements have quite similar cohesive properties, as
shown in table I. In practice the procedure is to force
almost perfect agreement with the experimental data for
the lattice parameter, cohesive energy, and bulk modu-
lus and to find a good compromise for the shear moduli.
There are however well-known problems with the treat-
ment of the late transition elements using a pure d tight-
binding approximation. The main difficulty is that the
calculated shear moduli for the fcc structure C = C44

and C′ = (C11 − C12)/2 are negative for a d band fill-
ing Nd larger than 9, which is the usual value chosen for
Ni, Pd, Pt.52 The fcc lattice is then completely unstable,
and actually the bcc structure is found to be more sta-
ble for nearly filled d bands, when performing total en-
ergy calculations.53,54,55 Similarly the cohesive energies
are much too low.

All these disadvantages are known to be due to ne-
glecting hybridization of the d states with the nearly free
electron states built from the s and p atomic states. Un-
fortunately adding s and p states to the atomic basis
multiplies the number of parameters to be fitted, so that
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TABLE I: Comparison of our tight-binding d model with experimental data. The experimental values for fcc Ni and hcp Co
are taken from Ref.[49]; those for fcc Co from Ref.[50] and the surface energies from Ref.[51].

Structure Lattice Cohesive B C′ C44 Surface
parameter energy energy

Å eV/at GPa GPa GPa mJ/m2

Ni fcc a/
√

2 = 2.489 -4.44 187.6 55.2 131.7 1840 (solid)
2385 (liquid)

Co hcp a =2.50 -4.39 193 1884 (liquid)
c =4.07

Co fcc 182 32.5 92

This work fcc a/
√

2 = 2.489 -4.44 182.1 68.8 96.9 1660 (100)
1560 (111)

the model becomes fairly complicate, if not unstable. We
have checked that the fourth moment approximation that
we use here as in the case of carbon (Sec. III) reproduced
fairly well the results obtained from a full diagonalization
of the tight-binding hamiltonian for d band fillings close
to 8. For this band filling which turns out to be in be-
tween the values recommended by Andersen for Co and
Ni,56 the fit to the experimental values is fairly good (see
Table I) and stable. We have therefore chosen this value,
which will be used for nickel in the following. It could
be applied to cobalt as well: our model is too simple to
discriminate between these two elements.

Let us recall here, that paradoxically a second mo-
ment approximation would provide positive shear mod-
uli, which explains why it is used with success in some
cases. But this is clearly an artifact. Since we want
to have a consistent and simple scheme to describe cor-
rectly the sp states of carbon and the d states of the
transition elements, the fourth moment approximation is
a good compromise. A fifth or sixth moment approxi-
mation would be better still52,57 but fairly expensive to
implement.

Within the fourth moment approximation described
previously, the parameters are ddπ0 = 0.54 eV, r0 = 2.53
Å, q = 2.14, A = 0.0795 eV and p = 12.1. Here again,
the hopping integrals ddλ and the repulsive interactions
are forced to vanish smoothly using a Fermi-like function,
1/(1+exp[(r− δ3)/σ3), where δ3 = 2.95 Å and σ3 = 0.08
Å. There are of course more sophisticated methods to
optimize the dependence on distance of the hopping in-
tegrals. Actually it is not possible in all cases to obtain
reasonable fits using a single smooth law for this depen-
dence. For example first and second neighbour integrals
on a bcc lattice do not obey similar laws. This can be
accounted for by defining “screened” integrals depending
on the local environment.58 In the case of the fcc struc-
tures considered here, this is not necessary.

V. METAL-CARBON INTERACTIONS

To describe the carbon-metal interactions, it is very
convenient to start from a study of the electronic struc-

ture of simple and typical metal carbides. The tran-
sition metal compounds of type MX (M = 3d transi-
tion metal, X =C and N) have attracted much attention
due to their remarkable mechanical and physical proper-
ties, e. g., high hardness, high melting points, and wear
and corrosion resistance.59 Most of the transition metal
monocarbides crystallize in the NaCl structure, where
carbon atoms occupy the octahedral interstitial sites of
the fcc metallic sublattice. This concerns principally the
elements of groups IV (Ti, Zr, Hf) and V (V, Nb, Ta). In-
creasing the number of d electrons stabilizes an hexagonal
structure where the octahedral sites are replaced by trig-
onal prismatic sites (case of MoC and WC for example).
Many other interstitial transition carbides form at dif-
ferent stoichiometries.1 Another large family of carbides
and nitrides can be viewed as resulting from the ordering
of vacancies on the carbon (nitrogen) sublattice.60 These
ordering mechanisms have been well explained from the
calculation of effective pair interactions within a tight-
binding model.21,61

The relation between the cohesive properties of tran-
sition metal compounds and their electronic structure
is a matter of considerable theoretical and practical in-
terest.11 In particular, band structure calculations have
been performed very early for the MX NaCl-like com-
pounds62,63 and their main physical conclusions have
been confirmed by self-consistent LDA calculations.64,65

Extensive compilations of thermodynamic data and of
electronic structure calculations of cohesive properties
are available.66,67

All these works show that the cohesive properties of
the MX carbides can be understood in a model similar
to the Friedel model for transition elements, where the
cohesive energy varies with the filling of a valence band
built here from hybridized pd states. In a first approxi-
mation a rigid band model is valid, the density of states
of carbides being characterized by the presence of a fairly
broad band of strongly hybridized states between the p
states of carbon and the metallic d states.

More precisely the electronic structure of a typical
NaCl carbide is characterized by three families of states
(see Fig. 3). The calculations presented in this figure have
been performed using the ABINIT code;68 see also the
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data base of D. Papaconstantopoulos.69 At low-energy
(typically 10 eV below the Fermi level) there is a narrow
band derived from the 2s states of carbon. At higher en-
ergy appears the hybridized pd band with a pseudo-gap
within it, separating bonding states from anti-bonding
states. Notice that the cubic symmetry allows us to dis-
tinguish between eg and t2g states, and that the pd hy-
bridization is found to be more efficient for eg states. Fi-
nally at much higher energy, about 9 eV above the pseu-
dogap, there is a nearly free electron band built princi-
pally from the s and p states of the metallic element. The
electronic structure of NaCl nitrides is quite similar, with
a deeper pseudogap. Finally in the case of oxides, a gen-
uine gap appears and these oxides are insulators whereas
the carbides and nitrides are metallic. All these features
are fairly well understood and are typical of interstitial
compounds where the interstitial elements (carbon, ni-
trogen, oxygen) do not interact directly.11 The shortest
interatomic distance is the carbon (nitrogen, oxygen) –
metal distance, hence the strong pd hybridization.

On the other hand the interstitial-interstitial distance
is much larger in a fcc lattice than in the correspond-
ing molecules C2, N2, O2 and the s and p states of the
interstitial atom do not hybridize. Actually the 2s low
energy band practically does not play any role in bond-
ing. From this discussion it is clear that a tight-binding
fit of the energy bands of NaCl carbides should be fea-
sible, and this has been achieved indeed in a pioneering
work by Schwarz on NbC62 whose electronic structure is
quite similar to that of TiC. This type of fit combined
with the recursion method has been used with success
afterwards70 and will serve here as a reference. We can
even simplify this description by neglecting crystalline
field integrals, as well as the sdσ integrals coupling the
carbon s states and the transition d states, because of
their weak interactions mentioned above. Finally in this
simplest scheme, the electronic structure of all transition
NaCl carbides can be characterized by three parameters,
the two hopping integrals pdσ and pdπ and the position
of the d states εd compared to that of the carbon s and p
states, εs and εp. The hopping integrals are also assumed
to decay exponentially with distance:

pdλ(r) = pdλ0 exp[−q(
r

r0

− 1)] ; λ = σ, π . (17)

Using the following values: pdσ = −2.319 eV, pdπ =
1.306 eV, r0 = 1.88 Å, we have checked that this model
is sufficient to reproduce the main characteristics of the
density of states of NbC corresponding to the valence pd
band (see Fig. 4). The fact that the lowest 2s band is
not very well treated is not important here as discussed
above. The parameter q will be also determined later on.

Let us now discuss a few problems related to the elec-
tronic populations and charge transfers. When looking
at the band structure of a typical NaCl carbide (see Fig.
3) we see that the lowest s band contains one state per
unit cell (or per formula MC), and therefore two states,

FIG. 3: Top: band structure and density of states of the TiC
carbide: the Fermi level (dashed line) is just in the middle
of the pseudogap within the hybridized pd band. Bottom:
partial s, p and d densities of states. The calculations are
made with the ABINIT code.68

spin included, per formula. The set of sp bands above
contains eight bands, hence sixteen states per formula.
Within our model these states are built from the six p
states of carbon and the ten d states of the metallic ele-
ment. This means that the states built from the sp states
of this element contribute to the states at higher energy,
above the main pd hybridized band. The nearly free elec-
tron band does not overlap the d states, whereas we know
that such an overlap occurs in elemental transition ele-
ments. Actually the interactions between the s states of
carbon and the sp states of the metallic element repel
the latter states above the main hybridized band. There
is a charge transfer from sp states towards d states when
going from the pure element to the carbide. Since we do
not include the metallic sp states in our basis, we have
just to change the d population. As an example, consider
the TiC compound. The valence charge of Ti is equal to
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FIG. 4: Comparison between the density of states of NbC
corresponding to the full fit by Schwarz62(dashed line) and
that obtained within our simplified scheme. The agreement
is good as far as the relevant valence bands are concerned.

4. In the case of the carbide we have therefore to fill the
hybridized pd band with 4+ 2 (carbon p electrons) elec-
trons. For pure titanium it is generally considered that
the d band filling is about 3, which corresponds to an
effective d3s atomic configuration instead of d4 for the
carbide. Since the band energy varies quite a lot with
the effective number of d electrons, this effect cannot be
neglected. Viewed from the side of the metallic atom, all
happens as if the presence of carbon atoms on the oc-
tahedron sites of its first neighbour shell has induced a
transfer of one electron from the (metallic) sp states to
the d states. To build a potential for any atomic config-
uration we adopt an interpolation procedure where the
number of electrons transferred is a smooth function of
the number of carbon atoms (between zero and six) on
the first coordination shell. Beyond six carbon atoms this
number is held constant.

Although NaCl carbides do not exist in the case of
Fe, Co, and Ni, we can rely on the first principles calcu-
lations which indicate that the shape of the hybridized
band does not change too much when varying the element
of the transition series (see Fig. 5). We will therefore keep
the values of the hopping integrals derived for NbC. The
position of the atomic d level on the other hand obviously
varies with the nature of the element considered. εd de-
creases when increasing the number of electrons along a
transition series (about 1 eV per element), but since this
level is an effective quantity, which is adjustable to some
extent, it is useful to see how it is related to the charge
transfers between carbon and the metallic element.

Within the tight-binding method one uses so-called
Mulliken charges which are based on the decomposition
of the electronic density on the atomic orbitals. Here,
they are obtained by integrating the local densities of
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FIG. 5: Densities of states of the NaCl carbides TMC, where
TM is a transition element of the 3d series. The origin of
energies is taken at the Fermi level; calculations performed
with the ABINIT code.71

states up to the genuine global Fermi level. It is well-
known that this decomposition can be very different from
the spatial decomposition frequently used within solid
state band calculations. Both methods can yield very
different results. Mulliken charge transfers are generally
larger than the geometric charge transfers. This is spe-
cially true in the case of carbides where the size of the
atoms and of the atomic orbitals are very different.62 In
the case of early transition carbides, the Mulliken charge
transfer towards carbon is found to be of order unity. Al-
though not a well-defined quantity from a fundamental
point of view, such a charge transfer has to be taken into
account in this case, at least at a Hartree-like level, when
calculating cohesive energies.

As mentioned in Sec.II our simple scheme to calculate
total energies is based indeed on a local charge neutrality
hypothesis. Fortunately in the case of Fe, Co and Ni, the
d energy level is shifted towards lower values and then the
charge transfer decreases. The electronegativity of the
transition element decreases and becomes of the order of
magnitude of the electronegativity of carbon. For these
late elements it is therefore reasonable to assume local
neutrality and to fix the relative position of the p and d
atomic energy levels acccordingly. For NiC, this leads to
εd = −0.5 eV.

Notice here that the relative position of the carbon s
and p levels has been already fixed when defining the
carbon potential. Its value, εp − εs = 6.70 eV is smaller
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FIG. 6: Schematic phase diagram of the Ni-C system.

than the value deduced by Schwarz in its interpolation
procedure: εp − εs = 8.0 eV,62 so that using our value
the 2s band is too high in energy. When interested in
cohesive energies, this is not a problem since, as men-
tioned previously, these s states do not contribute to the
chemical bond.

We have now to determine the repulsive contribution
to the total energy. As in the case of elemental metals,
we assume a similar pairwise Born-Mayer (see Eq. (16)).
The (A, p, q) parameters are fitted to the cohesive prop-
erties of the hypothetical NaCl structure: equilibrium
lattice parameter, bulk modulus and enthalpy of forma-
tion ∆H of the carbide. The latter point is crucial here
since we want to build a potential for Ni-C with good
thermodynamic properties. The phase diagram shows
clearly a tendency to phase separation, which indicates
a positive enthalpy of formation (Fig. 6). The fact that
the ordered phase Ni3C is metastable — it can be pro-
duced by mechanical alloying;72 see also the observations
by Banhart et al.73 — indicates on the other hand that
it cannot be strongly positive. No reliable experimental
value is available and we have therefore calculated ∆H
from first principles calculations (ABINIT code). The
enthalpy of formation per atom, ∆H , is defined as:

∆H = (ENaCl
NiC − EC − ENi)/2 , (18)

where ENaCl
NiC , EC and ENi represent the total ener-

gies of the rocksalt NiC compound (per formula), of the
graphene sheet and of bulk fcc Ni (per atom), respec-
tively. As expected, the enthalpy of formation of the
carbide is found to be positive (∆H = 0.93 eV/atom).
This is in good agreement with the values obtained from
extrapolation of thermodynamic data.1,66 The parame-
ters used in our tight-binding model are A = 0.73 eV,
p = 12.5 , and q = 3.2. The adjustments were performed
in order to reproduce correctly the physical properties of
the carbide, as shown in Table II. Finally the cut-off for
the Ni-C interactions has been set at 3.20 Å.

TABLE II: Physical properties of NiC compound with the
NaCl structure. Comparison of our tight-binding model with
ab initio data.

Lattice ∆H (eV/atom) B (GPa)
parameter (Å)

ab initio 4.01 0.93 304
Present work 4.17 0.93 350

Let us summarize our discussion concerning the deriva-
tion of a carbon-metal potential. The binding contribu-
tion is mainly due to the pd hybridization between the
p states of carbon and the d states of the metallic el-
ement. The values of the corresponding integrals have
been obtained through an interpolation procedure, i. e.
a tight-binding fit to the calculated first principles band
structure of the equiatomic NaCl-like carbide. In the case
of nickel, the relative position of the p and d atomic en-
ergy levels has been chosen so that local charge neutrality
is satisfied. The other parameters —repulsive term, de-
pendence on distance of the attractive and repulsive parts
— have been fixed through a fit to cohesive properties of
the carbide, to its enthalpy of formation in particular.

At this point some comments are relevant. In the case
of carbides (or nitrides), it is useful to distinguish be-
tween cohesive energies and enthalpies of formation. The
cohesive energy is in general defined as the total energy of
the compound compared to atomic energies (energies of
the constituents in their gaseous state). The enthalpy of
formation compares the total energy to those of the con-
stituents in their equilibrium crystalline states (graphene
and fcc nickel in the case of NiC). Consider the exam-
ple, detailed by Cottrell1, of TiC, which has the largest
cohesive energy in the 3d transition series, about 14.15
eV/formula. The cohesive energy of Ti and C are equal
to 4.85 eV/at and to 7.4 eV/at respectively, so that the
enthalpy of formation per formula (or per carbon atom)
is equal to -1.90 eV. The enthalpy of formation is a small
percentage of the cohesive energy of the constituents. In
other terms, all bonds, metal-metal, carbon-carbon, and
carbon-metal bonds are strong and the stability of the
carbides is a relatively delicate balance between them.
Starting from pure Ti in the fcc phase (which has a cohe-
sive energy very close to that of the stable hcp phase) the
introduction of carbon atoms in the octahedral intersti-
tial sites distorts slightly the host lattice, hence some loss
of d bonding energy, but the main balance is between the
energy gain due to the first neighbour pd hybridization
and the energy loss due to the breaking of C–C bonds.
A quite similar argument applies also to NiC whose en-
thalpy of formation per formula, about +1.8 eV should be
compared to the cohesive energies of nickel and carbon,
4.5 eV and 7.4 eV, respectively. Even if the compound
NiC does not exist, the Ni-C bond is very strong and local
ordered configurations can be metastable. This property
is probably at the root of the interesting catalytic prop-
erties of Fe, Co, and Ni.
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VI. VALIDATION OF THE MODEL

The difficulty in the derivation of a complete potential
for carbides was clearly the nickel-carbon part. Once all
parameters have been fitted, the model can be applied
to any atomic configuration of carbon and nickel atoms,
provided that the parameters do not depend too much on
the concentration of carbon atoms. In order to test this
assumption and to test the transferability of our poten-
tial, we have studied many different situations. In Sec.
VI A the solubility of carbon in nickel is considered, in
the bulk as well as at, or close to, the surface. Interac-
tions of Ni atoms with a graphene sheet are discussed in
Sec. VI B. The clock reconstruction observed when car-
bon and other light elements are deposited on a (100) Ni
surface is then analyzed in Sec. VI C. Sec. VI D presents
a discussion of the (epitaxial) formation of graphene on
Ni or Co (111) surfaces. Finally recent applications of
our energetic model to the study of the catalytic growth
of carbon nanotubes are summarized in Sec. VI E.

A. Carbon solubility in nickel

A quantity of great interest is the heat of solution,
∆Hsol, of a C interstitial atom in crystalline Ni. Experi-
mental and ab initio data exist for the Ni-C solid solution
in the paramagnetic state,74 which allows us to make a
critical assessment of our tight-binding model. The heat
of solution of C in Ni with respect to graphene is calcu-
lated according to the formula:

∆Hsol = ENi+C − (ENi + EC), (19)

where ENi+C is the total energy of the interstitial Ni+C
system, ENi is the energy of the Ni system without C,
and EC is the energy per C atom in graphene. In the fcc
Ni lattice, two high-symmetry interstitial sites are avail-
able for C occupation: the octahedral and the tetrahedral
site. The most likely location for C in the fcc lattice is
believed to be at octahedral interstitial sites, which is
confirmed by first principles calculations.74,75

In the present work, only this configuration has been
investigated, the bulk fcc Ni being simulated by a finite
box of dimensions up to 6×6×6 in units of fcc unit cells,
with periodic boundary conditions along the three axis.
This was necessary to obtain converged results (see Fig.
7). Actually the octahedral site of fcc Ni is a little bit
too small to accomodate a carbon atom which therefore
pushes its first neighbour Ni atoms. This induces long
range elastic interactions between the images of the car-
bon atom due to the periodic boundary conditions. Using
a simulated annealing procedure, we find that the six Ni
atoms, surrounding the interstitial C atom are displaced
of about 0.15 Å in such a way that the Ni-C bonds have a
length about 1.90 Å which is close to the equilibrium dis-
tance in the rocksalt structure, equal to 2 Å. Finally we
obtain a heat of solution within our tight-binding frame-
work equal to 0.45 eV, in good agreement with the 0.43
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FIG. 7: Variation of the calculated energy of dissolution as a
function of the size of the supercell.

eV value found experimentally and higher than the 0.2 eV
found in previous DFT works.74 This better agreement of
the tight-binding semi-empirical scheme is certainly for-
tuitous, but the “first principles” calculations have also
some weaknesses. First the result depend significantly on
the approximation used: GGA versus LDA, form of the
exchange-correlation functional, nature of the pseudopo-
tential, etc. Another problem is related to the size of
the supercell used. In units of the fcc unit cell the latter
authors used a 2× 2× 2 box which is probably too small
according to our calculations. Other possible reasons for
the theoretical underestimate of ∆Hsol are discussed in
detail by Siegel and Hamilton.74 Recent calculations by
Zhu et al. with box sizes up to 3 × 3 × 3 show similar
results .75 In any case the positive sign of ∆Hsol is consis-
tent with the positive value of the enthalpy of formation
discussed in Sec. V. Both quantities should indeed be
comparable since carbon atoms in the NaCl structure do
not interact directly. The difference comes again from
the induced elastic interactions.

It is useful at this point to recall that one has to be
very careful with the cut-offs of the potential (hopping
integrals in particular) when performing such structural
relaxations. These cut-offs are generally chosen to lie in
between coordination shells of the crystalline structure of
reference, but the coodination numbers can change dur-
ing the relaxation process, which can induce unphysical
discontinuities. Although well-known this type of arti-
fact is not always easily detected. In our case we a have
a nice tool because of the possibility to calculate local
energies on different atoms. Although these energies de-
pend on the local environments it is fairly easy to detect
unphysical variations, and to modify the cut-offs. The
values given in this article have been chosen so as to
avoid problems in all cases which have been investigated.

Another test of the model is to study how the heat
of solution is modified in the presence of a surface. We
have calculated this energy for different positions of the
carbon atom on a (111) surface or just below it. The
most favourable position is the subsurface position, in
between the first (111) planes, so that the carbon atom
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has a full octahedron environment.76 The adsorption or
adhesion energy is found equal to -8.25 eV, which is in
good agreement with first principles calculations.15 This
quantity, frequently used when considering catalysis pro-
cesses, refers to the energy of atomic carbon. To convert
it into an heat of solution, we have to substract the forma-
tion energy of graphene, equal to -7.42 eV. The enthalpy
of solution is therefore equal to -0.83 eV, which means
that the solution process is exothermic close to the sur-
face, whereas it is endothermic in the bulk. Although
this effect is perhaps overemphasized within our model,
its physical origin is clear. The positive sign of ∆Hsol

in the bulk is principally due to a size effect, the sur-
rounding nickel atoms being pushed by the carbon atom,
but this is counterbalanced by the elastic response of the
crystal. In the presence of a surface the relaxation pro-
cess is easier and the elastic energy cost is lower. This
clearly shows that this size effect favours the segregation
of carbon towards surfaces. More details are given in
Ref. [15]. Some results obtained for the (100) surface16

are discussed below.

B. Interaction of Ni atoms with a graphene sheet

We have studied the interaction of Ni atoms with a
graphene sheet. Two possible stable positions are gen-
erally considered where the Ni atom is either above a
carbon atom (top position) or above the centre of an
hexagonal carbon ring (hole position). For the late 3d
transition elements, the hole position is preferred.18,77

We have checked that within our model. Using a simu-
lated annealing Monte Carlo procedure, the final position
of a Ni atom is always the hole position, whatever the ini-
tial condition. The binding energy is found equal to 3.5
eV, which is in semi-quantitative agreement with the 2.5
eV value obtained by Duffy and Blackman in a cluster
(DMOL) calculation.77 The agreement is also good for
the values of the height of the adatom above the sheet:
1.57 Å in our calculation instead of 1.53 Å in Ref. [77].

We have also calculated the energy of substitution of
a C atom in a graphene sheet by a Ni atom. The ground
state structure obtained again after a simulated anneal-
ing procedure is shown in Fig. 8. The Ni atom is found
displaced out of the graphene sheet by 1.1 Å, which is
close to the 1.0 Å value given by Banhart et al. on the
basis of electronic microscopy observations as well as of
first principles calculations.73 The energy of substitution
is found equal to 10.8 eV, to be compared to the 9.5 eV
ab initio value. This strong positive value shows that this
substitutional defect can hardly be stable. Banhart et al.
argued that Ni atoms most probably fill existing vacan-
cies created by the electron beam in their transmission
electron microscopy observations.

FIG. 8: Final position, after relaxation, of a substitutional Ni
atom in a graphene sheet; top and side views.

C. Clock reconstruction on Ni (100) surfaces

The interaction of carbon with transition-metal sur-
faces has been widely studied. Carbon chemisorption on
Ni surfaces in particular has been considered in detail,
from an experimental point of view, in a series of papers
by Blakely and co-workers,78 as well as from a theoretical
point of view.2,79 In the case of the (100) surface, which
has a simple square lattice structure, carbon at low cov-
erage occupies the hollow semi-octahedral sites, with an
adsorption energy equal to -8.21 eV within our model,16

in good agreement with experimental and ab initio data.
Here again the latter ones depend significantly on the ap-
proximation used.80 At higher coverage, carbon, as well
as many other elements (N, O, S), form a c(2 × 2) su-
perstructure. This occcurs for a surface coverage beyond
one third of a monolayer in the case of carbon. Contrary
to sulfur and oxygen, carbon and nitrogen atoms induce
a reconstruction of the outermost layer of nickel atoms of
p4g symmetry called a “clock” reconstruction where the
top-most Ni atoms move around C atoms by alternate
clockwise and counterclockwise rotations (see Fig. 9 bot-
tom). The distortion preserves the shape of the carbon
squares, while the nickel atoms, which are not surround-
ing the C atoms, become rhombi. This reconstruction
is clearly induced by the stresses exerted by the carbon
atoms on their surrounding nickel atoms (see below). A
lot of experimental and theoretical studies have been de-
voted to this reconstruction.81,82,83,84

To test our model, we have performed simulated an-
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FIG. 9: Clock reconstruction obtained within our tight-
binding model. Top: top and side view of the initial sim-
ulation box. Bottom: same views after clock reconstruction.

nealing simulations on a slab of nickel (208 atoms)
with(100) surfaces and covered by C atoms. A 20 Å thick
vacuum region was introduced along the z axis and peri-
odic boundary conditions were applied in the two other
directions. The slab size is 12.47 × 12.47 × 8.79 Å3. 16
carbon atoms are deposited above the surface made of 32
Ni atoms in a c(2×2) geometry, corresponding to a cover-
age equal to 0.5 ML (see Fig. 9 top). In the present case,
all the atoms in the system are fully relaxed. During the
simulation, we observe that the C atoms move slightly
outwards, at about 0.35 Å above the fourfold hollow site,
whereas the Ni atoms of the first layer of Ni atoms self-
organize to adopt the p4g symmetry (see Fig. 9 bottom).
Our results, summarized in Table III, are in very good
agreement with previous first-principles calculations and
experimental data.

In order to understand the driving force for the p4g
symmetry reconstruction on fcc (100) surfaces, Klink et

al. performed a systematic experimental study of the
changes in surface stress as a function of coverage of car-
bon using STM.81 The results can be briefly summarized
as follows. In the low coverage phase, θ < 0.2 ML, the C
atoms adsorb in fourfold hollow sites. Then, the four Ni
atoms surrounding each carbon atom are displaced ra-
dially to allow the C atoms to remain embedded within
the Ni surface so that they are fivefold coordinated (one
Ni atom below and four in-plane atoms. Beyond θ = 0.2
ML, the surrounding Ni atoms can no longer be pushed
away radially. Then, the collective p4g clock reconstruc-
tion in which the squares of Ni atoms surrounding the C
atoms rotate insures that these C atoms keep their semi-
octahedral environment, the stress being transfered on
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FIG. 10: Total energies as a function of the displacement δ

for different values of distance carbon atoms and the surface
plane.

the empty Ni squares which transform into rhombi. To
study this process in more detail, we have performed to-
tal energy calculations for different values of δ, the ampli-
tude of the in-plane displacement of the first-layer metal
atoms upon reconstruction. The initial system consid-
ered here is the same as that described previously. Our
results presented in Fig. 10 for different adatom-surface
distances show clearly two regimes. For distances lower
than 0.4 Å, the most stable configuration is the recon-
structed one, the amplitude of which decreases when the
adatom moves upwards. Above 0.4 Å, the reconstruc-
tion is no longer stable. Thus, big atoms which cannot
approach the surface do not provoke the clock reconstruc-
tion. For instance, a half monolayer coverage of Cl, S, and
O on Ni(100) results in structures with small or no recon-
struction. The comparison of the behaviours of oxygen
on a Rh (100) and a Ni (100) surface is very interesting
from this point of view: rhodium (3.80 Å) has a lattice
parameter larger than nickel (3.52 Å) and offers more
room for an oxygen atom, and actually the reconstruc-
tion is observed in Rh and not in Ni.87

D. Graphene on Ni (111)

Much less observations are available concerning recon-
structions of the Ni (111) surface, apart from STM stud-
ies by Klink et al.88 indicating a possible clock recon-
struction similar to the one described previously. This
would imply a removal of Ni atoms, which, to our knowl-
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TABLE III: Energetic and structural characteristics of the clock reconstruction obtained within our tight-binding model com-
pared to experimental and ab initio data. δ: amplitude of the in-plane displacement of the first-layer metal atoms characterizing
the clock reconstruction; d01 : C-surface distance; d12: distance between the first and the second Ni plane. The percentage
between parenthesis indicate the amplitude of the expansion with respect to pure Ni. ∆E is the energy difference between the
symmetric c(2 × 2) structure and the reconstructed one.

δ d01 d12 ∆E

(Å) (Å) (Å) (eV/at)
Experimenta 0.55 ± 0.20 0.1 ± 0.1 1.83 (+11± 2%) -
Tight-binding 0.50 0.35 2.01 (+14.2 %) 0.15
ab initiob c 0.46 0.17 – 0.20 1.88 (+10.3 %) 0.20

aFrom Ref. 85.
bFrom Ref. 83.
cFrom Ref. 86.

edge, has not been confirmed experimentally or theoreti-
cally. On the other hand the formation of graphene sheets
on Ni (111) has been the subject of countless studies,
principally because of the interest of such surfaces, in
catalysis processes.2,89 The recent revival of interest for
graphene has also prompted many studies,90 one chal-
lenge being to be able to grow in a controlled manner
graphene sheets on different substrates. Apart from the
original exfoliation method, epitaxial sheets have been
shown to grow via the evaporation of SiC surfaces.91,92

But it has been soon rediscovered that Ni or Co (111)
surfaces offer almost perfect templates for the growth of
epitaxial graphene sheets. Actually, the in-plane lattice
constants of graphene match the surface lattice constants
of (111) Co and Ni almost perfectly, with for example a
lattice mismatch of only 1.3% for Ni. Other substrates,
Cu, Ir, Pd, Pt, Re, Ru, . . . have also been studied.93

Different epitaxial positions are possible, but there are
still controversies — experimental as well as theoretical
— concerning their relative stabilities, the values of the
energies of interaction and the interplane equilibrium dis-
tance. Values ranging from 2 to 3 Å for the latter one
are for example reported in the literature.15,94,95,96 This
is perhaps no so surprising: experimentally many factors,
impurities, steps, can play a role. Theoretically it is also
known that the (Van der Waals) long range interactions
involving graphene sheets within graphite are difficult to
handle within standard DFT codes. The dispersion in
the calculated adhesion energies is smaller. This energy
is generally found to be slightly (negative) attractive, in
the range -0.05 — -0.1 eV per carbon atom.15

Using our model, we have considered a graphene layer
in perfect epitaxy on a Ni slab in the so-called fcc ge-
ometry, where half of the carbon atoms are above the Ni
atoms whereas the other half occupies the so-called fcc
positions. We have then relaxed the atomic positions us-
ing a Monte Carlo simulated annealing procedure. The
result is an adhesion energy equal to -0.03 eV and an
equilibrium interplane distance equal to 2.19 Å in very
good agreement with ab initio calculations. Here again
our potential behaves as it should. Single carbon atoms
interact strongly with Ni (strong adhesion energy), but

once the sp2 covalent bonds have been established, the
resulting graphene sheet no longer interacts with the Ni
surface. This behaviour, also consistent with the ten-
dency of the Ni-C to phase separation, would of course be
difficult to reproduce using phenomenological potentials.
Notice also that the weakness of the adhesion energy of
graphene shows that, as far as energetic properties are
concerned, the presence of available π orbitals of carbon
do not play a significant role: the possible energy gain
due to pd C–Ni bonds is counterbalanced by a loss of
direct π − π bonding, the latter one being maximum for
a band filling corresponding to pure graphene. The hy-
bridization of the π states with the d3z2−r2 Ni states on
the other hand does exist18,79,97,98 and has been clearly
observed close to the Fermi level.99,100

A stronger test of our potential is to start from a con-
figuration such as a solid solution of carbon in nickel and
to see whether it can predict carbon segregation towards
the surface. We have developed a full thermodynamic
model using Monte Carlo simulations within the grand-
canonical ensemble, where the control parameter is the
carbon chemical potential. This is described in detail
elsewhere15 and we just recall some results here. When
the chemical potential increases, more and more carbon
atoms are added in the system, and basically, as shown
in Fig. 11, four types of configurations corresponding to
different reaction steps are identified: single C atoms ad-
sorbed on the surface or incorporated in interstitial sites,
chains creeping on the surface, detached sp2 C layers,
and finally a three-dimensional amorphous C phase.

E. Application: nucleation of nanotube embryos

Since an important motivation to derive an energetic
model for metal-carbon systems was to understand the
role of catalysts in the growth of carbon nanotubes, let
us finally summarize the results which we have already
been obtained in this field.

Starting from a small nickel cluster instead of the (111)
surface treated above, we have undertaken studies of the
nucleation of carbon caps. Here again, there is an optimal
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FIG. 11: Equilibrium structures (side and top views), at 1000 K, obtained from Monte Carlo simulations performed on a (111)
Ni slab for increasing values of the chemical potential µC : -6.00, -5.75, -5.25, and -4.50 eV/atom. In (a) carbon atoms occupy
interstitial, octahedral, sites; in (b) they form linear chains on the surface; then in (c) a graphene layer appears and finally, in
(d) a thick amorphous phase begins to grow.

FIG. 12: Successive stages of the nucleation of a C cap on
a 55 atom cluster of nickel for a chemical potential equal to
5.25 eV/atom.

chemical potential window to nucleate these graphitic
caps whose curvature match the local curvature of the
catalyst particle (see Fig. 12). The chemical potential
has to be large enough to insure a sufficient concentra-
tion of carbon atoms at the surface. It should also be
small enough to avoid the formation of a thick amor-
phous layer. The role of the catalyst is to confine carbon
atoms on or close to the surface. This shows the impor-
tance to have strong interactions between the metallic
elements and isolated carbon atoms, and explains why
the late transition elements are good catalysts. They
do interact strongly with carbon atoms, but weakly with
graphitic structures. These arguments agree with other
studies based on ab initio calculations12,101 and are de-
tailed elsewhere.10

The case treated above corresponds to a situation fre-
quently encountered in chemical vapour deposition pro-
cesses where the nanotubes grow in a tangential mode,
the diameter of the tubes being related to the size of the

catalyst particle. In other cases, particularly in the high
temperature synthesis, the nanotubes grow perpendicu-
larly to the surface.5 Arguments based on classical nu-
cleation and growth thermodynamic models have been
put forward to understand how this can happen.102,103

Carbon atoms at the surface of the metallic catalyst are
assumed to condense in the form of graphene flakes. The
metallic substrate can then help to saturate the dangling
bonds and this favours the formation of a cap, the en-
ergy cost due to the curvature induced by the presence
of pentagons being more than compensated by the reduc-
tion of the number of dangling bonds.103 This model has
been partly confirmed by Fan et al.104 who performed
ab initio energy calculations of different arrangements of
carbon atoms on a Ni(100) surface, but these calculations
are computationally very demanding and the structures
cannot be fully relaxed.

We have therefore used our model which permits such
atomic relaxations. Examples are shown in Fig. 13. The
possibility to analyze local energy distributions has also
allowed us to determine which atoms (carbon or nickel),
and to what extent, are stabilized when various carbon
clusters are put in contact with a metallic surface. Fi-
nally the adhesion process of carbon sheets on Ni (100)
is slightly more complex than anticipated. The adhesion
energy of flat sheets is mainly due to the energy gain of
the nickel atoms below these sheets. When they curve
to form caps, the energy gain becomes concentrated on
the carbon and nickel atoms close to their edge. In this
case one might argue that dangling bonds are saturated,
but finally, this is a weak effect which does not play very
much in favour of curved caps: the energy of adhesion of
flat and curved sheets are similar and small compared to
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FIG. 13: Equilibrium configurations of carbon clusters on a
(100) Ni surface: (a) planar polyaromatic cluster; (b) nan-
otube embryo. Notice the fairly large displacements of Ni
atoms below the clusters.

dangling bond energies, for small clusters at least. This
is fully discussed in Ref. [16].

VII. CONCLUSION

In this work we have presented a model based on the
tight-binding approximation which provides an efficient
tool to calculate the bonding energies in the Ni-C sys-
tem, total energies being obtained by adding empirical
repulsive terms. The model is both simple and accurate.

We have taken advantage of the fact that the band en-
ergies are not very sensitive to details of the electronic
structure to use a moment-recursion technique at the
level of a fourth moment aproximation. The use of s, p, d
atomic orbitals and of the corresponding transfer inte-
grals insures on the other hand that the different types
of metallic and covalent chemical bonds are correctly de-
scribed.

C-C interactions are defined from a slight modification
of the model introduced by Xu et al..34 Due to the use
of a complete (s, p) basis for the carbon states, all types
of covalent spn bonds can be modelized. The model is
shown to reproduce several properties such as the dia-
mond to rhombohedral-graphite transition or the energy
of local defects such as the Stones-Wales defect. Ni-Ni
interactions are obtained using a fairly standard tight-
binding approximation including d states only. We have
shown however that one has to be careful to choose band
fillings of the d band such that the fcc structure is sta-
ble and that the elastic shear moduli are positive. The

crucial point in this work is the derivation of Ni-C in-
teractions. They have been constructed from a detailed
study of the electronic structure and bonding properties
of transition metal carbides.

The final full model can be applied to any atomic con-
figuration of carbon and nickel atoms, and we have con-
sidered many different situations involving a large variety
of Ni-C interactions to test the model: heat of solution
in the bulk, at the surface or close to it. Adatoms: nickel
on carbon, carbon on nickel. The case of the spectacular
clock reconstruction ot the Ni (100) surface induced by
carbon atoms has been studied in detail as well as the
epitaxy between graphene and Ni (or Co) surfaces. In
all cases the model is fairly accurate when compared to
experiment or to ab initio calculations: our model has a
high degree of transferability. Actually typical error bars
are of the order of 0.1–1eV compared to total energies
of the order of 5–10 eV. This is obviously not negligible
but it should be kept in mind that ab initio methods are
frequently not better from this point of view. They show
dispersions of the same order of magnitude, principally
in the case of point or localized defects where atomic re-
laxations can be so important that it is difficult to obtain
converged results. On the other hand most phenomeno-
logical models can hardly be transferable and are not
very reliable when severable types of Ni-carbon bonds
compete.

A further advantage of our model is that it can be
fairly easily generalized to other metal-carbon systems,
since we know semi-quantitatively how the different pa-
rameters — transfer integrals, atomic energy levels, etc.
— vary with the nature of the metallic element. A more
difficult point is related to charge transfer. In the case of
Ni we have argued that we can avoid treating it explic-
itly by adjusting the position of the atomic energy levels.
This can no longer be done in the case for example of the
Ti-C system where charge transfers towards carbon can
be of the order of one electron. In this case a Hartree-
like treatment should at least be used where the atomic
energy levels depend on the atomic environment. From a
practical point of view, it will be possible to define inter-
polation procedures similar to the one used in this work
to vary the effective number of d electrons. Another chal-
lenge is to include magnetism since magnetic and struc-
tural effects can be strongly coupled as in the case of
Fe105 and of Fe-C.106 This is currently under progress.
More complex tight-binding models can be used as well
to handle these problems,18,36,107 but the price to pay is
generally fairly high in terms of parameters to be fitted
and of computational cost.
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