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ON THETA FUNCTIONS OF ORDER FOUR

4ϑ)) + of even theta functions of order four on a principally polarized Abelian variety (A, ϑ) without vanishing theta-null.

Introduction

Let (A, ϑ) be a principally polarized Abelian variety of dimension g defined over an algebraically closed field k of characteristic different from two. By Mumford's algebraic theory of theta functions [M1] (see also the appendix of [B1]) there is a canonical bijection between the set of symmetric effective divisors Θ κ ⊂ A representing the principal polarization and the set K of theta-characteristics κ of A. We denote by L the unique symmetric line bundle over A representing 2ϑ and such that the linear system |L| contains the divisors 2Θ κ for all κ ∈ K.

The space H 0 (A, L 2 ) of theta functions of order four decomposes under the natural involution of A into ±-eigenspaces H 0 (A, L 2 ) + and H 0 (A, L 2 ) -of dimensions

d + = 2 g-1 (2 g + 1)
and d -= 2 g-1 (2 g -1).

We note that d + and d -are equal to the number of even and odd theta-characteristics of A.

Moreover any even theta-characteristic κ 0 ∈ K + decomposes according to the values ±1 taken by κ 0 the set of 2-torsion points A[2] into a union of two subsets A[2] + and A[2] -of cardinality d + and d -. Note that 0 ∈ A[2] + . We denote by ϕ : A -→ |L 2 | * + = P d + -1 the morphism induced by the linear system |L 2 | + . Then our main result is the following Theorem 1.1. For any even theta-characteristic

κ 0 ∈ K + , the d + points ϕ(a) ∈ |L 2 | * + = P d + -1 with a ∈ A[2] +
form a projective basis if and only if A has no vanishing theta-null.

There is also a "dual" version of this result.

Theorem 1.2. The d + divisors

4Θ κ ∈ |L 2 | + with κ ∈ K +
form a projective basis (or, in other words, the fourth powers of theta functions with even characteristics form a basis of H 0 (A, L 2 ) + ) if and only if A has no vanishing theta-null.

Although of independent interest, these results also have some consequences on generalized theta functions (see [S] for details): let M + SOr denote the moduli space of topologically trivial oriented orthogonal bundles of rank r over a smooth projective complex curve C of genus g ≥ 2 and let L + SOr denote the determinant line bundle over M + SOr . It was shown in [B2] that the 2000 Mathematics Subject Classification. Primary 14K25.

linear system |L + SOr | identifies canonically with the dual |rΘ| * + of even theta functions of order r over the Picard variety parametrizing degree g -1 line bundles over C. In particular, for r = 4 we observe that dim H 0 (M + SO 4 , L + SO 4 ) = d + . Moreover we can associate to any even theta-characteristic κ ∈ K + a proper effective divisor ∆ κ ∈ |L + SO 4 | with support

{E ∈ M + SO 4 | dim H 0 (E ⊗ κ) = 0}.
By pulling back the d + divisors ∆ κ to the Jacobian Jac(C) under the map Jac(C)

→ M + SO 4 , L → L ⊕ L -1 ⊕ L ⊕ L -1 , we deduce from Theorem 1.2 the following Corollary 1.3. Assume that C has no vanishing theta-null. Then the d + divisors ∆ κ ∈ |L + SO 4 | for κ ∈ K + form a projective basis.
Finally, we mention that for general r the divisors ∆ κ ∈ |L + SOr | -more precisely, some relatives of ∆ κ on the moduli stack of Spin r -bundles over C -have recently been studied in connection with the strange duality of generalized theta functions [Be].

We would like to thank A. Beauville and S. Grushevsky for their interest in these questions. The second author was partially supported by the Ministerio de Educación y Ciencia (Spain) through the grant SAB2006-0022.

Review of algebraic theory of theta functions

In this section we recall the results on theta functions of order four, which we need in the proof of the two main theorems. We refer to [M1] and [B1] for details and proofs.

We recall that a theta-characteristic is a map κ : We say that κ is even if κ takes d ± times the value ±1. The set of even theta-characteristics is denoted by K + .

A[2] → {±1} such that κ(a + b) = κ(a)
The Heisenberg group H associated to the line bundle L consists of all pairs α = (a, ϕ) with a ∈ A[2] and ϕ : T * a L ∼ → L an isomorphism (where T a : A → A is the translation by a), and fits into an exact sequence

0 -→ k * -→ H p -→ A[2] -→ 0, with p(α) = a.
For any κ ∈ K we consider the character

χ κ : H → k * of weight 2 defined by χ κ (α) = ||α||κ(a), with ||α|| = α 2 ∈ k * .
The main result we need in this note is Proposition 2.1 ([B1] Proposition A.8). The vector space H 0 (A, L 2 ) + decomposes as an Hmodule into a direct sum κ∈K + W κ with dim W κ = 1 and W κ is the character space associated to the character χ κ . The zero divisor of any nonzero section s κ ∈ W κ equals 2 * A Θ κ , where 2 A is the duplication map of A.

The matrix M

We say that a pair (a 1 , a 2 ) ∈ (Z/2Z) g × (Z/2Z) g is even if a 1 • a 2 = 0. Let M denote the d + × d + matrix with lines and columns indexed by even pairs (a 1 , a 2 ) and (b 1 , b 2 ) and with entries (-1) a 1 •b 2 +a 2 •b 1 . We will use the fact that M is invertible, which has already been proved in [F] Lemma 1.1. For the convenience of the reader, and for later use, we recall here the computations.

Lemma 3.1. For fixed (a 1 , a 2 ) ∈ (Z/2Z) g × (Z/2Z) g , we have the equality b 1 ,b 2 ∈(Z/2Z) g , b 1 •b 2 =0 (-1) a 1 •b 2 +a 2 •b 1 = d + if a 1 = a 2 = 0, (-1) a 1 •a 2 2 g-1 else.
Proof. If a 1 = a 2 = 0 there is nothing to prove. Otherwise we may assume that a 1 = 0, and the result follows from the easy equality

b 1 ∈(Z/2Z) g , b 1 •b 2 =0 (-1) a 1 •b 1 = 2 g-1 if b 2 = a 1 0 else.
Proposition 3.2. The matrix M is invertible.

Proof. Using Lemma 3.1, we easily check that the inverse of M is given by

M -1 = 1 2 2g-1 (M -2 g-1 I).

Proof of Theorem 1.1

Consider the linear map given by evaluating the d + theta functions s κ ∈ H 0 (A, L 2 ) + at the

d + points a ∈ A[2] + ev : H 0 (A, L 2 ) + -→ a∈A[2] + L 2 a .
It is clear that the assertion of Theorem 1.1 is equivalent to ev being an isomorphism. First note that saying that A has a vanishing theta-null means that there exists a section s κ , with κ ∈ K + , which vanishes at every point a ∈ A[2], i.e. s κ ∈ ker ev. On the other hand we will show that, if A has no vanishing theta-null, ev is given after suitable normalization by the matrix M. The theorem then follows from Proposition 3.2.

We consider for each κ ∈ K + a nonzero section s κ ∈ H 0 (A, L 2 ) + in the one-dimensional χ κ -character space W κ , and for each a ∈ A[2] an isomorphism φ a : L 2 a ∼ → k. Since we assume that A has no vanishing theta-null, we have φ a (s κ (a)) = 0 for all κ ∈ K + and all a ∈ A[2]. The quotient

µ(a, κ, κ ′ ) = φ 0 (s κ (0)) • φ a (s κ ′ (a)) φ a (s κ (a)) • φ 0 (s κ ′ (0)) , a ∈ A[2], κ, κ ′ ∈ K +
does not depend on the choice of the sections s κ , s κ ′ and the isomorphisms φ a . Given a ∈ A[2] we choose an α = (a, ϕ) ∈ H such that ϕ : T * a L ∼ → L preserves the isomorphisms φ 0 and φ a , which is equivalent to the equality φ 0 ((α.s κ )(0)) = φ a (s κ (a)) for all κ ∈ K + . On the other hand α.s κ = χ κ (α)s κ = ||α||κ(a)s κ , hence φa(sκ(a)) φ 0 (sκ(0)) = ||α||κ(a). Therefore we obtain the formula (2) µ(a, κ, κ ′ ) = κ(a)κ ′ (a).

In order to obtain the matrix M we normalize as follows: consider a section s κ 0 corresponding to the fixed even theta-characteristic κ 0 , and choose the isomorphisms φ a such that φ a (s κ 0 (a)) = 1 for all a ∈ A[2] + . Then we choose the sections s κ such that φ 0 (s κ (0)) = 1. Any κ ∈ K can be written

κ = b • κ 0 for a unique b ∈ A[2], and κ ∈ K + if and only if b ∈ A[2] + by [B1] formula
(1) page 279. Using formulae ( 2) and ( 1) we obtain the equalities

φ a (s b•κ 0 (a)) = µ(a, κ 0 , b • κ 0 ) = κ 0 (a)(b • κ 0 )(a) = a, b .
We now choose a level-2 structure λ :

A[2] ∼ → (Z/2Z) g × (Z/2Z
) g which maps the set A[2] + bijectively onto the set of even pairs -this is possible, since Sp(2g, Z/2Z) acts transitively on the set of even theta-characteristics. Then we can write a, b = (-1) 

a 1 •b 2 +a 2 •b 1 with λ(a) = (a 1 , a 2 ) and λ(b) = (b 1 , b 2 ). This finishes the proof. 5. Proof of Theorem 1.2 Let κ 0 be a theta-characteristic of A. Recall from [B1] that the morphism δ κ 0 : A -→ |L| which sends a ∈ A to the divisor T * a Θ κ 0 + T * -a Θ κ 0 fits into the commutative diagram |L| * ≀ A δκ 0 ' ' N N N N N N N N N N N N ϕ L 7 

|L|,

where ϕ L is the morphism defined by the complete linear system |L|. The isomorphism between |L| * and |L| is given by any nonzero element in the one-dimensional character space in H 0 (A, L) ⊗ H 0 (A, L) associated to χ κ 0 . Now, if A has no vanishing theta-null, we know from [B1] Proposition A.9 that the multiplication map Remark 5.1. The previous considerations show that our result is also equivalent to the following one: if A has no vanishing theta-null, there is no quadric hypersurface in |L| containing the d + points defined by 2Θ κ , with κ ∈ K + .

Remark 5.2. It easily follows from the previous proof that the codimension of the linear span of the fourth powers of even theta functions in H 0 (A, L 2 ) + equals the number of vanishing theta-nulls of A.

6. An analytic proof of Theorem 1.2 When k = C, we can give a short analytic proof of Theorem 1.2 by using Riemann's quartic addition theorem to express the fourth powers of the theta functions θ κ in terms of the functions 2 * A θ κ .

In this case, the Abelian variety A is a quotient C g /Γ τ of a g-dimensional vector space by a lattice Γ τ = Z g ⊕τ Z g for some τ in the Siegel upper half-plane. Let us choose a level-2 structure to identify the set of theta-characteristics with (Z/2Z) g × (Z/2Z) g , in such a way that even theta-characteristics κ correspond to even pairs (a 1 , a 2 ) (see [B1] A.6). We want to prove that the space H 0 (A, L 2 ) + of even theta functions of order four is spanned by the fourth powers of the theta functions with even characteristics a 1 , a 2 ∈ (Z/2Z) g θ a 1 a 2 (z) = a 1 ,a 2 ∈(Z/2Z) g , a 1 •a 2 =0

(-1)

a 1 •c 2 +a 2 •c 1 θ a 1 a 2 (z) 4 .
But we have already recalled in Proposition 2.1 that the functions z → θ c 1 c 2 (2z) with c 1 •c 2 = 0 span H 0 (A, L 2 ) + . This shows that the functions θ a 1 a 2 (z) 4 with a 1 • a 2 = 0 span this vector space if and only if A does not have any vanishing theta-null.

Remark 6.1. It is possible to make this analytic proof work in the algebraic set-up [M1] of theta functions over any algebraically closed field of characteristic different from two. However, its algebraic version would be longer and more technical than the proof we gave in section 5.

  κ(b) a, b , where , is the symplectic Weil form on A[2]. The group A[2] acts transitively on the set K of theta-characteristics by the formula (1) (a • κ)(b) = a, b κ(b).

  Sym 2 H 0 (A, L) -→ H 0 (A, L 2 ) + is bijective. It follows that the duplication morphism |L| -→ |L 2 | + , D -→ 2D is identified, through the isomorphism |L| * ∼ -→ |L|,with the 2-uple embedding of |L| * , and that the morphism ϕ : A -→ |L 2 | * + is the composite of ϕ L with this 2-uple embedding. But we know from Theorem 1.1 that the images ϕ(a) of the d + points a ∈ A[2] + form a projective basis of |L 2 | * + . This implies that the points 2δ κ 0 (a) = 4Θ a•κ 0 form a projective basis of |L 2 | + , which finishes the proof.