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Frédéric BRETAR1, Adrien CHAUVE1,2, Jean-Stéphane BAILLY2, Clément MALLET1, and Andres JACOME2

1Institut Géographique National - Laboratoire MATIS - 4 Av. Pasteur 94165 Saint-Mandé - FRANCE
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Abstract. This article presents the use of new remote sens-

ing data acquired from airborne full-waveform lidar systems.

They are active sensors which record altimeter profiles. This

paper introduces a set of methodologies for processing these

data. These techniques are then applied to a particular land-

scape, the badlands, but the methodologies are designed to

be applied to any other landscape. Indeed, the knowledge

of an accurate topography and a landcover classification is

a prior knowledge for any hydrological and erosion model.

Badlands tend to be the most significant areas of erosion in

the world with the highest erosion rate values. Monitoring

and predicting erosion within badland mountainous catch-

ments is highly strategic due to the arising downstream con-

sequences and the need for natural hazard mitigation engi-

neering. Additionaly, beyond the altimeter information, full-

waveform lidar data are processed to extract intensity and

width of echoes. They are related to the target reflectance

and geometry. Wa will investigate the relevancy of using

lidar-derived Digital Terrain Models (DTMs) and to inves-

tigate the potentiality of the intensity and width information

for 3D landcover classification. Considering the novelty and

the complexity of such data, they are presented in details as

well as guidelines to process them. DTMs are then validated

with field measurements. The morphological validation of

DTMs is then performed via the computation of hydrologi-

cal indexes and photo-interpretation. Finally, a 3D landcover

classification is performed using a Support Vector Machine

classifier. The introduction of an ortho-rectified optical im-

age in the classification process as well as full-waveform li-

dar data for hydrological purposes is then discussed.
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1 Introduction

Remote sensing is an effective set of techniques to collect

physical data from the Earth surface used as inputs in ero-

sion/hydrological models or to monitor hydrological fields

over large areas (Schultz and Engman, 2000; King et al.,

2005). Images obtained in the visible domain with opti-

cal sensors can be analyzed for generating 2D landcover

and landform maps either automatically by image processing

methods (Chowdhury et al., 2007) or by photo-interpretation.

The use of the infrared channel helps to detect the vegetation

(Lillesand and Kiefer, 1994). In a stereoscopic configura-

tion, images are processed to generate Digital Surface Mod-

els (DSMs) (Kasser and Egels, 2002).

More recently, airborne lidar (LIght Detection And Rang-

ing) systems (ALS) provide 3D point clouds of the topog-

raphy by direct time measurement of a short laser pulse af-

ter reflection on the Earth surface. Moreover, such active

systems, called multiple echo lidar, allow to detect sev-

eral return signals for a single laser shot. It is particularly

relevant in case of vegetation areas since a single lidar sur-

vey allows to acquire not only the canopy top (the only vis-

ible layer from passive sensors), but also points inside the

vegetation layer and on the ground underneath. Depending

on the vegetation density, some of them are likely to be-

long to the terrain. After a classification step in ground/off-

ground points (also called filtering process), relevant Digi-

tal Terrain Models (DTMs) can be generated. Such DTMs

are of high interest for geomorphologists to study erosion

processes (McKean and Roering, 2004) or to map particular

landforms (James et al., 2007). Moreover, hydrologic models

such as TOPOG (O’Loughlin, 1986) or TOPMODEL (Quinn

et al., 1991) handle topographic data either as Digital Sur-

face/Terrain Models or as meshes. By classifying terrain un-

der different levels and types of vegetation cover, lidar data,

if suitable, could provide new land classification, i.e., terrain,

cover maps. This new 3D landcover classification can even
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be more related to the hydrological processes that are usu-

ally modelled in hydrological production indices as the SCS

runoff curve number (USD, 1986), the runoff coefficient in

the rational method (Pilgrim, 1987) or the the plant cover

factor in Wischmeier and Smith’s Empirical Soil Loss Model

(USLE) (Wischmeier et al., 1978). Lidar data have also been

investigated by Bailly et al. (2008) and Murphy et al. (2008)

for drainage networks characterization (Cobby et al., 2001;

Antonarakis et al., 2008) and by Mason et al. (2003) as input

data for flood prediction problems. For the latter, the authors

use lidar data as resampled elevation grids and detect high

and low vegetation areas. Vegetation heights are then con-

verted into friction coefficients.

Finally, multiple echo lidar data are typically used for the

unique possibility of extracting terrain points as well as veg-

etation heights with high accuracy. When suitable, Hollaus

et al. (2005) insist on the possibility to derive the roughness

of the ground from lidar point clouds. However, the filtering

algorithm used to process lidar data is landscape dependent

and the classification result may be altered (Sithole and Vos-

selman, 2004).

Based on the same technology than multiple echo lidar sys-

tems, full-waveform lidar systems provide altimeter profiles

of the reflected pulse. They represent the laser backscattered

energy as a function of time. These profiles are processed

to extract 3D points (echoes) but in addition, other interest-

ing features that could be related to landscape characteris-

tics. Depending on the landscape properties (geometry, re-

flectance) and on the laser diffraction angle (entailing small

or large footprint), the recorded waveform becomes of com-

plex shape. An analytical modelling of the profiles provides

the 3D position of significant targets as well as the intensity

and the width of lidar echoes (Section 3.1). A detailed state-

of-the-art of such systems can be found in Mallet and Bretar

(2008).

This paper introduces a set of methodologies for processing

full-waveform lidar data. These techniques are then applied

to a particular landscape, the badlands, but the methodolo-

gies are designed to be applied to any other landscape.

Indeed, badlands tend to be among the most significant areas

of erosion in the world, mainly in semi-arid areas and in sub-

humid Mediterranean mountainous areas (Torri and Rodolfi,

2000). For the latter case, more active dynamics of erosion

are observed (Regues and Gallart, 2004) with the highest ero-

sion rate values in the world (Walling, 1988). Very high con-

centrations of sediment during floods, up to 1000 g.l−1, were

registered (Descroix and Mathys, 2003).

Badlands are actually defined as intensely dissected natural

and steeply landscapes where vegetation is sparse (Bryan and

Yair, 1982). Badlands are characterized by V-shape gullies

that are highly susceptible to weathering and erosion (An-

toine et al., 1995). These landscapes result from unconsol-

idated sediments or poorly consolidated bedrock, as marls,

under various climatic conditions governing bedrock disinte-

gration through chemical, thermal or rainfall effects (Nadal-

Romero et al., 2007).

The hydrological consequences of erosion processes on this

type of landscapes are a major issue for economics, indus-

try and environment: high solid transport, bringing heavily

loaded downstream flood, are silting up reservoirs (Cravero

and Guichon, 1989) and downstream river aquatic habitats

(Edwards, 1969). Therefore, monitoring and predicting ero-

sion within badland mountainous catchments is highly strate-

gic due to the arising downstream consequences and the

need for natural hazard mitigation engineering (Mathys et al.,

2003). Traditionaly, the monitoring activities in catchments

are derived from heavy in situ equipments on outlets or

from isolated and ponctual observations within catchments.

In complement to these traditional observations, hydrolo-

gists are expecting remote sensing to help them to upscale

and/or downscale erosion processes and measurements in

other catchments, by providing precise and continuous spa-

tial observations of erosion features or erosion driven fac-

tors (Puech, 2000). Among other inputs, erosion monitoring

and modelling approaches on badlands (Mathys et al., 2003)

need maps of landform features, mainly gullies (James et al.,

2007) that are driving the way flows and maps of impor-

tant driven factors of erosion in mountainous badland catch-

ments. These factors are soil and rocks characteristics (Malet

et al., 2003), vegetation strata used to derive 3D landcover

classes controlling rainfall erosivity, and the terrain topog-

raphy (Zhang et al., 1996), which allow to derive slope and

aspect of marly hillslopes (Mathys et al., 2003).

This paper aims at investigating the potentialities of us-

ing full-waveform lidar data as relevant altimeter data, but

also as a possible data source for 3D landcover classifica-

tion focusing on the characterization of badland erosion fea-

tures and terrain classification. If some papers have been

published regarding the interpretation of full-waveform li-

dar data, most of them are based on large footprint lidar

data acquired from satellite plateforms (Zwally et al., 2002).

Very few researches have been carried out on the analysis of

small footprint full-waveform airborne lidar data (Mallet and

Bretar, 2008). Considering their novelty and their complex-

ity, we propose to develop some new and specific guidelines

related to their processing (including some physical correc-

tions) and their management. Furthermore, we will show that

DTMs generated from lidar data are of high accuracy, even

over complex mountainous landscapes, which is consistent

with the study of erosion processes. Finally, the extraction

of the intensity and the width of each echo is investigated as

potential information for landcover classification. Intensity

and width are related to the target reflectance as well as to

the local geometry (slope, 3D distribution of the target).

This paper begins with a background on full-waveform li-

dar systems (Section 2.1) as well as a brief presentation of



Bretar et al.: Terrain surfaces and 3D landcover classification from full-waveform lidar data 3

a management system to handle the data (Section 2.2). We

then present the processes to convert raw data into 3D point

clouds (Section 3.1). Section 3.2 is dedicated to the develop-

ment of a filtering algorithm to classify the lidar point cloud

into ground/off-ground points as well as on the generation

of DTMs. The echo intensity and width extracted from full-

waveform lidar data are described in Section 3.3. We fo-

cus this section on theoretical developments (detailed in Ap-

pendix A), basis of the introduction of intensity corrections.

Section 4 presents the badland area whereon investigations

have been performed as well as the data: lidar data, orthoim-

ages and field measurements. DTMs produced by our algo-

rithm are then validated by both field measurements (Sec-

tion 5.1) and by the computation of an hydrological index

(Section 5.2) compared with manually (photo-interpretation)

extracted crests and thalwegs. We finally present in Sec-

tion 6 the results of a 3D landcover classification using a

first level of terrain vegetation cover classes and based on a

supervised classifier: the Support Vector Machines (SVMs).

Different features have been tested, including the three vis-

ible channels of the orthoimage. The opportunity of using

full-waveform lidar data for hydrological purposes is then

discussed.

2 Managing full-waveform lidar data

2.1 Background on full-waveform lidar systems

The physical principle of ALS consists in the emission of

short laser pulses, with a width of 5-10 ns at Full-Width-at-

Half-Maximum (FWHM), from an airborne platform with a

high temporal repetition rate of up to 200 kHz in multiple

echo mode. They provide a high point density and an accu-

rate altimeter description within each laser diffraction beam.

The two way runtime to the Earth surface and back to the

sensor is measured. Then, the range from the lidar system

to the illuminated surface is recorded (Baltsavias, 1999). A

lidar survey is composed of several parallel and overlapping

strips (100 m to 1000 m width).

The emitted electromagnetic wave interacts with objects

depending on its wavelength. The main influences on the

laser light come from artificial or natural objects belonging

to the illuminated surface. For ALS systems, near infra-red

sensors are used (typical wavelengths from 0.8 to 1.55 µm).

The Pulse Repetition Frequency (PRF) depends on the ac-

quisition mode and on the flying altitude. Contrary to multi-

ple echo systems which record only some high energy peaks

in real time, full-waveform lidar systems record the entire

signal of the backscattered laser pulse. Figure 1 shows raw

full-waveform data.

Full-waveform systems sample the received waveform of

the backscattered pulse at a frequency of 1 GHz. The foot-

print size depends on the beam divergence and on the flight

altitude. Most commercial airborne systems are small foot-

print (typically 0.3 to 1 m diameter at 1000 m altitude).

Fig. 1. Raw full-waveform lidar data: five emitted pulses and their

respective backscattered signals.

2.2 Handling full-waveform lidar data

Initially, raw full-waveform lidar data are sets of range pro-

files of various lengths. Raw profiles are acquired and stored

in the sensor geometry following both the scan angle of the

lidar system and a chronological order along the flight track.

After the georeferencing process and the pre-processing step

(Section 3.1), raw profiles become vectors of attributes con-

taining, for each 3D point, the x,y,z-coordinates, additional

parameters (intensity and FWHM) and a link to the sen-

sor geometry. Managing these data is much more complex

than images: the topology (neigbhorhood system, topologi-

cal queries) is designed to be as efficient as possible when

accessing and storing the data. Indeed, the data volume is

drastically larger than traditional laserscanning techniques:

it takes 140 GB for an acquisition time of 1.6 h with a PRF

of 50 kHz. Moreover, a 3D/2D visualization tool is also nec-

essary to handle the attributes, both in the sensor and in the

ortho-rectified geometries (cf. figure 2). A specific software

has therefore been developed for these purposes.

3 Processing full-waveform lidar data

3.1 From 1D signals 3D to point clouds

Contrary to multiple echo lidar sensors which provide di-

rectly 3D point clouds, full-waveform sensors acquire 1D

depth profiles along the line of sight for each laser shot. The

derivation of 3D points from these signals is composed of

two steps:

– The waveform processing step provides the signal max-

ima location, i.e., the range values, as well as additional

parameters describing the echo shape.

– The georeferencing process turns the range value to a

{x, y, z} triplet within a given geographic datum.
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Fig. 2. 3D representation of georeferenced waveforms on a crest. A

tree is lying on the crest.

WAVEFORM PROCESSING: It aims at maximizing the de-

tection rate of relevant peaks within the signal in order to

foster information extraction. In the literature, a parametric

approach is generally chosen to fit the waveform. Parame-

ters of a mathematical model are estimated. The objective is

twofold. A parametric decomposition gives the signal max-

ima, i.e., the range values of the different targets hit by the

laser beam. Then, the best fit to the waveform is chosen

among a class of functions. This allows to introduce new

parameters for each echo and to extract additional informa-

tion about the target shape and its reflectance.

Our methodology is based on a paper written by Chauve et al.

(2007). The authors describe an iterative waveform process-

ing using a Non-Linear Least Squares fitting algorithm. After

an initial coarse peak detection, missing peaks are found in

the residuals of the difference between the modelled and ini-

tial signals. If new peaks are detected, the fit is performed

again. This process is repeated until no further improvement

is possible. This enhanced peak detection method is useful

to model complex waveforms with overlapping echoes and

also to extract weak echoes.

The Gaussian function has been shown to be suitable to

model echoes within the waveforms (Wagner et al., 2006).

Its analytical expression is:

fG(x) = I exp

(

−|x − µ|2
2σ2

)

(1)

where µ is the maximum location, I the peak amplitude, and

σ the peak width.

For each recorded waveform, the transmitted pulse is also

digitized. By retrieving its maximum location, the time in-

terval between the pulse emission and its impact on a target

is known. The range value of the target ensues from the time-

of-flight calculation.

In this paper, the echo amplitude will be refered to as in-

tensity. However, in the literature, the intensity can also

be associated to the total energy of the echo, product of

the intensity and σ. The standard deviation σ corresponds

to the half width of the peak at about 60% of the full

height. In some applications, however, the Full-Width-at-

Half-Maximum (FWHM) is often used instead. We have

FWHM= 2σ
√

2 ln 2.

GEOREFERENCING: Similarly to multiple echo lidar sen-

sors, computing the {x, y, z} coordinates of each echo in a

geodetic reference frame from the range value requires ad-

ditional data. The scan angle is used jointly to the range to

calculate the {x, y, z} position for each point in the scan-

ner coordinate frame. Then, the GPS position of the aircraft,

and the sensor attitude values (roll, pitch, heading) for each

laser shot are recovered from the full-waveform data file to

calculate the {x, y, z} in a given geodetic datum. Finally, the

positions can be transformed in some cartographic projection

(French NTF Lambert II Etendu in this paper, see Section 4

for more details).

The transformation formulas cannot be expressed because

they differ from a sensor to another. Offset values are dif-

ferent, depending on the configuration of the laser system,

GPS and Inertial Measurement Unit (IMU) devices.

After applying the advanced step of waveform modelling,

full-waveform lidar data generate denser point clouds than

multiple echo data. It is particularly relevant when studying

the vegetation structure (Mallet and Bretar, 2008). However,

we will see in Section 6 that additional parameters are also

of interest for landcover or soil classification.

3.2 From point clouds to DTM

The processing of a lidar point cloud consists in classifying

the data, which is generally associated to the resampling of

the data on a regular grid. Due to the very fine geometry of

a lidar point cloud, many algorithms have been developed to

automatically separate gound points from off-ground points

(Sithole and Vosselman, 2004). Most of these approaches

have good results when the topography is regular, but re-

main unperfect in case of mixed landscapes and slope con-

ditions: parameters of the algorithms are often difficult to

tune and do not fit over a large area. When ground points

are mis-classified as off-ground points, the accuracy of the

DTM may decrease (it depends on the spatial resolution and

on the interpolation method). Inversely, when off-ground

points (vegetation or man-made objects) are considered as

ground points, the DTM becomes spiky which can be mis-

interpreted by hydrological models. Vegetated landscapes
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with sparse vegetation in a mountainous areas (alpine land-

scapes) are particularly interesting for the study of natural

hydrology and the phenomenoms of erosion (cf. Section 4).

Nevertheless, the processing of such landscapes need strong

human interactions to correct the classification: typical errors

are mis-classification of vegetation points in steep slopes,

over-estimation of the DTM in case of dense vegetated ar-

eas, under-estimation of the DTM in open slope areas when

the local slope is not explicitly introduced in the process.

A methodology that handles these problems has been re-

cently developed (Bretar and Chehata, 2008) and is used in

this study to compute the DTMs. It is based on a two step

process:

i. The computation of an initial surface using a predic-

tive Kalman filter: it aims at providing a robust surface

containing low spatial frequencies of the terrain (main

slopes). The algorithm consists in analyzing the altime-

ter distribution of the point cloud of a local area in the

local slope frame. Points of the first altimeter mode

(lowest points) belong to the terrain. A DTM value at

a specific position depends on the neighboring pixels

through their respective uncertainties. The predictive

Kalman framework provides not only a robust terrain

surface (the slopes are also integrated in the predictive

filter), but also an uncertainty σDTM for each DTM pixel

as well as a map of normal vectors −→n .

ii. The refinement of this surface using a Markovian reg-

ularization: it aims at integrating micro relieves (lidar

points within the uncertainty σDTM) in a minimization

process to refine the terrain description. Formulated

in a Bayesian framework, additional prior information

(crest, thalweg etc.) can also be integrated in the refine-

ment process.

The lidar point cloud is then classified based on geomet-

ric criteria. A lidar point is labelled as GROUND if it is

located within a buffer zone defined as the corresponding

DTM uncertainty σDTM. Otherwise, it is considered as OFF-

GROUND. In natural landscapes, off-ground points belong

mainly to vegetation, and sometimes to human-made features

(e.g., electric power lines, shelters). Vegetation areas are

described as non-ordered point cloud (high variance) com-

pared to human-made structures. Vegetation points are there-

fore extracted by fitting a plane on the off-ground points. If

the residuals are higher than a defined threshold (∼ 0.3 m),

points are labelled as VEGETATION. Figure 3 summarizes

the entire algorithm to calculate a DTM from a lidar point

cloud. This classification is not explicitly used in the follow-

ing, but for generating the validation set related to the super-

vised classification (Section 6). Figure 4 is a 3D bird view of

the orthoimage superimposed on the DTM.

Fig. 3. Flowchart of the geometrical processes of a lidar point cloud.

Fig. 4. 3D bird view of the orthoimage superimposed on the DTM.

©IGN

3.3 Processing intensity and width of lidar echoes

Beyond the 3D point cloud, full-waveform lidar data provide

intensity and width of each echo (Section 3.1) that are po-

tential interesting features for landcover classification. The

backscattered intensity (or received power) is a function of

the laser power, the distance source-target, the incidence an-

gle, the target reflectivity, the absorption by the atmosphere

etc. The use of such features in a landscape classification

framework necessitates a global coherence between all strips.

Correcting the recorded intensity values from some of known

contributions makes possible the analysis of “physical” pa-

rameters such as the target reflectivity. We propose also to

analyze the effect of the incidence angle on the Full-Width-

at-Half-Maximum.

3.3.1 The intensity

According to Nicodemus et al. (1977), the scattered radiant

flux Ps in the zenith/azimuth angles (θs, φs) within the cone

Ωs is related to the incident flux Pi in the direction (θi, φi)
within Ωi by (Figure 5)

Ps(θs, φs,Ωs) = ̺(Ωi,Ωs)Pi(θi, φi,Ωi) (2)
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where ̺(Ωi,Ωs) is the biconical reflectance.

Fig. 5. Coordinate system of the scattered and incident radiant flux.

Introducing the backscattered cross section of the target σ,

equation 2 can be rewritten as (Wagner et al., 2008b):

Ps =
D2

r

4πR4β2
t

σPi (3)

where Dr is the diameter of the receptor, R the range from

sensor to target, βt the laser beam width.

With σ = πρmR2β2
t cos θs (Höfle and Pfeifer, 2007)

Ps =
D2

r ρm

4R2
cos θsPi (4)

where ρm is the target reflectance, which depends on the ma-

terial.

Since the recorded intensity is proportional to the

backscatterred flux Ps, correcting intensity values gives

access to the target reflectance, and therefore, in case of

a Lambertian surface, to the classification of the material.

Since the apparent reflecting surface is smaller in case of

non-zero incidence angle than in case of zenithal measure-

ments (the cosinus dependency in equation 4), recorded

intensity values are corrected from the scalar product of the

emitted laser direction and the corresponding terrain local

slope extracted from the DTM.

We have also remarked that emitted pulses have signifi-

cant amplitude variations along the flight track which may

alter the spatial homogeneity of returned waveforms. Fig-

ure 6(a) represents the ratio between the intensity values of

the emitted laser pulse and the average intensity values over

the whole strip along the flight track (x-axis). Considering

the high PRF of the laser, intensity values are constant along

the scan line. The effects of such variations are visible in

the returned waveforms as vertical lines (figure 6(b)). We

therefore normalized the returned waveforms by the average

intensity value of all emitted pulses. The effects of the cor-

rection are presented in figure 6(c). One can notice that ver-

tical lines have disappeared.

3.3.2 The Full-Width-at-Half-Maximum

The FWHM has shown some spatial variability in our data

set. Considering the badland and alpine landscape, we inves-

tigated the influence of the incidence angle on the FWHM

only in case of bare soil areas. Indeed, the FWHM of

under-vegetation ground points may have been modified by

the complex optical medium. These investigations have been

performed on simulated waveforms reflected by a tilted pla-

nar surface. Appendix A gathers the entire developements

as well as some discussions. We show that, in our acquisi-

tion configuration (low divergence angle, low flight altitude),

the FWHM should stay constant with various incidence an-

gles. We cannot extend this conclusion for ground points

below the vegetation since the waveform has been modified

through the canopy cover. The spatial variability is therefore

attributed to a more complex spatial beam response of the

surface due to structures and/or reflectance properties.

4 Materials

Lidar data have been acquired over the Draix area, France.

Draix area is an experimental area on erosion processes in

badlands located in the South of the French Alps. It belongs

to the Euromediterranean Network of Experimental and Rep-

resentative Basins (ERB). The Draix area consists in five re-

search experimental catchments, highly equipped and mon-

itored for more than thirty years. Thirteen research units

working on erosion and hydrology processes are grouped

within the GIS Draix organization (Mathys, 2004). Results

for the most two eroded catchments are presented here: they

concern the Laval and the Moulin catchments.

4.1 Lidar data

The data acquisition was performed in April 2007 by

Sintégra (Meylan, France) using a RIEGL© LMS-Q560 sys-

tem. This sensor is a small footprint airborne laser scanner

and its main technical characteristics are presented in Wagner

et al. (2006). The lidar system operated at a PRF of 111 kHz.

The flight height was approximatively 600 m leading to a

footprint size of about 0.25 m. The point density was about

5 pts/m2.

The temporal sampling of the system is 1 ns. Each return

waveform is made of one or two sequences of 80 samples.

For each profile, a record of the emitted laser pulse is also

provided (40 samples).
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(a) Ratio between the intensity value of the emitted laser pulse

and the average intensity values over the whole strip. Values are

represented in grey level scale and stretched between 0.72 and

1.35

(b) Raw return intensity of the first echo. Values are represented

in grey level scale and stretched between 0 and 150.

(c) Corrected return intensity of the first echo from the laser fluc-

tucations. Values are represented in grey level scale and stretched

between 0 and 150.

Fig. 6. Effect of the correction from the laser fluctuations. Images

are presented in the sensor geometry.

For this study, three overlapping strips have been used with

perpendicular direction. For each of them, a sub-part corre-

sponding to the Moulin and the Laval catchement have been

extracted. Strip footprints are presented in figure 8 and de-

noted S6 (blue), S7 (red), S8 (green).

(a) Orthoimage acquired during the lidar survey (RGBRAW).

(b) Orthoimage extracted from the IGN BDOrtho© (RGBIGN).

Fig. 7. Two orthoimages RGBIGN and RGBIGN over the Draix area.

4.2 Orthoimages

Two orthoimages were available for the study. The first

one is extracted from the French IGN data basis BDOrtho©.

Acquired in fairly good conditions (almost no shadowed

zones) by the IGN digital camera, a physical-based radiomet-

ric equalization process has been applied (Paparoditis et al.,

2006). The ground resolution is 0.5 m. The triplet of {red,

green, blue} channels of the IGN image will be referred in

this article to as RGBIGN. The second orthoimage has been

calculated from aerial images acquired during the lidar sur-

vey by an embedded digital camera. Since the survey has

been performed early in the morning, numerous shadowed

areas appear. Moreover, no radiometric equalization has

been performed entailing a rather poor radiometric quality

(see figure 13). The ground resolution is 0.2 m. The triplet

of {red, green, blue} channels of this image will be referred

in this article to as RGBRAW.

4.3 Field measurements

Quality control points (or ground truth data) were surveyed

by a mixed campaign DGPS in Real Time Kinematics (RTK),

and a Total Station (ellipsoid: CLARKE 1880 IGN, geoid
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Fig. 8. Lidar strips superimposed on the orthoimage. The blue

(resp. red and green) strip is denoted S6 (resp. S7 and S8). Field

measurements are also plotted: blue points represent the West sub-

set, red points the East subset.

model RAF98, coordinate reference system NTF Lambert

II Etendu). The accuracy was 0.025 m in planimetry, and

0.03 m in altimeter. These points are chosen mainly on thal-

wegs (bottom of gullies) and crests. Some gullies are so deep

that the GPS system (Leica 1200) was not able to work at the

same accuracy. Those points were then surveyed with the

help of a Total Station (Sokkia SET630R). 3D crossed val-

idation between DGPS and Total Station surveys performed

in six points were never greater than one centimeter. A total

of 2886 quality control points have been used (cf. figure 8).

5 DTMs analysis

5.1 Qualification of DTMs with field measurements

We present in table 12 a comparison between field measure-

ments and three DTMs generated from each single strip (S6,

S7 and S8). One can observe that there is a bias in each DTM

w.r.t field measurements as well as a significant standard de-

viation and RMS.

Looking carefully throught the lidar data and the statistics,

a strip adjustment problem was diagnosticated. In order to

validate the DTMs, the West part of the field measurements

has been used to adjust the DTM while the East part to val-

idate the terrain surface (denoted West#East in table 11).

We also took the dual configuration (East#West) to test the

relevancy of the proposed correction. Here, the adjustement

consists in finding the best 3D translation Topt that minimizes

a RMS between field measurements and their projection on

the DTM. We used a brute force method to explore the entire

parameter space. A x, y (resp. z) search step of 0.4 m (resp.

0.1 m) was chosen in relation to the planimetric (resp. al-

timeter) accuracy of lidar points. The symmetrical validation

gives some hints on the real deformations of the DTM, which

are generally much more complex than a 3D translation. Ta-

ble 11 gathers the results of both the optimal correction ap-

plied to each DTM and the mean and standard deviation of

respectively West#East and East#West configurations.

Table 11 shows that the adjustement improves the final ac-

curacy of DTMs both by decreasing the bias and the standard

deviation. However, one can notice that the optimal 3D trans-

lation varies depending on the West#East and East#West

configuration. A 0.4 m difference in the y-direction of Topt

for DTMs S7 and S6 doubles the standard deviation, while a

0.8 m difference in the y-direction of Topt for DTM S8 has

no effect on the final accuracy. These observations tend to

show that the deformations between DTMs is not purely a

3D translation, but is of different nature such as polynomial

(surface tilt) or non linear (rotation).

As a conclusion, we can say that, after a simple geometric

adjustement, the calculated DTMs at 1 m resolution have an

absolute altimeter accuracy of some decimeters. A better ge-

ometric adjustement should improve this accuracy.

5.2 Qualification of DTMs with hydrological indexes and

photo-interpretation

The quality assessment of a DTM for hydrological purposes

is not completely satisfying when considering only the al-

timeter error distribution. Other DTM quality criteria di-

rectly connected to the usual hydrological information ex-

tracted from DTM may be used: drainage networks, drainage

areas, slopes like presented in (Charleux-Demargne, 2001).

These criteria are mainly based on the basic landform in-

formation related to the first and the second derivative of a

DTM. However, these criteria are not easy to use in a qualifi-

cation process since (1) they are conditioned by both the al-

gorithms and the parameters used to produce the information

(e.g., a drainage area threshold in the D8 flow accumulation

algorithm), (2) reference data are not easily available (how

to survey drainage networks?) and finally (3) the quantifica-

tion of quality is often not properly defined (how to compare

dissimilarities of drainage networks?). Moreover, criteria are

usually not generic: it is related to a specific hydrological

index.

In order to overcome these problems, a single criteria is pro-

posed for a quantified auto-evaluation of DTMs at a given

resolution in erosion areas with an hydological and morpho-

logical point of view.

This criteria is the rate of crests and thalwegs observed from

an orthoimage that are detected from the convergence index

(CI) built on a DTM (Köthe and Lehmeier, 1994). The con-

vergence index corresponds, for each DTM cell, to the mean

difference between angle deviations. These angle deviations

are calculated in each of the eight adjacent pixels. For an ad-

jacent pixel, the angle deviation is the absolute difference, in

degrees, modulo 180, between its aspect and the azimuth to
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the central pixel (Zevenbergen and Thorne, 1987). The con-

vergence index is a symetric and continuous index ranging

from -90° up to 90°. This index highlights crests when highly

positive and thalwegs when highly negative. Figure 9 shows

the convergence indexes computed on S6. Main thalwegs

and crests appear with respectively highly negative (blue)

and positive (red) values.

Fig. 9. CI computed on S6 superimposed to the orthoimage.

At a given location, a thalweg (resp. a crest) is considered

to be detected in the DTM) if CI values belong to [−90°,−η]
(resp. to [η, 90°], η ∈ R). On a “perfect” DTM without

noise, only CI=0 (i.e., η=0) indicates a plane terrain with-

out any crests and thalwegs, whatever the slope is. When

dealing with noisy DTM, thresholding the CI with η to re-

trieve significant crests and thalwegs becomes a challenging

task. We therefore simulated a distribution of CI from a set of

1000 virtual noisy DTMs. They were generated with a trend

corresponding to a plane of constant slope (e.g., 33° is the

mean slope of Draix area). The simulation consists in gen-

erating Gaussian random fields (Lantuejoul, 2002) using the

LU method (Journel and Huijbregts, 1978) following noise

spatial distribution models with parameters: range, nugget

and sill (variance) for spatial covariance.

Since the simulated CI distribution is of Gaussian shape,

we set η to two times the standard deviation. We accept that

five percents of CI values due to hazard on noise can be clas-

sified in significant crest and thalweg.

We show some results on a sub-aera of Draix. The simu-

lated CI distribution (performed on 33°slope, Gaussian noise

of zero mean and 2.66 standard deviation) provides a thresh-

old value η = 8.46. We show the results of the thalweg

and crest detection on figure 10. Figure 10(a) is a man-

ual delineation of apparent crests and thalwegs. The photo-

interpretation process is applied on main structures, but very

near linear elements and the ones near sporadic vegetated el-

ements are not considered.

Table 13 presents the quality criteria for S6 and S8.

The values obtained are conditioned by the spatial resolu-

tion of the DTM and the relative georeferencing of the data

(a) (b)

Fig. 10. (a) Test area (85 * 85 m) with photo-interpreted thalwegs

(blue) and crests (yellow). (b) Detection of significant crests (red)

and thalwegs (blue).

(image and DTM). However, when comparing results for S6

and S8, results show that (1) S6 is better representing land-

forms than S8 and (2) crests are more precisely detected in

DTMs than thalwegs.

5.3 Discussion

Regarding the altimeter quality of full-waveform LiDAR

DTMs, we obtain a rather precise and accurate relief resti-

tution of a catchment of several square kilometers (about

the same as the one obtained with multi-echo LiDAR). The

observation of local erosion processes requires a more de-

tailed relief restitution. Other techniques like terrestrial Li-

DAR or photogrammetry by unmanned aerial vehicles (Ja-

come et al., 2008) are more accurate and precise, but, are not

well adapted to survey large areas. However, considering the

altimeter accuracy of DTMs (approximately 0.9 m for 2 stan-

dard deviation on the altimeter random error), and that the lo-

cal ablation speed over Draix area is of 1.5 cm per year (Oost-

woud and Ergenzinger, 1998), change detection and monitor-

ing of erosion effects would require a delay between surveys

of several decades. Nevertheless, the loss of sediment vol-

ume within catchments are not homogeneous and are tem-

porary stored on hill-slope gully networks: ∼ 200 tons/km2

are trapped in the gully network), which corresponds to an

approximate of 150 m3 (Mathys et al., 1996). These vol-

umes are significant enought to shorter time lag for a mul-

tidate analysisfull-waveform LiDAR DTM (lower than a

decade), even with an accuracy of some decimeters. Only

full-waveform LiDAR survey which gives an adequate com-

promise between precision, accuracy and extent makes pos-

sible the monitoring of sediment volume displacement in the

gully network at a catchments scale
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6 3D landcover classification

6.1 Methodology

Lidar data have been used so far as accurate altimeter data

to extract ground points and generate DTMs. The chal-

lenges were to automatically process the data in a mountain-

ous landscape with steep slopes and vegetation, the whole

with the highest accuracy. We mentionned in the introduc-

tion that a landcover map is an important input of hydro-

logical models. We therefore propose in this section to de-

scribe the inputs and outputs of a classification framework

wherein lidar width and intensity values can be integrated

and their benefit evaluated. Indeed, the interpretation of ad-

ditional lidar parameters has been barely studied and reveals

to be of interest for landcover classification. Wagner et al.

(2008a) proposed classification rules based on a decision tree

for vegetation/non-vegetation areas in a urban landscape us-

ing solely the width and the amplitude: a point is consid-

ered as VEGETATION if (1) it is not the last pulse of a pro-

file containing multiple returns (2) it is a single return with

low amplitude (≤75) and large width (≥1.9 ns). Focusing

on the study of the vegetation, Reitberger et al. (2008) have

integrated different features to segment individual trees in a

graph-cut framework. Among them, the authors show that

the feature corresponding to the average intensity on the en-

tire tree plays the most important role in leaf-on conditions,

while the ratio between the number of single reflections and

the number of multiple reflections is the most important in

leaf-off conditions.

Here, we would like to answer the question: do lidar width

and intensity values improve a classification pattern in bad-

lands? An efficient supervised classification algorithm called

Support Vector Machines (SVM) has been used (Chang and

Lin, 2001). This machine learning algorithm is well adapted

to deal with high-dimensional feature space since the algo-

rithm complexity does not depend on the data dimension.

In recent years, SVM was shown to be relevant technique

for remote sensing data analysis (Huang et al., 2002): abil-

ity to mix data from different sources, robustness to dimen-

sionality, good generalization ability and a non-linear deci-

sion function (contrary to decision trees for instance). In this

paper, the 3D lidar point cloud is labelled, thus providing a

3D landcover classification. (Mallet et al., 2008) applied this

technique with success for classifying urban areas from full-

waveform lidar data.

Four classes have been identified focusing on a first hierar-

chical level of 3D land cover classification, relevant for bad-

lands landscapes with anthropogenic elements: 1-LAND, 2-

ROAD, 3-ROCK and 4-VEGETATION. The three first classes

can be ordered on an increasing erosion sensitivity criteria.

The first class LAND is taking into account terrain under nat-

ural vegetation cover and cultivated areas in grassland. The

second one, ROADs, are linear elements with natural (marls),

bared but compacted material. These elements are known to

impact runoff production within catchments. The third one

contains areas with bared black marls in gullies, the main

source of sediment production. The latter, vegetation, could

be used further to describe the 3D vegetation structure, use-

ful for a more detailed hierarchical level of 3D land cover

classification.

SVM algorithm requires its own feature vector for each 3D

lidar point to be classified. Only three lidar features have

been retained. Indeed, it appears that the larger the number

of features, the more difficult to make an interpretation of the

results. They are:

– dDTM, the distance between the 3D point and the DTM,

– I, the echo intensity,

– FWHM, the echo width.

Additionally, the RGBIGN and RGBRAW features have been

added in the classifier, providing three radiometric attributes

(figure 12). Their introduction allows a discrimination be-

tween road and land impossible with the lidar features and

improve the classification results. The radiometric quality of

the orthoimage has been tested using both orthoimages.

The training set over each of the four classes has been man-

ually defined by selecting a specific mask on the orthoimage

(photo-interpretation). We have implemented the SVM al-

gorithm with the LIBSVM software (Hsu and Lin, 2001),

selecting the generic Gaussian kernel. For more theoretical

explanations, please see (Pontil and Verri, 1997).

6.2 Results and discussion

The data set S6 has been analyzed. Figure 11 shows the his-

tograms of lidar derived features corresponding to the four

selected classes. dDTM and the I have bounded values which

describe the vegetation (resp. > 1 m and between 0 and

20), whereas the width values tend to be uniform between

3 ns and 4.5 ns. Road and land have similar distributions

for lidar derived features, which explains the high confusion

values in Table 14. The distributions of rocks is flattened

for the distance to the DTM since many points are choosen

in very steep slopes, and are therefore more sensitive to the

DTM quality. The intensity of rocks is slighty different from

the other classes. Figures 12 and 13 shows the histograms of

RGBIGN.

The classification is validated with ground truth sets de-

fined both manually on the orthoimage and also using the

geometric classification assigned in Section 3.2. We assume

that points below the vegetation truth set belong to the class

LAND. ∼ 40 % of the total number of points have been vali-

dated. Figure 14 shows the four validation sets for each class.

A confusion matrix is then calculated for each configuration.

The accuracy of the classification results are quantified by

the average accuracy AA, mean of the diagonal values of the
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Fig. 11. Histograms of I, FWHM and dDTM for the four classes

ROAD, ROCK, LAND and VEGETATION.
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Fig. 12. Histograms of RGBIGN for the four classes ROAD, ROCK,

LAND and VEGETATION.

confusion matrix. AA does not depends on the number of

points in each validation set.

When using solely lidar derived features {dDTM, I,
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LAND and VEGETATION.

Fig. 14. Ground truth classification of S6 for each class LAND (dark

brown), ROAD (red), ROCK (orange) and VEGETATION (dark green).

FWHM}, table 14 indicates that the confusion between

classes is not negligible particularly for some of them: ROCK

with ROAD reaches 22.4 %, while LAND with ROAD reaches

19.4 %, what was predictable looking through the statistics

of the training set (Figure 11). The vegetation has a high per-

centage of true positive (94.2 %) and is well detected. With

an average accuracy of 79.1 %, it appears that a classification

based only on lidar derived features is consistent.
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Before testing the effects of introducing lidar intensity and

width, we investigated the impact of the radiometric qual-

ity of the orthoimages on the classification results. Tables

15 and 16 are the confusion matrices corresponding to the

classification results with respectively {dDTM, RGBRAW} and

{dDTM, RGBIGN}. One can observe a significant discrepancy

between both radiometric features with an average accuray

of 82.1 % using {dDTM, RGBRAW} and 92.2 % using {dDTM,

RGBIGN}. The true positive values of ROCK (resp. ROAD) in-

crease from 73 % (resp. 74 %) to 89.3 % (resp. 93.5 %) when

using {dDTM, RGBIGN} instead of {dDTM, RGBRAW}. More-

over, the confusion between several classes decreases signif-

icantly: ROAD with ROCK decreases from 10.4 % to 3.7 %,

ROAD with LAND from 13.8 % to 1.2 %, ROCK with ROAD

from 19.8 % to 8 %, LAND with ROAD from 4.2 % to 1.5 %.

In other words, the use of {dDTM, RGBIGN} instead of {dDTM,

RGBRAW} gives better classification results.

True positive values are higher when using image-based fea-

tures {dDTM, RGBIGN} than {dDTM, I, FWHM} and the con-

fusion between classes most of the time decreases: LAND

with ROAD decreases from 19.4 % to 1.5 %, ROAD with

ROAD decreases from 22.4 % to 8 %. Nevertheless, the com-

parison is more mitigated with {dDTM, RGBIGN}. Indeed,

true positive values of ROAD decrease from 84.2 % to 74 %
and the confusion between the other classes increases signif-

icantly. However, LAND is better classified with less confu-

sion with ROAD (19.4 % to 4.2 %). As a results, it appears

that even if the average accuracy of a classification using

image-based features is better, intensity and width of lidar

echoes have interesting discriminative properties.

The results of the introduction of lidar intensity and width

in the classification process are shown in tables 17 and 18.

There are minor effects on the results when using {RGBIGN,

I, FWHM, dDTM} instead of {RGBIGN, dDTM}. The classifi-

cation is bettered when using {RGBRAW, I, FWHM, dDTM}
instead of {RGBRAW, dDTM}, true positive values of ROCK

increase from 73 % to 76.2 %, ROAD increase from 74 % to

77.1 %, VEGETATION are similar and LAND increase from

85.8 % to 87.1 %. When comparing {RGBRAW, I, FWHM,

dDTM} with {I, FWHM, dDTM} (table 14), the improvement

is particularly consistent for ROCK, LAND and VEGETATION,

but true positive values of ROAD decreases from 84.2 % to

77.1 % and the confusion with ROCK increases from 7.5 %
to 13.4 %. In fact, the radiometry of roads are sensitive to

tree shadows. The combination of the very high resolution

of RGBRAW and the time of the survey (early in the morning)

feeds the training set with bright and dark (shadow) radio-

metric values. On the contrary, lidar intensity and width do

not depend on the sun configuration. Superimposed on the

orthoimage of figure 14, a 3D landcover classification ob-

tained with {RGBIGN, I, FWHM, dDTM} is presented in fig-

ure 15 and figure 16.

Finally, the quality of the classification depends mainly on

the DTM accuracy (represented here as dDTM). Moreover,

within the framework of the methodology, it appears that a

classification based on {I, FWHM, dDTM} is suitable, but

gives a worse accuracy than a classification based on {dDTM,

RGBRAW} or {dDTM, RGBIGN}. Used on their own, full-

waveform lidar data are relevant to discriminate vegetation

from non vegetation points, but the confusion between other

classes remains not negligible. The intensity and the width

do not improve the classification accuracy if the radiometric

features have a good separation between classes. Otherwise,

the benefit is rather small, but in case of artefacts in a class

(like whadow) for which lidar measurements are not sensi-

tive. Inversely, the use of poor radiometric features may alter

the classification result of specific landscapes (here ROAD)

where intensity and width are well bounded.

7 Conclusions

The different points treated in this paper entail some conclu-

sions. Firstly, the accuracy of the lidar data we worked on

(badlands) was proven decimetric. Even if erosion dynamics

on these landscapes would require a centimetric accuracy to

be studied yearly, DTMs generated from lidar survey are con-

sistent for hydrological sciences at the catchment level. We

focused this paper on generating and qualifying DTMs, but

also on the automatic computation of a 3D landcover clas-

sification. We showed that lidar intensity and width contain

enough discriminative information on badlands to be classi-

fied in LAND, ROAD, ROCK and VEGETATION with ∼ 80 %
accuracy. The introduction of image-based radiometric fea-

tures in the classifier improved the accuracy of the classifica-

tion (∼ 92 %), provided that they bring relevant discrimina-

tion between classes. Otherwise, it would be better to intro-

duce alternative data.

Appendix A

Waveform simulation

This section aims at investigating the received waveform

properties of a laser pulse after a reflection onto a tilted plane.

The simulation is meant to represent one typical situation

that occurs when surveying a vegetation-free area of various

slopes. We focus this section on studying the influence of the

incidence angle with regard to the FWHM. The simulation is

based on the paper written by Kirchhof et al. (2008).

A received waveform R(x, y, z, t) is often written as

a temporal convolution product between the emitted laser

pulse s(t), the impulse response of the receiver h(t), the spa-

tial beam profile P (x, y) and the illuminated area S(x, y, z).

R(x, y, z, t) = s(t) ∗ h(t) ∗ P (x, y) ∗ S(x, y, z) (A1)

where ∗ is the convolution operator.
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Assuming h(t) constant (ideal photodiode, infinite band-

width and linear frequency characteristic of the receiver) and

a uniform spatial distribution P (x, y), equation A1 can be

written as

R(x, y, z, t) = s(t) ∗ S(x, y, z, t) (A2)

The surface response can describe the geometry of the sur-

face as well as reflectance properties. Assuming the surface

to be Lambertian, we can write:

R(x, y, z, t) =

τ=∞
∑

τ=−∞

s(τ − t)S(x, y, z, τ) (A3)

For the simulations, waveforms are sampled at 10 GHzso

that small variations of the FWHM should be detected.

• Derivation of the emitted pulse

The emitted pulse can be of different shapes. Kirchhof

et al. (2008) use a uniform distribution since it fits with their

system. Our data showed that the emitted pulse was most of

the time of Gaussian shape. We therefore used a Gaussian

distribution of a given standard deviation σ0 to simulate the

interactions with the tilted plane.

s(t) = exp

(

− t2

σ2
0

)

(A4)

• Derivation of the surface response

We consider the coordinate system described in figure A1.

Fig. A1. Coordinate system of the simulation.

The divergence of the laser beam is denoted θ. The normal

vector of the plane is oriented in the (0, x, y)-plane. The laser

pulse and the receiver are located in (0, 0, 0). S is therefore

the intersection of the divergence cone and the plane:

S(x, y, z, t) =

{

x2 + y2 ≤
(

z tan( θ

2
)
)2

x sinϕ + z cos ϕ = r0 cos ϕ
(A5)

⇔S(z) = 2

√

(

z tan(
θ

2
)

)2

− (r0 − z)
2
cot2 ϕ (A6)

with z ∈ [
r0

1 + tan( θ

2
) tanϕ

;
r0

1 − tan( θ

2
) tanϕ

]

When subsituting z = ct

2
, (c is the speed of light) we obtain

the temporal description of the surface response between tmin

and tmax. From the receiver point of view, a contribution of

the surface at a given time is an ellipse section (equation A6)

along the y-axis between t and t + dt. Considering the very

short integration time ∆t = tmax − tmin for realistic inci-

dence angles ϕ and the small divergence angle θ, the surface

response is symmetric w.r.t 2r0

c
.

The integration time ∆t is particularly of importance in the

convolution product: the larger ∆t, the flatter the convolved

received waveform. ∆t depends on the incidence angle ϕ,

on the beam divergence θ and on the range r0. Figure A2

shows the variations of the integration time w.r.t. the inci-

dence angle ϕ for various divergence angles. For a given

range r0 = 500 m (which is a common flight altitude for a

full-waveform lidar survey) and θ = 0.3 mrd (which is the

RIEGL©standard), one can observe that the integration time

remains short for large incidence angles:

max∆t<1ns(ϕ) < 45°

max∆t<2ns(ϕ) < 65°

}

θ = 0.3 mrd

For larger divergence angles, the incidence angles have a

strong effect on the integration time. We have

max∆t<1ns(ϕ) < 17°

max∆t<2ns(ϕ) < 31°

max∆t<7ns(ϕ) < 65°







θ = 1 mrd

max∆t<1ns(ϕ) < 9°

max∆t<2ns(ϕ) < 17°

max∆t<14ns(ϕ) < 65°







θ = 2 mrd

Figure A3 shows the variations of the integration time

w.r.t. the range r0 for a given incidence angle ϕ = 30°

and various divergence angles. We note that the integration

time remains again short w.r.t. the range for small divergence

angles. For small footprint lidar, seeing that an airborne full-

waveform survey is performed at a flight altitude less than

1000 m, the effect is negligible on the convolution. It is no
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Fig. A2. Variations of the integration time ∆t = tmax − tmin with

regard to ϕ ∈ [0; 90° − θ

2
]. r0 = 500 m, θ = 0.3 mrd (black),

θ = 1 mrd (red) and θ = 2 mrd (green).

longer true when dealing with large footprint satellite data.

max∆t<1ns(r0) < 868 m

max∆t<2ns(r0) < 1733 m

}

θ = 0.3 mrd

max∆t<1ns(r0) < 260 m

max∆t<2ns(r0) < 520 m

max∆t<4ns(r0) < 1040 m







θ = 1 mrd

max∆t<2ns(r0) < 260 m

max∆t<4ns(r0) < 520 m

}

θ = 2 mrd
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Fig. A3. Variations of the integration time ∆t = tmax − tmin with

regard to r0 ∈ [200 m; 4000 m]. θ = 0.3 mrd (black), θ = 1 mrd

(red), θ = 2 mrd (green) and ϕ = 30°.

• Variations of the FWHM w.r.t. the incidence/ diver-

gence angle

We noticed previously that the integration time modifies

the surface response. It is particularly true for large diver-

gence/incidence angles as well as for large ranges. We would

like to investigate the results of the convolution between the

emitted laser pulse (σ0 = 2.1 ns ⇔ FWHM = 5 ns) and

the surface response for various incidence/divergence angle

and various ranges. Table 19 summarizes our experiments.

For a weak divergence angle θ = 0.3 mrd, the variations

of the FWHM w.r.t. the incidence angle and to the range are

negligible. For a small incidence angle ϕ = 10°, the ef-

fect of the divergence angle and of the range are negligible.

For an incidence angle of ϕ = 30°, the variations of the

FWHM increases with the range and the divergence angle,

but remain negligible for operational flight conditions of a

full-waveform airborne survey and a GigaHz sampler. For

a large incidence angle ϕ = 60°, the variations become

significant both with increasing the divergence angle and the

range.
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Fig. 14. Orthoimage of the Draix area.

Fig. 15. Classification results: LAND (dark brown), ROAD (red), ROCK (orange).
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Fig. 16. Classification results: LAND (dark brown), ROAD (red), ROCK (orange) and VEGETATION (dark green).
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Table 11. Field comparison of the DTM after adjustement.

Topt (m) Mean±Stddev (m)

S6
West#East [-1.6 0.4 0.2 ] -0.13 ± 0.46

East#West [-1.6 0.8 0.2 ] −0.11 ± 0.88

S7
West#East [0.4 1.6 0 ] 0.06 ± 0.33

East#West [0.4 1.2 0] −0.04 ± 0.62

S8
West#East [-0.8 -0.8 0.2 ] -0.06 ± 0.41

East#West [-0.8 -1.6 0] −0.04 ± 0.42
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Table 12. Field comparison of the DTM before adjustement.

DTM # Pts Mean ± Stdd (m) RMS (m)

S6 1749 0.18 ± 1.05 1.07

S7 2797 −0.20 ± 0.79 0.82

S8 2886 0.41 ± 0.65 0.77
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Table 13. Morphological quality criteria results

DTM S6 S8

Detected crests (%) 72.6 47.1

Detected thalwegs (%) 53.5 44.7

Overall (%) 62.8 45.8
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Table 14. Confusion matrix corresponding to the classification with {I, FWHM, dDTM}.

# points ROCK ROAD VEGETº LAND

71216 ROCK 69.6 22.4 0.4 7.3

13244 ROAD 7.5 84.2 0.1 6.6

402995 VEGETº 0.9 0 94.2 4.7

279321 LAND 9.1 19.4 2.7 68.6

AA 79.1%
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Table 15. Confusion matrix corresponding to the classification with {dDTM, RGBRAW}.

# points ROCK ROAD VEGETº LAND

71216 ROCK 73 19.8 0.9 5.9

13244 ROAD 10.4 74 0.2 13.8

402995 VEGETº 0.9 0.4 95.8 2.8

279321 LAND 7 4.2 2.9 85.8

AA 82.1%
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Table 16. Confusion matrix corresponding to the classification with {dDTM, RGBIGN}.

# points ROCK ROAD VEGETº LAND

71216 ROCK 89.3 8 0.2 2.2

13244 ROAD 3.7 93.5 0 1.2

402995 VEGETº 0.8 0.2 95.7 3.2

279321 LAND 4 1.5 4.3 90

AA 92.2%
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Table 17. Confusion matrix corresponding to the classification with {DTM, I, FWHM, RGBIGN}.

# points ROCK ROAD VEGETº LAND

71216 ROCK 88.2 10.4 0.1 1

13244 ROAD 3.7 93.8 0 1

402995 VEGETº 0.1 0.2 96.5 3.1

279321 LAND 3.5 1.6 4 90.7

AA 92.3%
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Table 18. Confusion matrix corresponding to the classification with {dDTM, I, FWHM, RGBRAW}.

# points ROCK ROAD VEGETº LAND

71216 ROCK 76.2 19.5 0 4

13244 ROAD 13.4 77.1 0.1 7.8

402995 VEGETº 0.3 0.1 95.3 4.2

279321 LAND 5 5 2.7 87.1

AA 83.9%
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Table 19. FWHM and variations of the return pulse (bold) in ns w.r.t. a Gaussian emitted pulse of FWHM=5 ns - Range=500 m, 1000 m,

2000 m.

r0 θ ↓ ϕ → 10° 30° 60°

5
0
0

m 0.3 mrd 5.0 0 5.0 0 5.1 0.1

1 mrd 5.0 0 5.1 0.1 6.2 1.2

2 mrd 5.0 0 5.5 1.5 9.7 4.7

1
0
0
0

m 0.3 mrd 5.0 0 5.0 0 5.41 0.41

1 mrd 5.0 0 5.5 0.5 9.7 4.7

2 mrd 5.2 0.2 7.1 2.1 19 14

2
0
0
0

m 0.3 mrd 5.0 0 5.2 0.2 6.7 1.7

1 mrd 5.2 0.2 7.1 2.1 19.0 14

2 mrd 5.8 0.8 12.7 7.7 39.0 34


